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Abstract: Automated or robotic harvesting methods are being investigated worldwide and have shown
promising alternatives to manual harvesting in strawberry production. In robotic strawberry harvesting, the
critical task of its machine vision system is to detect the presence and maturity of strawberries and estimate
their precise location in the canopies. This study focused on the estimation and localization of strawberry
centers in field environment to provide the 3D location of strawberry centers. It first applied a YOLOv4
approach to detect strawberries of different maturity levels (flower, immature, nearly mature, mature, and
overripen) from an acquired RGB image. Matured strawberries detected by YOLOv4 were then used as
inputs to a YOLOv4-tiny model to estimate berry centers in field conditions. A strawberry canopy dataset
including 1300 selected RGB images was used for training the YOLOv4 model. Validation tests using 100
RGB images showed that the trained YOLOv4 model achieved an average precision (4P) of 91.73% in
detecting mature strawberries at a reasonably high processing speed of 55.19ms. A dataset containing 750
images of single-strawberry was used in training the YOLOv4-tiny model. The trained model could detect
the strawberry center in a processing time of 4.18ms per strawberry and achieved a mean average precision
(mAP) of 86.45%. The average errors in estimating strawberry center locations were 1.65 cm on the x-axis,
1.53 cm on the y-axis, and 0.81 cm on the z-axis when the ZED camera was installed at ~100 cm. With
precise detection of centers of strawberries by combining YOLOv4 and YOLOv4-tiny, the manipulator
could receive accurate location information of strawberries to avoid inaccurate or failed picking during

harvesting.
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1. INTRODUCTION

Strawberry is one of the most widely cultivated small fruit
globally due to its delicious taste and rich nutrition (Yu et al.,
2019). Based on the U.S. Department of Agriculture report, the
total crop value in the U.S. was over $2.2 billion in 2020
(USDA, 2021). Robotic harvesting technologies are being
investigated in the strawberry industry to address labor-related
challenges such as availability and cost. Thus, it is essential to
develop a machine vision system that can provide precise
locations of the strawberries in the field to support robotic
harvesting.

Machine vision systems utilized in agricultural applications
have generally improved in recent years regarding their
accuracy and robustness. Classification, object detection, and
segmentation methods based on deep learning techniques have
been widely applied in the detection and grading of
agricultural products (e.g., fruit recognition - Hussain et al.,
2018; apple canopy segmentation - Xin et al., 2019).
Convolutional Neural Networks (CNN) and different

improvements, including Region-Based Convolutional Neural
Networks (R-CNN), Fast RCNN, and Faster RCNN-based
systems, have increasingly been used in detecting and
localizing various types of fruit for robotic harvesting. That
has helped robots accurately locate target fruits and estimate
fruit maturity (Zhang et al., 2017; Gao et al., 2020).

One method for object detection studied extensively recently,
You-Only-Look-Once (YOLO), could get detection results,
including bounding boxes and class probability, directly with
a single feed-forward network, making it computationally
much more efficient than a two-stage network, such as RCNN-
based networks (Redmon et al., 2016). YOLOvV2 with the
anchor was significantly improved on detection accuracy and
the learning process from YOLO (Redmon et al., 2017).
Modified YOLOvV3 models were applied in fruit detection, and
promising results were obtained with average precision over
specific tasks (e.g., strawberry detection in Yu et al. (2020)).
However, these studies have mainly focused on only RGB
images and estimated only the 2D location of the detected
objects in the images. The YOLOv4 achieved an AP of 43.5%



for the MS COCO dataset (Lin et al., 2014) and ~65 fps
processing time on a Tesla V100 GPU (Bochkovsiy et al.,
2020). He et al. (2021) also compared the results on field
strawberry detection among YOLOv4, YOLOv3, and
YOLOV2. The results showed that YOLOv4 performed better
than the other two models in strawberry detection tasks. In this
study, the YOLOv4 model was used to detect multiple classes
of strawberries in the canopy images. As shown in Figure 1,
the YOLOV4 includes a backbone (CSPDarknet 53), a neck
(SPP and PAN), and a head (YOLOv3). CSPDarknet was used
for feature extraction, an improved version of Darknet53 with
better ability of gradient flow in the network. YOLOv4, with
the additional structure of SPP and PAN, was not impacted on
its speed while achieving improved performance in separating
the target features.
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Figure 1. The generic architecture of a YOLOv4 model including
backbone (CSPDarknet53), neck (SSP and PAN), and dense
prediction block (YOLOV3).

There are, however, still limited studies in applying YOLOv4
for fruit detection with multiple maturities in field conditions
(He et al., 2021). In addition, previous methods for finding
picking points or the centers of strawberries were mainly based
on regular image processing methods by following the color or
shape of strawberries, which lacks robustness in the field
environment. In most strawberry fields, a large proportion of
fruit is in overlapped and occluded conditions. It is, therefore,
essential to have a fast, robust, and reliable method to detect
fully and partially visible strawberries and estimate their
centers for picking. A deep-learning-based method (YOLOv4-
tiny) was proposed in this study to estimate the center of
mature strawberries after the YOLOv4 model detected mature
strawberries.

The specific objectives of this study were to 1) apply a trained
YOLOv4 and YOLOv4-tiny to detect strawberries and center

regions of mature strawberries; and ii) provide 3D location of
target strawberries for robotic harvesting.

2. MATERIAL AND METHODS
2.1. Data Acquisition

The image data used to support this study was acquired from a
commercial field located near Orlando, FL, between February
15 and 22, 2020. A ZED2 camera (Stereolab inc., US) was
used for collecting RGB and depth images of strawberry
canopies simultaneously in a natural open field environment.
All images were collected from a fixed height of 100 cm above
the strawberry beds. Around 200 strawberry canopy images
were captured. Besides, around 2,000 RGB images (without
depth information) of strawberry canopies were also collected
using a ZED2 camera. An example color and depth image are
shown in figure 2.

Figure 2. An example image of a strawberry canopy acquired using
ZED2 camera; a) RGB image; and b) depth image.

2.2. Data processing

As RGB and depth images acquired with the ZED2 camera had
the same resolution, an additional depth image could be
obtained through the ZED2 camera (e.g., Figure 3) to directly
get depth information after fruits were detected. A dataset was
built with 1,400 selected strawberry canopy images to train the
strawberry detection network. Strawberries were divided with
five classes: flower, immature, nearly mature, mature, and
overripen. Manual labeling of strawberries in these classes
(except for the flower class) was based on the fruit grading
method described by Barnes et al. (1976) as follows:

Immature group — Strawberries with green and white colors

Nearly mature group — Strawberries with red color on 1/4 to
3/4 of the surface area

Mature group — Strawberries with red color over 3/4 of the
surface area

Overripe group — senescent strawberries with apparent
corruption and withering

Depth layer

Figure 3.

Example
corresponding depth image.

of pre-processed RGB image with



To detect strawberries and distinguish them to different
maturity levels, all strawberries in the images were labeled
with bounding boxes and classes, as shown in Figure 4. After
the images were labeled, 850 images, each with a single
strawberry of ‘mature’ level, were cropped from the canopy
images according to the bounding boxes on the mature group.
The fruit center regions were labeled manually according to
the shape and location of mature strawberries in the original
canopy images, as shown in Figure 5.

Figure 4. An example of labeled image of a strawberry canopy.

Figure 5. Examples of fruit centers labeling on detected
strawberries.

2.3 YOLO-based object detection

In this study, a YOLOv4-tiny model was applied to detect the
center of strawberries after being detected using a YOLOv4.
Besides, we limited the output of YOLOvV4-tiny to generate
only one box with the highest scores/percentage on the center
of strawberries. YOLOv4-tiny, a compressed version of
YOLOv4, was designed for implementation in light
computational platforms such as smartphones and single-
board computers. Although the performance of YOLOv4-tiny
was not better than YOLOvV4 based on the COCO dataset, it
was about 2-3 times faster than a YOLOv4 model.

Table 1 lists the training parameters of the YOLOv4 and
YOLOvV4-tiny models. As mentioned above, the YOLOv4
model was used for detecting strawberries of multiple classes.
After a bounding box around a strawberry was generated by
this model, such a bounding box was then input to the
YOLOvV4-tiny model for locating the fruit strawberry center.
The input image sizes for YOLOv4 and YOLOv4-tiny were
set as 648x726 and 416x416, respectively, to keep the main
features of objects (strawberries with multiple maturities and
center regions) in the images. Due to different output classes
(YOLOV4 for 5 classes and YOLOv4-tiny for 1 class), the data
batch size was set to 10,000 for YOLOv4 and 5,000 for
YOLOv4-tiny. Besides, the filters before YOLO layers were
30 for YOLOvV4 and 18 for YOLOv4-tiny. The learning rate,

which decreased gradually during the training progress, was
set to be 0.001 in the first 8,000 iterations, 0.0001 between
8,001 and 9,000 iterations, and 0.00001 between 9,001 and
10,000 iterations for YOLOv4. For YOLOv4-tiny, the learning
rate was set to be 0.001 in the first 2,400 iterations, 0.0001
between 2,401 and 2,700 iterations, and 0.00001 between
2,701 and 3,000 iterations.

As mentioned before, the YOLOv4-tiny model was limited to
generate only one output per image, as a strawberry could have
only one center. The example of selection method is shown in
Figure 6. In later processing, the bounding box with the highest
proportion was kept while the others were deleted. After the
center region of the bounding box was obtained, the center
point could be generated by calculating the width and height
of the bounding box and then matched with the depth image.

64% §

center.
-

center: 92%

Figure 6. Example output of YOLOvV4-tiny: selected bounding box
(blue box) with the highest score during detection.

The YOLOvV4 model was trained with 1,200 canopy images,
whereas the YOLOv4-tiny was trained with 750 single-
strawberry images (detected mature strawberries).

Table 1. Parameters of YOLOv4 and YOLOv4-tiny training

Parameter YOLOv4 YOLOV4-
tiny
Size of the input image 648%726 416x416
Subdivisions 64 64
Max training batch 10000 3000
Number of classes 5 1
Filter before each YOLO layers 30 18
Step 8000, 9000 2400, 2700
Number of Output Not limited 1

2.4 Estimating the 3D location of strawberry centers

Once the deep-learning networks detected bounding boxes and
the center of matured strawberries in an image, the pixel
location of the fruit centers would be transformed into 3D
coordinates using the depth layer appended to color images.
Figure 7 presents a flowchart of the process used to estimate
the 3D coordinates.
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Figure 7. A flowchart for determining 3D location of strawberry
centers using RGB and depth images.

For 3D calibration, three fake strawberries were placed on a
strawberry canopy at a fixed distance from the ZED2 camera
as calibrating objects, as shown in Figure 8, and the depth and
RGB images of those calibrating objects were collected. The
trained YOLOv4 model was used to detect these strawberries,
with their centers obtained using the YOLOv4-tiny model. The
depth information was then estimated using a co-registered
depth layer. After the depth registration, the relative position
in X-Y coordinates with reference to origin ‘O’ was estimated
by using following equations:

X =kyx +b; (1)
Y = kyx + b, (2)
ky = (xp = x0)/(Xp = Xe) (€)
ky = Va = ¥)/(Ya = Yc) 4)

Where X and Y were coordinates of strawberry centers about
the origin O; and x and y are the coordinates of strawberry
centers (x, y) in RGB image. After calibration process is over,
the relative location of strawberries and camera origin point O
could be calculated when the pixel location was known from
the YOLOv4 and the YOLOv4-tiny image processing tool.

\ ZED2 camera

@ Strawberry model
used for coordination

Figure 8. 3D calibration for estimating strawberry coordinates

2.5. Performance Assessment

Strawberry detection result was evaluated using average
precision (AP) of mature strawberry, mean Average Precision
(mAP) under an intersection-over-union (/OU) of 50%,
processing speed, and the error (e) of 3D location on mature
strawberries.

AP and mAP were calculated as follows:

AP = Tnlrues = 1) iy, D) )
mAP = %Z?’zlAP,- (6)
p = TP/(TP + FP) (7
r=TP/(TP + FN) (®)
Flscore=2Xrxp/(p+1) 9)

Where p is precision, » is recall, 7P is the number of true
positive objects/strawberries detected, FP is the falsely
detected objects/strawberries, and FN is the number of objects
falsely not detected as strawberries.

The final location of strawberries was evaluated using average
errors (e) by comparison between the calculated location and
real location, which can be calculated as follows:

1

ex = it (X — Xrp) (10)
1

ey = ~XiLi(Yi — Yi) 1n
1

ez =5 ?:1(Zi —Zy) (12)

Where (X;, Y;, Z;) is calculated location of mature
strawberries, (X, Y;-, Z,.) is real location of strawberries. The
data in (X,, Y., Z,) were acquired manually through
measurement on the center point of center of strawberries to
the origin point O (e.g., X, cm to the origin point O).

3. Evaluation and Results
3.1. Performance on strawberry detection

The trained YOLOvV4 model was evaluated qualitatively and
quantitatively using a test dataset including 100 RGB images
with a resolution of 12001000 pixels. An example detection
result generated by YOLOv4 model was shown in Figure 9.
The performance of YOLOV4 is shown in Table 2.

Figure 9. An example detection results generated by the YOLOv4
model trained with RGB images of strawberry canopies.



Table 2. Overall performance of YOLOV4 in strawberry detection

mAP | FI | Processing
(%) | score | time (ms)
80.68 | 0.80 55.19

Table 3. Model performance over individual fruit classes

AP (%)

Flower | Immature | Nearly | Mature | Overripen
mature

71.51 87.71 85.28 | 91.73 68.99

The results (Table 2) showed that the mAP on testing
strawberry canopy dataset was 80.68%. The processing time
for YOLOV4 per input image of 648x726 pixels was 55.19ms.
Besides, additional results (Table 3) showed that AP in the
flower group and overripen fruit group were 71.51% and
68.99%, respectively, which caused a decrease in F'/ score and
mAP. The features of flower and overripen groups were more
complex than the other 3 groups, which was the main reason
the trained YOLOvV4 could not perform as well in recognizing
flower and overripen groups. However, as the mature
strawberries have outstanding appearances, detection of
mature strawberries (which was the most crucial target for
detection) achieved the highest AP of 91.73% on the test
dataset. YOLOv4 also performed well in the immature and
nearly mature groups, with APs of 87.71% and 85.28%,
respectively. Overall, the trained YOLOvV4 model showed a
good ability to detect strawberries with different maturity
levels, especially for the mature strawberries.

3.2. Performance of Strawberry Center Detection Model

The performance of the trained YOLOvV4-tiny model in
detecting centers of mature strawberries are shown in Table 4
and Figure 10. The average processing speed per image with a
single mature strawberry (416416 pixels) was only 4.18ms.
The mAP achieved was 86.45%. In our dataset, one full canopy
image consisted of up to 15 strawberries, meaning that the total
processing time per strawberry image was less than 60 ms.

Figure 10. Detection examples on single strawberry.

Table 4. Performance of YOLOv4-tiny

Processing
time(ms)

mAP(%)

4.18 86.45

3.3. Performance on 3D location of strawberries

The horizontal information of strawberries (X and Y) was
estimated using equations (1) and (2), whereas the depth
information (Z) was provided by the ZED2 camera. The
estimated location (X;, Y;, Z;) was compared against the real
location (X, Y, Z,). 50 calculated locations were recorded
and compared with their real location. The errors on the x, y,
and z axis were then estimated using equations (10) (11) and
(12); the average errors on X, y, and z-axis are shown in Table
5.

Table 5. Errors in estimating X, Y, and Z coordinates of strawberry
centers.

Axis e (cm)
X 1.65
y 1.53
z 0.81

From Table 4, the average error on the z-axis was 0.81 cm
while the average errors on the x-axis and y-axis were 1.65 cm
and 1.53 cm, respectively with a fixed height (100 cm) of the
ZED?2 camera.

The error on the z-axis was mainly from the camera errors
during obtaining depth images while the errors in x- and y-axis
were mostly from the uneven ground in strawberry field,
which resulted in ZED 2 camera not being strictly
perpendicular to the strawberry bed. Finally, the real average
error distance between calculated and the real locations was
1.7 cm in 3D space when the ZED2 camera put at a fixed
height of 100 cm.

4. CONCLUSION

An in-field object detection method based on YOLOv4 and
YOLOv4-tiny was developed for providing 3D location of
strawberries in this study. The YOLOv4 model was trained
using 1,300 RGB images and tested using 100 images with an
input resolution of 648726 pixels. The evaluation results
showed that YOLOv4 method had a good potential to detect
strawberries of different maturity levels with an AP 0f 91.73%
and a short processing time of 55.19ms. The Strawberry center
detection technique using YOLOv4-tiny model achieved a
mAP of 86.45% with processing speed of 4.16ms on a single
image of a 416x416-pixel resolution. The final location
estimation technique achieved an average error of less than 2
cm at a fixed camera height of 100 cm. This study focused on
strawberry detection on RGB and depth images under a field
environment, and post-processing method for improving the
accuracy and efficiency of the machine vision system. In
conclusion, this deep learning-based method could be used to
efficiently detect and locate strawberries and their centers
under field conditions for guiding robotic arm to reach the
target fruit, which is crucial for automated/robotic, targeted
strawberry harvesting.

Further improvement is essential in decreasing the processing
time of deep learning-based models for real-time applications
(e.g., the modified structure of YOLOv4). Additionally,



increasing the total number of images in the training and
testing dataset could be an excellent way to improve the
performance of the model. Furthermore, other object detection
models, including YOLOv5 and YOLOx (the latest two
versions of YOLO) could be tested and applied for strawberry
detection.
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