
Recursive Prefix-Free Parsing for Building Big BWTs

Marco Oliva∗, Travis Gagie† and Christina Boucher∗

∗Department of Computer and Information Science and Engineering,
Herbert Wertheim College of Engineering,
University of Florida, Gainesville, FL, USA

{marco.oliva, christinaboucher}@ufl.edu

† Faculty of Computer Science,
Dalhousie University, Halifax, NS, Canada

travis.gagie@gmail.com

Abstract

Prefix-free parsing is useful for a wide variety of purposes including building the BWT,
constructing the suffix array, and supporting compressed suffix tree operations. This linear-
time algorithm uses a rolling hash to break an input string into substrings, where the
resulting set of unique substrings has the property that none of the substrings’ suffixes
(of more than a certain length) is a proper prefix of any of the other substrings’ suffixes.
Hence, the name prefix-free parsing. This set of unique substrings is referred to as the
dictionary. The parse is the ordered list of dictionary strings that defines the input string.
Prior empirical results demonstrated the size of the parse is more burdensome than the
size of the dictionary for large, repetitive inputs. Hence, the question arises as to how the
size of the parse can scale satisfactorily with the input. Here, we describe our algorithm,
recursive prefix-free parsing, which accomplishes this by computing the prefix-free parse of
the parse produced by prefix-free parsing an input string. Although conceptually simple,
building the BWT from the parse-of-the-parse and the dictionaries is significantly more
challenging. We solve and implement this problem. Our experimental results show that
recursive prefix-free parsing is extremely effective in reducing the memory needed to build
the run-length encoded BWT of the input. Our implementation is open source and available
at https://github.com/marco-oliva/r-pfbwt.

Introduction

The Burrows-Wheeler transform (BWT) [1] is fundamental to countless applications
in bioinformatics, with one of the most notable applications being read alignment.
If we consider all possible rotations of a given input text T sorted lexicographically,
the BWT matrix is the matrix of all these rotations. The BWT array (denoted as
BWT) is the last column of these rotations. Two powerful proprieties of the BWT are
that it can be constructed from T in O(|T |) space and time, and it supports queries
of the form: find the number of occurrences of the longest match between a query

MO, and CB are funded by the National Science Foundation NSF SCH: INT (Grant No.
2013998), NSF IIBR (Grant No. 2029552), and National Institutes of Health (NIH) NIAID (Grant
No. HG011392 and R01AI141810). TG is funded by NSF IIBR (Grant No. 2029552), NIH NIAID
(Grant No. HG011392), and NSERC Discovery Grant RGPIN-07185-2020.

62

2023 Data Compression Conference (DCC)

979-8-3503-4795-1/23/$31.00 ©2023 IEEE
DOI 10.1109/DCC55655.2023.00014

20
23

 D
at

a
C

om
pr

es
si

on
 C

on
fe

re
nc

e
(D

C
C

) |
 9

79
-8

-3
50

3-
47

95
-1

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

D
C

C
55

65
5.

20
23

.0
00

14

Authorized licensed use limited to: University of Florida. Downloaded on August 31,2023 at 20:36:14 UTC from IEEE Xplore. Restrictions apply.

string P and T in T . These two properties stem from a fundamental property of the
BWT called LF-mapping, which connects the last column of the BWT matrix (i.e. the
BWT) with the first column of the BWT matrix. and the property that the BWT is
reversible in O(|T |) -space and -time,

Sequence alignment methods—such as BWA [2] and Bowtie [3]—build the BWT
(and the suffix array) for a reference genome(s) which is then used to find short,
exact alignments between each sequence read and the genome(s); these alignments
are then extended using dynamic programming. Given the importance of the BWT
to bioinformatics research, there have been many approaches developed and imple-
mented for building the BWT for large datasets [4, 5]. Yet, construction algorithms
still have a way to go before they can be used to construct the index for terabytes of
genomic data. To date, the current largest BWT was constructed for approximately
1.7 terabytes of data via splitting the data into smaller parts, building the BWT of
these parts, and then merging the obtained BWTs succinctly [5].

One of the most recent methods for building the BWT is Big-BWT, which first
preprocesses the input using an algorithm called prefix-free parsing [6]. This prepro-
cessing algorithm takes as input a string T , and two integers w and p, and then uses
a rolling hash to find all w-length substrings in T that have hash value equivalent to
0 mod p, which are referred to as trigger strings. The set of trigger strings is used to
define all unique substrings found in T , such that those strings start and end with a
trigger string and contain no other trigger string. The lexicographically sorted set of
said substrings is referred to as the dictionary (denoted as D). Given D we can define
the list of occurrences of the elements of D in T , this list is referred to as the parse
(denoted as P). Boucher et al. [6] showed that the BWT of T can be constructed
from the dictionary D and parse P alone, without storing the input text T . This
greatly improved the construction of the BWT, which currently remains unsurpassed.
However, in our experience the space usage of the parse grows linearly while the size
of the dictionary grows significantly slower.

In this paper, we address this final hurdle in building the BWT for large genomic
databases: reducing the computational footprint of handling P. Our solution is to
run prefix-free parsing on the parse obtained from running prefix-free parsing on
the input text T . Hence, we refer to our algorithm as recursive prefix-free parsing
because it generates the prefix-free parse of the prefix-free parse of the input. We
denote the output of recursive prefix-free parsing as P2 and D2. This brings down the
size of the parse by one order of magnitude, however building the BWT of T in space
proportional to P2, D2, and D1 creates several algorithmic challenges. We implement
our new approach for building the BWT, which we refer to as r-pfbwt. We show
that r-pfbwt is 2.2 times faster, and requires 2.3 times less memory than Big-BWT

on 2400 copies of Chromosome 19. Moreover, the empirical results demonstrate that
the performance gains increase as the dataset gets larger.

63

Authorized licensed use limited to: University of Florida. Downloaded on August 31,2023 at 20:36:14 UTC from IEEE Xplore. Restrictions apply.

Preliminaries

Basic definitions

A string T is a finite sequence of symbols T = T [1..n] = T [1] · · ·T [n] over an alphabet
Σ = {c1, . . . , cσ} whose symbols can be unambiguously ordered. We denote by ε the
empty string, and the length of T as |T |. We denote as ck as the string formed by
the character c repeated k times.

We denote by T [i..j] the substring T [i] · · ·T [j] of T starting in position i and
ending in position j, with T [i..j] = ε if i > j. For a string T and 1 ≤ i ≤ n, T [1..i] is
called the i-th prefix of T , and T [i..n] is called the i-th suffix of T . We call a prefix
T [1..i] of T a proper prefix if 1 ≤ i < n. Similarly, we call a suffix T [i..n] of T a proper
suffix if 1 < i ≤ n. Given a set of strings S, S is prefix-free if no string in S is a prefix
of another string in S.

We denote by ≺ the lexicographic order: for two strings T2[1..m] and T1[1..n],
T2 ≺ T1 if T2 is a proper prefix of T1, or there exists an index 1 ≤ i ≤ n,m such that
T2[1..i − 1] = T1[1..i − 1] and T2[i] < T1[i]. Symmetrically we denote by ≺colex the
co-lexicographic order, defined to be the lexicographic order obtained by reading T1

and T2 from right to left instead that from left to right.

Suffix Array and Burrows-Wheeler Transform

Given a string T [1..n], the suffix array [7], denoted by SAT , is the permutation of
{1, . . . , n} such that T [SAT [i]..n] is the i-th lexicographically smallest suffix of T . We
refer to SAT as SA when it is clear from the context.

The Burrows-Wheeler transform of a string T [1..n], denoted by BWTT , is a re-
versible permutation of the characters in T [1]. If we assume T is terminated by a
special symbol $ that is lexicographically smaller than any other symbol in Σ, we can
define BWTT [i] = T [SAT [i]− 1 mod n] for all i = 1, . . . , n.

Overview of Prefix-Free Parsing

Prefix-free parsing (PFP) takes as input a string T of length n, and two integers
greater than 1, which we denote as w and p. It produces a parse of T consisting of
overlapping phrases, where each unique phrase is stored in a dictionary. We denote
the dictionary as D and the parse as P. We refer to prefix-free parse of T as PFP(T).
As the name suggests, the parse produced by PFP has the property that none of the
suffixes of length greater than w of the phrases in D is a prefix of any other. We
formalize this property through the following lemma.

Lemma 1 ([8]). Given a string T and its prefix-free parse PFP (T), consisting of the
dictionary D and the parse P, the set S of distinct proper phrase suffixes of length at
least w of the phrases in D is a prefix-free set.

The first step of PFP is to append w copies of # to T , where # is a special symbol
lexicographically smaller than any element in Σ, and T does not contain w copies of
#. For the sake of the explanation, we consider the string T ′ = #wT#w1. Next, we

1We note that this definition is equivalent to original definition that considers the string T ′′ =
S#w to be circular.

64

Authorized licensed use limited to: University of Florida. Downloaded on August 31,2023 at 20:36:14 UTC from IEEE Xplore. Restrictions apply.

characterize the set of trigger strings E, which define the parse of T . Given a parameter
p, we construct the set of trigger strings by computing the Karp-Rabin hash, Hp(t),
of substrings of length w by sliding a window of length w over T ′ = #wT#w, and
letting E be the set of substrings t = T ′[s..s + w − 1], where Hp(t) ≡ 0 or t = #w.
This set E will be used to parse #wT#w.

Next, we define the dictionary D of PFP. Given a string T and a set of trigger
strings E, we let D = {d1, . . . , dm}, where for each di ∈ D: di is a substring of
#wT#w, exactly one proper prefix of di is contained in E, exactly one proper suffix of
di is contained in E, and no other substring of di is contained E. Hence, we can build
D by scanning #wT#w to find all occurrences of the trigger strings in E, and adding
to D each substring of #wT#w that starts at the beginning of one occurrence of a
trigger string and ends at the end of the next one. Lastly, the dictionary is sorted
lexicographically. Given the sorted dictionary D and input string T , we can easily
parse T into phrases from D with consecutive phrases overlapping by w characters.
This defines the parse P as an array of indexes of the phrases in D. We note that
T can then be reconstructed from D and P alone. We illustrate PFP using a small
example. We let w = 2 and

#2T#2 = ##GATTACAT#GATACAT#GATTAGATA##.

Now, we assume there exists a Karp-Rabin hash that define the set of trigger strings
to be {AC, AG, T#,##}. It follows that the dictionary D is equal to

{##GATTAC, ACAT#, AGATA##, T#GATAC, T#GATTAG}

and the parse P to be [1, 2, 4, 2, 5, 3]. PFP can be used as a preprocessing step to build
data structures such as the BWT and the SA.

In the next section, we will review how to compute the BWT of a string T using
D and P.

Overview of Big-BWT

Given the prefix-free parsing of a string T , we show how to build the BWT of T using
|PFP (T)| space, i.e., |D|+ |P| space, where |D| is the sum of the length of its phrases
and |P| the number of elements in it. This is referred to as the Big-BWT algorithm. We
will use the following properties of PFP that were first introduced [8], and outlined
in the following lemmas. Moreover, we will refer to them later when describing our
recursive algorithm.

To determine the relative order of the characters in the BWTT—and hence, the
relative lexicographic order of the suffixes following those two characters in T—we
start by considering the case in which two characters are followed in T by two distinct
proper phrase suffixes α, β ∈ S. From Lemma 1 it follows

Corollary 1 ([8]). If two characters T [i] and T [j] are followed by different phrase
suffixes α and β, where |α| ≥ w and |β| ≥ w, then T [i] precedes T [j] in the BWT of
T if and only if α ≺ β.

65

Authorized licensed use limited to: University of Florida. Downloaded on August 31,2023 at 20:36:14 UTC from IEEE Xplore. Restrictions apply.

In other words, for some of the characters in BWTT , it is sufficient to only consider
the proper phrase suffixes which follows them in T to break the ambiguity. When
this is not enough, we need the information contained in the parse.

Lemma 2 ([8]). Let t and t′ be two suffixes of T that begin with the same proper
phrase suffix α, and let q and q′ be the suffixes of P that have the last w characters
of those occurrences of α and the remainders of t and t′. If t ≺ t′ then q ≺ q′.

Next, we give some intuition on how these two lemmas are used to compute the
BWT. For each distinct proper phrase suffix α ∈ S of length at least w, we store
the range in the BWT containing the characters immediately preceding in the string
T the occurrences of α. The starting position of the range for α is the sum of the
frequencies in T (or P) of the proper phrase suffixes of length at least w that are
lexicographically less than α. The length of the range is the frequency of α. Thus,
we can store each proper phrase suffix along with their ranges in O(|D|) words of
memory.

Now suppose that we are working on the range of the BWT of T corresponding to
i-th proper phase suffix α. If all the occurrences of α in T are preceded by the same
character c, then the range of the BWT of T associated with α will consist of all c’s.
Therefore, no further computation is needed to define said range.

If the occurrences in the input of the i-th proper phrase suffix α are preceded
by different characters then we make use of Lemma 2 to break the ambiguity. The
order of the characters preceding α in T can be obtained from the order in which the
phrases containing α appear in the BWT of P.

As described earlier, storing O(|P|) words can be a significant bottleneck for large
repetitive datasets, and motivates the need for a BWT construction algorithm that
uses less than O(|P|) words. In the next section, we introduce our recursive algorithm
to address this need.

Methods

In this section, we assume that the size of D is at least one order of magnitude smaller
than the size of P—which occurs for most large, repetitive datasets—and focus on
reducing the computational bottleneck that arises when the size of P increases. To
accomplish this, we present a recursive solution that runs PFP on the parse, which
is then used to construct the BWT of T . The algorithmic challenge of this approach
is building BWT of T without access to P or its BWT. To accomplish this, we make
nontrivial extensions to the algorithm that constructs the BWT from PFP [8].

Recursive Prefix-Free Parsing

We assume that PFP was run on the input text T with window size w1 and integer p1.
We denote the set of trigger strings defined by w1 and p1 as E1, and the output as P1

and D1. Next, we run PFP on the parse P1 with window size w2 and integer p2. We
refer to running PFP on P1 as the recursive step, and denote the set of trigger strings
defined by w2 and p2 as E2. We define the output of running PFP a second time as P2

and D2. Moreover, we denote the set of proper phrase suffixes of length greater than

66

Authorized licensed use limited to: University of Florida. Downloaded on August 31,2023 at 20:36:14 UTC from IEEE Xplore. Restrictions apply.

w1 of the phrases in D1 as S1 and, analogously, we denote the set of proper phrase
suffixes of length greater than w2 of the phrases in D2 as S2. Lastly, we denote as Σ1

the alphabet of D1 and Σ2 the alphabet of D2.
As described in the previous section, the BWT ranges corresponding to proper

phrase suffixes of D1 preceded by occurrences of the same character, can be computed
just by iterating over the suffixes of D1 making use of Corollary 1. We note that
defining the BWT of these ranges does not make use of the parse or the BWT of the
parse so no advancement to Big-BWT is needed for these suffixes. Therefore, we focus
only on the remaining proper phrase suffixes and give an equivalent to Lemma 2 that
does not require direct access to P1 or to its BWT.

Building the BWT from the Recursive Prefix-Free Parse

As previously mentioned, we only consider the phrases for which the Big-BWT algo-
rithm needs P1 and/or BWTP1

. Our goal is to compute the BWT of the input string
without these. Our method for accomplishing this will rely on the following lemma.

Lemma 3. If two characters T [i] and T [j] in phrases P1[i
′] and P1[j

′] are followed
by the same phrase suffix α ∈ S1, then T [i] precedes T [j] in the BWT of T if one of
the following two conditions is true: (a) P1[i

′] and P1[j
′] precede two different phrase

suffixes α′, β′ ∈ S2 with α′ ≺ β′; or (b) the phrase P2[k
′] containing P1[i

′] precedes the
phrase P2[l

′] containing P1[j
′] in the BWT of P2.

Proof. We begin with proving (a). Analogously to Corollary 1 for PFP(T), the set of
proper phrase suffixes, which we denote as S2, is a prefix-free set. Therefore, given
that by definition α followed by the phrases stored in α′ is a prefix of t = T [i+ 1..n],
and α followed by the phrases stored in β′ is a prefix of t′ = T [j + 1..n], α′ ≺ β′

implies t ≺ t′. Next, we prove the statement corresponding to (b). By definition, we
assume that the two suffixes t = T [i+1..n] and t′ = T [j+1..n] start with α ∈ S1. We
let q and q′ be the suffixes of P1 encoding the last w1 characters of those occurrences
of α and the remainder of t and t′. Further, we let γ ∈ S2 be the prefix of q and
q′. We denote r and r′ as the suffixes of P2 storing q and q′. Given that α occurs
at least twice, and therefore, γ occurs at least twice, there exists a character where
t and t′ differ. We let the first character where they differ be c. Given that the
phrases of D1 are represented in P1 by their lexicographic rank. Moreover, given that
the lexicographic ordering of the phrases in D2 reflects the lexicographic ordering of
their expansions, and given that the elements of D2 are represented in P2 by their
lexicographic rank, it follows from the existence of c that q ≺ q′ and t ≺ t′.

Using Lemma 3 we can break ambiguities for which we would need access to the
BWT of P1 by only accessing the parse and dictionary of the recursive step, namely
D2 and P2. Based on Corollary 1, Lemma 2 and Lemma 3, we can define the following
data structures that we will use to compute the BWT of the input T .

Definition 1. We define a table T1 containing O(|S1|) rows and O(1) columns, such
that for each α ∈ S1, we store in T1 its range in the BWT of T along with the co-
lexicographic sub-range of the elements of D1 which store the occurrence of α. That

67

Authorized licensed use limited to: University of Florida. Downloaded on August 31,2023 at 20:36:14 UTC from IEEE Xplore. Restrictions apply.

is, for each c ∈ Σ1 the columns of T1 store the range of co-lexicographically sorted
phrases that end in α and have c in position |α|+ 1 from the end.

Next, we define the table T2.

Definition 2. We define a table T2 containing O(|S2|) rows and O(1) columns, such
that for each α′ ∈ S2, we store in T2 the co-lexicographic range of the phrases of D2

that contain α′ along with the meta-characters that precede α′ in P1.

Lastly, we define the grid G2.

Definition 3. We define the grid G2 containing O(|P2|) rows and O(|D2|) columns,
such that for each element � of D2, G2 stores the positions in the BWT of P2 where �
appears.

The data structures just defined allow us to compute the characters of the BWT
of T that require Lemma 3 through the following algorithm. We assume that we
computed the BWT for all proper phrases suffixes in S1 up to α. From T1, we know
that α is preceded in T by the characters c1 and c2, and that c1 is stored in phrase
p1 ∈ D1, and that c2 is stored in phrase p2 ∈ D2. In other words, we cannot break the
ambiguity using only T1. We now list, following their lexicographic order, all proper
phrase suffixes in S2 that are preceded in P1 by p1, p2 or both using T2. First, we
assume that we are in case (a) and thus, we find (using T2) the phrase is preceded by
p1, say α′. Using Lemma 3, we see that the corresponding character can be defined
without any further computation.

Next, we assume that we find (using T2) the phrase that is preceded by both p1
and p2, say β′. It follows from Lemma 3 that in order to find the corresponding
characters in BWTT , we need to consider the relative order of the occurrences of the
phrases storing β′ and preceded by p1 and p2 in the BWT of P2. We can find the
co-lexicographic range of elements of D2 ending in β′, and for each occurrence of those
phrases in G2, we can define the BWTT .

Thus, we summarize our result with the following theorem, which directly follows
from Corollary 1, Lemma 2 and Lemma 3 using the data structures T1, T2. and G2

Theorem 1. Given a string T , the dictionary D1 and the parse P1 obtained by running
PFP on T , and the dictionary D2 and the parse P2 obtained by running PFP on P1,
we can compute the BWTT from D1, D2 and P2 using O(|D1|+ |D2|+ |P2|) workspace.

Experiments and Results

Experimental Set-up. We implemented r-pfbwt in ISO C++ 2020 and measured
the performance using a real world genomic dataset. It consists of 12 sets of variants
of human chromosome 19 (chr19), containing 200, 400, 600, 800, 1000, 1200, 1400,
1600, 1800, 2000, 2200 and 2400 distinct individuals. Each individual consists of 2
sequences (haplotypes). Hence, we evaluated our method on up to 4800 sequences.
Each collection is a superset of the previous one. The smallest of these datasets
(chr19.200) has size 22GB and the largest (chr19.2400) has size 264GB with each

68

Authorized licensed use limited to: University of Florida. Downloaded on August 31,2023 at 20:36:14 UTC from IEEE Xplore. Restrictions apply.

Haplotypes Input Size |P1| |D1| |D1|+ |P1| |P2| |D2| |D2|+ |P2|
200 22.08 0.96 0.16 1.11 0.08 0.05 0.13
400 44.11 1.91 0.23 2.14 0.16 0.09 0.25
600 66.13 2.86 0.27 3.13 0.24 0.12 0.36
800 88.16 3.82 0.32 4.14 0.32 0.15 0.48
1000 110.18 4.77 0.36 5.13 0.73 0.16 0.89
1200 132.21 5.72 0.40 6.13 0.49 0.22 0.71
1400 154.24 6.68 0.43 7.11 0.57 0.25 0.82
1600 176.26 7.63 0.46 8.09 0.65 0.27 0.92
1800 198.29 8.59 0.48 9.07 0.73 0.29 1.02
2000 220.31 9.54 0.51 10.05 0.81 0.31 1.12
2200 242.34 10.49 0.54 11.03 0.89 0.34 1.22
2400 264.36 11.45 0.56 12.00 0.97 0.35 1.32

Table 1: In order to illustrate the advantage of our recursive algorithm, we illustrate
the size of the input, the size of the dictionary and parse from prefix-free parsing of
the input sequences, and the size of the dictionary and parse from prefix-free parsing
PFP(T). All sizes are shown in gigabytes.

data point increasing in size by 22GB. Table 1 reports input size, the size of the parse
and dictionary of the input, and the size of the parse and dictionary of the recursive
step. We compared r-pfbwt to Big-BWT given that this out-performed all competing
methods to build the RLBWT as shown in [9]. The running time and the maximal
resident set size were recorded with the Unix utility /usr/bin/time. Given that both
methods require building PFP from the input the time required for its construction
are omitted from the total.

Results. On Chromosomes 19 r-pfbwt required less memory than Big-BWT and was
able to complete the execution in less time. In fact, on 2400 chromosomes, r-pfbwt
was 2 times faster and required 2.5 times less memory. Moreover, the empirical results
demonstrate that the performance gains increase as the data gets larger. r-pfbwt

was 1.1 times faster and required 1.2 times less memory on 1000 chromosomes, 2.0
times faster and 2.3 times less memory on 2000 chromosomes and 2.2 times faster
and 2.3 times less memory on 2400 chromosomes.

Conclusions

When indexing large repetitive datasets using PFP the size of the parse P quickly
becomes the computational bottleneck requiring significant amounts of memory. In
this work we address the challenge of reducing the total memory required by running
PFP again on P. We show that is possible to use only memory proportional to
the size of the dictionary obtained by running PFP on the input text and to the
size of the dictionary and parse obtained with the recursive step. In this work we
first show the correctness of our approach and, through experiments on real world

69

Authorized licensed use limited to: University of Florida. Downloaded on August 31,2023 at 20:36:14 UTC from IEEE Xplore. Restrictions apply.

0 500 1000 1500 2000 2500
Haplotypes

10000

20000

30000

M
em

or
y

(M
iB

)

Recursive PFP Chr 19

BigBWT
r-pfbwt

Figure 1: Chromosomes 19 construction Wall Clock Time in seconds (left) and peak
memory in MiB (right).

datasets, we show its effectiveness in reducing the memory required to build the
BWT of the input. Moreover, we implemented our method introducing more efficient
parallelization compared to Big-BWT, reducing the total wall clock time required.
Lastly, it is worth noting that the technique presented in this paper can be applied
to reduce the memory footprint for many of the applications of PFP proposed in the
last few years.

References

[1] Michael Burrows and David Wheeler, “A block-sorting lossless data compression algo-
rithm,” in Digital SRC Research Report. Citeseer, 1994.

[2] H. Li, “Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM,” arXiv, p. http://arxiv.org/abs/1303.3997, 2013.

[3] B. Langmead and S.L. Salzberg, “Fast gapped-read alignment with Bowtie 2,” Nature
Methods, vol. 9, no. 4, pp. 357–359, 2012.

[4] H. Li, “Fast construction of FM-index for long sequence reads,” Bioinformatics, vol.
30, no. 22, pp. 3274–3275, 2014.

[5] J. Sirén, “Burrows-wheeler transform for terabases,” in Proc. of IEEE Data Compres-
sion Conference (DCC), 2016, pp. 211–220.

[6] C. Boucher, T. Gagie, A. Kuhnle, B. Langmead, G. Manzini, and T. Mun, “Prefix-free
parsing for building big BWTs,” Algorithms in Molecular Biology, vol. 14, no. 1, pp.
13:1–13:15, 2019.

[7] U. Manber and G. W. Myers, “Suffix arrays: a new method for on-line string searches,”
SIAM Journal on Computing, vol. 22, no. 5, pp. 935–948, 1993.

[8] C. Boucher, T. Gagie, A. Kuhnle, B. Langmead, G. Manzini, and T. Mun, “Prefix-free
parsing for building big BWTs,” Algorithms for Molecular Biology, vol. 14, no. 1, pp.
13, Dec. 2019.

[9] C. Boucher, T. Gagie, A. Kuhnle, and G. Manzini, “Prefix-free parsing for building
big BWTs,” in Proc. of Workshop on Algorithms in Bioinformatics WABI, 2018, pp.
2:1–2:16.

70

Authorized licensed use limited to: University of Florida. Downloaded on August 31,2023 at 20:36:14 UTC from IEEE Xplore. Restrictions apply.

