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Edge computing at sea:
high-throughput classification of
in-situ plankton imagery for
adaptive sampling
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The small sizes of most marine plankton necessitate that plankton sampling
occur on fine spatial scales, yet our questions often span large spatial areas.
Underwater imaging can provide a solution to this sampling conundrum but
collects large quantities of data that require an automated approach to image
analysis. Machine learning for plankton classification, and high-performance
computing (HPC) infrastructure, are critical to rapid image processing;
however, these assets, especially HPC infrastructure, are only available post-
cruise leading to an ‘after-the-fact’ view of plankton community structure. To be
responsive to the often-ephemeral nature of oceanographic features and
species assemblages in highly dynamic current systems, real-time data are key
for adaptive oceanographic sampling. Here we used the new In-situ
Ichthyoplankton Imaging System-3 (ISIIS-3) in the Northern California Current
(NCC) in conjunction with an edge server to classify imaged plankton in real-time
into 170 classes. This capability together with data visualization in a heavy.ai
dashboard makes adaptive real-time decision-making and sampling at sea
possible. Dual ISIIS-Deep-focus Particle Imager (DPI) cameras sample 180 L s~
! leading to >10 GB of video per min. Imaged organisms are in the size range of
250 pm to 15 cm and include abundant crustaceans, fragile taxa (e.g.,
hydromedusae, salps), faster swimmers (e.g., krill), and rarer taxa (e.g., larval
fishes). A deep learning pipeline deployed on the edge server used multithreaded
CPU-based segmentation and GPU-based classification to process the imagery.
AVI videos contain 50 sec of data and can contain between 23,000 - 225,000
particle and plankton segments. Processing one AVI through segmentation and
classification takes on average 3.75 mins, depending on biological productivity. A
heavyDB database monitors for newly processed data and is linked to a heavy.ai
dashboard for interactive data visualization. We describe several examples where
imaging, Al, and data visualization enable adaptive sampling that can have a
transformative effect on oceanography. We envision Al-enabled adaptive
sampling to have a high impact on our ability to resolve biological responses
to important oceanographic features in the NCC, such as oxygen minimum
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zones, or harmful algal bloom thin layers, which affect the health of the
ecosystem, fisheries, and local communities.
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adaptive sampling, edge computing, ocean technology, underwater imaging, plankton
ecology, machine learning, data visualization, California Current

1 Introduction

Marine plankton form the base of most ocean food webs.
Understanding how these communities are likely to change in the
future in response to climate change is a critical knowledge need
(Ratnarajah et al., 2023). Yet how specific environmental drivers
impact different levels of the food web, and how this might transfer
up and down different food webs remains poorly understood.
Plankton communities in most oceans are diverse and complex.
They range over many orders of magnitude in size, thus
simultaneous sampling of many taxa can be challenging
(Lombard et al,, 2019). This issue is exacerbated by plankton net
systems that destroy fragile organisms such as jellies and other
gelatinous animals (e.g., appendicularians and salps; Wiebe and
Benfield, 2003) known to be important to the oceanic carbon cycle
(Hopcroft et al., 1998; Luo et al,, 2022). Plankton in-situ imaging
enables the sampling of plankton across a wide range in size, from a
few hundred microns to > 10 cm, while keeping fragile organisms
intact since no net, and thereby no physical contact, are involved.
This can be achieved by a multitude of systems that have different
purposes (e.g., O-Cam, Brisefio-Avena et al., 2020a; Scripps
Plankton Camera system, Orenstein et al., 2020; and
PlanktonScope, Song et al., 2020).

The northern California Current (NCC) off the coast of California,
Oregon, and Washington, is a dynamic, highly productive eastern
boundary current that is of high importance to national fisheries and
food security (Reese and Brodeur, 2006; Hickey and Banas, 2008). As
part of a study of the planktonic food web dynamics of this system, we
used the high resolution In Situ Ichthyoplankton Imaging System-3
(ISTIS-3; Figure 1) to image plankton ranging from 250 pm to 15 cm, in
their in-situ (i.e., natural) environment (Cowen and Guigand, 2008).
While ISIIS was developed initially to enhance research of
ichthyoplankton (i.e., larval fishes), it obtains images of plankters
ranging from diatoms and protists to copepods, jellies, and larval fishes,
and has been successfully deployed in a multitude of systems (e.g., the
NCC, Swieca et al., 2020; the Straits of Florida, Robinson et al., 2021;
and in the Gulf of Mexico and the Mediterranean, Greer et al., 2023). FIGUREL _

Us o ISI and now ISIS-3cratesa big dta chalenge, The 1,2 7417 0 e W et 10 2
combination of high-resolution imagery and the need to image a as well as altimeter; 4 = LISST-200X particle imager; 5 = pump and

dissolved oxygen probe; 6 = flowmeter; 7 = main computer
housing. (B) Close-up of the two stacked Bellamare ISIIS-DPI-125
plankton individuals (0.1 to > 1 billion per study; Schmid et al, camera units. ISI1S-3 can be deployed through a narrow gate and
2020; Robinson et al., 2021; Schmid et al., 2021; Schmid et al,, boom (e.g., on R/V Langseth, A) or via the A-frame (e.g., on R/V

. Sikuliaq, (C), while side deployments using a crane are also possible
2023b). The two line scan cameras of the ISIIS-3 gather 10 GB of and were carried out in the past (e.g., on R/V Atlantis). Photos credit:

data per min, and >35 TB for a typical two-week research cruise Ellie Lafferty.

large volume of water results in extremely high numbers of imaged

(160 h of imagery).
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Simultaneous with the development of the ISIIS technology
over the last 10 yr., data processing and machine learning pipelines
for plankton imagery have also undergone much development
(Irisson et al., 2021). Initially, plankton underwater imagery was
hand-sorted, but as hard- and software became increasingly
available, plankton sorting was automated on desktops with
dedicated graphics cards. More recently, university and national
supercomputing center machines with enterprise-level graphics
cards for machine learning (e.g., NVIDIA A100/V100/P100;
Schmid et al,, 2021) have become widely available. However,
computing time on high-end machines with powerful graphics
cards must often be shared with other labs. One solution to this
limitation is to tap into nationally funded supercomputing centers,
for instance through NSF’s XSEDE infrastructure (now ACCESS;
Schmid et al,, 2021). XSEDE and ACCESS themselves allocate
resources on major national supercomputing centers such as the
San Diego Supercomputing Center, or the Pittsburgh
Supercomputing Center. While such computing power is critical
for analyzing large datasets, they are by necessity ‘post-cruise’
analysis tools, as large node clusters are not portable.

The fact that plankton imagery is usually analyzed after the
cruise due to the large quantity of data, precludes it from being used
for adaptive sampling, which by definition needs near-immediate
data availability. With advancements in ocean technology, thanks to
the increased affordability and availability of advanced hard-, and
software, the number of studies working on real-time identification
and adaptive sampling based on different underwater vehicles has
increased though in recent years (Fossum et al., 2019; Ohman et al.,
2019; Stankiewicz et al., 2021; Bi et al., 2022). However, having the
necessary computing power at sea to classify large quantities of
videography remains a bottleneck.

Recent increased availability of edge servers in the civilian
sector may resolve this bottleneck, enabling oceanographers to
take significant computing power to sea with the potential to
acquire and analyze extensive data sets while at sea and even
during active deployments. In the case of plankton imaging, edge
servers coupled with deep-learning pipelines, enable researchers to
not only store and back-up the data on redundant drives, but to
process the incoming videography (i.e., segmentation and
classification), and analyze the data for distributional patterns,
all while the instrument is being towed behind the ship. These
combined technologies enable the scientific sampling plan to
change based on real-time information gathered at-sea. This
approach has major consequences for the way oceanographic
research can be conducted as it makes adaptive sampling
possible - meaning that oceanographic features of interest, e.g.,
accumulations of particular taxa in low or even hypoxic oxygen
waters on the NCC shelf (Chan et al., 2008; Chan et al., 2019), can
be targeted for resampling immediately after their detection. A
separate benefit of processing data at sea is the ability to reduce (or
completely remove) the lag between scientific research cruise
completion and being able to work with data for ecological
analyses. Here we describe a deep learning pipeline for plankton
classification at sea, including databasing and visualization for
adaptive sampling. We describe the necessary hardware setup for
such an adaptive sampling processing pipeline and how it could be
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adapted for other imaging systems. The major deliverable is the
open-sourced code for the pipeline including classification as well
as automation scripts for databasing and visualization. At-sea
processing of complex data has the potential to transform
oceanographic science.

2 Materials and equipment

2.1 In-situ ichthyoplankton imaging
system-3

The In-situ Ichthyoplankton Imaging System (ISIIS) vehicle has
undergone several design modifications since its early inception
(Cowen and Guigand, 2008). Here we report on the third vehicle
iteration or model - the ISIIS-3. ISIIS-3 (Figure 1) was developed
based on several lessons learned from the original design, including
a robust open-frame sled design and dual tow point bridle that
promotes the shedding of buoyed markers of active fishing gear
(e.g., crab pots). The system includes a dual camera setup (55 um
pixel resolution) instead of a single camera to enable a narrower sled
design, but without compromising the total sampling volume of 180
L s'. The system is also more modular than the ISIIS-1 and ISIIS-2
towed vehicles, enabling easier integration of new electronic
components. For instance, ISIIS-3 is fitted with a Sequoia
Scientific LISST-200X particle imager covering the 1 pum - 500
um size range, a CTD (Sea-Bird SBE 49 FastCAT), dissolved oxygen
probe (Sea-Bird 43), fluorescence sensor (Wet Labs FLRT),
photosynthetically active radiation sensor (PAR; Biospherical
QCP-2300), and a pH sensor (Seabird SBE 18). ISIIS-3 is towed
behind the ship at 2.5 m s where it undulates typically between 1 m
and 100 m depth or as close as 2 m above the seafloor in shallower
waters on the shelf. Data are continuously multiplexed in the ISIIS-3
vehicle, and then sent to the ISIIS-3 control computer on the ship
through the glass-fiber of the oceanographic wire, where data are
then de-multiplexed and time-stamped.

2.2 Edge server configuration at sea

The edge server used here was a Western Digital (WD)
Ultrastar-Edge MR with two Intel Xeon Gold 6230T 2.1 GHz
CPUs, each with 20 cores (40 cores total), a NVIDIA Tesla T4
GPU, 512 GiB DDR4 memory, >60 TB of NVMe flash storage, as
well as 100 GbE and 10 GbE networking (Figure 2). The edge server
ran with Ubuntu 20.04 and DNS, DHCP, TFTP, and HTTP
services, enabling the setup of an intranet around the edge server.
The NVMe file space of the edge server was configured into a RAID
to allow for limited redundancy; specifically, we use ZFS cut with
RAIDZ2 with no spares. This provided around 40 TB of usable
space and allowed failure of a drive without having to rebuild the
drive during data collection. Rebuilding a drive during live data
collection would slow down write speed substantially and
potentially lead to a loss of image frames.

The DHCP on the edge server enabled other machines on the
network (switch and VLAN) to be serviced by the edge server

frontiersin.org


https://doi.org/10.3389/fmars.2023.1187771
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Schmid et al.

ISIIS control computer

—— Dell S4148F

@ switch

Edge server =

—

10.3389/fmars.2023.1187771

Pipeline control computer

Adaptive sampling/visualization display

FIGURE 2

The hardware setup associated with the ISIIS-3 control computer and edge server. ISIIS-3 is connected to the ISIIS-3 control computer via fiber (all
optic connections in blue). Incoming data are used for flying the sled (e.g., using depth information, altimeter, and speed through the water) and
incoming imagery and environmental sensor data are time-stamped and deposited directly on the edge server. While the connection from ISIIS-3
control computer to the switch is rated at 10 GbE, the connection from the switch to the edge server is a 100 GbE active optics cable (AOC) to
allow for additional I/O for running the pipeline, offloading data, and sending data to the visualization display.

(Figure 2). This allowed us to deploy a Dell S4148F switch with 10
GbE, 40 GbE and 100 GbE ports to support a large range of devices
that needed to be connected to the edge server. SFP+ to RJ45
transceiver modules were used to allow laptops and other devices
to connect to the isolated network. The DHCP server was configured
to have known hosts with fixed addresses to best support services that
relied on being on the same IP upon reboots. SAMBA services were
used to allow the ISIIS-3 control computer (running Windows 10) to
directly save incoming video data to the edge server. An additional
Ubuntu 20.04 desktop was used to control the processing pipeline on
the edge server through SSH, and a MacOSX desktop was used for
running the webserver that visualized real-time classified plankton
information (e.g., length of segmented particles and plankton as well
as taxonomic identity), using the Python API 2.0 HeavyDB interface
(Schmid et al., 2023a; see reference to heavyDB). A 10-m 100 GbE
QSFP28 AOC cable allowed the set-up of the edge server in a separate
temperature-controlled server room on the ship, removing the edge
server fan noise from the science labs while retaining an extremely
fast connection and leaving enough I/O for simultaneous writing of
incoming imagery, data offload, pipeline control, and sending of data
to a database. The ISIIS-3 control computer only supported a 10GbE
network card, but over the SAMBA mounts the ISIIS-3 control
computer was able to write to the edge server at ~400MB/s, about
twice the throughput that was needed for the raw imagery, leaving
plenty of I/O on the drives of the edge server to simultaneously
process data.

Frontiers in Marine Science

3 Methods

3.1 Image processing pipeline

The image processing pipeline controller scripts are primarily
written in Python 3 and call binaries that need to be compiled first
(Figure 3). Segmentation (https://github.com/paradom/Threshold-
MSER/tree/spectra-dev) and classification binaries are provided in
the zenodo pipeline repository for this paper (http://dx.doi.org/
10.5281/zenodo.7739010). Incoming video files are automatically
ingested into the image processing pipeline by the automate.py script
monitoring the incoming data folder (Figure 3). Incoming AVI files are
segmented via threshold-MSER (T-MSER; Panaiotis et al., 2022) using
the CPU cores of the edge server (Figure 3). T-MSER is optimized for
multithreading and general speed due to the volume of data generated
by the two ISIIS-Deep Particle Imager (DPI) cameras. Multithreading
of segmentation and classification is controlled by the OpenMP
Python library and based on available resources. On the edge server
with 40 cores, 20 processes can be run in parallel. After the flat-fielding
of individual frames, T-MSER uses a signal-to-noise ratio (SNR)
switch, after which low noise frames are directly segmented using
Maximally Stable Extremal Regions (MSER, Matas et al., 2004; Bi et al,,
2015; Cheng et al., 2019), and high noise frames are first pre-processed
with a thresholding approach before applying MSER. T-MSER was
written in C++. The lower size cutofffor the segmentation, determining
which size segments (i.e., plankton) are retained, can be set to the

frontiersin.org
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FIGURE 3

Pipeline schematic depicting the imagery data processing pipeline
deployed at sea. The automate.py script controls all subsequent
processes, including ingestion of imagery into segmentation and
classification, merging of the different data products, and upload
into HeavyDB. The HeavyAl dashboard monitors the HeavyDB and
visualizes new data (e.g., depth stratified plankton identifications) as
they become available. The dynamic and interlinked figures in the
dashboard are then used for adaptive sampling. Flowchart text with
file extensions depicts all the files necessary to run the pipeline,
which can be found in the online repository. Text without file
extensions describes larger concepts and gives context.

desired value based on the study’s objectives; here we used 49 pixels of
object area as the lower size cutoff for retention of segments.

As soon as AVIs are segmented automate.py starts the
classification process on these segments using a sparse
Convolutional Neural Net (sCNN, Graham et al., 2015; Luo et al,,
2018; Schmid et al, 2021). The edge server's NVIDIA T4 GPU
(Figure 3) supported four classification processes running in parallel.
The sCNN was previously trained on an image library containing 170
classes of particles and plankton from the NCC, until the error rate of
the classifier plateaued at ~ 5% after 399 epochs. After applying the
classifier to new imagery, a random subset of images was classified by
two human annotators and compared with the automated
identifications to create a confusion matrix. Based on the confusion
matrix information (e.g., false positives and true positives) and the
known underlying assigned probabilities per image given by the sCNN,
we used probability filtering (Faillettaz et al., 2016) to remove very low
probability images from the dataset that lead to false positives and false
negatives. Using LOESS modeling, we established at which assigned
probability a cutoff had to be made to achieving 90% predictive
accuracy for the taxon. Removal of these low-confidence images
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retains true spatial distributions (Faillettaz et al., 2016). The process
and accuracies are described in more detail in previously published
work (Brisefio-Avena et al., 2020b; Schmid et al., 2020; Swieca et al.,
2020; Schmid et al., 2021; Greer et al., 2023; Schmid et al., 2023b). The
pipeline described here is open-sourced at: http://dx.doi.org/
10.5281/zenodo.7739010.

3.2 Database and webserver visualization

Ship data (e.g., GPS feed), ISIIS-3 environmental sensor data
(e.g., pH, dissolved oxygen), plankton size measurements, and
classification probabilities are merged based on microsecond-
accurate timestamps by the populate_heavyai.py script and its
subroutines (Figure 3). The same script also uploads merged data
into the HeavyDB database as soon as they become available. A
heavy.ai dashboard that is linked to HeavyDB can then visualize the
data in an immersive way, enabling data interpretation and
adaptive sampling.

4 Results
4.1 At-sea processing with the edge server

In July 2022, ISIIS-3 was towed along six transects off the WA
and OR coasts with each transect ranging from 8 to 14 h long.
During these tows, ISIIS-3 imaged plankton ranging from small
phytoplankton and protists, to crustaceans, gelatinous plankton
such as salps and appendicularians, and larval fishes. These
organisms spanned a large size range and differed significantly in
their body form (e.g., fragile gelatinous plankton vs hard-shelled
crustaceans, Figure 4). By imaging these different organisms in a
non-invasive way, we obtained data on their overall distribution
and abundance across multiple scales, as well as insights into their
natural behaviors and orientations in the water column and
potential predators-prey relationships (Ohman, 2019). Along the
six transects, 36 TB of data were collected from the two ISIIS-DPI
cameras, totaling over 120 h of imagery (60 h per camera).

T-MSER segmentation on the edge server’s 40 CPUs took 1.1
mins per 50 sec of video data, while classification on the T4 GPUs
took an additional 2.65 mins on average, bringing the total time lag
between data collection and having classified results to 3.75 mins.
The speed of the pipeline becomes even more apparent when taking
into account that an AVI contains between 23,000 and 225,000
segments of particles and organisms, depending on the biological
productivity (Panaiotis et al., 2022). Especially dense phytoplankton
layers led to longer segmentation and classification times. With that
in mind, segmentation and classification together can take between
2.5 - 5 min per 50 sec AVL

4.2 Database and visualization of plankton
classifications for adaptive sampling

The HeavyDB database updated automatically as new data were
classified, and included the taxonomic identifications and lengths of

frontiersin.org
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FIGURE 4

ISIIS-DPI images of key taxa in the Northern California Current
including primary producers, protists, crustaceans, cnidarians,
ctenophores, echinoderms, heteropods, pteropods, chaetognaths,
pelagic tunicates, and larval fishes

each detected object together with their environmental data (e.g., pH,
oxygen), as well as GPS location from ship sensors. Database and
heavy.ai dashboard were very responsive, running on the edge server’s
512 GB memory and the NVMe flash storage. Hence, visualization of
data on the heavy.ai dashboard was smooth and updated quickly based
on the user selections (Figure 5). The dashboard can be customized by
the user to show different data presentations. Shown here are standard
features — number of classified images used in the data presentation,
number of unique taxa classified, allocation of classified images across
taxa, sampling location, as well as location specific sampling depth
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(note, in this case, our transect ran east-west along a constant latitude).
The user can select which taxa (or all) to display - in this example, we
show the vertical distribution (in 2-m depth bins) of all taxa combined.
We also show the size spectrum of all classified segments across 76 bins
of major axis segmented image size (i.e., based on number of pixels).
Other data presentations can easily be developed by the user by clicking
“add chart” on the dashboard. Data presentation is updated
continually as new classifications are completed. Heavy.ai dashboard
graphics are dynamic and interlinked so that selection of a taxon, size
range, or time interval, leads to all other plots defaulting to that sub-
selection. For instance, selection of Oithona sp. copepods in the taxa
overview leads to the size spectrum and 3-D vertical distribution plots
showing only data of Oithona sp. copepods. Multiple simultaneous
selections are possible and a powerful and intuitive tool for
adaptive sampling.

5 Discussion

Using the edge server for live classification of plankton imagery
yielded bountiful data for exploration during the cruise and for
adaptive sampling. Use cases for adaptive sampling in biological
oceanography that have the potential to transform oceanography
include on-the-fly and fast detection of species of interest, detection
and resampling of thin layer associated organisms, as well as high
spatial resolution adaptive sampling of taxa present in, or at the
interface of, environmental features of high importance such as low
oxygen zones on the NCC shelf.

5.1 Example applications for
adaptive sampling

Access to real-time or near real-time taxon-specific distribution
and abundance data is novel in most oceanographic studies,
particularly access to very detailed spatial and vertical resolution.
With such data in hand, while at sea, the researcher can be
responsive to short-lived events (e.g., thin layers, sub-mesoscale
eddies, other aggregative features), to specific taxa that might be
ephemeral or highly patchy, and to environmental conditions that
are of particular interest (e.g., low oxygen). With the ability to
identify such features or taxa of interest while still at sea, the
researcher can adapt their sampling to a more specific target.
Below are several examples where sampling could be adapted in
response to the detection of specific features or events.

5.1.1 Vertical migration

Diurnal vertical migration (DVM) is a well-known, but often
challenging process to adequately sample biologically. Acoustic
echograms can help visualize the movement of reflective organisms,
but actual species composition of the observed acoustic signal requires
in situ sampling. While a plankton net might be able to verify the
dominant species present in such a feature, it will not provide detailed
vertical distribution data of different species. Fine spatial separation
may occur under some scenarios as different species may swim/rise at
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left, are: the vertical distribution of plankton counts in the water column, the relative abundance of taxa (as a pie chart), the geolocation of samples
(map), the size distribution of plankton taxa (histogram), and the vertical distribution of plankton taxa with longitude. Selecting a swath of vertical
distribution or a specific taxon in the pie chart automatically adapts all other figures to the sub-selection, for instance only showing a certain taxon -
multiple sub-selections at the same time are possible (e.g., adapting all figures to only show Oithona sp. copepods in the top 20 meters that have a
certain size). The HeavyAl dashboard monitors the underlying HeavyDB for new incoming data to display. (B) This setup lends itself to near real-time

data exploration and adaptive sampling.

different speeds, and determination, let alone verification of that
pattern is difficult at best with only acoustic data (Figure 6). Towing
an imaging system such as ISIIS-3 with near-real time data output, can
enable a detailed biological survey of the feature, even as it is rising or
falling in the water column.

5.1.2 Thin layers and other patchy features

Algal thin layers are often highly transient in location and
persistence. While their presence may be predictable in some
situations (e.g., Greer et al, 2013; Greer et al, 2020; McManus
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et al., 2021), actual encounter of them may be a chance occurrence,
and indication of their presence may be vague (e.g., Chl a signal
appearing highly noisy). Verifying the presence, and detailing the
vertical distribution of organisms associated with a thin layer can
only be done with focused vertical sampling. Real-time high
resolution imagery data can more accurately verify the presence
of a thin layer and its various species constituents, and then can be
utilized in developing an adaptive sampling plan to more fully
resolve the dimensions and species interactions associated with the
thin layer.
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FIGURE 6

A snapshot from the EK80 18 kHz backscatter signal showing
evidence of plankton diel vertical migration to surface waters during
early evening hours. Time is on the x-axis, depth on the y-axis
Combining live observations from the EK80 with live ISIIS-DPI
imagery and the heavyAl dashboard enables a new way of adaptive
sampling by being able to pinpoint the taxa comprising such diel
migration patterns

Vertically and spatially discrete aggregations of other organisms
2021), though difficult to
predict. Their presence may be associated with a specific life stage,

are not uncommon (Robinson et al,

or in response to certain biological or physical features and their
relative importance (i.e., as a predator or prey source) may depend
on the extent of the patch (or bloom). For example, small patches of
dense hydromedusae aggregations (Figure 7), which can exert
substantial predation pressure on larval fishes and copepods
(Corrales-Ugalde and Sutherland, 2021; Corrales-Ugalde et al.,
As with other
aggregations, when hydromedusae are identified though in-situ

2021), are difficult to sample with nets.

imaging and real-time AI at sea, researchers have the potential to
adjust sampling efforts to resolve the dimensions and density

of patches.
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5.1.3 Specific environmental conditions of
high interest

As with focused sampling around biological aggregations,
adaptive sampling around specific oceanographic conditions can
reveal novel biological patterns and associations. Follow-up
sampling at various physical interfaces, as identified by other
sensors, might reveal changes in organism distributions
warranting further study. For example, vertical or horizontal
frontal features detected by Acoustic Doppler Current Profilers
(ADCP; Figure 8), might suggest broad, then more fine-tuned
sampling as real-time data analyses reveal spatial biological
patterns. Eddie fronts (potentially detected by ADCP) are prime
examples for where adaptive re-sampling of the eddy’s interface
could provide valuable insight into the taxonomic make-up of eddy,
interface, and exterior water masses (Schmid et al., 2020).

Finally, coupling physical and optical sensors can enhance
adaptive sampling capability. On the NCC shelf, in particular, low
oxygen upwelled water can quickly become further hypoxic when
primary productivity decays after phytoplankton blooms (Chan et al.,
2008). Such low oxygen zones are increasing in frequency and duration
and have become an emerging threat to fisheries (Chan et al., 2008;
Chan et al., 2019) that can lead to substantial financial loss. Sensors on
imaging systems can detect such low oxygen zones (Figure 9) and using
the imager, these low oxygen waters can be re-sampled on transects
passing from normoxic waters, through the interface, and into the core
of hypoxic waters. Near-real-time processing can detect the expected
and unexpected presence of different taxa, which can lead to new
insights and hypotheses. For example, in 2016, anchovy larvae were
imaged in low oxygen waters (Brisefio-Avena et al., 2020b) on the
Newport Hydrographic Line, a transect sampled since 1961 (Peterson
and Miller, 1975).

In combination, the examples presented here are a considerable
advancement in our ability to find, identify, and thoroughly sample
ephemeral and other hard-to-detect features in the ocean. Adaptive
sampling using cutting edge technology is critical to expand our
understanding of the processes that are driving ocean biology.

5.2 Processing speeds

The edge server’s NVMe flash drives and CPU succeeded in
segmenting the incoming.avi video files almost at 1:1 ratio of
collection time vs processing time. A single NVIDIA T4 GPU
with 16 GB memory was able to classify data in four parallel
instances, adding on average another 2.65 mins for classification
of each AVI. While the achieved processing times were good and
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A snapshot of ISIIS-DPI imagery as the sled is towed along a transect in the southern California Current. Dense patches of organisms, in this case
hydromedusae, can be observed and re-sampled to identify the extent of patches and layers. Using near real-time classification with an edge server
enables the identification and quantification of dense patches. The layer shown here spans 1.17 m from edge to edge
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FIGURE 8

A snapshot of an ADCP vector diagram as seen on the real-time
readout on research vessels. Using real time classification of
encountered plankton in conjunction with ADCP data allows the
immediate re-sampling of ocean conditions of high importance,
such as vertical and horizontal fronts. In this ADCP vector diagram,
surface waters (5-60 m) are characterized by distinct northeastward
flow, while at depths below 75 m water is moving in a northwest to
west direction. Using readouts from the heavyAl dashboard, the
ISIIS-3 imager can be towed specifically at the interface of such
divergent flows in order to collect the most insightful data on taxa
distributions, potential predator-prey interactions facilitated by such

features, as well as behavioral observations. The y-axis shows depth;

however, each arrow has a directional and speed component.
Colors are not quantitative but indicate shallow and deep bins. The
direction of the arrows indicates 360 deg direction, with arrows
upward indicating “North”.
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within our expectations, we envision more powerful hardware in
conjunction with even more specialized software to segment
incoming AVIs at a ratio of 1:0.5 or faster — and cutting down on
classification time in a similar way, in order to go from near real-
time processing and display of data to real-time classification and
display. Depending on the detected oceanographic features or a
priori features the user wants to investigate with regards to the
distribution of taxa, the ability to see which taxa are present with a
1 min time lag vs a 5 mins time lag, likely makes a big difference.

5.3 Implementing the adaptive sampling
pipeline with other imaging system setups
and edge servers

The pipeline code and workflow described here were designed
with the idea of being agnostic to the imaging system used as well as
the specific edge server available. For instance, while our specific
setup receives large quantities of data through a fiber optic cable
that are then ingested into the pipeline on the edge server, this is by
no means a necessary pathway. The output of any imaging system
could be used with this setup by similarly creating network drives
on the imaging system’s data collection computer, pointing to the
edge server for writing files and immediate processing — how the
imagery gets to the edge server is of little importance as long as the
time lag between collecting the data and starting to process is
minimized. This also means that while the presented pipeline is
targeting live data-feed imaging systems, one could easily take the
setup described here and supply data from profilers that do not
transmit data live (e.g., the Underwater Vision Profiler 6), as soon as
the data from a profile is retrieved. In that context, a user can also
replace the segmentation and classification described here with an
instant segmentation approach such as the You Only Look Once
(YOLO; Jiang et al., 2022) algorithm or similar. The idea of an edge
server is to have powerful hardware (ie., CPU, GPU, memory,
storage) in a relatively low power consumption package that has a
small footprint and is ruggedized. There are a diversity of edge
servers available on the market that can be bought or home-built

ISI1S-3 environmental sensors display during deployment ISIIS-3 flight control display during deployment
o o o o o
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FIGURE 9

ISIIS-3 control display during a transect on the Heceta Head line (43.98° N) off Oregon, with environmental data plotted on the left (e.g., dissolved
Oxygen as low as < 1 ml L™ at 100 m depth). The right panel shows the undulating flight pattern (red line) and demonstrates IS11S-3's ability to
sample hypoxic waters at near bottom depths (blue points are the seafloor as indicated by the altimeter).
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and that could be used instead of the one used here. When
switching to a GPU-based YOLO or Mask R-CNN (He et al,
2017) object detection, the user would be less reliant on CPUs and
thus might prefer a setup with fewer CPUs while swapping in
several more powerful GPUs instead.

5.4 Conclusion

ISIIS-3 in conjunction with a deep learning pipeline deployed on
an edge server at sea is a powerful combination for adaptive sampling,
reducing lag between data collection and addressing on ecological
questions, as well as for scientific discussions with cruise participants.
Several applications of adaptive sampling were presented that have the
potential to be transformative for oceanographic research, including in-
situ target species identification, and HAB thin layer characterization.
In the northern California Current, where hypoxia and ocean
acidification are endangering commercially important taxa such as
Dungeness crab and hence the livelihood of communities, adaptive
sampling of taxa distributions in such features could prove a very
effective tool for better understanding the responses of such taxa to
environmental disturbances.
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