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Abstract

The Perso-Arabic scripts are a family of scripts
that are widely adopted and used by various lin-
guistic communities around the globe. Iden-
tifying various languages using such scripts
is crucial to language technologies and chal-
lenging in low-resource setups. As such, this
paper sheds light on the challenges of detect-
ing languages using Perso-Arabic scripts, espe-
cially in bilingual communities where “uncon-
ventional” writing is practiced. To address this,
we use a set of supervised techniques to clas-
sify sentences into their languages. Building
on these, we also propose a hierarchical model
that targets clusters of languages that are more
often confused by the classifiers. Our exper-
iment results indicate the effectiveness of our
solutions.!

1 Introduction

Historically, the territorial expansion of the Arab
conquests led to various long-lasting changes in
the world, particularly from an ethnolinguistic
point of view where the local languages of the time
faced existential challenges (Wasserstein, 2003).
With Arabic being the language of administration
—a Reichssprache— many languages were affected
and adapted in many ways such as writing or vo-
cabulary. Over centuries the Persian language
extended the Arabic script by adding additional
graphemes such as <> (<p>, U+067E) and <3>
(<g>, U+06AF) to conform to the phonology of the
language. Hence, one of the main extended vari-
ants of the Classical Arabic script is the Perso-
Arabic script which has been gradually adopted
by many other languages to our day, mainly in
West, Central and South Asia (Khansir and Moza-
fari, 2014). Some of the languages using a Perso-
Arabic script are Urdu, Kurdish, Pashto, Azeri
Turkish, Sindhi, and Uyghur, along with many oth-
ers that historically used the script such as Ottoman

'Data and models are available at https://github.
com/sinaahmadi/PersoArabicLID
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Turkish. This said, there are other scripts that were
directly adopted from the Arabic script without be-
ing affected by the Persian modifications such as
Ajami script used in some African languages like
Swahili and Wolof, Pegon and Jawi scripts used in
Southern Asia and Aljamiado historically used for
some European languages.

Language identification is the task of detecting
the language of a text at various levels such as
document, sentence and sub-sentence. Given the
importance of this task in natural language pro-
cessing (NLP) as in machine translation and infor-
mation retrieval, it has been extensively studied
and is shown to be beneficial to various applica-
tions such as sentiment analysis and machine trans-
lation (Jauhiainen et al., 2019). This task is not
equally challenging for all setups and languages,
as it has been demonstrated that language identifi-
cation for shorter texts or languages that are closely
related, both linguistically and in writing, is more
challenging, e.g. Farsi vs. Dari or varieties of Kur-
dish (Malmasi et al., 2015; Zampieri et al., 2020).

Furthermore, some of the less-resourced lan-
guages spoken in bilingual communities face vari-
ous challenges in writing due to a lack of adminis-
trative or educational support for their native lan-
guage or limited technological tools. These re-
sult in textual content written unconventionally,
i.e. not according to the conventional script or or-
thography of the language but relying on that of
the administratively “dominant” language. For in-
stance, Kashmiri or Kurdish are sometimes written
in the Urdu or Persian scripts, respectively, rather
than using their adopted Perso-Arabic orthogra-
phy. This further complicates the identification of
those languages, causing confusion due to the re-
semblance of scripts and hampers data-driven ap-
proaches due to the paucity of data. Therefore, re-
liable language identification of languages using
Perso-Arabic scripts remains a challenge to this
day, particularly in under-represented languages.

Tenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2023), pages 78-90
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Language 639-3 WP Scripttype Diacritics ZWNJ Dominant
Azeri Turkish azb  azb Abjad v v Persian
Gilaki glk  glk Abjad v v Persian
Mazanderani mzn mzn Abjad v v Persian
Pashto pus ps Abjad v X Persian
Gorani hac - Alphabet X X Persian, Arabic, Sorani
Northern Kurdish (Kurmanji)  kmr - Alphabet X X Persian, Arabic
Central Kurdish (Sorani) ckb ckb Alphabet X X Persian, Arabic
Southern Kurdish sdh - Alphabet X X Persian, Arabic
Balochi bal - Abjad v X Persian, Urdu
Brahui brh - Abjad v X Urdu
Kashmiri kas ks  Alphabet v X Urdu
Sindhi snd sd  Abjad v X Urdu
Saraiki skr  skr Abjad v X Urdu
Torwali trw - Abjad v X Urdu
Punjabi pnb  pnb Abjad v X Urdu
Persian fas fa  Abjad v v -
Arabic arb ar  Abjad v X -
Urdu urd ur  Abjad v v -
Uyghur uig ug  Alphabet X X -

Table 1: Perso-Arabic scripts of the selected languages studied in this paper. Columns 2 and 3 show the codes
of the languages in ISO 639-3 and on their specific Wikipedia (WP), if available. The diacritics and zero-width
non-joiner (ZWNJ) columns refer to the usage of diacritics (Harakat) and ZWNJ as individual characters.

As such, we select several languages that
use Perso-Arabic scripts, summarized in Table 1.
Among these, the majority face challenges related
not only to a scarcity of data but also unconven-
tional writing. Therefore, we define the language
identification task for these languages in two se-
tups where a) the text is written according to the
script or orthography of the language, referred to as
conventional writing, or b) the text contains a cer-
tain degree of anomalies due to usage of the script
or orthography of the administratively-dominant
language. Considering that Perso-Arabic scripts
are mostly used in languages native to Pakistan,
Iran, Afghanistan and Iraq, we also include Urdu,
Persian and Arabic as they are primarily used
as administratively-dominant languages. Further-
more, having a more diverse set of languages can
reveal which languages are more often confused.
Although we also include Uyghur, it should be
noted that it is mainly spoken in a bilingual commu-
nity, i.e. in China, where unconventional writing
is not Perso-Arabic; therefore, we only consider
conventional writing for Uyghur.

Contributions This paper sheds light on lan-
guage identification for languages written in the
Perso-Arabic script or its variants. We describe
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collecting data and generating synthetically-noisy
sentences using script mapping (§2). We imple-
ment a few classification techniques and propose a
hierarchical model approach to resolve confusion
between clusters of languages. The proposed ap-
proach outperforms other techniques with a macro-
average F; that ranges from 0.88 to 0.95 for noisy
settings (§3).

2 Methodology

Given that the selected languages are mostly low-
resourced, collecting data and, more importantly,
identifying text written in a conventional and un-
conventional way is a formidable task. To tackle
this, we focus on collecting data from various
sources on the Web, notably Wikipedia.2 Then, we
propose an approach to generate synthetic data that
can potentially reflect and model various types of
noise that occur in unconventional writing. To that
end, we use a simple technique that maps charac-
ters from the script of a language to that of another
one, i.e. the dominant language. And finally, we
discuss our efforts to benchmark this task and pro-
pose a hierarchical model that resolves confusion
between similar languages.

*https://www.wikidata.org


https://www.wikidata.org

2.1 Data Collection

As Table 1 shows, all languages have their ded-
icated Wikipedia pages using their Perso-Arabic
scripts, except Gorani, Northern and Southern Kur-
dish, Balochi, Brahui and Torwali. Therefore, we
use the Wikipedia dumps as corpora for the avail-
able languages.® On the other hand, for Northern
and Southern Kurdish, Balochi and Brahui, we col-
lect data by crawling local news websites as listed
in Table A.2. Additionally, we use Uddin and Ud-
din (2019)’s corpus for Torwali, Ahmadi (2020)’s
corpus for Gorani, Esmaili et al. (2013)’s corpus
for Central Kurdish and Tehseen et al. (2022)’s cor-
pus for Punjabi. Regarding Persian, Arabic and
Urdu, we use the Tatoeba datasets.*

Once the data is collected, we carry out text
preprocessing after converting various formats to
raw text, use regular expressions to remove special
characters related to formatting styles and remove
information such as emails, phone numbers, and
website URLs. We also convert numerals to Latin
ones as a mixture of numerals is usually used in
Perso-Arabic texts, namely Persian <-\YY¥OSVAL>
and Arabic <.\ Y¥y¢o1vA4> numerals along with
the Latin ones. This is to ensure that a diverse set
of numerals are later included in the sentences for
the language identification task. As some of the
selected languages use two scripts, as in Punjabi
written in Gurmukhi and Shahmukhi or Kashmiri
written in Devanagari and Perso-Arabic, we also
applied a few regular expressions to remove script
and code-switched sentences or quoted ones in the
corpora. Given the complexity of detecting such
alternations, we note that script and code-switched
words may still exist in the cleaned corpora.

We finalize text preprocessing by unifying the
Unicode encoding of characters. Inconsistencies
in Unicode encoding are oftentimes due to the us-
age of keyboards with different code bindings and
are previously included in preprocessing for some
languages (Ahmadi, 2019; Doctor et al., 2022). As
an example, <<> (U+06D2) and <¢> (U+064A)
may be used instead of <¢> (U+OéCC) or <>
(U+0643) instead of <S> (U+06A9) in Kurdish.
Depending on the usage of zero-width non-joiner
character (ZWNJ, U+200C), as shown in Table 1,
we also consider its removal in the preprocessing
step.’ Finally, we tokenize the corpora at the sen-

3Dumps of 20 January 2023.
“https://tatoeba.org
SWe consult various sources on the Web for information
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tence level using regular expressions.

Table A.3 presents the 10 most frequent trigrams
in the collected corpora among which many affixes
and conjunctions are retrieved that can be indica-
tive of a language.

2.2 Script Mapping

Assuming that a noisy text is written using the dom-
inant language’s script or orthography, we map the
Perso-Arabic script of a given language to that of
the dominant language, e.g. Kashmiri script to
Urdu or Central Kurdish script to Persian and Ara-
bic. To do so, we rely on the visual resemblance
and Unicode encoding of the characters as follows:
 If two graphemes exist in the scripts of the
two languages, as in <a> (U+06BE) in Sindhi
and Urdu or <&> (U+0679) in Saraiki and
Urdu, we map them together regardless of
their pronunciation in the two languages.
In absence of an identical grapheme in the
dominant script, the most visually similar
character is mapped to the source charac-
ter. For instance, the most similar character
in Urdu to <J> (U+06B7) in Brahui is <>
(U+0644). Similarly, <> (U+06CB) in Gilaki
is mapped to the similar <g> (U+0648) in Per-
sian. This way, a character can be mapped to
many other characters in the source language.
Some mappings follow orthographic rules,
particularly for characters that vary depend-
ing on the position in a word. For instance,
vowels in Kurdish appear with an initial
hamza, i.e. <5> (U+0626) as in <§> /o:/ and
<{3> /e:/. We also include such rules.
Since the numerals are unified in data collec-
tion (§2.1), we also map the Latin numerals
to those of Persian and Arabic randomly.
Depending on the dominant languages, for each
source and dominant language, a script mapping
is manually created. It should be noted that
along with the non-diacritical characters, diacriti-
cal ones are also included if the diacritics, includ-
ing Harakat, are part of the grapheme as in <3>
(U+068E) in Gorani and Sindhi, but not <I>. De-
tachable Harakat such as fatha, kasra and damma
are not included in the script mapping. Table A.1
presents the set of characters used in the selected
languages based on their relation with Arabic, Per-
sian, and Urdu as the three major languages using
Perso-Arabic scripts.

about common writing practices in the selected languages, no-
tably https://scriptsource.org.


https://tatoeba.org
https://scriptsource.org

2.3 Synthetic Data Generation

Using the script mappings, we mimic unconven-
tional writing by generating synthetic sentences
based on the ‘clean’ ones, i.e. sentences in the col-
lected corpora. This is carried out by randomly
substituting characters in the clean sentence with
an alternative in the target script using our map-
pings. In order to evaluate the impact of noise on
language identification, we synthesize data at var-
ious levels starting from 20% noise up to 100%,
where a certain level of noise is applied based
on the number of possible substitutions. Table 2
shows an example of a clean sentence in Northern
Kurdish and its synthetic noisy equivalents based
on the level of noise.

Therefore, the datasets are categorized as fol-
lows:

1. cLEAN: a dataset containing original sen-
tences from the corpora without injecting any
noise. This is equivalent to 0% of noise in
the data. This includes all the selected lan-
guages along with Urdu, Persian, Arabic, and
Uyghur.

Noisy: datasets of sentences having noisy
characters at various levels, starting from
20% of noise and gradually increasing 20%
up to 100%. Regardless of usage, detachable
diacritics are removed when the noise level is
100%, including for Kashmiri for which dia-
critics are strictly used. We combine all data
with all levels of noise in a separate dataset
called ALL. Given that Persian, Urdu, Arabic,
and Uyghur do not face unconventional writ-
ing, they are not included in the noisy data.

. MERGED: the result of merging cLEAN and ALL

datasets.

The cLeEaN and Noisy datasets contain 10,000
sentences per language, except for Brahui, Torwali,
and Balochi, for which only 549, 1371, and 1649
sentences are available in the corpora respectively.
Therefore, we included 500 sentences from those
languages in the test sets and upsample the remain-
ing sentences with a coefficient of four, i.e. dupli-
cating four times the remaining sentences, and con-
sider them as a train set. Similarly, for Kashmiri
and Gorani for which 6340 and 8742 sentences are
respectively available, 2000 sentences are added
to the test set while the remaining sentences are
upsampled to have 8000 sentences in the train set.

To avoid an imbalance of data for dominant lan-
guages for which there is no noise, i.e. Urdu, Per-
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Noise % Sentence
Cl Saodts J 5555 5,001 S5 baSolasy mns s
ean

Second Kurdish photographers’ exhibition in Belgium

20 Sl J 5358 03881 5558 LeeSlisy ansgo
40 Soad & J 5355 0 61.8k8 b &SLey (e 099
60 Bl & J 5,58 0y B S558 b 80Ley e 8950
80 Sy J 358 n,®) S5558 biSiliny (eily g
100 Sardes J 5555 0881 5558 eeSliny rnansss

Table 2: A sentence in Northern Kurdish (Kurmanji)
along with its synthetically-generated noisy ones based
on different levels of noise.

sian, Arabic, along with Uyghur, 10,000 more in-
stances are added from their respective clean cor-
pora. As such, the MERGED dataset contains 20,000
clean and noisy sentences per language.

2.4 Benchmarking

We consider language identification as a proba-
bilistic classification problem where each sentence
is predicted to belong to a specific class, i.e. lan-
guage, with a certain probability. We use the 80/20
split of the sentences in the various datasets for the
train and test sets as described in the previous sec-
tions. Both sets are from the same data.

As a baseline system, we use fastText’s pre-
trained language identification model-1id.176
that is trained using data from Wikipedia, Tatoeba
and SETimes for 176 languages, including all the
selected languages except Balochi, Brahui, Gilaki,
Gorani, Northern Kurdish (in Perso-Arabic script),
Southern Kurdish and Torwali. In addition, we
train a model using fastText with word vectors of
size 64, a minimum and maximum length of char-
acter n-grams of 2 to 6, 1.0 learning rate, 25 epochs
and a hierarchical softmax loss.

Other than the fastText-related baseline and our
own models, we also report precision, recall, and
F; scores for benchmarking purposes for state-of-
the-art methods such as Google’s CLD3 (Salcianu
et al., 2020), Franc® and Langid.py (Lui and
Baldwin, 2012). We also share two other base-
lines trained from scratch with character n-gram
features of sizes 2 to 4 - Multinomial Naive Bayes
model (MNB — non-uniform learned class priors,
no Laplace smoothing), and a Multilayer Percep-
tron (MLP) with maximum iterations of 500, one
hidden layer of size 500 and a batch size of 1000.

*https://github.com/wooorm/franc/
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Multilingual Root Model

O

SDH CKB KU HAC FA GL\K MZN AZB \PA SKR
Cluster 1 Classifier Cluster 2 Classifier Cluster 3 Classifier
| | |
Finer Prediction Finer Prediction Finer Prediction

Figure 1: Architecture of our hierarchical model. If the root model predicts Southern Kurdish (spH), Gorani (HAC),
Northern Kurdish (kmR), or Central Kurdish (ckB), the sample gets sent down to a smaller expert classifier that is
trained to resolve confusion between these four closely-related languages. Likewise for cluster 2 and cluster 3’s
languages. If an unclustered language is predicted by the root model, i.e. none of the branches are available, the
hierarchical model predicts the same label as the root.

Southern Kurdish SEZEEEEEE] 1 0 2 0 0 1 0 0 0 0 0 2 0 0 0 0
Central Kurdish JZYN 1TV 0 1 1 2 0 0 0 1 1 0 0 0 0 1 0
Northern Kurdish 49 29 & 41 1 0 0 6 2 0 0 1 2 0 1 0 0 5 0
Gorani 21 18 J 8] 4 3 0 0 0 0 1 1 1 0 0 6 0

Persian- 2 0

Gilaki- 2 0

Mazanderani- 0 0 92 15709 72
Azeri Turkish- 0 0
Pashto- 2 1
Urdu- 0 0
Kashmiri- 0 0
Punjabi- 0 0

Sindhi- 0 0

Saraiki- 0 0
Arabic- 1 0
Balochi- 0 0
Torwali- 0 0
Uyghur- 0 0
Brahui- 0 0
> > .
&&% é&% S
RS
& > &
'&e S Q“Q
%o‘\’ [ &

Figure 2: Confusion matrix of the multilingual root model on the training dataset. Row labels indicate our custom
fastText model’s predictions, columns indicate true labels (training dataset), and each cell count indicates the num-
ber of predictions made by the model for a (prediction, true label) pair. From the confusion matrix, we identified
three highly-confused language clusters as reported in Section 2.5.
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2.5 Hierarchical Modeling

The goal behind hierarchical modeling (Figure 1)
is to resolve a model’s confusion between highly-
related languages by training expert classifiers that
specialize in distinguishing between a small set of
languages. We achieve this by inspecting the con-
fusion matrix of the best-performing model (on
training data) and identifying language clusters
that the model shows high confusion in predict-
ing. The custom-trained fastText model described
in the previous section serves as the root classifier
and we identify three clusters, as mentioned below,
from its confusion matrix (Figure 2):

1. Cluster 1 containing Southern Kurdish, Cen-
tral Kurdish, Northern Kurdish and Gorani
Cluster 2 containing Persian, Gilaki, Mazan-
derani, Azeri Turkish and Pashto
. Cluster 3 containing Urdu, Kashmiri, Punjabi,

Sindhi and Saraiki

Each sub-unit in the hierarchical tree is a fast-
Text model trained from scratch on data from the
relevant cluster’s languages with the same param-
eterization as the root model.

3 Results

In Table 3, we report precision, recall, and F;
scores across all datasets, 6 state-of-the-art and
custom-trained baselines, our root fastText model
(Root), and a hierarchical confusion-resolution
model (Hier). We find that our root fastText model
performs well by considerable margins when com-
pared to the pre-trained fastText baseline, Google’s
CLD3, langid.py, Franc, MNB and MLP.

3.1 State-of-the-Art vs. Simple Baselines

None of the three state-of-the-art models (CLD3,
langid.py, Franc) get more than 0.15 F; score
on our test set across all 19 languages and noise
settings. In fact, they often get acutely low F;
scores (0 < F; < 0.1) for mixed noise settings
(40% - aLL). This is despite these models’ support
of Urdu, Persian, Arabic, Sindhi, with Franc ad-
ditionally covering Central Kurdish. This demon-
strates the poor quality of language identification
in the state-of-the-art pre-trained models despite
claims of covering hundreds of languages, fur-
ther highlighting that language identification is far
from solved. Compared to these three models, the
MNB and MLP models perform better across all
noise levels (except 20% noise), and even outper-
form fastText’s large pre-trained model 1id.176

&3

on 7 out of § noise settings, becoming a stronger
baseline than the 1id.176 model.

3.2 Hierarchical Modeling with fastText

Coming to our two models, the custom fast-
Text model (Root) and the hierarchical confusion-
resolution model (Hier), it is clear that both mod-
els perform noticeably better compared to any of
the baselines by a huge margin. Since the hier-
archical model is trained on the MERGED dataset
which contains noisy and clean sentences with four
more classes than the clean (0% noise) setting, it
is natural that the Root model performs better in
the clean setting. However, for any realistic noise
level (from 20% to MERGED) the hierarchical model
performs better than the Root model.

To test these subtle improvements, we report sta-
tistical significance results for each noise level ac-
cording to a one-tailed Z-test, comparing the root
model with the hierarchical model, at a signifi-
cance level 0.01. We perform a Z-test because the
number of samples is greater than 30 and the sam-
ple variance can be reliably used as an estimate of
the population variance. The null hypothesis is that
there is no significant difference between the root
and the hierarchical model (1o : froot = fhier) and
the alternative hypothesis proposes that the hier-
archical model’s performance is significantly and
strictly greater than the root model (111 : froor <
fhier). We compute a one-tailed 99% confidence
interval for the root model’s F; score f0:. As per
the one-tailed Z-test, we can reject the null hypoth-
esis and conclude that the difference between F;
scores is statistically significant if the hierarchical
model’s Fy score fp;e,- is strictly over this interval’s
upper bound. In Table 4, we report the results of
our hypothesis testing and find that the advantage
provided by our hierarchical confusion-resolution
approach is statistically significant at the 99% con-
fidence level for all noise settings. Therefore, we
establish that a confusion-informed hierarchical
approach could be utilized to improve performance
on noisy data without re-training the entire model
and that it translates well to the test set by bringing
statistically significant improvements.

3.3 Language-Specific Performance

In Table 5, we report language-level scores across
noise levels for the best two systems: our custom
fastText model and our confusion-resolution hier-
archical model. Across all languages and noise lev-
els, the hierarchical model only underperforms in



Noise Metric Hier Root fastText CLD3 1langid.py Franc MNB MLP
Precision 0.72 091 0.16 0.03 0 0.02 043 047

0% Recall  0.70  0.89 0.07 0.05 0 0.02 0.14 0.16
Fi; Score  0.72  0.90 0.10 0.04 0 0.02 021 024
Precision 0.92 0.92 0.30 0.08 0.13 0.13 0.08 0.03

20% Recall  0.89 0.89 0.32 0.18 0.18 0.18 0.05 0.05
F; Score 091 0.90 0.31 0.11 0.15 0.15 0.06 0.04
Precision 0.91 0.90 0.17 0.04 0 0.01 0.51  0.49

40% Recall  0.88 0.88 0.07 0.05 0 0 0.09 0.11
F1 Score  0.90 0.89 0.10 0.05 0 0 0.16 0.19
Precision 0.91 0.90 0.17 0.04 0 0 045 0.54

60% Recall  0.88 0.87 0.07 0.05 0 0 0.12  0.09
Fq Score  0.89 0.88 0.09 0.04 0 0 020  0.15
Precision 0.90 0.90 0.16 0.03 0 0 025 033

80% Recall  0.88 0.87 0.06 0.05 0 0 0.12  0.15
Fq Score  0.89 0.88 0.08 0.04 0 0 0.16 0.21
Precision 0.90 0.90 0.15 0.03 0 0 0.44 0.44

100% Recall  0.88 0.87 0.06 0.05 0 0 0.08 0.11
Fq Score  0.89 0.88 0.08 0.03 0 0 0.13  0.17
Precision  0.90  0.89 0.15 0.03 0 0 0.28  0.51

ALL Recall  0.87 0.86 0.06 0.05 0 0 0.16 0.10
Fi Score 0.88 0.88 0.08 0.04 0 0 020 0.17
Precision  0.95 0.95 0.28 0.06 0.11 0.11 0.15 0.15

MERGED  Recall 094 0.94 0.27 0.16 0.16 0.16 0.08 0.07
F; Score 095 0.94 0.27 0.09 0.13 0.13 0.10 0.10

Table 3: Comparison of all language identification models’ precision, recall, and F; scores across noise settings.
Our hierarchical (Hier) and Root models perform as the best two models for all noise levels. fastText, Multinomial
Naive Bayes (MNB) and Multilayer Perceptron (MLP) take third place for different noise levels. Precision, recall,
and F; scores are reported for all methods to provide benchmarks. For two values that are the same up to the
hundredth decimal place, boldfaced entries indicate strictly better performance.

Noise  Test Samples A Significant
0 33500 -0.188 X
20 25500 0.005 v
40 25500 0.006 v
60 25500 0.007 v
80 25500 0.007 4
100 25500 0.007 v
ALL 27806 0.007 v
MERGED 69304 0.002 v

Table 4: Improvements (positive A) in the F; scores
of our hierarchical modeling approach compared to the
Root model are statistically significant for all noise lev-
els at significance level = 0.01, i.e. 99% confidence.
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5 out of 128 settings. For all others, it performs ei-
ther at par or better than the Root model. The bold-
face entries indicate that the hierarchical model
brings the most improvements in the noisy settings
(20%-aLL) across all three identified clusters. As
expected, for languages that were not part of any
highly-confused cluster, i.e. AR, BAL, TRW, UG and
BRH, the hierarchical and Root model produce the
same predictions, therefore, have the same scores
across noise levels. In Table A.4, we also provide
a few language identification examples at various
noise levels based on the predictions of the pre-
trained fastText model in comparison to our model.



0% 20% 40% 60% 80% 100% ALL MERGED

MI M2 MI M2 MI M2 MI M2 MI M2 MI M2 Ml M2 Ml M2

Cluster 1
SDH 095 096 095 096 094 095 093 094 093 094 094 094 094 094 095 0.96
CKB 095 095 094 094 092 094 091 093 091 093 091 092 092 093 095 0.95
KU 095 095 093 094 093 093 092 093 093 092 092 092 092 093 095 0.95
HAC 094 094 094 094 093 093 092 092 092 092 092 092 091 092 094 094

Cluster 2
FA 0.97 0.98 - - - - - - - - - - - - 0.97 0.98
GLK 092 094 088 0.89 088 089 088 0.9 088 0.89 088 0.89 092 092 092 0.94
MZN 092 092 085 086 085 086 085 087 085 086 085 0.87 092 093 092 0.92
AZB 091 091 086 087 085 086 0.86 087 086 0.87 085 086 09 091 091 091
PS 096 096 094 095 094 095 094 095 094 095 094 094 096 096 096 0.96

Cluster 3
UD 0.96 0.97 - - - - - - - - - - - - 0.96 0.97
KAS 094 095 09 091 09 091 09 091 09 091 087 088 091 09 094 0.95
PA 091 091 087 086 086 086 086 086 085 0.86 085 085 087 087 091 091
SD 093 094 0.89 091 088 0.89 087 0.89 087 0.89 087 0.89 091 091 093 0.94
SKR 092 091 085 085 0.84 085 084 085 085 0.85 0.84 085 0.86 0.88 0.92 091
AR 0.98 0.98 - - - - - - - - - - - - 0.98 0.98
BAL 098 098 094 094 094 094 094 094 095 095 095 095 097 097 098 0.98
TRW 095 095 087 087 089 0.89 088 088 088 088 087 087 091 091 095 0.95
UG 0.99 0.99 - - - - - - - - - - - - 0.99 0.99
BRH 0.84 084 0.7 0.7 0.67 0.67 0.68 0.68 0.68 0.68 0.65 0.65 063 063 084 0.84

Table 5: Language-level F; scores for our hierarchical (M1) and Root (M2) models. Our hierarchical model shows
improvement in F; score for languages in all three clusters (first 3 sections from the top) across noise levels. Dashed
cells show that the language only has a conventional script and therefore was not part of the synthetic data settings.

4 Related Work

Modeling Approaches Language identification
is generally modeled as a multi-class text clas-
sification task and has achieved state-of-the-art
performance with straightforward byte, character
or word-level n-gram features across languages
and language varieties and in limited data set-
tings (Jauhiainen et al., 2017). Model or classi-
fier choice is highly dependent on the source, do-
main and quantity of data per language, with sim-
ple linear classifiers like Support Vector Machines
(Ciobanu et al., 2018; Malmasi and Dras, 2015)
and Multinomial Naive Bayes (King et al., 2014;
Mathur et al., 2017) providing strong baselines
with limited data and compute across domains. If
large amounts of data are available, aggregated
classifiers (Baimukan et al., 2022) and neural mod-
els may be used, but have continued to strug-
gle with similar language varieties and dialects
and have been prone to overfitting (Medvedeva
et al., 2017; Criscuolo and Aluisio, 2017; Eldes-
ouki et al., 2016).

In our paper, we propose a hierarchical ap-
proach to language identification that identifies
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commonly-confusable language pairs in noisy set-
tings and resolves such mispredictions with small
classification units. Such a modeling approach can
be used to expand language coverage and improve
the performance of the existing pre-trained mod-
els without retraining large compute-hungry mod-
els. In our case, we noticed statistically significant
improvements for noisy data settings.

Similar Languages and Varieties Language
identification is a well-studied problem, some-
times even considered solved; in reality, most of
the world’s languages are not supported by cur-
rent systems. This lack of representation affects
large-scale data mining efforts and further exac-
erbates data shortage for low-resource languages.
One key bottleneck in improving language cov-
erage in language identification systems is the
ability to distinguish between similar languages,
language varieties, and dialects. As outlined in
this paper, this becomes even more challenging
when a language community adopts the unconven-
tional script of a dominant language. Recently,
there has been studies in distinguishing between
Nordic languages (Haas and Derczynski, 2021),



Arabic dialects (Nayel et al., 2021; Abdul-Mageed
et al., 2020; Salameh et al., 2018) and regional
Italian and French language varieties (Jauhiainen
et al., 2022; Camposampiero et al., 2022). Haas
and Derczynski (2021), for instance, experiment
with many modeling and featurization approaches
to best distinguish between six Nordic languages:
Danish, Swedish, Norwegian (Nynorsk), Norwe-
gian (Bokmal), Faroese and Icelandic. They find
that skipgram embeddings extracted out of fast-
Text are rich and capable of distinguishing be-
tween closely-related languages. It is worth noting
that while the paper’s approach presented improve-
ments across selected languages, all six selected
Nordic languages have a large amount of training
data (50K+ sentences) and are already supported
by off-the-shelf tools like langid.py. This is in
contrast to our work where previously unsupported
languages and varieties are incorporated into lan-
guage identification systems and evaluated.

To distinguish between similar languages and
dialects, more shallow and linear classifiers such
as Naive Bayes and Logistic Regression tend to
outperform neural models like MLP or convolu-
tional neural networks (Chakravarthi et al., 2021;
Aepli et al., 2022; Ceolin, 2021). This is con-
firmed by non-neural classical machine learning
approaches winning a majority of VarDial 2021
and 2022 shared tasks across typologically di-
verse languages such as Dravidian languages, Ro-
manian dialects, Italian and French regional va-
rieties (Jauhiainen et al., 2022; Camposampiero
et al., 2022), and Uralic languages (Chakravarthi
et al.,, 2021). Neural modeling approaches, due
to limited data in similar languages/varieties, may
also sometimes under-perform non-neural base-
lines as reported in the Uralic Language Identifi-
cation or the Italian Dialect Identification shared
tasks (Chakravarthi et al., 2021; Aepli et al., 2022).

5 Conclusion

We focus our study on languages written in bilin-
gual communities where an unconventional domi-
nant Perso-Arabic script is often utilized in place
of a conventional and more suitable Perso-Arabic
variant writing system. We discuss challenges
unique to this scenario, in both data collection
and language identification, and consequent per-
formance issues in state-of-the-art systems when
faced with data in such unconventional writing sys-
tems. This is highlighted by the 20-point perfor-
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mance difference in F; scores between noisy and
clean/mixed settings. Our proposed hierarchical
approach outperforms a custom-trained fastText
system, simple MNB and MLP and the state-of-
the-art language identification systems of Google’s
CLD3, Franc and langid.py. We find statisti-
cally significant improvements by using a hierar-
chical model after analyzing a root multilingual
model’s confusion matrix.

6 Limitations

Some of the selected languages use more than
one script, as in Punjabi or Kurdish. This affects
the quality of the collected data which is prepro-
cessed automatically. As such, we believe that our
datasets contain a trivial but existing amount of
code-switched text. Moreover, having focused on
the Perso-Arabic scripts, we did not include texts
from other scripts of such languages. Although a
language can be affected by more than one domi-
nant language and the synthetic data is generated
by considering various script mappings, the impact
of individual dominant languages is yet to be ana-
lyzed. To this end, a finer-grained classification
task should be defined per dominant language.

Additionally, variants such as Dari and Farsi
of Persian, and sub-dialects of the selected lan-
guages could be included in this task. In the same
vein, our hierarchical approach can be applied to
other scripts, particularly those that are adopted by
many languages, such as Cyrillic and Latin. Fi-
nally, other techniques can be implemented and
fine-tuned based on our collected data.

Generally, it is expected that the presented mod-
els perform better when trained on more data. We
also believe that our hierarchical model’s improve-
ments over the root model are limited by the size
of our training sets. With more genuine noisy data
available, it is possible that our performance will
improve across all noise setups as well as the clean
data setup.
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Table A.1: The Perso-Arabic scripts used in the selected languages with a comparative overview of the Arabic,
Persian and Urdu scripts. Note that language-specific characters refer to those characters that are unique to a

language and not used in Arabic, Persian or Urdu. This is shown in the last row as well.
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Language Website

Balochi https://sunnionline.us/balochi/
Brahui https://talarbrahui.com

Northern Kurdish https://badinan.org

Southern Kurdish https://shafaq.com/ku

Table A.2: Local news websites from which the collected data are crawled.
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Table A.3: The 10 most frequent trigrams in the collected corpora of the selected languages. _, and _represent space
and ZWNJ, respectively. Among the trigrams, many affixes and conjunctions can be seen, such as ,_,g,, (‘and’) in
Northern Kurdish (kmR), 45, (‘that’) in Gorani (HAC).

Prediction (@1)
Language Noise % Sentence
1id.176  Our’s

Punjabi 0 Urdu  AZeri LS 1S Gy Gae 0L a5 Caygo o eulyinly ¥l
Saraiki 0 Punjabi Saraiki iS55 030 (Gabsd I wsle Gy Se usS
Sindhi 0 Sindhi Sindhi Sl gS Hlw ez Sl W)sc S leds LigS
Balochi 0 Urdu Balochi )18 &S il Kigy 1g0 LB S by LT
Azeri 0 Persian Azeri Lwdoiloylul )lisgo dygw 9€93 g 98
Gilaki 0 Persian Gilaki Oliwds (eiwl) 4> duyl Liwg) il @unl Olygd
Persian 0 Persian Persian ol O 935S Gaped Oloj (s -l U Hi8)S 18 Hloj Lils>
Uyghur 0 Uyghur  Uyghur 50z @rannsS |y ol G9)3dNELD Linpd)d5 cllxSosyan
S}é’;'rtgies? 0 Sorani S}é’;‘rtg;? Olog st sEols a plgos Jaoy03)l 5 09315 5y U335 Lol
Kashmiri 20 Urdu Kashmiri b3 (Jis 82 16 HAlS Ggy o)SDol d‘hug_ug 851 g2 i) g
Kashmiri Urdu  Kashmiri ObS Al g2 30 ald gy &I Sliwgiy 651 82 Lil) g
Sorani 20 Persian Sorani 0yl iy Gl A Jluregd Gilo=y0s (o3,
Sorani 100 Arabic Sorani opbolyj Hhaing Lo d Juangs Silopes Loh)

Table A.4: A few examples in the selected languages along with the predictions of fastText’s pretrained models
(1id.176) in comparison to those of one of our models trained using fastText on our collected data.
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