
Approximate Submodularity of Maximizing Anticoordination in Network
Games

Soham Das and Ceyhun Eksin

Abstract— We consider decentralized learning dynamics for
agents in an anti-coordination network game. In the anti-
coordination network game, there is a preferred action in the
absence of neighbors’ actions, and the utility an agent receives
from the preferred action decreases as more of its neighbors
select the preferred action, potentially causing the agent to
select a less desirable action. The decentralized dynamics that
is based on the iterated elimination of dominated strategies
converge for the considered game. Given a convergent action
profile, we measure anti-coordination by the number of edges
in the underlying graph that have at least one agent in either
end of the edge not taking the preferred action. The maximum
anti-coordination (MAC) problem seeks to find an optimal set
of agents to control under a finite budget so that the overall
network disconnect is maximized on game convergence as a
result of the dynamics. In this paper we show that the MAC is
approximately submodular in line networks for any realization
of the utility constants in the population. Utilizing this result, we
provide a performance guarantee for the greedy agent selection
algorithm for MAC. Finally, we use a computational study to
show the effectiveness of greedy node selection strategies to
solve MAC on general bipartite networks.

I. INTRODUCTION

Anti-coordination games can be used to study competition
among firms [1], [2], public goods scenarios [3], free-rider
behavior during epidemics [4], [5], and network security [6].
In each of these scenarios, there is a desired action for each
agent, e.g., not taking the costly preemptive measures during
a disease outbreak, not investing in insurance/protection etc.,
in the absence of other agents. When other agents are around,
they can affect the benefits of the desired action, providing
incentives for agents to switch. Here we consider networked
interactions, where the actions of an agent are only affected
by its neighbors only (a subset of the population). Despite
the peer effects, some of the agents may continue to take the
individually desired action, endangering their peers and the
rest of the population. That is, the rational behavior can lead
to the failure of anti-coordination in the population, when
anti-coordination is desirable for the well-being and safety
of the system as a whole.

In such scenarios, we can envision the existence of a
central coordinator with the goal to induce behavior that
supports the well-being of the society. Here, we consider one
such mechanism where the centralized coordinator intervenes
by controlling a few agents in the network to incentivize
anti-coordination among agents that repeatedly take actions
to maximize individual payoffs. In particular, we consider

Soham Das and Ceyhun Eksin are with the Industrial and Systems Engi-
neering Department, Texas A&M University, College Station, TX 77843.
E-mail: soham.das@tamu.edu; eksinc@tamu.edu. This
work was supported by NSF ECCS-1953694.

decentralized learning dynamics inspired by the iterated
elimination of dominated strategies [7]. A dominated strategy
is an action that cannot be preferred under any circumstance.
Thus a dominated strategy cannot be a rational action. In the
learning dynamics considered here, agents eliminate certain
actions by evaluating their individual utilities under the
worst and best possible action profiles of their neighbors.
The information about the elimination of an action by an
agent can lead to a cascade of updates by other agents in
the network. Indeed, we showed in [8] that such dynamics
will converge in finite time and eliminate all dominated
strategies of the anti-coordination network game considered
here. Given such adaptive behavior of agents, the centralized
player can steer the convergent action profile toward socially
desirable outcomes by controlling the actions of a few
players during the learning phase.

In our setting, we define the goal of the central coordinator
as to maximize anti-coordinating connected pairs of agents
upon convergence of the behavior. The MAC problem in-
volves selecting a subset of the agents in the population,
thus it is a combinatorial problem. We consider a greedy
selection protocol for solving MAC, where at each selection
epoch the agent that yields the highest number of anti-
coordinating edges at the convergent action profile is added
to the control set until the control budget is reached. We
show that the MAC problem is approximately submodular
and almost monotone in line networks implying that the
worst case performance of the greedy selection protocol is
bounded by a fraction of the optimal solution.

Eventually, for the general bipartite graph, we provide an
inapproximability result, showing that the violation of sub-
modularity on a specially designed bipartite graph instance of
MAC can be of the order of the number of edges in the graph,
thereby highlighting that our current performance guarantees
will not be effective in the worst case. However, we back
our results up with a simulation study that elucidates that
the greedy selection protocol provides near-optimal results
on average for general bipartite networks. Indeed, we show
that MAC is submodular in expectation in dense bipartite
networks in [9].

This work is most closely related to the following inter-
vention mechanisms in games that aim to improve efficiency:
nudging [10]–[12], influence maximization [13], and seeding
in advertising [14]. All of these approaches aim to determine
the emerging action profile resulting from an adaptive learn-
ing dynamics under repeated game play by either providing
incentives or suggestions of “good” behavior to agents or
by directly controlling a set of agents, as we do in this

2022 IEEE 61st Conference on Decision and Control (CDC)
December 6-9, 2022. Cancún, Mexico

978-1-6654-6761-2/22/$31.00 ©2022 IEEE 3151

20
22

 IE
EE

 6
1s

t C
on

fe
re

nc
e

on
 D

ec
is

io
n

an
d

C
on

tro
l (

C
D

C
) |

 9
78

-1
-6

65
4-

67
61

-2
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

D
C

51
05

9.
20

22
.9

99
31

80

Authorized licensed use limited to: Texas A M University. Downloaded on August 31,2023 at 21:36:29 UTC from IEEE Xplore. Restrictions apply.

paper. Here, we aim to maximize anti-coordination instead
of maximizing social welfare. Other forms of intervention
mechanisms involve financial incentives in the form of
taxations or rewards [15], and information design [16]. These
mechanisms do not consider repeated game play, and instead
focus on improving the efficiency of Nash equilibria. Here
our control selection policy is dependent on the adaptive
behavior of agents. Lastly, we considered a similar MAC
problem for the same anti-coordination network game in [8].
This work provides a performance guarantee for the greedy
selection algorithm when agents interact over a line network.

II. NETWORK GAMES

We consider a graph G(V,E) where the set of vertices
V represent the agents, and the set of edges E represent
interactions between the agents. Each agent takes an action
ai ∈ [0, 1] to maximize its utility function

ui(ai, a−i) = ai
(
1− ci

∑
j∈n(i)

aj
)

(1)

where a−i := {aj}j∈V \{i} denotes the actions of all agents
except agent i’s action, n(i) := {j : (i, j) ∈ E} represents
agent i’s neighbors, and 0 ≤ ci < 1 is a constant.

The utility function above captures scenarios where agent
i has a preferred action (action 1) but its incentive to choose
this action decreases as more of its neighbors choose the
preferred action. The decrease in incentive per neighbor is
proportional to the constant ci. The constant represents the
sensitivity of agent i’s utility to its neighbor’s actions.

Our network game can be represented by the tuple Γ =
{V,A, {ui}i∈V } where A = [0, 1]|V | is the set of actions
available to all players.

Below we provide scenarios that can be captured by the
network game Γ with payoffs given by (1).

Example 1 (Disease spread on networks [5]) Consider a
bipartite graph GB where agents on one side are sick and
the other side healthy [5]. The edges in GB represent the
network of interaction between them. The disease spreads
when agents on either end of a interaction link do not follow
healthcare protocols, such as wearing masks, vaccinating,
social distancing etc. We model this using action level
1 for the agent (the easier/preferred action). Action level
0 represents following epidemic mitigation protocols (the
costlier action), and all actions between 0 and 1 represents
the relative importance given to disease prevention measures.
When we have an agent playing 0 on the end of an interaction
link, we have deactivated a disease transmission pathway in
society. The utilities of agents in the epidemic game are the
anti-coordination type, i.e., its incentive to social distance
increases with more of its neighbors flouting protocols and
hence can be captured using the utility function in (1). The
learning constants ci, i ∈ V represent the sensitivity of the
agents to the neighbor influence.

An example where polarization between opposing political
parties is motivated using our anti-coordination framework
is illustrated in [9].

III. LOCAL LEARNING DYNAMICS

We consider decentralized learning dynamics based on the
notion of iterated elimination of dominated strategies [7]. At
each stage t = 1, 2, . . . , we assume agents observe the past
actions of their neighbors at−1n(i), and determine its action ati
according to the following rule

ati = 1, if 1 = BRi(dat−1n(i)e),
ati = 0, if 0 = BRi(bat−1n(i)c),
ati = α, otherwise

(2)

where BRi(an(i)) := argmaxai∈[0,1] ui(ai, an(i)) is the best
response action profile, and α ∈ (0, 1) is an arbitrary action
between 0 and 1. In (2), agent i respectively evaluates the
best response function given an overestimate (ceil) and an
underestimate (floor) of the sum of its neighbors’ actions.
The best response action for the utility function in (1) is
given by

BRi(an(i)) = 1
(
1 > ci

∑
j∈n(i)

aj
)

(3)

where 1(·) is the indicator function. Accordingly, if
the overestimate of neighbors’ actions is less than 1
(ci
∑

j∈n(i)daje < 1), then agent i would take the pre-
ferred action 1 regardless of its neighbors’ future actions.
Similarly, if the underestimate of neighbors’ actions exceeds
1 (ci

∑
j∈n(i)bajc > 1), then agent i would take action

0 regardless of its neighbors future actions. In the former
scenario, all actions are dominated by action 1, whereas in
the latter scenario all actions are dominated by action 0. If
neither of these conditions hold, i.e., when ci

∑
j∈n(i)bajc ≤

1 ≤ ci
∑

j∈n(i)daje, then agent i cannot rule out any of the
actions, thus it takes an arbitrary action α ∈ (0, 1).

In [8], we show that the dynamics in (2) converges in at
most |V | iterations, eliminating all strictly dominated actions
for the network game Γ when the network G is bipartite and
all agents play α (are undecided) initially, i.e. a0i = α for
i ∈ V . These updates converge to a Nash equilibrium if
the game is dominance solvable, i.e., if the game is such
that a single action profile is left as a result of iterated
elimination of dominated strategies. For instance, the anti-
coordination game Γ with utility function in (1) is dominance
solvable given constants ci < 1

|n(i)| for all i ∈ V . Indeed,
all agents take action 1 after the first update in (2) because
ci
∑

j∈n(i)daje < 1 for all i ∈ V . For general payoff
constants, the game Γ is not dominance solvable, i.e. some
agents can continue to take action α at the end of |V |
iterations.

IV. MAXIMUM ANTI-COORDINATION PROBLEM

We define an edge between agents i and j ((i, j) ∈ E)
to be inactive when at least one of the agents take action 0,
i.e., when aiaj = 0. Our goal is to maximize the number
of inactive edges by controlling a subset of the players
(with set cardinality r ∈ Z+) to play action 0 during the

3152

Authorized licensed use limited to: Texas A M University. Downloaded on August 31,2023 at 21:36:29 UTC from IEEE Xplore. Restrictions apply.

learning dynamics in (2). We state this goal to maximize
anti-coordination (MAC) as follows

max
X⊆V

f(X) :=
∑

(i,j)∈E

1(a∞i a
∞
j = 0)

subject to |X| = r,

a0j = α for all j ∈ V,
(a0, a1,, a∞) = Φ(a0, X),

(4)

where Φ(a0, X) represents the sequence of actions obtained
when uncontrolled agents (V \ X) follow the learning dy-
namics in (2), and the actions of controlled agents are set to
0, i.e., ati = 0 for all t > 0 and i ∈ X . By removing the
agents that are controlled from the game, we can guarantee
that the learning process converges in finite time as per
the aforementioned convergence result in [8] for bipartite
networks. The control budget for the planner is restricted,
i.e., the planner can only control a given r number of agents
as indicated by the first constraint in (4).

In the context of disease spread in a population (Example
1), maximizing anti-coordination in the underlying relation-
ship network by inactivating disease transmission links is
highly desirable as an effective means of curbing spread of
the disease between members of society. The decentralized
learning dynamics do not inactivate all edges on convergence
and thereby a central planner would need to control/enforce
certain agents to coordinate with policy guidelines (playing
action level 0) so that the maximum number of transmission
pathways shall be dismissed.

V. APPROXIMATE SUBMODULARITY OF MAC
In a greedy approach, we obtain a solution to a cardinality

constrained maximization problem maxX⊆V,|X|≤r f(X) by
selecting one element at a time, i.e.,

u = argmax
w∈N

f(Gj−1 ∪ {w}) (5)

Gj = Gj−1 ∪ {u}, for 1 ≤ j ≤ r

where G0 = ∅. The greedy approach is a computationally
tractable way to build a set of maximum cardinality r for
solving MAC in (4) when, in addition, we consider the
learning dynamics. If the MAC is approximately submodular,
then the greedy approach can obtain a solution comparable to
the optimal set X∗. In the following, we provide preliminary
definitions of approximate submodularity and monotonicity,
and then characterize the optimality loss when we implement
a greedy selection (5).

Definition 1 A set function f(X) : 2|V | → R is ε-
submodular if the following condition holds for any X ⊆
Y ⊆ V and u ∈ V \ Y

∆uf(X) + ε ≥ ∆uf(Y) (6)

where ε ≥ 0 and ∆uf(X) = f(X ∪ {u}) − f(X) is the
discrete derivative of f at X with respect to u.

When ε = 0, the function f is submodular. Submodularity
here refers to a diminishing returns property, i.e., in the

u

Fig. 1. A u-snippet with cardinality C(4, 5). The bold end-agents are
insensitive. Dashed lines encircle agents in set Y \X . Here, when agents
in Y is controlled, we have ∆uf(Y) = 3 + 3 = 6 which is the
maximum marginal gain we can achieve on the line topology by additionally
controlling u given the updates in (2). ∆uf(X) = 2, leading to ε-gap= 4.

context of MAC (4), the amount we gain in the objective
by additionally controlling an element u on top of X is non-
increasing as we control elements in set V \X .

Definition 2 A set function is almost monotone increasing
if

f(X) ≤ f(Y) + kX,Y (7)

for all X ⊆ Y , and kX,Y : (2|V | × 2|V |) −→ R+.

When kX,Y = 0, the function is monotone. Note that in (4) if
f(X) were monotone, then all discrete derivatives ∆uf(X),
u ∈ V \ X are required to be non-negative. That property
does not hold for MAC (see Table I), and hence we relax
monotonicity to accept violations in this paper.

A celebrated result by Nemhauser et al. [17] proves
that monotone submodular set functions lend themselves to
efficient greedy maximization with worst case performance
lower-bounded by 1−e−1 of the optimal objective. Here we
show that even though the properties of monotonicity and
submodularity hold only approximately for MAC instances
defined on a line graph, the violations are limited and the
performance guarantees are preserved with slight modifica-
tions.

A. Approximate Submodularity of MAC in line networks

We evaluate the violation of submodularity and mono-
tonicity in MAC for line networks and any utility constant
values {ci}i∈V , ci ∈ [0, 1) for all i ∈ V . In a line graph
G(V,E) with k = |V | agents, an agent i ∈ V \ {1, k}
has its neighbors defined as n(i) = {i − 1, i + 1}, and the
endpoint agents {1, k} have a single neighbor n(1) = {2}
and n(k) = {n − 1}–see Fig. 1 for an illustration. The
particular structure of the line-graph yields that agents with
ci <

1
2 and the endpoint agents {1, k} are insensitive to

their neighbors’ actions as per the update in (2), i.e., 1 >
ci
∑

j∈n(i)daje. If ci ≥ 1
2 , then agent i is sensitive to the

actions of their neighbors (unless it is an endpoint agent), and
remain undecided in the initial step of the learning dynamics.

Our analysis relies on identifying the worst-case scenario
of control sets X ⊆ Y such that the violation of the
submodularity property (ε) is maximized for a given graph
topology and given values of the learning constants ci ∈
[0, 1) for i ∈ V . In identifying the worst-case scenario, we
consider subgraphs of the line graph that have insensitive
nodes on both ends. We formally define such subgraph next.

3153

Authorized licensed use limited to: Texas A M University. Downloaded on August 31,2023 at 21:36:29 UTC from IEEE Xplore. Restrictions apply.

Definition 3 An u-snippet is a segment of the line graph
that contains a candidate control agent u ∈ V \ Y and has
insensitive agents exclusively on either end. We refer to the
cardinality of the u-snippet as C(x, y) indicating that there
are x and y agents respectively on each side of u in the
line topology, where x, y ∈ Z+ ∪ {0}, x+ y > 0. When u is
additionally insensitive, i.e., cu < 1

2 , we say the u-snippet is
constrained.

Fig. 1 shows an u-snippet with degree C(4, 5). The influence
of controlling u in an u-snippet cannot go beyond the
insensitive end-nodes of it, except for the case when u
is an end-node. Thus, our analysis focuses on finding the
worst-case scenario u-snippet where ∆uf(Y) is the largest
and ∆uf(X) is the smallest possible. Indeed, the u-snippet
shown in fig. 1 corresponds to a worst case scenario ε-gap
= 4, where no agent from X is in the u-snippet, and the
agents in Y belonging to the u-snippet are encircled by
dashed lines. The following result states the approximate-
submodularity of the MAC problem on a line graph.

Proposition 1 The MAC problem in a line graph for any
set of payoff constants {ci}i∈V , ci ∈ [0, 1) for all i ∈ V is
ε = 2dmax-submodular in the worst case where dmax(=2)
is the maximum degree.

The proof (given in the appendix) first shows that the approx-
imate submodularity is ε = 4 via providing the example in
Fig. 1. Note that this example is not unique and can happen
given a range of payoff constant values. Then we show that
no other u-snippet can attain a worse ε value by eliminating
other scenarios of u-snippets.

Let us define now the graph combination operation which
will be used in the remainder of the text.

Definition 4 The graph Ḡ = (V,E) is a combination of
two graphs G1 and G2 at nodes u ∈ V (G1) and u′ ∈ V (G2)
(denoted as Ḡ = G1+G2|(u,u′)) where V = V (G1)∪V (G2)\
u′ and E = E(G1) ∪E(G2) ∪ {(v, u) : v ∈ V (G2), (v, u′) ∈
E(G2)}.

In this operation we merge the two graphs G1 and G2 at nodes
u and u

′
, with the two nodes becoming one in the resultant

graph. Observe here that the graph combination operation is
symmetric, i.e G1 + G2|(u,u′) = G2 + G1|(u′,u).

Proposition 2 The MAC problem is almost monotone in-
creasing for the line-network. Given selections of control sets
X ⊆ Y ⊆ V and f(·) defined as in (4)

f(X) ≤ f(Y) + kX,Y (8)

where the violation of monotonicity kX,Y = 2|Y \X|.

Proof: Consider an extension of Def. 3 where we do not
have a candidate control agent u. A segment is a subgraph
of the line network that has insensitive agents exclusively
on either end. The segment is constrained when some node
other than the end-nodes is insensitive. Given a selection

of set X , we can bifurcate the line network into multiple
mutually independent segments that do not contain agents in
set X . Recall that an agent j is insensitive if cj < 1/2, if
agent j has a neighbor playing 0, or if it is an end-node.

Let the notation Cn refer to a segment containing n nodes.
Take the family of segments F = {Cn|n ∈ Z+, n 6= 3}.
For Cn ∈ F , for control set X , we achieve a convergent
action profile 1− α− ...− α− 1, following (2). That is, on
convergence, all edges are active.

Consider y ∈ Y \X that is located inside the segment Cn ∈
F . Controlling y can inactivate certain edges, and therefore
the objective function evaluated on this segment f(·)|Cn

yields that f(X)|Cn ≤ f(X ∪ {y})|Cn , and the contribution
of this arrangement towards violation of overall monotonicity
is negative. Instead, consider C3. On convergence of (2),
we get 1 − 0 − 1, all edges in C3 already inactive. Take
y ∈ Y \ X to be one of the end-nodes. Then for control
set X ∪ {y}, we achieve 1 − 1 − 0 on convergence of (2).
Thus, we have done worse by controlling a larger set, i.e.,
f(X)|C3

≤ f(X ∪ {y})|C3
+ 1. Thus for all segments, −1

is the absolute worst we can do.
See that the set of all constrained segments can be obtained
using graph combination on Cx, Cy ∈ F ∪ {C3} at the
end-nodes. Now, use graph combination (Definition 4) on
two C3 segments at one of the end-nodes to construct a
C5 constrained at the central node. For control set X , the
convergent action profile is 1 − 0 − 1 − 0 − 1. When we
additionally control y ∈ Y \ X , the central node, then we
get 1− 1− 0− 1− 1, thereby violating monotonicity by −2
by controlling a single element. Doing worse, for any other
constrained segment is impossible, as that would imply a
violation of at least −2 for some snippet which is one of the
components of the constrained segment which we showed is
not possible.

Given sets X and Y , in the worst case, for every agent
y ∈ Y \X , we can find a C5 constrained segment where the
central node is y, thereby generating f(Y) = f(X)− 2|Y \
X|. Thus, the result follows.

Theorem 1 Let f(·) be defined as in (4). Let Gr be the
control set obtained after r steps of the greedy algorithm in
(5). Then, for a line-network,

f(Gr) ≥ (1− e−1)f(X∗) + e−1(1− 1

r
)(f(∅) + 2r)− 4r

(9)

The proof follows almost identically the performance guar-
antee proof in our work on MAC in dense bipartite networks
(Theorem 4, [9]). The fact that monotonicity and submod-
ularity hold only approximately with bounded violations in
line networks leads to additional terms which when summed
up produce e−1(1− 1

r)2r− 4r in (9). If the function f(·) is
monotonic increasing and purely submodular (ε = 0), then
we recover the standard suboptimality of the greedy approach
where f(Gr) ≥ (1 − e−1)f(X∗) [17]. In fact we can do
better than the rate (1 − e−1) because of the term f(∅) is
non-zero. The MAC objective value f(∅) is non-zero even

3154

Authorized licensed use limited to: Texas A M University. Downloaded on August 31,2023 at 21:36:29 UTC from IEEE Xplore. Restrictions apply.

y u

V0

V1

Fig. 2. We have a 4 × 4 complete bipartite network, with selection for
agent u shown in blue. Sets V0 and V1 are marked in red and blue boxes

before applying any control, because the greedy approach
benefits from the deactivation of edges due to the preferences
of agents to anti-coordinate in (1).

B. Approximate Submodularity of MAC in bipartite networks

Theorem 2 MAC problem in a general bipartite network
can be ε-submodular where ε ∼ O(N2) is proportional to
the number of edges for a certain range of utility constants.

Proof: Consider a complete bipartite graph KN,N =
G(V,E) such that V = V1∪V0, V1∩V0 = ∅ and E = V1×V0.
|V0| = |V1| = N . Let the learning constants ci < 1

N for all
i ∈ V0 and ci ∈ (1

N ,
1

N−1) for i ∈ V1. Since 1 > Nci for
i ∈ V0, we have ai = 1 for i ∈ V0 by (2).

Consider the empty control set X = ∅. All agents in set
V1 play 0 since 1 < Nci for i ∈ V1. The number of inactive
edges f(X) = N2. When we control agent u ∈ V0 to play 0,
agents in set V1 switch to playing 1 (ai = 1 for i ∈ V1 since
1 > (N − 1)ci. Agents in V0 continue playing 1, barring
agent u that is controlled. The number of inactive edges is
equal to the number of edges connected to agent u, i.e.,
f(u) = N . Thus, ∆uf(X) = N −N2.

Consider Y = {y} where y ∈ V0. Agents in V0 play
1 except agent y, and agents in set V1 play 1 since 1 >
(N − 1)ci for i ∈ V1. Thus f(Y) = N . If Y ∪ {u} is
controlled where u 6= y, then f(Y ∪{u}) = 2N by the same
previous reasoning. Thus, we have ∆uf(Y) = N . Then the
submodularity gap according to this scenario is given by ε =
N−(N−N2) = N2 which is equal to the number of edges.

We see that in the worst case, for some specific instances,
the maximum violation of the submodularity property for
MAC can equal to the number of edges in the network. How-
ever, the performance we obtain from the greedy selection
approach often performs comparable to the optimal solution
as we show computationally in the next section.

VI. SIMULATION

MAC is concerned with the deactivation of as many edges
as possible on convergence of learning dynamics, perturbed
by controlling a select few agents. We define the Inactivation
Ratio as the ratio of the number of edges inactivated on
convergence to the number of active edges in the network
before the dynamics progress. Inactivation Ratio, therefore,
is a measure of how successful MAC is on the particular
graph instance, given the control.

For our simulations we consider random bipartite graph
instances with edge formation probability equal to 0.3 and
0.8. Every realization of a network for given network
sizes ({4, 8, 12, .., 40}) has a random topology with random
learning constants for the agents. We sample the learning
constants c for every agent from a uniform distribution
between the limits [0, 1). The control budget is fixed at
dN10e, where N = |V | is the number of nodes in the graph.
Given the budget, we select the control profile using a
greedy cascade based algorithm (5). We compare its anti-
coordination performance with a control set generated using
brute force search. In the brute force approach, we go over
all the possible control sets for the budget specified and find
the one that maximizes the number of edges deactivated. For
every network instance, we calculate the Inactivation Ratio
for both the control sets found using the greedy algorithm
(5) and brute force search. For a given network size, we
sample 40 instances of random bipartite graphs and evaluate
the performance of the greedy algorithm.

We plot the average Inactivation Ratio against the size of
network in Figure 3. The Inactivation Ratio, on average, for
the greedy algorithm is close to the optimal inactivation at the
current control budget for every network size. The maximum
inactivation ratio gap for our simulations stands at 0.106 for
the sparse networks and 0.095 for the dense ones, further
highlighting the good performance of (5) in selecting control
agents to induce anti-coordination. All our simulations have
been performed on Apple(R) M1 CPU (Arm(R) based, 8-
core) with 16GB of RAM.

VII. CONCLUSION

We defined the combinatorial problem of selecting agents
to control to maximize anti-coordination among rational
agents in a network game. Anti-coordination is measured
as the number of edges deactivated from the network on
convergence of decentralized learning dynamics. Firstly, we
showed that MAC is approximately submodular when the
underlying interaction network is a line graph. Our proof
technique utilized fragmenting the network into subgraphs or
snippets which are self-contained units, and further reasoning
to find the maximum violation of submodularity in these
snippets. Moreover, we also show that MAC behaves almost
like a monotone increasing function in the set of control
agents. Using these results in conjunction, we derived the
approximation guarantee for greedy node selection for MAC.
Our computational results indicate that greedy selection
strategies may be effective in producing near-optimal control
sets for MAC on general bipartite network scenarios.

VIII. APPENDIX

A. Proof of Proposition 1

From Lemmas 2 and 3, we have that the maximum value
of ε-gap equals 4 for all u-snippets. Given any selection of
X , Y , and u, we can always construct an u-snippet (or a
constrained u-snippet), and the action switches triggered by
controlling u stay within the snippet and have no effects
outside of the snippet. Hence the maximum violation of the

3155

Authorized licensed use limited to: Texas A M University. Downloaded on August 31,2023 at 21:36:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Average Inactivation Ratio vs Cardinality (N) of the Bipartite
Network for connection probability equal to 0.3 and 0.8 (sparse and
dense networks) respectively. Control budget set at dN

10
e for every network

realization.

submodularity property in case of line graphs is 4. The result
follows by the fact that maximum node-degree is dmax = 2.

Next we provide a few definitions and results that will be
useful in proving the two main lemmas used in the above
proof.

Definition 5 A degree (x, y) u-snippet, referred to as
D(x, y) has control agents in set Y \ X at a minimum
distance of x and y edges respectively on either side of u in
the snippet, where the indexes x, y ∈ Z+ ∪ {0}, x+ y > 0.

To accommodate for cases where we do not have any
agent in set Y/X in one-half of the u-snippet, we set the
corresponding index (x or y) equal to 1 + δ, where δ is the
diameter of the induced subgraph which corresponds to that
half of the snippet.

If a D(m,n) degree configuration is realized on some
u-snippet due to selections of agents in set Y/X , we say
that the corresponding snippet invoked D(m,n). For a given
C(x, y), the set of degree configurations, represented by

DC(x,y), is given by

DC(x,y) := {D(k, l)|k, l ∈ Z+, k ≤ x+ 1, l ≤ y + 1,

(k, l) 6= (x+ 1, y + 1)} (10)

We do not allow both k and l in the previous expression to
be their limiting values at the same time, as D(x+1, y+1) is
a meaningless degree configuration. We have control agents
in both halves of the snippet or at least in one half.

See that no matter the cardinality of the underlying u-
snippet that invokes D(m,n), the value of ∆uf(Y)|D(m,n)

stays the same. Moreover, we are not concerned with degree
configurations where there are multiple controlled agents
in either half of the snippet. This is because the value
of ∆uf(Y) depends only on the nearest controlled agent
y ∈ Y \ X to u in either half. Since agents in Y \ X are
playing 0 for both control sets Y and Y ∪ {u}, the network
y − . . .− u behaves as a self contained unit.

Lemma 1 ∆uf(Y) for a D(x, y) u-snippet is equal to
∆uf(X) for a C(x− 1, y− 1) u-snippet, where x, y ∈ Z+.

Proof: Let agents on D(x, y) be ix− . . .−i1−u−j1−
. . .−jy , where ix ∈ Y \X , and jy ∈ Y \X . According to the
updates (2), neighbors of ix and jy , which are ix−1 and jy−1
respectively, will play 1, i.e., they will be insensitive. Thus,
the effects of controlling agent u cannot affect ix−1 and jy−1.
Then, the segment ix−1 − · · · − i1 − u− j1 − · · · − jy−1 is
an u-snippet with cardinality C(x− 1, y− 1) (Definition 3).
Since there are no agents in Y \ X in this u-snippet, the
result follows.

Lemma 2 The maximum value of ε as defined in (6) for any
u-snippet, no matter the selection of control sets X ⊆ Y ⊆ V
and u ∈ V \ Y cannot exceed 4.

Proof: In finding the maximum ε value, we will focus
on u-snippets that do not contain an element of X . This is
because we can always compute ∆uf(X) by considering an
u-snippet that does not contain an element of X . To see this,
consider an agent x ∈ X that lies within an u-snippet. By
definition, agent x plays 0 resulting its neighbors n(x) to
play 1. Thus, the u-snippet x− x′ − ..−u behaves identical
as the u-snippet x′− ..−u in terms of computing ∆uf(X).

Consider the following set of u-snippets with at least
4 agents in one half and zero in the other half, K1 =
{C(x, 0), x ≥ 4, x ∈ Z+}. For all Z ∈ K1, the action
profiles for control sets X and X ∪ {u} will be 1 − α −
... − α − α − 1 or 1 − α − ... − α − 1 − 0 following the
updates in (2). Thus, ∆uf(X)|Z = 1 for all Z ∈ K1.
Next, define K4 = {C(x, 3), x ≥ 4, x ∈ Z+}. We have
∆uf(X)|Z = 4 for all Z ∈ K4, as the u-triad on one half of
the snippet contributes +3 in the marginal gain calculation,
and we have +1 from the other half of length 4 or more.
In an u-triad the initial action profile is 1 − α − α − α
where one end is insensitive, i.e., plays 1 and the other
end is the sensitive agent u (See Fig. 4). In this network
configuration, the action profile converges to 1 − 0 − 1 − 0

3156

Authorized licensed use limited to: Texas A M University. Downloaded on August 31,2023 at 21:36:29 UTC from IEEE Xplore. Restrictions apply.

1

α

α

1/α
u

1

0

1

0
u

Fig. 4. An u-triad, with convergent action profiles for control sets X and
X ∪ {u} respectively. We have u play 1 or α depending on whether u is
insensitive or not in the u-snippet. Regardless, ∆uf(X) = f(X ∪ u) −
f(X) = 3− 0 = 3

creating three anti-coordinating links when the controlled
agent u plays 0. Next, define K2 = N \ {K1 ∪ K4}.
Equivalently K2 = {C(x, y)|x ≥ 4, y ∈ Z+ \ {3}, y ≤ x}.
We have ∆uf(X)|Z = 2 for all Z ∈ K2, i.e. controlling u
only causes its neighbors to switch to playing 1.

Claim 1 For all u-snippets, we have

max
D∈DZ ,Z∈N∞

∆uf(Y)|D = ∆uf(Y)|D(4,4) = 6 (11)

where N∞ := {
⋃

i>=1{C(i, j)|j ≤ i, i, j ∈ Z+ ∪ {0}}}.

(Proof of Claim 1) Observe that the degree configura-
tion ∆uf(Y)|D(4,4) = ∆uf(X)|C(3,3) = 6 via Lemma
1 and the fact that controlling agent u leads to three
anti-coordinating links on either end of the u-snippet with
cardinality C(3, 3), amounting to a total of six edges in-
activated. Assume now there exists D ∈ DZ for some
Z ∈ N∞ such that ∆uf(Y)|D > 6. Using Lemma 1,
we have ∆uf(X)|C(x−1,y−1) > 6 for some x, y ∈ Z.
Prior to the claim, we established that ∆uf(X)|Z ≤ 4 for
Z ∈ N≥4 := {C(x, y)|x ≥ 4, y ≤ x, x, y ∈ Z+ ∪ {0}}.
And for u-snippets with halves of length three or less,
(Z ∈ N≤3 := {C(x, y)|x ≤ 3, y ≤ x, x, y ∈ Z+ ∪ {0}}), we
have that the number edges is at most six. Thus, we arrive
at a contradiction proving the claim in (11).

For maximizing ε for all Z ∈ N≥4, we select Z such that
we can invoke D(4, 4) on it while minimizing the value of
∆uf(X)|Z . We can only invoke D(4, 4) for Z ∈ K′

2 =
{C(x, y)|x ≥ 4, y ≥ 3, y ≤ x, x, y ∈ Z}. To maximize ε-
gap, we therefore select Z from the set K2∩K

′

2. Since for all
Z ∈ K2, ∆uf(X)|Z = 2, we get an ε-gap= 4. See Figure 1
for an example. Now, for all Z ∈ N≤3, m|Z−∆uf(X)|Z <
4 holds, where m|Z is the number of edges in Z (See table
I and II, m|C(x,y) = x+ y). Since m|Z is an obvious upper-
bound for ∆uf(Y)|D for all D ∈ DZ for any Z, we cannot
exceed ε-gap= 4 for Z ∈ N≤3.

Thus, we see for cardinality configurations N∞, ε in (6)
can at most be 4. Note that the values of ∆uf(X) for C(x, y)
and C(y, x) are equal for any x, y ∈ Z. Thus the bound for
ε holds for all u-snippets.

Lemma 3 The maximum value of ε as defined in (6) for any
constrained u-snippet, no matter the selection of control sets
X ⊆ Y ⊆ V and u ∈ V \ Y cannot exceed 4.

Z C(1, 0) C(1, 1) C(2, 0) C(2, 1) C(2, 2)
∆uf(X)|Z 1 0 -1 2 2

TABLE I
∆uf(X)|Z FOR Z ∈ N≤2 .

Z C(3, 0) C(3, 1) C(3, 2) C(3, 3)
∆uf(X)|Z 3 4 4 6

TABLE II
∆uf(X)|Z FOR Z ∈ N3 .

Proof: Every constrained snippet has insensitive u,
which implies all such snippets can be represented as a graph
combination of two u-snippets of the form C(x, 0), x > 0.
The rest follows similarly from the proof of Lemma 2.

REFERENCES

[1] Y. Bramoullé and R. Kranton, “Public goods in networks,” Journal of
Economic theory, vol. 135, no. 1, pp. 478–494, 2007.

[2] Y. Bramoullé, “Anti-coordination and social interactions,” Games and
Economic Behavior, vol. 58, no. 1, pp. 30–49, 2007.

[3] J. Hirshleifer, “From weakest-link to best-shot: The voluntary provi-
sion of public goods,” Public choice, vol. 41, no. 3, pp. 371–386,
1983.

[4] C. T. Bauch and A. P. Galvani, “Social factors in epidemiology,”
Science, vol. 342, no. 6154, pp. 47–49, 2013.

[5] C. Eksin, J. S. Shamma, and J. S. Weitz, “Disease dynamics in a
stochastic network game: a little empathy goes a long way in averting
outbreaks,” Scientific reports, vol. 7, p. 44122, 2017.

[6] P. Naghizadeh and M. Liu, “Exit equilibrium: Towards understand-
ing voluntary participation in security games,” in IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on Computer
Communications. IEEE, 2016, pp. 1–9.

[7] I. Menache and A. Ozdaglar, “Network games: Theory, models, and
dynamics,” Synthesis Lectures on Communication Networks, vol. 4,
no. 1, pp. 1–159, 2011.

[8] C. Eksin and K. Paarporn, “Control of learning in anticoordination
network games,” IEEE Transactions on Control of Network Systems,
vol. 7, no. 4, pp. 1823–1835, 2020.

[9] S. Das and C. Eksin, “Average submodularity of maximizing anticoor-
dination in network games,” arXiv preprint arXiv:2207.00379, 2022.

[10] Y. Xiao, J. Park, and M. Van Der Schaar, “Intervention in power
control games with selfish users,” IEEE Journal of Selected Topics
in Signal Processing, vol. 6, no. 2, pp. 165–179, 2011.

[11] R. Guers, C. Langbort, and D. Work, “On informational nudging and
control of payoff-based learning,” IFAC Proceedings Volumes, vol. 46,
no. 27, pp. 69–74, 2013.

[12] J. Riehl, P. Ramazi, and M. Cao, “Incentive-based control of asyn-
chronous best-response dynamics on binary decision networks,” IEEE
Transactions on Control of Network Systems, vol. 6, no. 2, pp. 727–
736, 2018.

[13] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2003, pp. 137–146.

[14] M.-F. Balcan, S. Krehbiel, G. Piliouras, and J. Shin, “Minimally
invasive mechanism design: Distributed covering with carefully chosen
advice,” in 2012 IEEE 51st IEEE Conference on Decision and Control
(CDC). IEEE, 2012, pp. 2690–2695.

[15] P. N. Brown and J. R. Marden, “Studies on robust social influence
mechanisms: Incentives for efficient network routing in uncertain
settings,” IEEE Control Systems Magazine, vol. 37, no. 1, pp. 98–115,
2017.

[16] F. Sezer, H. Khazaei, and C. Eksin, “Social welfare maximization
and conformism via information design in linear-quadratic-gaussian
games,” arXiv preprint arXiv:2102.13047, 2021.

[17] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions—i,” Mathe-
matical programming, vol. 14, no. 1, pp. 265–294, 1978.

3157

Authorized licensed use limited to: Texas A M University. Downloaded on August 31,2023 at 21:36:29 UTC from IEEE Xplore. Restrictions apply.

