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ABSTRACT: Lattice structures are known to have high performance-to-weight
ratios because of their highly efficient material distribution in a given volume.
However, their inherently large void fraction leads to low mechanical properties

Optimized lattice

- B

compared to the base material, high anisotropy, and brittleness. Most works to
date have focused on modifying the spatial arrangement of beam elements to %
overcome these limitations, but only simple beam geometries are adopted due 20 ey :

Deep learning-assisted
design optimization

to the infinitely large design space associated with probing and varying beam
shapes. Herein, we present an approach to enhance the elastic modulus,
strength, and toughness of lattice structures with minimal tradeoffs by
optimizing the shape of beam elements for a suite of lattice structures. A
generative deep learning-based approach is employed, which leverages the fast
inference of neural networks to accelerate the optimization process. Our optimized lattice structures possess superior stiffness
(+59%), strength (+49%), toughness (+106%), and isotropy (+645%) compared to benchmark lattices consisting of cylindrical
beams. We fabricate our lattice designs using additive manufacturing to validate the optimization approach; experimental and
simulation results show good agreement. Remarkable improvement in mechanical properties is shown to be the effect of distributed

stress fields and deformation modes subject to beam shape and lattice type.
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B INTRODUCTION

Lattice structures have a three-dimensional architecture in

First, the mechanical properties of the lattice structure, such
as modulus or strength, are lower than those of the base
material because of the inherent high void fraction of the
lattice."®"” The origin of the limit stems from the tradeoff
between void fraction and mechanical properties."'? Second,
since lattice structures can never achieve perfect isotropy, the
mechanical properties of the lattice are orientation-dependent;
they heavily depend on the direction of the applied load.**~**
This high anisotropy of the lattice structure is a hurdle for

which struts or beams connect at joints and possess cubic
symmetry in mechanical properties.l_3 Since their architecture
has highly efficient material distribution in a given three-
dimensional space, lattice structures tend to have outstanding
specific properties such as a high strength-to-weight ratio,
stiffness-to-weight ratio, and energy absorption -efficiency

compared to other conventional engineering materials." ¢ As
a result, lattice structures have been widely adopted for many
applications such as biomedical implants, aircraft, automobile
chassis, and use in other metamaterials to utilize their novel
lightweight properties.” ~ For example, in automotive
engineering, the lattice structure has been used for many
automotive components including crash boxes,'’ engine
hoods,"' and arm design.'” In the field of aerospace
engineering, many applications have adopted the Iattice
structure, such as airfoils,"> three-dimensional lattice-based
energy absorption structures,'” and vibration absorbing
lattices."> Additionally, in biomedical applications, orthopedic
implants have been designed by employing lattice structures in
order to prevent the failure of the bone—implant interface.’
However, also because of the inherent sparse structural
properties of the lattice architecture, the lattice faces several
challenges that should be considered.
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several structural applications having uncertainty in loading
and should ideally be mitigated. The last limitation for lattice
structures is the oftentimes low toughness and small strain
limit, resulting from the high stress concentration around the
beam intersections at the joints, which causes catastrophic
failure with large energy release when a crack nucleates.”’

To overcome these limitations, many efforts over the past
few decades have been devoted to tuning the spatial
arrangement or shape of the beam elements in lattice
structures. For instance, in the case of a body-centered (BC)
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Figure 1. Bézier curves for modeling (a) body-centered (BC) and simple cubic (SC) lattice structures used in the body-centered cubic (BCC)
structure and (c) octahedral (Octa) and tetrahedral (Tetra) lattice structures used in the octet-truss (Octet) structure. For BC and Tetra, a 30th-
order asymmetric The Bézier curve is used and for SC and Octa lattice structures, a 60th-order symmetric Bézier curve is used. The orange sections
in the schematics (a, c) represent the joining points within the BCC and Octet lattice structures. The relative Young’s modulus and the specific
shear modulus of the initial datasets of (b) BCC and (d) Octet group lattice structures. The dashed line in the figures is the theoretical upper limit,
the Voigt limit. The relative density range for the specific shear modulus plot is 0 < 5 < 0.4. (e) RMSE with respect to epoch during training neural
networks (NNs) for BCC. The outputs predicted by NNs are compared with the ground truth, and the R? is calculated by comparing the NN
prediction with the ground truth. The target relative density (p,) for the objective function is 40%.

lattice structure, a noticeable improvement has been achieved
in modulus and strength compared to a reference BC lattice
consisting of cylindrical beam elements by employing graded
or tapered beam elements modeled with two design
parameters.””*> To improve the isotropy of lattice structures,
multi-materials are used for the lattice, or additional tapered
beam elements are inserted into the conventional lattice
structure so that it can withstand loading in various
directions.”***” Polycrystalline lattice structures or sandwich-
type beam elements consisting of hard and soft materials have
been used to enhance the toughness of the lattice structure
with progressive failure.”***° However, it is widely acknowl-
edged that tradeoffs exist among mechanical properties (such
as elastic modulus and isotropy, strength and toughness,
among others) where mutual improvement is difficult to
achieve.”’ ™ Failure to achieve comprehensive mechanical
enhancement can be fatal for structural sustainability.

In this study, we present a method to enhance the elastic
stiffness, strength, and toughness of lattice structures while
minimizing tradeoffs by optimizing the shape of the beam
elements. We reveal that enhancing the modulus by tuning the
beam shape can also improve the degree of isotropy and
toughness simultaneously without the sacrifice of other

22544

mechanical properties. The beam elements are modeled
using a high-order Bézier curve, which offers a flexible design
space and smooth surfaces in the domain. Smooth surfaces are
beneficial when it comes to manufacturing, which guarantees
that the structures generated from the work can be realizable
for future applications. Thereafter, we employ an active
learning-based design optimization approach to consider the
large design space more efficiently. Our starting point is the
calculation of the lattice stiffness from finite element analysis
(FEA). Then, neural networks (NNs) are used for their
exceptional performance in helping to probe the complicated
relationship between high dimensional inputs and outputs,
given the large set of design variables.”*™*" Next, genetic
optimization (GO) is applied to generate new lattice designs
that have superior properties compared to the initial datasets.
The NN are used to predict stiffness values faster than FEA
calculations to speed up the greedy decisions during GO,
which accelerates design optimization by leveraging the fast
inference of the NNs. The optimized structures are fabricated
using additive manufacturing. Finally, our design approach is
verified through compression testing experiments and
compared with the benchmark lattices consisting of cylindrical
beam elements. Based on our experimental and simulation
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Figure 2. (a) Relative Young’s modulus of body-centered cubic (BCC) structures during the optimization. The maximum modulus of each
generation dataset is used for each data point in the figures. The Oth generation implies the initial datasets, and the lattice structure with a density
higher than 0.4 and closest to 0.4 is chosen for the data point. (b) Normalized von Mises stress of the BCC structure at the initial and final
generations under uniaxial strain loading condition. The stress is normalized by Eye, where E, is Young’s modulus of base material and & is the
applied strain in the z direction. (c) 3D elastic modulus plot of BCC at different generations of the optimization process.

results, we analyze the mechanisms of the high stiffness,
strength, and toughness and discuss the importance of beam
modeling in improving various mechanical properties of the
lattice structure for next-generation high performing light-
weight lattice structures.

B RESULTS AND DISCUSSION

Initial Datasets of Lattice Structures. In this work, we
consider a suite of lattice-type structures including simple
cubic (SC), BC, body-centered cubic (BCC), octahedral
(Octa), tetrahedral (Tetra), and octet-truss (Octet) lattices,
which are common lattice structures studied for lightweight
applications in previous studies.”*®'®?*3%*>*3 Herein, lattice
structures consisting of one type of beam element are referred
to as “simple lattices”, while “superimposed lattices” are lattice
structures that have two types of beam elements (Figure la,c).
Each superimposed lattice consists of two simple lattice
structures: BCC is the superposition of SC and BC lattices, and
Octet is the superposition of Octa and Tetra lattices."™>** A
Bézier curve with a set of control points describes the shape of
the beam elements, and 20,000 and 100,000 initial datasets are
prepared for each simple and superimposed lattice, respec-
tively. In order to generate initial datasets covering the entire
range of relative density of lattice structure, the x, y coordinates
of the control points of the Bézier curves are generated by
random number generation. Each dataset includes inputs (x
and y coordinates of the control points) and outputs (relative
density and modulus of the lattice structure) obtained from
FEA and the homogenization method described in the
Computational Methods section. In order to understand the
lattice-dependent mechanical properties, two elastic properties
are computed including Young’s modulus and shear modulus
as a function of relative density, as shown in Figure 1b,d. The
SC and Octa lattices have higher Young’s modulus than BC
and Tetra, respectively, while the opposite is true for the shear
modulus, i.e., the lattice structure with a high Young’s modulus
has a lower shear modulus and vice versa. This is due to the
activation of different deformation mechanisms depending on
the loading direction for each type of lattice. For instance,
under axial loading, the SC lattice shows a stretching-dominant

deformation mode, whereas BC is bending-dominant (i.e., has
lower bending stiffness than axial stiffness). However, under
shear loading, the deformation mode of each lattice is
switched, from stretching-dominant to bending-dominant.
Using the initial datasets, four different NNs (predicting
relative density and modulus of BCC and Octet lattices, details
in the Supporting Information: Generative machine learning-
based design optimization) are trained for 150 epochs. As a
result of training the four NNs, both the RMSE of the training
and test datasets converge to less than 1% (Figure le and
Figure S1). In order to verify the NN, the relative density and
Young’s modulus of each lattice structure are compared with
the ground truth obtained from FEA and homogenization
methods. We plot the NN prediction versus the ground truth
and fit the data to the line y = x; R? values close to 1 imply an
accurate prediction. The output of the objective function is
predicted based on the relative density and elastic modulus
obtained from the NN. We obtain R* = 0.9978 and 0.9984 for
the test datasets of BCC and Octet lattice, respectively,
meaning that the predictions are accurate compared with the
ground truth (Figure le and Figure S1). In terms of
computational time, the NN prediction for the three-
dimensional lattice structures is approximately 50 times faster
than FEA. Specifically, the NN prediction takes less than 0.1 s
independent of the density of the lattice structure since the
NN calculates the output using the coordinates of each control
point as input. Because of the fast inference and high accuracy
of NNs in making the output prediction required for a greedy
decision during the GO process, more new design candidates
with potentially higher output can be obtained faster.
Beam-Shape Optimization for BCC and Octet
Lattices. The generative deep learning algorithm, GO coupled
with NN, is applied to maximize Young’s modulus of the
lattice structure using the shape of the beam elements as input.
The GO generates a new beam shape, and the NNs make
greedy decisions to obtain new data with high mechanical
properties, which accelerates the optimization process. More
details on our active learning-based optimization approach are
described in the Generative machine learning-based design
optimization section of the Supporting Information. Young’s

https://doi.org/10.1021/acsami.3c02746
ACS Appl. Mater. Interfaces 2023, 15, 22543—22552


https://pubs.acs.org/doi/suppl/10.1021/acsami.3c02746/suppl_file/am3c02746_si_005.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c02746/suppl_file/am3c02746_si_005.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c02746/suppl_file/am3c02746_si_005.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c02746/suppl_file/am3c02746_si_005.pdf
https://pubs.acs.org/doi/10.1021/acsami.3c02746?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c02746?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c02746?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c02746?fig=fig2&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.3c02746?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Applied Materials & Interfaces

www.acsami.org

Research Article

modulus of the superimposed lattice structures is optimized by
tuning the shape of the beam elements, and we investigate the
effect of the beam shape on the anisotropy of the lattice
structures as the optimization process progresses. The relative
density is fixed at 40%, which is in the typical range of density
of lattice structures used in other works."”**%**

The relative modulus of the variable-beam shape BCC
superimposed lattice structure gradually increases, showing a
76% improvement compared to the Reference BCC lattice
consisting of cylindrical beam elements (Figure 2a). We make
three interesting observations regarding the BCC super-
imposed lattice with respect to its constituent lattices: the
SC and BC simple lattices. The modulus of the BCC lattice
structures is lower than that of the optimized SC lattice at all
generations during optimization. The radius of the beam
element of the BC lattice in the BCC decreases as the
optimization proceeds (Figure 2b). The beam element of the
SC in the BCC has a smooth shape and eventually, the stress
field becomes more distributed, resulting in high load-bearing
performance.

In order to quantify the anisotropy of the lattice structures,
the elastic modulus is calculated in all directions using
coordinate transformation of the obtained fourth-order
stiffness tensor and visualized with a color plot on a 3D
geometry in Figure 2¢.”” In the Reference BCC structure, the
modulus in the (111) direction (E;;) is larger than the
modulus in the other directions, but after the optimization
process, the modulus in the (100) direction (E;o,) becomes
stiffer than the others because the proportion of SC lattice in
the Optimized BCC is larger than that of the BC lattice. This is
because the SC lattice material distribution is more efficient at
withstanding loading in the (100) direction where beam
elements are parallel to the loading direction, resulting in
stretching-dominant deformation.

The same design approach is applied to optimize the elastic
modulus of the Octet structure studied in many previous works
(Figure $2).»**%*»*% The modulus of the Octet lattice
increases with the generation of GO and the modulus of the
last generation shows about 35% improvement compared to
the Reference Octet lattice consisting of cylindrical beams. We
make two observations regarding the Octet superimposed
lattice with respect to its constituent lattices: the Octa and
Tetra simple lattices. The radius of the beam elements of the
Tetra simple lattice decreases as generation increases. While
the modulus of the Octet lattice increases with the generation
of GO, it is always lower than the elastic modulus of the
Optimized Octa lattice.

The Octet lattice has a similar degree of anisotropy to that of
the BCC lattice as both lattices have multiple beam elements
to withstand loading in various directions. The converged
lattice structure has a stiffer modulus than the Reference Octet
lattice in all loading directions and is more isotropic (Figure
S2). The Zener ratio is calculated to estimate the degree of
anisotropy of the lattices, expressed as 2c,,/(c;;—c;,) where G
are the elements of the lattice structure stiffness matrix. The
Zener ratio is 1 for isotropic materials and deviates from 1
when the material is anisotropic.”” The ratio of the Reference
Octet lattice is 3.05, which implies a highly anisotropic
structure and it converges to 1.05 after optimization.

Based on the optimized Young’s modulus of BCC and Octet
lattices, we hypothesize that the optimized structure of a
superimposed lattice converges to the optimized structure of
one of its constituent simple lattices. To further explore this

hypothesis, we discuss the simple lattice results in the next
section. First, the optimized moduli of simple lattices are
predicted in the entire range of the relative density. Then, a
mathematical proof is introduced based on the superposition
rule of the lattice structures to explain the convergence of
superimposed lattices shown in the section called Convergence
of Superimposed Lattice Structures.

Beam-Shape Optimization for Simple Lattices. Figures
3a and 4a show the optimized Young’s modulus values of SC,
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Figure 3. (a) Relative Young’s modulus of simple cubic (SC) and
body-centered (BC) lattice structures. The maximum modulus of
each generation is used in the plots. Shape of optimized beam element
in (b) SC and (c) BC lattice structures. The shape of the beam
element in the reference lattice structure is a cylinder. Normalized von
Mises stress field and 3D elastic modulus plot of (d) SC and (e) BC
lattice structures. The relative density of lattices in (d) and (e) is 40%.
For all cases, the optimized lattice structure has a more distributed
stress field than its reference lattice structure counterpart at the same
relative density.
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BC, Octa, and Tetra lattices in the entire range of the relative
density, and the results are compared with their reference
lattices consisting of cylindrical beam elements with the same
relative density. All optimized lattice structures have higher
elastic stiffness than their reference lattice structures, as
summarized in Table 1. For BC and SC lattices, the shapes
of the optimized beam elements have radius variation along the
beam axis and the optimized lattices have a more distributed
stress field due to the smooth geometries of the optimized
beam elements, whereas the reference lattice structures have
high stress concentration at joints, where the beam elements
intersect (Figure 3b—e and Figure S3). In the optimized
structures, more materials are shifted toward each joint to
effectively strengthen the joints and alleviate the stress
concentration. Due to the crystallographic symmetry of the
lattices, when both BC and SC lattices have optimized
modulus, they have symmetric beam element shapes, e.g,
[111] is the same as [111] for the BC lattice and [100] is the
same as [100] for the SC lattice. The optimized beam element
of the BC lattice has a local minimum radius along the beam
axis, and the number of the local minimum radii increases with
the relative density, effectively reducing the stress concen-
tration and increasing the modulus of the lattice. The
Optimized SC has a higher elastic modulus than the Optimized
BC for all relative densities and has a more distributed stress
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field. From a structural point of view, most of the beam
elements in the SC lattice are aligned with the loading
direction, which results in stretching-dominant deformation,
whereas the BC lattice shows bending-dominant deformation
under loading in the (100) direction. Since the stress field by
stretching-dominant deformation is uniform, SC has a more
simplified beam shape than BC, which has local minimum
points in the optimized Bézier curves. Hence, the BC lattice is
less efficient than SC in terms of load bearing, and thus, it has a
lower modulus. In particular, the shape of the Optimized SC at
a density of 40% is similar to the SC lattice in BCC at the sixth
(final) generation.

Results show that the elastic modulus of the Optimized SC
lattice is stiffer than that of the Reference SC lattice in all
directions. To observe the degree of anisotropy depending on
the change in Ejy, the Zener ratio of the Reference and the
Optimized SC lattice is calculated (Table 1). The Zener ratio,
the degree of anisotropy, can also be interpreted as the ratio of
E\;1 to Ej, ie, Ej1/Ejg ie, Zener ratio of isotropic
materials is 1.*® All SC lattices have a ratio less than 1 because

Eyy is stiffer than E;};, owing to the stretching-dominant
deformation mode in the (100) direction of the SC lattice. The
Zener ratio of the Optimized SC is larger than that of the
Reference SC of the same density and approaches a value of 1
after optimization. That is, through optimization of the beam
shape, the modulus increases in all directions, and at the same
time, it becomes less anisotropic. These improvements are
attributed to the distributed stress field obtained from the
optimized beam elements. In the case of a sharp joint, high
stress is applied to the joint part and the intensity of the stress
concentration is sensitive to the direction of the applied
loading, and thus the elastic modulus changes significantly due
to the loading direction. Consequently, the smooth joint of the
Optimized SC results in a modulus insensitive to the change in
loading direction compared to the Reference SC, and thus,
possesses higher isotropy. On the other hand, in the case of the
BC lattice structure, Ej;; is larger than E,y, because the beam
elements are aligned in the (111) direction, having stretching-
dominant deformation under (111) loading, and therefore, the
Zener ratio of BC is greater than 1. Optimizing E,o, decreases
E,;;, and as a result, the Zener ratio is reduced and becomes
more isotropic than the Reference BC, ie., both E o, and E ;;
get closer as the optimization process progresses.

The Optimized Octa lattice has a higher elastic modulus at
all relative densities than the Optimized Tetra lattice, but the
difference is not significant compared to the SC-BC case,
which is less than 11% for all results (Figure 4 and S4). This
similarity is believed to be due to their identical beam
inclination angle with respect to loading direction (45
degrees), resulting in similar deformation modes. However,
horizontal beams on the z = a/2 plane of the Octa lattice more
effectively constrain the horizontal expansion during compres-
sive loading than the horizontal beams at the top and bottom
of the Tetra lattice, and therefore slightly stiffens the overall
modulus of the Octa lattice. Tetra has a higher stress
concentration than the Octa lattice due to sharper corners at
the interface created by the intersection of two beam elements
(Octa: 34.9°, Tetra: 29.2°), which results in more bending
stress with a lower modulus (Figure SS). Interestingly, the
optimized beam element of Tetra has an asymmetric shape
unlike SC, BC, and Octa structures (Figure 4b and c). From a
crystallographic perspective, the positive direction of the beam
axis in Tetra is different from its negative direction whereas the
two directions are indistinguishable in the other simple lattices.
Due to the unbalanced architecture of Tetra, there are two
different types of joints and the joints near the lattice vertices
have less volume than joints near the center of the lattice face

Table 1. Relative Young’s Modulus (E) and Zener Ratio (Z) of the Lattice Structures

7=02 p=04 p=06
E Z E z E Z
reference BCC 0.04283 1.4088 0.12560 2.5545 0.28137 1.1604
reference BC 0.00983 10.2369 0.06575 9.0128 0.22087 1.6332
optimized BC 0.01630 5.4260 0.10528 1.2089 0.28653 0.7753
reference SC 0.09082 0.1268 0.21817 0.3424 0.39485 0.6026
optimized SC 0.09528 0.1721 0.23069 0.4298 0.41170 0.6670
reference Octet 0.03794 1.7408 0.11483 3.0491 0.26419 1.3174
reference Tetra 0.04203 1.4204 0.13718 1.0648 0.31890 0.8863
optimized Tetra 0.04683 1.2538 0.16384 0.8738 0.36390 0.7350
reference Octa 0.04496 1.3900 0.15549 1.0090 0.36822 0.8439
Optimized Octa 0.05194 1.3208 0.17541 0.9755 0.38917 0.8423
22547 https://doi.org/10.1021/acsami.3c02746
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(Figure S6). Therefore, in the Optimized Tetra, the beam
radius near the origin (vertices of the lattice) is thicker than
near the end of the beam (center of the lattice face) to obtain
more balanced loading on joint parts compared to the
Reference Tetra lattice. In summary, the moduli of Octa and
Tetra are similar because the two optimized structures have
similar deformation modes, but the Octa lattice has a higher
elastic modulus because of lower stress concentration and
more balanced structure than the Tetra lattice.

Maximizing E,y, of the Octa lattice increases E;;, because
some beam elements not on the z = a/2 contribute to load
bearing under [111] loading, and as a result, the Zener ratio
changes less than in other lattice structures. Hence, by
optimizing the beam shape of the Octa structure, the modulus
is improved in all directions without loss or sacrifice of the
degree of isotropy. Interestingly, the Octa lattice with 40%
density shows a transition of the maximum modulus from E;;;
to Ejqo during optimization, whereas the Reference Octa lattice
with relative densities of 20 or 40% has a larger E;;; than E g
(Figure 4d and Figure S4). In the case of the Reference Octa
lattice at 40% density, E o, and E;;; are similar, and it is nearly
isotropic having a Zener ratio close to 1. Since Ey is
maximized through optimization, E;5, becomes larger than
Eyy,

When E,, is maximized by optimizing the beam shape of
the Tetra lattice, E|;; does not change significantly after the
optimization and the Zener ratio decreases as E |, increases. At
a density of 40%, E,y, becomes stiffer than E,;; as optimization
progresses and the Zener ratio of the Optimized Tetra drops
below 1. That is, in the case of Octa and Tetra structures, the
degree of anisotropy and elastic modulus are improved
simultaneously through beam shape optimization up to a
relative density of 40%. In general, the lattice structure has a
very high or small Zener ratio deviating from 1 at a low density
because it has a stiffer modulus in the beam axis direction,
resulting in a highly anisotropic modulus. As the density
increases, the lattice efficiently withstands loading in various
directions because more materials are spatially distributed in
the lattice structure space, and therefore the Zener ratio gets
closer to 1. On the other hand, when the density is too high,
the Octa and Tetra lattices are almost enclosed by the beam
elements due to a large overlapping between each beam
element, creating an almost closed-cell foam structure. Many
studies utilize lattice structures in the low-density region below
40% for open cell structures, and it is believed that our method
can be utilized in various existing lattice structure applications
since most of the simple lattice structures studied in our work
show improvement in both elastic modulus and isotropy at
moderate density (<40%).

Convergence of Superimposed Lattice Structures.
Next, the convergence of the modulus of BCC and Octet
lattices to that of SC and Octa, respectively, is proved by
introducing a simple mathematical model. First, the super-
position rule is employed based on the linear -elasticity
assumption of our problem. When the relative elastic modulus
of a superimposed lattice C is E and the lattice constant is a4,
the modulus of lattice C consisting of simple lattices A and B
can be obtained from force equilibrium as expressed in eq 1

Ec =E, + Ey (1)

This is different from the conventional rule of mixtures used

for predicting the effective properties of composites because

the lattices A, B, and C have the same lattice volume a°,

whereas the total volume increases in the rule of mixtures by
adding new phases (Figure S7). Therefore, when the relative
density of lattice structure C is p and lattice A in the C
structure has a relative density of p;, the modulus of C can be
expressed as

Ec(p) = E\(p) + Ex(p — p,) )

Since the elastic modulus of each lattice is lower than that of
its optimized structure, eq 2 can be expressed as

Ec(p) <EX™(R) + Eg™(P — 7)) 3)

If lattice A is stiffer than lattice B under the same relative
density, eq 3 is then further simplified by using the fact that

E§™(p — p1) < Ex%(p — p1):
Ec(p) <EX™(p) + Ex™(P — 1) (4)

Next, the Gibson—Ashby power law is employed, which is
commonly used as an empirical model for describing the
relationship between the mechanical property and density of
lattice structures.*”~>> The power law for the relative modulus
is expressed as E = Kp" where K and n are coefficients
depending on the lattice structures and our optimized results
are fitted to the law using K = 1, satisfying E = 1 when p = 1,
i.e., a single parameter n is used for the curve fitting. As a result,
all R* values are higher than 99.5%, which shows the good
predictive capability of the law (Figure S8). Since it always
satisfies (p,)" + (p — p1)" < (p)" for positive n, eq 4 can finally
be expressed as Ec(p) < Ex™(p), which proves that the elastic
modulus of the superimposed lattices such as BCC and Octet
are strictly upper bounded by their corresponding optimized
simple lattices SC and Octa. Therefore, if the optimization is
performed using the Bézier curve made without minimum
radius constraint, then the size of the BC and Tetra parts in
BCC and Octet, respectively, would become infinitesimally
small and eventually disappear. Our proof can be expanded to
more general lattices consisting of two or more simple lattices,
and the optimized structure of the superimposed lattice
converges to the optimized structure of the simple lattice,
which is the stiffest among the components of the super-
imposed lattice.

We plot the Ashby chart with the Gibson—Ashby power law
E=p"(0 <p < 1) for each optimized simple lattice and
reference superimposed lattice (Figure S8). In the case of the
Voigt limit, n is 1, which represents an ideal case, and as the
value of n increases, the modulus decreases significantly with
increasing density. Hence, a lattice structure with a lower n has
a higher specific modulus. For example, in the case of Al,O,
which has been widely used as a base material for lattice
structures in previous studies, the density of the base material
is 4.0 5g/crp3 and the modulus of elasticity is 375
GPa.>***"3%3* When AL O; is used as the base material, the
moduli of the lattice structures such as Optimized BC, BCC,
and Octet are in the regime of conventional foam materials in
the Ashby chart, but our Optimized Octa, Tetra, and SC are
located in a higher area than conventional materials, toward
the region of higher specific modulus.

Similarly, optimization is conducted to find the minimum
modulus of the SC and BC lattices. To predict the minimum
modulus, the objective function is minimized using a penalty
coeflicient k, which represents the sensitivity of the density
constraint to the objective function. Here, Young’s modulus is
minimized using k = 5.'7 As the optimization proceeds, the
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cross-sectional area near the vertices of the unit cell becomes
very small, and a very high stress concentration arises due to
the small cross section (Figure S9). If the radius constraint is
not used when modeling the Bézier curve, then the modulus
converges to zero because a sufficiently small cross-sectional
area is expected at the vertex of the unit lattice, which gives rise
to a stress singularity. Therefore, based on the superposition
rule, the theoretical lower bound of a superimposed lattice is 0,
which can be explained by the Hashin—Shtrikman lower
bound for elastic material with cubic symmetry.*®
Experimental Validation of the Beam Shape Opti-
mization. In this work, generative machine learning-based
design optimization is applied for simulation data only because
it would take a lot of time and cost when constructing training
data using only experimental data. Optimized lattice structures
with a relative density of 40% are fabricated using additive
manufacturing to verify our design approach (Figure S). The

(a)

Exp.

Optimized Ref. Optimized Ref.
BC sC S Octet

SNININ

Optimized Ref. Optimized
Tetra Octa Octa

W 55 O O
' dn m e
»
Sy

R Tt L4 L]

see]y
X

K SOCK

20 .
1 Optimized SC 1 Optimized Octa
- == Reference SC —_ 10 # == Reference Octa
g 15 == Reference BCC Q“_S i [==3 Reference Octet
s == Optimized BC = /L = Optimized Tetra
o 10 = Reference BC e / == Reference Tetra
g §s |
= = |
B 5 & Il . d
O | W i} i O - i
0 0.2 .04 0.6 0 0.2 .04 0.6
Strain Strain

(d)
0.3

== Simulation
=== Experiment

Relative modulus
o
=
(9]

Ref. Ref. Optimized Ref. Optimized Ref. Ref. Optimized Ref. Optimized
BCC BC BC sc sc Octet Tetra Tetra Octa Octa

(e)

N
o

- === Experiment q

Ref. Ref. Optimized Ref. Optimized Ref. Ref. Optimized Ref. Optimized
BCC BC BC sc sc Octet Tetra Tetra Octa Octa

o

Strength (MPa)
S

Figure S. (a) Reference (Ref) and optimized lattice structures
fabricated by additive manufacturing (Exp.) and modeled by
simulation (Sim.). Stress—strain curves of the (b) BCC and (c)
Octet group. (d) Relative Young’s modulus and (e) strength
measured from compression testing. Three samples are tested for
each case to show the reproducibility of our experiments, and error
bars show the variance.

elastic moduli are measured from the elastic regime of the
stress—strain curve obtained from experiment and they show
good agreement with simulation results. Moreover, the
strength of the lattice structure shows a similar trend to the
elastic modulus because the optimized structures have
distributed stress fields leading to a high modulus at a fixed
density, resulting in low stress concentration. Hence, structures
with high modulus also have high strength due to distributed
stress fields under the same loading conditions.

All optimized lattice structures show more progressive
failure with a large strain limit compared to their reference
lattice structures (Figure 6). Remarkable improvement is
observed for SC and Tetra lattices. The Reference SC lattice

shows catastrophic fracture, which is undesirable for engineer-
ing applications. On the other hand, our Optimized SC lattice
shows hardening behavior, starting with the onset of buckling
and results in a gradual fracture behavior after reaching
maximum stress (Supporting Information, Videos 1 and 2).
Similarly, the Optimized Tetra structure reveals progressive
failure, and the toughness is remarkably improved compared to
its reference lattice even though it is made of brittle resin
(Figure 6 and Supporting Information, Videos 3 and 4). The
mechanism of the high toughness is believed to originate from
the distributed stress field of the optimized lattices, especially
near joints, where beams intersect. The optimized beam
element has a smooth shape with radius variation along the
beam axis and obtains a distributed stress field, as explained by
our simulation results. Due to the low peak stress, the
optimized structure has low strain energy near joints and a
small amount of energy is released as surface energy and
kinetic energy when the crack nucleates (Figure 6b,d).
Meanwhile, the high strain energy is stored near the tip of
reference lattices, which results in high surface energy and high
kinetic energy release after crack nucleation. Hence, the
fracture of the reference lattices is more brittle than their
optimized counterparts, showing low toughness and a small
strain limit. This mechanism can be applied only for lattice
structures made of brittle materials under a mechanical loading
in the (100) direction. The stress—strain curve of our
experimental results is different from the typical stress—strain
curve for the Porous material, which has been observed in
many papers.””®’ One of the major reasons for this
discrepancy is due to the material type. When the base
material is ductile, the lattice structure undergoes more
deformation without fracture, displaying linear deformation,
plateau, and densification, whereas the lattice structure made of
brittle materials fails before the structure is densified. Hence,
our stress—strain behavior is closer to a material failure rather
than densification curve.

To help understand the simultaneous improvement in
modulus and toughness, we make a rough estimate of the
ultimate stress/strain by comparing the maximum von Mises
stress of the lattices and a failure threshold (normalized
strength, 6,/E, = 1) under uniaxial loading. Figure S10 depicts
the simulated full stress—strain curve of reference and
optimized lattice structures. In all cases, we observe that the
maximum von Mises stress of the optimized lattices (solid
curves) reaches the failure threshold at a larger applied strain
compared to their respective reference lattices (dashed curves),
in agreement with experimental results. Based on linear
elasticity, we can further conclude that the maximum von
Mises stress is reduced by around 30% for SC, Octa, and BC
lattices compared to their references under the same applied
strain. It is noted that the linear material model used here is a
rough approximation, while a nonlinear material damage
model is required to obtain more accurate numerical estimates
of lattice strength and toughness.

B CONCLUSIONS

The optimized shapes of beam elements of various lattice
structures are presented using a generative deep learning-based
design optimization. A high-order Bézier curve is adopted to
describe the shape of the beam elements with high design
flexibility, and NN are trained to understand the complicated
relationship between high-dimensional design input and
relative Young’s modulus and density of the lattices. The
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Figure 6. Images from experiments with optimized (a) simple cubic (SC) and (c) tetrahedral (Tetra) lattice structures at different levels of applied
strain. Thin red arrows in the images indicate buckled beam elements. The optimized lattice structures show more progressive failure (Ductile)
compared to their reference lattice structures, which show catastrophic failure (Brittle). (b) SC and (d) Tetra lattice structures (color images show
the normalized von Mises stress field). Optimized structures have more distributed stress fields.

NNs work to predict modulus and density faster than FEA and
homogenization methods when making greedy decisions
during GO for design acceleration. The new datasets generated
by GO have higher mechanical properties than the initial
datasets. The 3D Young’s modulus plot and the Zener ratio are
calculated to explain the beam shape-dependent anisotropy of
the lattice structures. Our optimized lattice structures possess
superior stiffness (+59%), strength (+49%), toughness
(+106%), and isotropy (+645%) compared to benchmark
lattices consisting of cylindrical beams. It is believed that this
comprehensive enhancement benefits from the optimized
lattice beam shapes, which distribute the loading over the
entire lattice structure. Our NN-assisted GO generative
machine learning-based beam shape design provides oppor-
tunities to improve the mechanical properties of lattice
structures, evading the tradeoff dilemmas between properties.

B EXPERIMENTAL METHODS

Stereolithography (SLA) is employed for precise three-dimensional
fabrication with a layer resolution of SO ym, which is three orders of
magnitude less than the lattice constant of 1 cm used in our
experiments. The 3D printer used in this work is the Form 3
developed by Formlabs, and the base material is white standard light-
reactive resin. The SLA fabricates the lattice structures by selectively
curing the resin layer by layer using an ultraviolet laser beam. For a
baseline comparison, reference lattice structures having a cylinder
beam element are also fabricated for each case and compression
experiments are performed. Three different samples are prepared for
each lattice to estimate the fabrication accuracy and reproducibility. In
compression testing, the fabricated lattice structures are subjected to
uniaxial compression using an Instron 5900-series universal testing
system. After placing the samples between two steel plates, the
mechanical load is applied to the specimen with a quasi-static
displacement control of 2 mm/min at a strain rate of about 107/s
(Supporting information, Videos 1—4).

B COMPUTATIONAL METHODS

The Octet and BCC structures are modeled using high-order Bézier
curves. Each of the two superimposed lattice structures consists of two
simple lattice structures: BCC is the superposition of SC and BC
structures, and the Octet structure is the superposition of Octa and
Tetra structures (Figure 1). The Bézier curve is a parametric curve
with respect to the parameter t and is described by the control point
sets, expressed by the following equation:

B(t) = i [('Z)(l )

k=0

,0<t<1

($)

where Py is the kth control point and m is the order of the Bézier
curve, i.e, m + 1 control points are used for modeling. Since our focus
is Young’s modulus, which is governed by linear elasticity, all lengths
are normalized by the lattice constant (a) of the lattice structure to
suggest a scale-free design. The x coordinates of the first and last
control points are fixed at 0 and L, respectively, to model a beam of
length L. For modeling the beam element in BC and Tetra, a 30th-
order Bezier curve is adopted, so a total of 31 control points are used.
In the case of SC and Octa, the shape of the beam must be symmetric
to satisfy the cubic symmetry condition of the lattice structures.
Hence, the beam elements in the two lattice structures are described
by 60th-order symmetric Bézier curves with the same number of
control points as BC and Tetra. To create a symmetric curve of length
L, the x coordinate of Py is fixed at L/2, and P;;—Py, are obtained by
symmetrizing Py—P,, with respect to x = L/2. Therefore, a total of 60
independent features are used in each nonsymmetric and symmetric
60th-order Bézier curve, and a total of 120 independent inputs are
used to model the shape of the beam elements in the BCC and Octet
structures. The coordinates of independent control points are
determined through random number generation to create initial
datasets, and the Beézier curves revolve with respect to the beam axis
to create 3D beam elements. We set a minimum radius of the Bézier
curve equal to 0.01a to avoid numerical or manufacturing problems
during FEA and 3D printing.

FEA and the homogenization method are employed to calculate
the stiffness of the lattice structure. A commercial code, COMSOL
Multiphysics,*® is used for the FEA, and the material properties used
in our simulations are E, = 1 (dimensionless unit) and v = 0.33. In
this study, a linear elastic material model is adopted because
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infinitesimal deformation theory is used to calculate the elastic
response of the lattice structures. Hence, our approach is valid for
predicting elastic properties and geometric or material nonlinearity
should be considered to predict effective nonlinear properties of the
lattice structure. The lattice structures are meshed using three-
dimensional linear tetrahedral elements, a displacement of —0.01a is
applied downward to the upper surface of the unit cell, and a periodic
boundary condition is applied to all other surfaces of the unit cell to
describe an infinitely periodic lattice structure. For shear loading,
periodic and displacement boundary conditions are applied to all the
outer surfaces of the lattice to make a homogeneously tilted lattice.
The boundary conditions for two loading modes (axial compression
and shear) are listed in Table S1. The homogenization method is then
applied to calculate the macroscopic stress applied to the lattice
structure using the stress field obtained from FEA. If the lattice
structure is viewed as a composite composed of void (matrix) and
reinforcement (beam elements), then the macroscopic stress applied
to this composite can be expressed as

G =fOE0 +f151 (6)

where f; is volume fraction and ; is the volume-averaged stress of

i

each phase (0: void, 1: lattice structure).’® Equation 6 of the
homogenization method to predict the volume-averaged stress of the
composite is valid for any nonlinear material models. Since the stress
applied to the void is 0 and the volume fraction of the lattice structure
is the same as the relative density (7 = pPiauice/ Pbase material)s it €an be

further simplified as
5=75 ?)
According to the boundary conditions, the only nonzero macro-
scopic strain component is &, for compression and y,, for shear.

Finally, the stiffness tensor C of the lattice structure is calculated using
macroscopic stress and strain and Hooke’s law expressed as

6=C¢ (8)

where : represents double contraction.
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