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Abstract: Automated or robotic harvesting methods are being investigated worldwide and have shown 

promising alternatives to manual harvesting in strawberry production. In robotic strawberry harvesting, the 

critical task of its machine vision system is to detect the presence and maturity of strawberries and estimate 

their precise location in the canopies. This study focused on the estimation and localization of strawberry 

centers in field environment to provide the 3D location of strawberry centers. It first applied a YOLOv4 

approach to detect strawberries of different maturity levels (flower, immature, nearly mature, mature, and 

overripen) from an acquired RGB image. Matured strawberries detected by YOLOv4 were then used as 

inputs to a YOLOv4-tiny model to estimate berry centers in field conditions. A strawberry canopy dataset 

including 1300 selected RGB images was used for training the YOLOv4 model. Validation tests using 100 

RGB images showed that the trained YOLOv4 model achieved an average precision (AP) of 91.73% in 

detecting mature strawberries at a reasonably high processing speed of 55.19ms. A dataset containing 750 

images of single-strawberry was used in training the YOLOv4-tiny model. The trained model could detect 

the strawberry center in a processing time of 4.18ms per strawberry and achieved a mean average precision 

(mAP) of 86.45%. The average errors in estimating strawberry center locations were 1.65 cm on the x-axis, 

1.53 cm on the y-axis, and 0.81 cm on the z-axis when the ZED camera was installed at ~100 cm. With 

precise detection of centers of strawberries by combining YOLOv4 and YOLOv4-tiny, the manipulator 

could receive accurate location information of strawberries to avoid inaccurate or failed picking during 

harvesting. 
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1. INTRODUCTION 

Strawberry is one of the most widely cultivated small fruit 

globally due to its delicious taste and rich nutrition (Yu et al., 

2019). Based on the U.S. Department of Agriculture report, the 

total crop value in the U.S. was over $2.2 billion in 2020 

(USDA, 2021). Robotic harvesting technologies are being 

investigated in the strawberry industry to address labor-related 

challenges such as availability and cost. Thus, it is essential to 

develop a machine vision system that can provide precise 

locations of the strawberries in the field to support robotic 

harvesting. 

Machine vision systems utilized in agricultural applications 

have generally improved in recent years regarding their 

accuracy and robustness. Classification, object detection, and 

segmentation methods based on deep learning techniques have 

been widely applied in the detection and grading of 

agricultural products (e.g., fruit recognition - Hussain et al., 

2018; apple canopy segmentation - Xin et al., 2019). 

Convolutional Neural Networks (CNN) and different 

improvements, including Region-Based Convolutional Neural 

Networks (R-CNN), Fast RCNN, and Faster RCNN-based 

systems, have increasingly been used in detecting and 

localizing various types of fruit for robotic harvesting. That 

has helped robots accurately locate target fruits and estimate 

fruit maturity (Zhang et al., 2017; Gao et al., 2020).  

One method for object detection studied extensively recently, 

You-Only-Look-Once (YOLO), could get detection results, 

including bounding boxes and class probability, directly with 

a single feed-forward network, making it computationally 

much more efficient than a two-stage network, such as RCNN-

based networks (Redmon et al., 2016). YOLOv2 with the 

anchor was significantly improved on detection accuracy and 

the learning process from YOLO (Redmon et al., 2017). 

Modified YOLOv3 models were applied in fruit detection, and 

promising results were obtained with average precision over 

specific tasks (e.g., strawberry detection in Yu et al. (2020)). 

However, these studies have mainly focused on only RGB 

images and estimated only the 2D location of the detected 

objects in the images. The YOLOv4 achieved an AP of 43.5% 



for the MS COCO dataset (Lin et al., 2014) and ~65 fps 

processing time on a Tesla V100 GPU (Bochkovsiy et al., 

2020). He et al. (2021) also compared the results on field 

strawberry detection among YOLOv4, YOLOv3, and 

YOLOv2. The results showed that YOLOv4 performed better 

than the other two models in strawberry detection tasks. In this 

study, the YOLOv4 model was used to detect multiple classes 

of strawberries in the canopy images. As shown in Figure 1, 

the YOLOv4 includes a backbone (CSPDarknet 53), a neck 

(SPP and PAN), and a head (YOLOv3). CSPDarknet was used 

for feature extraction, an improved version of Darknet53 with 

better ability of gradient flow in the network. YOLOv4, with 

the additional structure of SPP and PAN, was not impacted on 

its speed while achieving improved performance in separating 

the target features. 

 

Figure 1. The generic architecture of a YOLOv4 model including 

backbone (CSPDarknet53), neck (SSP and PAN), and dense 

prediction block (YOLOv3). 

There are, however, still limited studies in applying YOLOv4 

for fruit detection with multiple maturities in field conditions 

(He et al., 2021). In addition, previous methods for finding 

picking points or the centers of strawberries were mainly based 

on regular image processing methods by following the color or 

shape of strawberries, which lacks robustness in the field 

environment. In most strawberry fields, a large proportion of 

fruit is in overlapped and occluded conditions. It is, therefore, 

essential to have a fast, robust, and reliable method to detect 

fully and partially visible strawberries and estimate their 

centers for picking. A deep-learning-based method (YOLOv4-

tiny) was proposed in this study to estimate the center of 

mature strawberries after the YOLOv4 model detected mature 

strawberries.  

The specific objectives of this study were to i) apply a trained 

YOLOv4 and YOLOv4-tiny to detect strawberries and center 

regions of mature strawberries; and ii) provide 3D location of 

target strawberries for robotic harvesting. 

2. MATERIAL AND METHODS 

2.1. Data Acquisition 

The image data used to support this study was acquired from a 

commercial field located near Orlando, FL, between February 

15 and 22, 2020. A ZED2 camera (Stereolab inc., US) was 

used for collecting RGB and depth images of strawberry 

canopies simultaneously in a natural open field environment. 

All images were collected from a fixed height of 100 cm above 

the strawberry beds. Around 200 strawberry canopy images 

were captured. Besides, around 2,000 RGB images (without 

depth information) of strawberry canopies were also collected 

using a ZED2 camera. An example color and depth image are 

shown in figure 2. 

 

Figure 2. An example image of a strawberry canopy acquired using 

ZED2 camera; a) RGB image; and b) depth image.  

2.2. Data processing 

As RGB and depth images acquired with the ZED2 camera had 

the same resolution, an additional depth image could be 

obtained through the ZED2 camera (e.g., Figure 3) to directly 

get depth information after fruits were detected. A dataset was 

built with 1,400 selected strawberry canopy images to train the 

strawberry detection network. Strawberries were divided with 

five classes: flower, immature, nearly mature, mature, and 

overripen. Manual labeling of strawberries in these classes 

(except for the flower class) was based on the fruit grading 

method described by Barnes et al. (1976) as follows: 

Immature group ‒ Strawberries with green and white colors 

Nearly mature group – Strawberries with red color on 1/4 to 

3/4 of the surface area 

Mature group – Strawberries with red color over 3/4 of the 

surface area 

Overripe group – senescent strawberries with apparent 

corruption and withering 

 

Figure 3. Example of pre-processed RGB image with 

corresponding depth image.  



To detect strawberries and distinguish them to different 

maturity levels, all strawberries in the images were labeled 

with bounding boxes and classes, as shown in Figure 4. After 

the images were labeled, 850 images, each with a single 

strawberry of ‘mature’ level, were cropped from the canopy 

images according to the bounding boxes on the mature group. 

The fruit center regions were labeled manually according to 

the shape and location of mature strawberries in the original 

canopy images, as shown in Figure 5.  

 

Figure 4. An example of labeled image of a strawberry canopy. 

 

Figure 5. Examples of fruit centers labeling on detected 

strawberries.  

2.3 YOLO-based object detection  

In this study, a YOLOv4-tiny model was applied to detect the 

center of strawberries after being detected using a YOLOv4. 

Besides, we limited the output of YOLOv4-tiny to generate 

only one box with the highest scores/percentage on the center 

of strawberries. YOLOv4-tiny, a compressed version of 

YOLOv4, was designed for implementation in light 

computational platforms such as smartphones and single-

board computers. Although the performance of YOLOv4-tiny 

was not better than YOLOv4 based on the COCO dataset, it 

was about 2–3 times faster than a YOLOv4 model.  

Table 1 lists the training parameters of the YOLOv4 and 

YOLOv4-tiny models. As mentioned above, the YOLOv4 

model was used for detecting strawberries of multiple classes. 

After a bounding box around a strawberry was generated by 

this model, such a bounding box was then input to the 

YOLOv4-tiny model for locating the fruit strawberry center.   

The input image sizes for YOLOv4 and YOLOv4-tiny were 

set as 648×726 and 416×416, respectively, to keep the main 

features of objects (strawberries with multiple maturities and 

center regions) in the images. Due to different output classes 

(YOLOv4 for 5 classes and YOLOv4-tiny for 1 class), the data 

batch size was set to 10,000 for YOLOv4 and 5,000 for 

YOLOv4-tiny. Besides, the filters before YOLO layers were 

30 for YOLOv4 and 18 for YOLOv4-tiny. The learning rate, 

which decreased gradually during the training progress, was 

set to be 0.001 in the first 8,000 iterations, 0.0001 between 

8,001 and 9,000 iterations, and 0.00001 between 9,001 and 

10,000 iterations for YOLOv4. For YOLOv4-tiny, the learning 

rate was set to be 0.001 in the first 2,400 iterations, 0.0001 

between 2,401 and 2,700 iterations, and 0.00001 between 

2,701 and 3,000 iterations.  

As mentioned before, the YOLOv4-tiny model was limited to 

generate only one output per image, as a strawberry could have 

only one center. The example of selection method is shown in 

Figure 6. In later processing, the bounding box with the highest 

proportion was kept while the others were deleted. After the 

center region of the bounding box was obtained, the center 

point could be generated by calculating the width and height 

of the bounding box and then matched with the depth image. 

 

Figure 6. Example output of YOLOv4-tiny: selected bounding box 

(blue box) with the highest score during detection. 

The YOLOv4 model was trained with 1,200 canopy images, 

whereas the YOLOv4-tiny was trained with 750 single-

strawberry images (detected mature strawberries). 

Table 1. Parameters of YOLOv4 and YOLOv4-tiny training 

Parameter YOLOv4 YOLOv4-
tiny 

Size of the input image 648×726 416×416 

Subdivisions  64 64 

Max training batch 10000 3000 

Number of classes 5 1 

Filter before each YOLO layers  30 18 

Step 8000, 9000 2400, 2700 

Number of Output  Not limited 1 

 

2.4 Estimating the 3D location of strawberry centers 

Once the deep-learning networks detected bounding boxes and 

the center of matured strawberries in an image, the pixel 

location of the fruit centers would be transformed into 3D 

coordinates using the depth layer appended to color images. 

Figure 7 presents a flowchart of the process used to estimate 

the 3D coordinates. 



 

 
Figure 7. A flowchart for determining 3D location of strawberry 

centers using RGB and depth images.  

For 3D calibration, three fake strawberries were placed on a 

strawberry canopy at a fixed distance from the ZED2 camera 

as calibrating objects, as shown in Figure 8, and the depth and 

RGB images of those calibrating objects were collected. The 

trained YOLOv4 model was used to detect these strawberries, 

with their centers obtained using the YOLOv4-tiny model. The 

depth information was then estimated using a co-registered 

depth layer. After the depth registration, the relative position 

in X-Y coordinates with reference to origin ‘O’ was estimated 

by using following equations: 

𝑋 = 𝑘1𝑥 + 𝑏1    (1) 

𝑌 = 𝑘2𝑥 + 𝑏2       (2) 

𝑘1 = (𝑥𝑏 − 𝑥𝑐)/(𝑋𝑏 − 𝑋𝑐)   (3) 

𝑘2 = (𝑦𝑎 − 𝑦𝑐)/(𝑌𝑎 − 𝑌𝑐)    (4) 

Where X and Y were coordinates of strawberry centers about 

the origin O; and x and y are the coordinates of strawberry 

centers (x, y) in RGB image. After calibration process is over, 

the relative location of strawberries and camera origin point O 

could be calculated when the pixel location was known from 

the YOLOv4 and the YOLOv4-tiny image processing tool. 

 

Figure 8. 3D calibration for estimating strawberry coordinates 

2.5. Performance Assessment  

Strawberry detection result was evaluated using average 

precision (AP) of mature strawberry, mean Average Precision 

(mAP) under an intersection-over-union (IOU) of 50%, 

processing speed, and the error (e) of 3D location on mature 

strawberries. 

AP and mAP were calculated as follows: 

𝐴𝑃 =  ∑ (𝑟𝑛+1 − 𝑟𝑛)
max

𝑟̃: 𝑟̃3𝑟𝑛+1
𝑝(𝑟̃)𝑛   (5) 

𝑚𝐴𝑃 =  
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1    (6) 

𝑝 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)   (7) 

𝑟 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)   (8) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑟 × 𝑝/(𝑝 + 𝑟)   (9) 

Where p is precision, r is recall, TP is the number of true 

positive objects/strawberries detected, FP is the falsely 

detected objects/strawberries, and FN is the number of objects 

falsely not detected as strawberries.  

The final location of strawberries was evaluated using average 

errors (e) by comparison between the calculated location and 

real location, which can be calculated as follows: 

𝑒𝑋 =  
1

𝑁
∑ (𝑋𝑖 − 𝑋𝑟𝑖)𝑁

𝑖=1   (10) 

𝑒𝑌 =  
1

𝑁
∑ (𝑌𝑖 − 𝑌𝑟𝑖)𝑁

𝑖=1   (11) 

𝑒𝑧 =  
1

𝑁
∑ (𝑍𝑖 − 𝑍𝑟𝑖)𝑁

𝑖=1   (12) 

Where ( 𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖 ) is calculated location of mature 

strawberries, (𝑋𝑟, 𝑌𝑟 , 𝑍𝑟) is real location of strawberries. The 

data in ( 𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 ) were acquired manually through 

measurement on the center point of center of strawberries to 

the origin point O (e.g., 𝑋𝑟 cm to the origin point O).  

3. Evaluation and Results  

3.1. Performance on strawberry detection 

The trained YOLOv4 model was evaluated qualitatively and 

quantitatively using a test dataset including 100 RGB images 

with a resolution of 1200×1000 pixels. An example detection 

result generated by YOLOv4 model was shown in Figure 9. 

The performance of YOLOv4 is shown in Table 2. 

 

Figure 9. An example detection results generated by the YOLOv4 

model trained with RGB images of strawberry canopies. 

 

 



Table 2. Overall performance of YOLOv4 in strawberry detection  

mAP

(%) 

F1 

score 

Processing 

time (ms) 

80.68 0.80 55.19 
 

Table 3. Model performance over individual fruit classes  

AP (%) 
Flower Immature Nearly 

mature 

Mature Overripen 

71.51 87.71 85.28 91.73 68.99 

 

The results (Table 2) showed that the mAP on testing 

strawberry canopy dataset was 80.68%. The processing time 

for YOLOv4 per input image of 648×726 pixels was 55.19ms. 

Besides, additional results (Table 3) showed that AP in the 

flower group and overripen fruit group were 71.51% and 

68.99%, respectively, which caused a decrease in F1 score and 

mAP. The features of flower and overripen groups were more 

complex than the other 3 groups, which was the main reason 

the trained YOLOv4 could not perform as well in recognizing 

flower and overripen groups. However, as the mature 

strawberries have outstanding appearances, detection of 

mature strawberries (which was the most crucial target for 

detection) achieved the highest AP of 91.73% on the test 

dataset. YOLOv4 also performed well in the immature and 

nearly mature groups, with APs of 87.71% and 85.28%, 

respectively.  Overall, the trained YOLOv4 model showed a 

good ability to detect strawberries with different maturity 

levels, especially for the mature strawberries.  

3.2. Performance of Strawberry Center Detection Model 

The performance of the trained YOLOv4-tiny model in 

detecting centers of mature strawberries are shown in Table 4 

and Figure 10. The average processing speed per image with a 

single mature strawberry (416×416 pixels) was only 4.18ms. 

The mAP achieved was 86.45%. In our dataset, one full canopy 

image consisted of up to 15 strawberries, meaning that the total 

processing time per strawberry image was less than 60 ms.  

 

Figure 10. Detection examples on single strawberry.  

 

 

 

 
Table 4. Performance of YOLOv4-tiny 

Processing 

time(ms) 

mAP(%) 

4.18 86.45 

3.3. Performance on 3D location of strawberries  

The horizontal information of strawberries (X and Y) was 

estimated using equations (1) and (2), whereas the depth 

information (Z) was provided by the ZED2 camera. The 

estimated location (𝑋𝑖, 𝑌𝑖, 𝑍𝑖) was compared against the real 

location (𝑋𝑟 , 𝑌𝑟 , 𝑍𝑟 ). 50 calculated locations were recorded 

and compared with their real location. The errors on the x, y, 

and z axis were then estimated using equations (10) (11) and 

(12); the average errors on x, y, and z-axis are shown in Table 

5.  

Table 5. Errors in estimating X, Y, and Z coordinates of strawberry 

centers. 

Axis e (cm) 

x 1.65 

y 1.53 

z 0.81 

From Table 4, the average error on the z-axis was 0.81 cm 

while the average errors on the x-axis and y-axis were 1.65 cm 

and 1.53 cm, respectively with a fixed height (100 cm) of the 

ZED2 camera. 

The error on the z-axis was mainly from the camera errors 

during obtaining depth images while the errors in x- and y-axis 

were mostly from the uneven ground in strawberry field, 

which resulted in ZED 2 camera not being strictly 

perpendicular to the strawberry bed. Finally, the real average 

error distance between calculated and the real locations was 

1.7 cm in 3D space when the ZED2 camera put at a fixed 

height of 100 cm.  

4. CONCLUSION 

An in-field object detection method based on YOLOv4 and 

YOLOv4-tiny was developed for providing 3D location of 

strawberries in this study. The YOLOv4 model was trained 

using 1,300 RGB images and tested using 100 images with an 

input resolution of 648×726 pixels. The evaluation results 

showed that YOLOv4 method had a good potential to detect 

strawberries of different maturity levels with an AP of 91.73% 

and a short processing time of 55.19ms. The Strawberry center 

detection technique using YOLOv4-tiny model achieved a 

mAP of 86.45% with processing speed of 4.16ms on a single 

image of a 416×416-pixel resolution. The final location 

estimation technique achieved an average error of less than 2 

cm at a fixed camera height of 100 cm. This study focused on 

strawberry detection on RGB and depth images under a field 

environment, and post-processing method for improving the 

accuracy and efficiency of the machine vision system. In 

conclusion, this deep learning-based method could be used to 

efficiently detect and locate strawberries and their centers 

under field conditions for guiding robotic arm to reach the 

target fruit, which is crucial for automated/robotic, targeted 

strawberry harvesting.  

Further improvement is essential in decreasing the processing 

time of deep learning-based models for real-time applications 

(e.g., the modified structure of YOLOv4). Additionally, 



increasing the total number of images in the training and 

testing dataset could be an excellent way to improve the 

performance of the model. Furthermore, other object detection 

models, including YOLOv5 and YOLOx (the latest two 

versions of YOLO) could be tested and applied for strawberry 

detection.  
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