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Metabolomics holds great promise for uncovering insights around biological
processes impacting disease in human epidemiological studies. Metabolites
can be measured across biological samples, including plasma, serum, saliva,
urine, stool, and whole organs and tissues, offering ameans to characterize met-
abolic processes relevant to disease etiology and traits of interest. Metabolomic
epidemiology studies face unique challenges, such as identifying metabolites
from targeted and untargeted assays, defining standards for quality control,
harmonizing results across platforms that often capture different metabolites,
and developing statistical methods for high-dimensional and correlated
metabolomic data. In this review, we introduce metabolomic epidemiology to
the broader scientific community, discuss opportunities and challenges pre-
sented by these studies, and highlight emerging innovations that hold promise
to uncover new biological insights.

Emerging field of metabolomic epidemiology
Metabolites (seeGlossary) are small molecules (≤1.5 kDa) involved in the complex set of biochem-
ical reactions that comprise the metabolism of an organism [1].Metabolomics, the study of these
molecules, is an emerging field undergoing rapid growth, particularly in its application to epidemio-
logical research to gain unique insights into health-related conditions [2–4], presenting opportunities
for improved exposure characterization and biomarker discovery for disease risk and prognosis
[5,6]. Metabolites reflect endogenous processes, including inherited genetic variation and tran-
scriptional and translational regulation, and the impact of exogenous or environmental exposures
on these processes; consequently, they are uniquely suited to assess response to dietary, lifestyle,
and other environmental factors [6,7] and to serve as preclinical biomarkers of disease outcomes
[8]. The potential for metabolomics to provide insights into physiological and pathophysiological
processes (Figure 1) has generated remarkable interest among clinical and epidemiological
researchers [1] and accelerated the development of methods and statistical tools to address the
unique challenges encountered in the acquisition and analysis of metabolomic data.

Inspired by the success of large-scale consortia in genetic epidemiology research, the US
National Cancer Institute led an initiative to foster large-scale collaborative research on the
human metabolome by creating the COnsortium of METabolomics Studies (COMETS) of 47
worldwide cohorts with blood metabolomic data from over 136 000 individuals [1]. Large-scale
consortia, such as COMETS, bring together diverse studies with wide ranges of exposures, con-
siderably improving power to discover and replicate metabolomic associations and advance our
understanding of health and disease. COMETS and other initiatives, including the Trans-Omics
for Precision Medicine (TOPMed) Program [9], also provide opportunities for multi-omic data
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integration (e.g., genetics, transcriptomics, epigenomics, and metabolomics). However, analyti-
cal challenges need to be addressed when evaluating metabolomic data generated across
different cohorts, time periods, and platforms, and when integrating metabolomics with other
‘omic data types. In this review, we provide a broad introduction to the field of metabolomic
epidemiology for scientists from cross-disciplinary and diverse backgrounds, with a particular
focus on analytical strategies, current challenges, and future directions.

Metabolomic technologies: choosing a metabolomics platform
Most metabolomic platforms can be categorized as either targeted or untargeted [5]. Targeted
platformsmeasure a prespecified set of metabolites, typically selected in a hypothesis-driven fashion
based on existing literature. Untargeted platforms profile hundreds to thousands of metabolites in a
sample, with the chemical identity of many of these metabolites often unknown. Such metabolites
may be referred to as unidentified or unknown metabolites. Many researchers now take a
semitargeted approach, combining multiple technologies to optimize metabolite characterization.

Several techniques can be used to generate metabolomic data; however, proton nuclear mag-
netic resonance (NMR) and mass spectrometry (MS) are the most common and versatile
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Figure 1. Network analysis of scientific topics that co-occur with ‘metabolomics’ in PubMed. Datawere collected
from PubMed using ‘metabolomics’ as the search keyword and filtering for co-occurring scientific keywords. The number of
co-occurrences was used as the edge weight between keywords. A total of 1542 publications, including clinical studies
(Phases I–V) and randomized control trials were used in this analysis. From these, 6283 keywords were extracted and 102
keywords with 30 co-occurrences were used to generate the figure using VOSviewer. Each node is a keywork and each
edge represents the weight of the co-occurrence between keywords. Colors represent clusters of relevant keywords.
Abbreviation: LDL, low-density lipoprotein.
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(Figure 2). Both techniquesmeasuremetabolite concentrations in a high-throughput fashion, with
unique strengths and limitations, as discussed at length in previous publications [10–13]. Briefly,
while NMR typically uses a targeted approach and is limited to identifyingmetabolites at high con-
centrations, it provides absolute quantification and requires minimal sample preparation
[2,10]. MS is highly sensitive, enabling the measurement of metabolites at low concentrations
and increasing the feasibility of untargeted approaches; however, MS only provides relative
quantification of metabolites [2,10]. Given the complementary features of NMR and MS, com-
bining NMR with techniques such as gas chromatography MS (GC-MS) and liquid chromatogra-
phy MS (LC-MS) has been used to capture the metabolome more comprehensively [14–16]. In a
survey of 47 studies from COMETS, 55% reported acquiring metabolomic data from untargeted
platforms (predominantly MS), 18% were from targeted platforms (predominantly NMR), and
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Figure 2. Distribution of metabolomic studies over time by (A) platform and (B) tissue type. PubMed search terms
used for (A) included: metabolite*, metabolom*, or metabonom* with the key term NMR, GC-MS, or LC-MS. PubMed search
terms used for (B) included: metabolite*, metabolom* or metabonom* with the key term urin*, plasma, serum, saliva/sputum,
faecal/fecal, cerebrospinal fluid/CSF, or tissue. Years included are 1966–2021 with searches conducted on November 11,
2022. Abbreviations: GC, gas chromatography; MS, mass spectrometry; NMR, nuclear magnetic resonance.

Trends in Endocrinology &Metabolism

Trends in Endocrinology & Metabolism, September 2023, Vol. 34, No. 9 507

Glossary
Absolute quantification: measured
metabolite concentrations that are
determined using the standard curve
method. Concentrations can be
measured as micromoles (μmol) or
millimoles (mmol).
Batch effects: nonbiologically driven
variation resulting from processing
samples separately in batches.
Confounders: variables that influence
both the exposure and outcome and
can lead to over- or underestimation of
the true association between the
exposure and outcome.
Correlation network: undirected
graphical model in which nodes
represent variables and edges represent
correlations between these variables.
Dimensionality reduction:
representation of high-dimensional data
in fewer dimensions, often applied to
highly correlated data, such as
metabolomic profiles to mitigate
multicollinearity.
Drift: in metabolomics, drift is defined
as higher stochastic variation in
metabolomic profiles, which can result
from temporal sample deterioration or
experimental changes.
Endogenous: occurring or originating
internally within an organism.
Exogenous: occurring or originating
externally outside of an organism.
False discovery rate (FDR): expected
proportion of discoveries in a statistical
analysis that are incorrect, with the
proportion being determined ahead of
conducting analyses.
Family-wise error rate (FWER):
probability of at least one false positive
result when multiple statistical tests are
conducted.
Fixed effects meta-analysis: used to
estimates a single constant (or ‘fixed’)
effect when associations are assumed
to be true for all studies (e.g., assuming
no heterogeneity exists between
included studies).
Gaussian graphical model (GGM):
undirected graphical model in which
nodes correspond to variables of
interest (such as metabolites) and
weighted edges correspond to partial
correlations between these variables,
where the partial correlation between
two variables is conditional on all other
variables in the model.
Heteroskedasticity: variance of a
variable is not constant across the
values of another variable.
Internal standards: compounds that
are added to samples to calibrate
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27%were from a combination of targeted and untargeted platforms [17]. Furthermore, ionization
techniques, such as electrospray ionization (ESI), can be used with MS to operate positive and
negative ion run modes, which provides a more comprehensive analysis by enhancing the
range of detectable compounds, accommodating variations in the physical and chemical proper-
ties of metabolites [18,19].

Quality control and data curation in epidemiological metabolomic studies
Factors affecting metabolite measurements
When designing epidemiological metabolomic studies, one should consider factors that could
add noise to metabolite measurements [20], including collection methods (e.g., EDTA versus
heparin tubes for plasma samples), lot numbers on sample tubes that indicate groups of tubes
manufactured at the same time, run mode (see ‘Metabolomic technologies: choosing a metabo-
lomics platform’ section), time of sample draw (e.g., season/time of day), participant fasting du-
ration, sample storage duration and conditions, freeze/thaw cycles, and batch (i.e., which
samples are processed simultaneously on the same platform), the latter of which is particularly im-
portant for MS platforms. Furthermore, metabolite associations can be impacted by con-
founders, including demographics (e.g., age at sample draw, sex, and body anthropometry)
and environmental exposure (e.g., diet, alcohol, smoking, physical activity, and air pollution;
Table 1) [6,21–29]. Metabolites can also exhibit broad variation in their stability [30,31] (see ‘Me-
tabolite stability and reproducibility’ section). Gvien that a metabolomic profile is a cross-sectional
snapshot of the metabolites present in the sample at a given time, the dynamics of the relation-
ship between the exposure of interest and the observed metabolites could depend on the
amount of time between the exposure and the sample collection: for example, a metabolite
that has high abundance in an immediate response to an exposure may be so unstable that it ap-
pears at low abundance in the subsequently collected sample.

Consideration of these factors at the study design stage and during statistical analyses can help
reduce their potential impact on metabolomic measurements and findings and provide an under-
standing of the limitations of findings.

Batch effects and drift correction
Metabolomic drift, defined as higher stochastic variation in metabolomic profiles, can result from
temporal sample deterioration or experimental changes (e.g., nonlinear fluctuations in retention
times and column aging), whereas batch effects are nonbiologically driven variation resulting
from processing samples separately [32]. An approach for drift correction includes the use of in-
ternal standards, which are known metabolites added to samples to quantify drift (Figure 3)
[33]. For MS platforms, study samples are ideally processed simultaneously to reduce batch ef-
fects. When samples are processed in multiple batches, experimental and computational tech-
niques are required to ensure data quality. For example, pooled reference samples that
capture all anticipatedmetabolites can be included across all batches to correct for measurement
differences between batches as well as for drift (Figure 3). Metabolite intensities can be adjusted
accordingly to account for drift and batch effects based on comparisons with internal standards
and pooled reference samples using techniques such as the nearest neighbor algorithm [34]. It is
crucial that samples be randomly distributed across batches in a balanced manner, ensuring that
cases and controls (or any potential confounding or noise-increasing features, particularly those
highlighted in the ‘Factors affecting metabolite measurements’ section) are included in each
batch to minimize bias.

Once data are generated, known and unknown batch effects and potential noise can be ad-
justed for using statistical approaches, such as principal component analysis (PCA) and
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metabolite measurements and help
account for variation that occurs during
sample preparation and between
batches.
Latent groups: previously unknown
subgroups of individuals who share
characteristics based on a set of
variables.
Limit of detection (LOD): lower limit at
whichmetabolomic platforms are able to
quantify metabolite levels.
Mass spectrometry (MS): technique
used to measure compounds at high or
low concentrations by measuring the
mass-to-charge ratio of compounds.
Mega-analysis: statistical method to
estimate the effect of an exposure on an
outcome by combining individual-level
data across studies in a pooled analysis,
adjusting for study and other covariates.
Mendelian randomization (MR):
statistical method to interrogate the
causal effect of amodifiable exposure on
an outcome using genetic variants as a
proxy for the exposure.
Meta-analysis: statistical method to
estimate the effect of an exposure on an
outcome by combining summary
statistics across studies without the
need for individual-level data.
Metabolite harmonization: process
of identifying the same metabolite
measured on different platforms and/or
adjusting metabolite measurements to
be comparable between platforms,
studies, or batches.
Metabolites: small molecules (≤1.5
kDa) that are involved in the complex set
of biochemical reactions comprising the
metabolism of an organism.
Metabolomic epidemiology: study of
the human metabolome with regards to
health-related outcomes or exposures in
population-based epidemiologic
investigations.
Metabolomics: systematic large-scale
study of metabolites.
Nuclear magnetic resonance
(NMR): technique used to measure
compounds at high concentrations that
uses a strong magnetic field and radio
waves to identify compounds based on
their resonance signal.
One-sample Mendelian randomiza-
tion: MR conducted using
individual-level data from a population in
which both the exposure and outcome
have been measured.
Polygenic scores (PGS): estimate of
an individual’s genetic predisposition to
a condition or trait estimated by
aggregating the effect of many genetic
variants.
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probabilistic estimation of expression residuals (PEER) factors [35], the latter of which is com-
monly used in gene expression association studies. PCA and PEER factors are dimensionality
reduction techniques that calculate latent factors to account for potential batch effects or noise
and can be adjusted for in subsequent analyses. The surrogate variable analysis ‘sva’ R pack-
age offers options to adjust for unknown sources of variation by estimating surrogate variables
and known batch effects using ComBat, which is based on an empirical Bayesian framework
[36–38]. The Covariates for Multi-phenotype Studies (CMS) approach has been proposed to
account for latent batch effects while also utilizing the correlation structure of phenotypic
data to increase power to detect associations of phenotypes with genetic factors [39,40].
When batch information is known, batch can be incorporated as covariates in statistical
models; however, depending on the study design and magnitude of batch effects, they may
still be challenging to overcome or significantly reduce power, warranting modeling of unknown
batch effects.

Metabolite missingness and imputation
Missingness in epidemiological metabolomic data is common [1,17] and often due to technical
challenges, including the limit of detection (LOD)/quantification of the platform, quality control
issues, low metabolite abundance, and rare metabolites (i.e., metabolites found only in a sub-
set of individuals). In data obtained from MS platforms, it is often assumed that missing mea-
surements are below the LOD; as such, missing metabolite values are imputed to a fraction
(often ½) of the minimum observed value for that metabolite among other participants in the
sample. NMR data are often assumed to be missing at random, and one approach for handling
missing NMR data is to impute missing values to the mean value for that metabolite [41]. How-
ever, if missingness is abundant, one could formally evaluate whether it was indeed at random
with respect to the variables of interest or those that could introduce noise or confounding. Me-
tabolite measurements can also be converted into an indicator variable denoting missing or
present [17] or such an indicator variable can be adjusted for as a covariate in association
tests [42]. Other approaches exploit the high degree of correlations observed in metabolomic
data to impute missing values using analytical approaches, such as K-nearest neighbor impu-
tation (KNN), multiple imputation by chained equations (MICE), Markov chain Monte Carlo
(MCMC), PCA, or random forest imputation [43–45]. Imputation of missing metabolites may
also be feasible from correlations across other assays, such as microbiome and genetic
data, both of which contribute substantially to variance in many metabolites [46]. However, me-
tabolites with a large proportion of missing values could reflect measurement concerns, in
which case imputation could result in low information content and excluding the metabolite
may be more appropriate. High missingness can also occur in exogenous metabolites
(e.g., xenobiotics or drugs) and, thus, imputing to zero or evaluating as ‘present’ or ‘absent’
may be appropriate. Some studies exclude metabolites with a percent of missingness above
a threshold, which can range from 5% to 90% [17], suggesting the need for more consistent
imputation methods.

Centering, standardizing, and transforming metabolite levels
Data normalization of metabolomic data is crucial to implement before statistical analyses and
includes three key steps: transformation, centering, and scaling [47]. Transformations may be
necessary to correct for heteroskedasticity or skewed distributions, with log transformation
and inverse normal transformation being common variance stabilization approaches. The most
common approach to centering and scaling (referred to as standardization) is autoscaling (unit
variance scaling), which results in each feature having a mean of zero and standard deviation of
one. If batch information is known, standardization can be done within a batch, such that each
has a comparable mean and standard deviation.
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Postprandial metabolism: period of
metabolism after food consumption.
Pleiotropy: when a genetic variant or
gene impact more than one unrelated
phenotypic traits.
Random effects meta-analysis:
used to estimate the average variance of
an association across studies when
associations are heterogeneous across
studies.
Relative quantification: measured
metabolite levels that are relative to a
reference sample rather than their exact
concentrations and lack formal units.
Similarity network: network in which
an edge between two nodes represents
their pairwise similarity.
Targeted metabolomic platforms:
metabolomic platforms that measure a
prespecified set of metabolites that are
typically selected in a hypothesis-driven
fashion based on existing literature.
Two-sample Mendelian randomiza-
tion: MR conducted using GWAS
summary statistics for an exposure and
outcome from two independent
populations.
Unknown or unidentified
metabolites: metabolites the chemical
identity of which is not known.
Untargetedmetabolomic platforms:
metabolomic platforms that measure
hundreds to thousands of metabolites,
agnostic to metabolite identity.
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Table 1. Consistently reported associations between circulating metabolites and disease risk and exposures in prospective investigations
Exposure Effect

direction
Metabolite class Metabolite Refs

Disease outcome

Cardiovascular
disease

Positive Aminoxides Trimethylamine N-oxide (TMAO) [139]

Cancer Negative Carbohydrates and
carbohydrate
conjugates

Glycerol [140]

Cholesterols Low-density lipoproteins, very-low-density lipoproteins [140]

Positive BCAAs Valine, leucine, isoleucine, creatinine [8,140]

Cholines Choline [140,141]

Hydroxy acids Lactic acid [140]

Lipids Lysophosphatidylcholine 20:4 [140]

Asthma Negative Steroids DHEA-S [142,143]

Cortisone, cortisol [142,143]

Positive Sphingolipids Ceramide (C18:1) [142]

Fatty acids Palmitoleic acid [142]

COPD Negative Amino acids 3-Methyloxytyrosine, phenylalanine, valine, tyrosine, isoleucine, 3-(4-hydroxyphenyl)
lactate, 2-methylbutyrylcarnitine (C5), alpha-hydroxyisovalerate

[144,145]

Carbohydrates and
carbohydrate
conjugates

Fructose, lactate, mannose [144]

Lipids 7-Hoca, oleoylcarnitine, lathosterol, glycerol [144]

Nucleotide s Pseudouridine, N2,N2-dimethylguanosine [144]

Xenobiotics Theophylline [144]

Positive Amino acids 5-Oxoproline, hydrocinnamate, glutamine, asparagine, N-acetylglycine, glycine [144]

Carbohydrates Glycerate [144]

Cofactors and
vitamins

Biliverdin [144]

Type 2
diabetes
mellitus

Positive Amino acids Leucine, valine, tyrosine, phenylalanine [146–148]

Alzheimer’s
disease

Negative Branched-chain
amino acids

Isoleucine, leucine, valine [149]

Positive Amino acids Glutamine [149]

Exposure

Age Negative Amino acids Histidine, creatinine, 4-methyl-2-oxopentanoate, 3-methyl-2-oxovalerate, leucine
serine, tryptophan

[150–152]

Glycerophospholipids PC ae C42:4, PC ae C42:5, PC ae C44:4 [150]

Nucleotide Uridine [21,151]

Positive Amino acids Glutamine, tyrosine, trans-4-hydroxyproline, kynurenine, ornithine, dimethylarginine,
citrulline, N-acetyl alanine, N-acetyl glycine, N-acetyl threonine, urea,
4-acetamidobutanoate

[21,151]

Carbohydrate Erythronate, glycerate, glucose, arabinose, mannose [21,151]

Cofactors and
vitamins

Alpha-tocopherol, pantothenate, biliverdin, pyridoxate, threonate [21,151]

Fatty acids DHA; 22:6n3, EPA; 20:5n3, n3 DPA; 22:5n3, CMPF, stearidonate (18:4n3),
10-heptadecenoate (17:1n7), linolenate [alpha or gamma; (18:3n3 or 6)],
10-nonadecenoate (19:1n9), glycerol, stearate (18:0), 2-hydroxypalmitate,

[21,151]
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Statistical approaches for metabolomic analysis
The objective of epidemiological metabolomic studies typically involves elucidating metabolomic
patterns that are: (i) signatures of prior exposures (e.g., smoking); (ii) predictive of disease risk/
health outcomes (e.g., type 2 diabetes mellitus risk in prediagnostic samples); and (iii) prognostic
of disease progression (e.g., colorectal cancer recurrence). The most common metabolomic
analytic approaches consider each metabolite separately, while complementary approaches
analyze multiple metabolites in conjunction, such as pathway analyses, or estimate summary
measurements of overall variation in metabolomic data, such as PCA.

Generalized linear modeling
A standard approach to evaluate the association between a single metabolite and trait of inter-
est in observational epidemiological studies is regression using the generalized linear model
(GLM) family with appropriate link functions, such as identity for linear regression, logit for

Table 1. (continued)

Exposure Effect
direction

Metabolite class Metabolite Refs

nonadecanoate (19:0), palmitate (16:0), caprate (10:0), pentadecanoate (15:0),
5-dodecenoate (12:1n7), linoleate (18:2n6), myristate (14:0), myristoleate (14:1n5),
dihomo-linoleate (20:2n6), palmitoleate (16:1n7), margarate (17:0), stearate (18:0)

Glycerophospholipids PC aa C28:1 [150,151]

Nucleotides Pseudouridine, N1-methyladenosine, allantoin, urate [21,151]

Sphingolipids SM C16:1, SM C18:1 [150]

BMI Negative Amino acids Asparagine, glycine [153–155]

Positive Amino acids Phenylalanine, glutamate, tyrosine [153–156]

Branched-chain
amino acids

Valine [154,156]

Carbohydrates and
carbohydrate
conjugates

Mannose [154]

Organic acids Lactate [154]

Carnitines Carnitine [154,155]

Sex Higher
in
females

Amino acids Creatine [21,153,157]

Glycerophospholipids PC aa C32:3, PC aa C28:1, PC aa C40:3, PC aa C30:2 [26]

Lipids Glycerol [21,153,157]

Sphingolipids SM(OH) C22:2. SM C18:1, SM C20:2 [26]

Higher
in males

Amino acids Isoleucine, leucine, creatinine, valine, glutamate, tryptophan [21,26,157]

Nucleotides Urate [21,157]

Smoking Positive Amino acids Tryptophan [153,158]

Prenol lipids Methanol-glucuronide [159,160]

Xenobiotics Cotinine [161,162]

Alcohol
consumption

Negative Amino acids Creatinine [163]

Glycerophospholipids PC ae C30:2, PC ae C36:2, PC ae 36:2, PC ae 38:3 [164]

Sphingomyelins SM(OH) C14:1, SM(OH) C16:1, SM(OH) C22:2 [164]

Positive Amino acids Threonine, 2-amino butyrate, 2-hydroxybutyrate [163]

Glycerophospholipids PC aa C32:1, PC aa C34:1 [164]
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logistic regression, and log for Poisson regression. Prospective cohorts and randomized clin-
ical trials generally use Cox proportional hazards modeling. The ability to account for potential
confounding or technical variation makes multivariable regression approaches preferable over
univariable approaches in observational studies. Some tools perform both data normalization
and association testing, such as Microbiome Multivariable Associations with Linear Models
(MaAsLin 2) [48].

Investigations of longitudinally measured metabolomic data are advantageous over single time-
point investigations given temporal variation in metabolites (see ‘Metabolite stability and repro-
ducibility’ section) that occur with changing conditions and exposures, such as diurnal and
seasonal variation, fasting versus postprandial variation, medication use, response to aging,
and changes in bodymass index (BMI) (Table 1). Obtainingmeasurements over time can account
for some of these factors that may be unrelated to the outcome of interest and introduce noise to
metabolite measurements. Approaches used to analyze longitudinal measurements require addi-
tional considerations due to the non-independence of the samples. While GLMs can be used to
evaluate longitudinally measured metabolites that are combined into a single measurement for
each participant, such as averagemetabolite levels or change in metabolite levels, generalized lin-
ear mixed models (GLMMs) utilize all observations by adding a random effect to account for the
correlation structure of the repeated measurements [49].

TrendsTrends inin EndocrinologyEndocrinology & MetabolismMetabolism

Figure 3. Drift and batch effect correction to increase the biology-to-noise ratio in metabolomic data. Liquid
chromatography–mass spectrometry (LC-MS) is shown here as an exemplary technique. (A) We illustrate a common
approach for metabolite sample quality control (QC) implemented in a study. Two pooled references for QC (column labels
starting with ‘RA’ shown in red and ‘RB’ shown in blue) and internal standards (demonstrated by the first row) are used to
capture trends introduced during the sequential processing of samples (column labels starting with ‘S’). Sample colors
represent varying metabolite intensities. Three unique metabolites are represented by rows two, three, and four. The x-axis
represents the order in which the samples are injected to the ionization source (injection order). (B) Internal standards (also
represented by row 1 of A) are specific metabolites that are added to samples as a baseline to adjust for intensity drift intro-
duced by sample injection order. (C) Pooled references are aliquots of all samples used as a baseline for all metabolites we
expect to see among samples and are used complementarily with internal standards to adjust for drift introduced by sample
injection order. (D) Large studies require more than one column in LC-MS approaches to process samples and introduce a
column effect combined with (E) injection order effect that need to be considered during batch effect correction. (F) Samples
collected at two different time points can differ significantly and be a source of confounding. (G) After correcting metabolites
for batch effects and sample collection time, sex differences can still be observed. Principal coordinate analysis (PCo) reflects
the metabolite variation explained by PCo, and t-distributed stochastic neighbor embedding (t-SNE) is used to visually dem-
onstrate the metabolite similarity between pairwise samples.
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Meta-analysis and mega-analysis
Combining metabolomic data across studies, platforms, and batches improves power to detect
true associations. Advantages and disadvantages of meta-analysis (i.e., combining summary
statistics) versus mega-analysis (i.e., combining individual level data in a pooled analysis,
adjusting for batch and study covariates) should be considered. Meta-analysis allows studies
to participate without sharing individual-level data, which are often subjected to extensive regula-
tions regarding participant privacy. Meta-analysis may be more appropriate in the presence of
platform heterogeneity, because it allows for joint analysis of the semi-quantitative data often pro-
duced by untargeted metabolomic platforms (where a given metabolite value may corre-
spond to different concentrations across batches and studies). Mega-analysis may be
preferred when data are generated using the same platform and methods at multiple timepoints
(e.g., the UK Biobank metabolomics project; see ‘Biobank metabolomics’ section) or across dif-
ferent studies, because this approach enables the consistent consideration of covariates and fa-
cilitates investigations of interactions. In mega-analyses, accounting for batch effects and study-
specific confounders is required for robust analysis.

Meta-analysis of metabolomic data is typically performed using fixed effects or randomeffects
models. Fixed-effects models are recommended when associations are assumed to be consis-
tent across studies, while random-effects models are recommended when associations are ex-
pected to be heterogeneous across studies [50]. The assumption of heterogeneity can be
tested using statistics such as I2, which describes the proportion of variation across study esti-
mates attributable to heterogeneity [51]. Evaluating heterogeneity can be highly informative to un-
derstanding the relationship between an exposure and outcome, because it could point to
sources of differences in associations, such as populations, genetic ancestries, environmental
factors, and sampling strategies, among other potential factors. Mega-analysis uses typical
regression approaches, but mixed models may be more appropriate if notable interstudy
differences exist.

An important consideration when meta- or mega-analyzing metabolomic data between studies
or platforms is the requirement to ‘harmonize’ (match) metabolites across studies when metab-
olites are annotated inconsistently (see ‘Metabolite harmonization’ section).

Dimensionality reduction methods
Dimensionality reductionmethods are a broad class of statistical approaches designed to rep-
resent multivariate data in fewer dimensions, compressing data based on similarity across the
originally measured variables. Such approaches are particularly useful for metabolomic data
that are high-dimensional and multicollinear due to the high correlation between many metabo-
lites. Dimensionality reduction is one way to potentially mitigate challenges such as overfitting
(i.e., learning features specific to the training data that may not generalize to other data), a com-
mon risk of applying the popular approach of multivariate linear modeling to multicollinear
metabolomic data. They are also useful when testing highly correlatedmetabolites independently,
either as predictors or outcomes, because such approaches can reduce the number of tests
conducted to help control for multiple testing (an example of this using PCA is provided in the
‘Correction for multiple hypothesis testing’ section) and they can lead to variables that may be
more informative compared with a given individual metabolite. Common dimensionality reduction
methods include: (i) unsupervised methods, such as PCA or factor analysis, where the algorithm
is not informed of the outcome; (ii) supervisedmethods, such as partial least squares-discriminant
analysis (PLS-DA) and the orthogonal projections to latent structures-discriminant analysis
(OPLS-DA) [52]; and (iii) approaches developed within the GLM framework for dimensionality re-
duction via feature selection, the most commonly used being the least absolute shrinkage and
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selection operator (LASSO) [53] and elastic net regression [54]. For instance, LASSOwas applied
to 100 NMR metabolites to identify 13 metabolites predictive of coronary heart disease (CHD)
[55]. A metabolite score developed from these 13 metabolites was highly predictive of incident
CHD in an independent cohort [55].

Other supervised learning algorithmsmay also help in dimensionality reduction, but few investiga-
tions have adopted them for metabolomic data analysis (e.g., k-nearest neighbors, naive Bayes
classifiers, and decision trees, such as random forests and neural networks, reviewed with exam-
ple R code in the freely available book An Introduction to Statistical Learning [56]).

Network and pathway enrichment analyses
Network and pathway enrichment analyses of metabolites are biologically informative and pow-
erful tools. Network analyses refer to investigations based on graphical models constructed
with metabolites as nodes and edges representing some type of pairwise relationship, such as
correlation of abundance or a known metabolic reaction. Pathway enrichment analyses refer to
explorations that integrate sets of metabolites, such as known metabolic pathways or groups
of metabolites participating in the same cellular function, with observed data to highlight areas
of enriched function based on data from multiple metabolites. Metabolites weakly associated
with an outcome of interest may be part of important systems-level biological processes that
can only be detected with a network or pathway lens.

Two popular tools for network analyses of metabolites are correlation networks andGaussian
graphical models (GGMs). These network models represent metabolites as nodes connected
by edges indicating pairwise associations learned from the distribution of the data. Systems-level
characteristics of a particular biological condition can be explored in these networks using node
centrality measures, community detection, and other network science approaches [57,58].
Advantageously, both correlation networks and GGMs can be applied in cross-sectional data
sets where temporality is unknown.

Correlation networks model metabolites as nodes connected by edges representing their corre-
lations. A popular extension of correlation network analysis is Weighted Gene Correlation
Network Analysis (WGCNA) [59]. WGCNA applies a soft thresholding approach to estimate
weighted edges based on correlation between nodes. While WGCNA was initially proposed in
the context of gene co-expression, it has been applied to metabolomic and proteomic studies
with a modified protocol [60]. WGCNA can be applied to untargeted metabolomic analyses to
identify clusters of intercorrelated metabolites and interrogate these clusters for pathway or me-
tabolite class enrichment. A follow-up analysis involves calculating the ‘eigenmetabolite’ for each
module (a score based on the first principal component of the module; called ‘eigengene’ in the
original WGCNA paper) and investigating the association of the eigenmetabolite values with traits
of interest in the study population [59,60]. For example, a study of aging and the healthy lifespan
(healthspan) applied WGCNA to 2957 metabolites measured in 14 younger adults and 29 older
adults to identify 20 metabolite modules, 18 of which had eigenmetabolites associated with
healthspan and six of which had eigenmetabolites associated with aging [61]. Follow-up analyses
of the metabolite classes enriched in these modules found that amino acid and lipid metabolites
are of particular importance in the plasma metabolomic signature of aging and healthspan [61].

GGMs, also known as partial correlation networks, are undirected graphical models in which
nodes correspond to variables of interest (such as metabolites) and weighted edges correspond
to partial correlations between these variables. The partial correlation between two metabolites is
a measure of a conditional Pearson correlation, conditioning on all other metabolites in the model
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[62,63]. In the Gaussian setting, zero partial correlation corresponds to conditional indepen-
dence; therefore, GGMs distinguish between direct and indirect dependence patterns among a
set of metabolites [64]. A GGM is typically sparser than a correlation network, making GGM at-
tractive for metabolomic data, where it is common to observe dense correlation networks due
to high pairwise correlations between metabolites involved in the same biological processes
[65]. GGMs have been shown to successfully characterize the roles of certain metabolites and
construct biologically meaningful metabolite networks [66]. Tools implementing GGM estimation
are the huge and bootnet R packages, both of which use a variety of GGM methods [62,67].

Pathway enrichment analyses can be classified into three categories: over-representation analysis,
functional class scoring, and pathway topology-based approaches [68]. Several methodological
advances have been developed to facilitate pathway enrichment analysis. For example, WGCNA
[59] and omeClust [69] apply clustering algorithms to identify biologically meaningful groups of me-
tabolites, which can be used to evaluate enrichment of metabolite pathways. Mummichog predicts
functional activities by applying network analysis to untargeted metabolomics data to predict met-
abolic modules and pathways to which metabolites belong [70]. MetaboAnalyst and Chemical
Similarity Enrichment Analysis (ChemRich) provide web-based interfaces to perform pathway en-
richment and other statistical analyses [71,72]. deepath performs pathway enrichment analysis
using previously calculated effect estimates [73], enabling adjustment of covariates via multivariable
regression models. The potential for such approaches to elucidate biological function was demon-
strated by an investigation that performed a pathway enrichment analysis with MetaboAnalyst,
which implicated the glycerophospholipids pathway in age-related macular degeneration [74], a
pathway that had been previously linked to Alzheimer’s disease, another neurodegenerative
condition. This finding led to a possible mechanism for glycerophospholipids in the pathology of
age-related macular degeneration based on the role of these molecules in the eye.

One challenge specific to pathway enrichment analysis in the context of metabolomics is the lack
of comprehensively annotated metabolites and metabolite pathways. To this end, data-driven
pathways, such as the sets of metabolites identified from the network structure of a GGM [65]
or the modules identified by WGCNA, can serve two purposes. First, they may provide additional
confidence in expert-curated pathways or provide evidence that such pathways could be refuted.
Second, they may identify novel pathways that have not yet been explored in the literature.

Multi-omic integration
Technological advancements enabling the generation of large-scale multi-omic data
(e.g., genomics, epigenomics, transcriptomics, proteomics, and metabolomics) have provided
opportunities to gain more comprehensive understandings of disease risk. Different ‘omic data
types provide complementary viewpoints of complex biological processes, with genomics repre-
senting upstream biological processes and metabolites representing downstream products of
these biological systems as well as environmental influences [75]. Although many challenges
exist to integrate multi-omic data [76–79], statistical methods are emerging, as described
below, and offer a means to more comprehensively understand the factors that contribute to dis-
ease risk and trait variation.

Network, factor, and cluster analyses for multi-omic data
Network analyses can be extended beyond single-omic analyses (see ‘Pathway and network
analyses’ section) to identify groups of biologically meaningful features across multi-omic data.
This can provide insights into shared and distinct biological pathways across ‘omic data types
that may collectively impact disease risk. Examples of extensions of such network analyses in-
clude MiBiOmics, which builds on the WGCNA approach to link groups of variables across
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multi-omic data sets to a trait of interest [80] and OmicsNet, which offers a web-based platform
for creation and 3D visualization of biological networks of genes/proteins, transcription factors,
miRNAs, and metabolites and is linked to publicly available molecular interaction databases [81].

Factor analyses decompose biological and technical variation in a data set by identifying latent
factors explaining a large proportion of this variation. Each latent factor has ‘loading’ values for
each of the multi-omic measurements, or features, in the data set that correlate with how much
the feature contributes to the given factor. For instance, if a factor analysis is conducted with
100 features from a metabolomic and proteomic data set, one factor may be heavily loaded by
ten metabolites and proteins while another factor is heavily loaded by five other metabolites
and proteins. Conducting subsequent analyses with these factors could reveal the importance
of the metabolites and proteins loading to each factor. An example of such a method is Multi-
Omics Factor Analysis (MOFA), an unsupervised approach that identifies latent factors capturing
major sources of variation across multi-omic data sets [82]. Resulting factors can be sparse, fa-
cilitating the identification of specific ‘omic features contributing to a given factor. Furthermore,
MOFA can impute missing values either within a particular ‘omics assay or between ‘omic assays
for samples that are completely missing an ‘omic data type.

Clustering of multi-omic data can identify groups of individuals with profiles associated with dis-
ease risk and distinct combinations of factors impacting disease risk. Latent Unknown Clustering
with Integrated Data (LUCID) identifies latent groups of individuals, where each group has a
unique profile differentially associated with the outcome of interest [83]. Similarity network fusion
(SNF) creates a similarity network for each ‘omic data type, where nodes correspond to indi-
vidual samples and edges between two nodes represent a pairwise measure of how similar the
two samples are (e.g., correlation) [84]. An iterative message-passing approach is then applied
to integrate these networks into a single fused network. This resulting network can be used to
identify clusters of individuals with similar ‘omic profiles. An attractive feature of SNF is that the
construction of similarity measures within each ‘omic data type allows the user to effectively
circumvent potential issues of differing scales between data types.

Polygenic scores and metabolomics
Genetic predisposition to diseases and traits are oftenmeasured using polygenic scores (PGS).
PGS are calculated as a sum of genetic variants associated with a trait of interest, typically
weighted by variant-specific effect estimates that indicate the magnitude of the association be-
tween the variant and the trait. In recent years, PGS have proven highly predictive of many con-
ditions and traits, as documented in the publicly available PGS Catalog resource [85]. Integrating
PGSwith metabolomic and other ‘omic data offers an opportunity to investigate biological mech-
anisms impacted by genetic predisposition to diseases and traits. For example, a recent proteo-
mic study found that PGS of coronary artery disease, type 2 diabetes mellitus, ischemic stroke,
and chronic kidney disease were associated with 49 proteins, many of which mediated the rela-
tionship between genetic risk and disease [86]. PGS have also been used to understand how
metabolomic networks are dysregulated during disease progression by identifying presymptom-
atic metabolic alterations in disease-free individuals with high genetic risk and confirming the role
of such alterations in individuals with disease [87]. Another study found that a BMI PGS was as-
sociated with 24 metabolites, including branched-chain amino acids (BCAAs), lipoprotein lipids,
and inflammation-related glycoprotein acetyls [88].

Mendelian randomization
Another way in whichmetabolomics can be integrated with genomics is throughMendelian ran-
domization (MR), which estimates causal associations between an exposure and outcome
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using genetic variants as a proxy for an exposure, referred to as an ‘instrumental variable’. A
‘valid’ instrumental variable is: (i) robustly associated with the exposure of interest, referred to
as the ‘relevance assumption’; (ii) not a confounder of the exposure–outcome association, re-
ferred to as the ‘independence assumption’; and (iii) only impacts the outcome via the exposure
and not alternative mechanisms, referred to as the ‘exclusion restriction assumption’ or the ‘ab-
sence of pleiotropy’ [89]. When an instrumental variable impacts the outcome variable beyond
the exposure–outcome association, horizontal pleiotropy is present and MR estimates are bi-
ased. Instrumental variables can also be associated with traits downstream of the exposure
along the causal pathway to the outcome, known as vertical (or ‘spurious’) pleiotropy, which is
what MR seeks to identify [90]. In its simplest form, MR is performed by evaluating the association
between a single instrumental variable and an outcome. However, the availability of high-
dimensional ‘omic data has led to the development of more complex statistical techniques that
enable MR to be performed with multiple genetic variants and intermediates. MR can be per-
formed using genome-wide association study (GWAS) summary statistics from both exposures
(e.g., GWAS of metabolite levels) and outcomes (e.g., GWAS of BMI), referred to as ‘two-
sample MR’ (as opposed to one-sample MR, which uses individual-level data), using ap-
proaches such as the inverse-variance weighted (IVW) method [91]. In the presence of horizontal
pleiotropy, approaches such as Egger regression (MR Egger) [92] and MR Pleiotropy Residual
Sum and Outlier Detection (MR-PRESSO) [93] are appropriate choices to account for this pleiot-
ropy. Given the increasing availability of GWAS summary statistics, MR has become a popular
method to evaluate casual associations between exposures and outcomes. For example, a
recent MR study evaluated putative causal effects of metabolites on 45 common diseases and
found evidence for 30 metabolites having a causal effect, predominantly on risk of CHD and
primary sclerosing cholangitis [94].

Correction for multiple hypothesis testing
Given the large number of metabolites that can be measured in metabolomic investigations, cor-
rection for multiple testing needs to be considered to control type 1 error rates [95–98]. The num-
ber of tests performed and commensurate with the elevated probability of reporting false positive
results can be accounted for by: (i) adjusting the significance level to lower the probability of falsely
rejecting the null hypothesis; or (ii) adjusting the P-value distribution itself. Two popular ap-
proaches involve controlling the family-wise error rate (FWER), with methods such as the
Bonferroni correction [99], and controlling the false discovery rate (FDR), with methods such
as the Benjamini–Hochberg procedure [98].

Bonferroni correction adjusts the nominal significance level by dividing it by the number of tests
performed. It may be considered too conservative for metabolomic studies, because it assumes
that all tests are independent (generally an incorrect assumption for highly correlated
metabolomic data), potentially resulting in a high false negative rate. Adjustment could instead
be based on the number of independent metabolites tested (i.e., accounting for correlation be-
tweenmetabolites), which could be determined by using the number of principal components ac-
counting for >95% of the total variation in the metabolomic data [100] or by matrix spectral
decomposition [101]. Another approach to correct for multiple testing in the setting of highly cor-
related metabolites is a permutation-based approach implemented by Westfall and Young [102],
which obtains a distribution of minimum P-values given the data and sets the P-value level to an a
priori determined cutoff (usually 5%).

The FDR is the expected proportion of discoveries that are incorrect. Controlling the FDR is typ-
ically a less conservative, more powerful approach compared with controlling the FWER, making
FDR control an attractive option for metabolomic and other high-dimensional data sets
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[96,103,104]. The proportion of false positives allowed is determined a priori, with 5% being com-
monly used. The p.adjust function in R implements the approaches described here and other
multiple testing procedures.

Researchers often incorporate different forms of prior knowledge into multiple testing procedures
to improve precision and understanding of results. Such approaches may include: (i) use of pen-
alty weights; (ii) the use of prior weights; (iii) partitioning hypotheses into groups; and (iv) incorpo-
rating knowledge of the dependence structure of the data [105]. While most studies are able to
apply only one or two strategies simultaneously, p-filter is an algorithm that provides a unified
framework to integrate these four strategies while controlling for desired group and individual
hypothesis FDR [105].

Challenges and future directions
Metabolite identification
A key challenge in the metabolomics field is identifying metabolites, particularly in untargeted MS
experiments. This process includes matching MS spectrum acquired from biological samples to
authentic compounds from established spectral libraries and is directly related to metabolite
quantification, which is impacted by sample preparation, chromatin separation, and MS data ac-
quisition [106]. Measurement error and limited spectral libraries pose challenges to identifying
metabolites, and it is common for untargeted MS experiments to result in ‘unknown’metabolites.
One successful strategy uses GWAS to gain clues about unknown metabolites, because many
top GWAS hits for metabolites tag genes encoding transporters or enzymes with known links
to a given metabolite, allowing mapping of an unknown metabolite to a specific enzymatic path-
way [107]. For example, an unknown metabolite from an untargeted LC/MS analysis associated
with hepatic fat was identified as dimethylguanidino valerate based on a strong GWAS signal near
the gene encoding the enzyme that produces it [108].

New methods are being developed to identify unknown metabolites, such as Metabolite annota-
tion and Dysregulated Network Analysis (MetDNA), a metabolic reaction network-based algo-
rithm that identifies metabolites based on their reaction-paired neighbor metabolites, which
tend to have similar spectra [109]. Network-based approaches have been developed that directly
utilize untargeted metabolite signatures to predict functional activity without the need for metab-
olite identification, such as the popular Mummichog [70] (see ‘Network and pathway enrichment
analyses’ section). The MetaMap R package uses the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) and PubChem databases to assess metabolite associations when the exact me-
tabolite annotation is unknown [110].

Metabolite harmonization
The overlap and comparability of metabolites across platforms and studies is often limited, partic-
ularly due to differences in platform technologies and coverage of metabolites as well as different
strategies used to quantify and identify metabolites. Identifying metabolites that are identical
across platforms and adjusting metabolite levels so that they are comparable across platforms,
studies, and batches (collectively referred to as ‘metabolite harmonization’) can facilitate
meta- and mega-analysis, both of which can improve power to detect true associations (see
‘Meta-analysis and mega-analysis’ section). However, metabolite harmonization remains a cen-
tral challenge for large-scale metabolomic investigations and reproducibility. A COMETS investi-
gation of >47 cohorts evaluated the overlap of five common platforms (Metabolon Inc., the Broad
Institute’s Metabolomics Platform, Biocrates, the West Coast Metabolomics Center, and Night-
ingale Health) and found modest overlap; for example, only ~10% of Metabolon-measured me-
tabolites were matched to metabolites measured on the four other platforms based on unique
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identifiers from the Human Metabolome Database (HMDB), PubChem, and other online data-
bases [1]. COMETS also compared metabolite values on 40 duplicate samples assessed by
the twomost widely usedmetabolomic MS platforms at the time (Broad Institute andMetabolon);
for the overlapping 111metabolites (a small subset of thosemeasured on each platform), theme-
dian Spearman correlation was 0.79 (interquartile range: 0.56–0.89), suggesting very good, but
not perfect, concordance [1].

Replication of metabolic pathways that are associated with an outcome as opposed to exact me-
tabolites may increase the utility of metabolomic data across platforms. Identification of unknown
metabolites from untargeted MS approaches will also likely continue to improve with better and
larger reference data sets and higher performance instrumentation, aiding harmonization across
studies and improving identification rates [111]. Use of common reference/control samples and
increasing consistency of metabolite naming and identification (see ‘Metabolite identification’ sec-
tion) systems across platforms could also help improve cross-platform harmonization [112].
Efforts funded by the Common Fund of the US National Institutes of Health, including the Meta-
bolomicsWorkbench [113], have helped standardize approaches for metabolomic quantification,
identification, analysis, and visualization. This effort has also funded five Compound Identification
Development Cores across the USA to increase rates of compound identification in a coordinated
manner.

Beyond metabolite harmonization, other factors can impact the successful replication of
metabolomic findings. Even across studies using the same platform, differences can result due
to pre- and postanalytical processing, relative quantification in MS studies depending on
metabolite distributions within studies, and population differences across studies [114] (see ‘Me-
tabolite-specific confounders and mediators’ section). While replication is a key challenge in
metabolomics, careful planning during the study design phase, including sample handling and
processing in discovery and validation studies, using the same platform, and including common
samples between studies to allow for measurement calibration (see ‘Batch effects and drift
correction’ section), could maximize the discovery of replicable true findings.

Metabolite stability and reproducibility
With the increasing availability of longitudinal metabolomics data, it has become more feasible to
assess the stability and reproducibility of commonly assayed metabolites. These measures can
add confidence to exposure–outcome associations that are observed in cross-sectional data.
For example, data from the Nurses’ Health Study and the Health Professionals Follow-Up
Study have been used to investigate interassay reproducibility, the stability of metabolites to a
processing delay of 24 or 48 h, and within-person reproducibility of metabolite levels over 1 or
2 years, identifying a deleterious effect of processing delays on the measurements of carbohy-
drates and purine/pyrimidine derivatives [115]. The within-person stability of metabolites over a
10-year period has also recently been investigated in the Nurses’ Health Study, identifying lipid,
lipid-related, and polar metabolites as reasonably stable over the timescale of a decade [116].
Future efforts such as these will have an important role in assessing confidence in results from
longitudinal metabolomics studies.

Metabolomics and diet
Given the influence of dietary factors on the metabolome, metabolomics has the potential to in-
form nutritional epidemiology. While most studies aim to investigate the fasting metabolome,
where metabolites are not as strongly influenced by immediate dietary factors, others investigate
regulation of postprandial metabolism (i.e., the period after food consumption) [117]. This
could be informative to determine how long certain dietary components take to metabolize and
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whether variation in this duration is associated with certain conditions, such as diabetes. How-
ever, such studies require sequential sampling at defined time intervals, which is costly and
labor intensive to collect at scale. Furthermore, nutritional epidemiology studies often rely on
self-reported food frequency questionnaires, which can be impacted by recall bias and measure-
ment error [118,119]. The metabolome offers a means to objectively measure dietary factors, but
is limited by several challenges, including the short half-lives of somemetabolites (see ‘Metabolite
stability and reproducibility’ section), interindividual variation at multiple steps in biochemical path-
ways, and our limited knowledge of dietary factors impacting individual metabolites [120,121].
Thus, despite recent methods to address some of these issues, it is difficult to accurately assess
diet through metabolomic analysis.

Tissue-specific metabolomics
Future work should also explore the utility of generating metabolomic data from disease-relevant
tissues, which may pose novel analytical concerns [122]. For example, urine metabolomics, while
popular due to ease of access and disease relevance for many conditions (including kidney dis-
ease), has much higher sample-to-sample variability in the same individual compared with blood
metabolomics [122], and failure to account for underlying differences in albuminuria/proteinuria
due to potential damage in the glomerular filtration barrier could lead to non-informative results
[123]. Increased availability of tissues directly influenced by disease processes (such as kidney
tissue for chronic kidney disease [123] or brain tissue or cerebrospinal fluid for Alzheimer’s dis-
ease [124]) will likely provide novel biological insights, but large sample sizes will remain difficult
to obtain outside of accessible tissues, such as blood, urine, and saliva (Figure 2). In some
cases, integrative analyses have found shared signatures across tissue-specific and blood-
based metabolomic analyses. For example, sphingolipid and glycerophospholipid associations
discovered in a large blood-based metabolomics study were replicated in a subset of postmor-
tem brain samples [125]. Analyses such as these may provide a way to leverage both larger sam-
ple sizes in accessible tissues and smaller sample sizes in less accessible tissues.

Single cell metabolomics
Single cell metabolomics enables metabolites to be measured from individual cells and is partic-
ularly valuable in studying diverse cell populations, such as tumor cells or cells at different stages
of development [126]. Spatial metabolomics maps the distribution of metabolites in tissues or
cells, providing a spatial context to the metabolic information [127]. This provides an understand-
ing of how metabolic processes vary across different regions of tissue or within cellular compart-
ments, which can be crucial to studying diseases such as cancer, where spatial organization and
tissue architecture have a significant role. Coupling single cell and spatial metabolomics provides
insights into the metabolic activity of individual cells, revealing heterogeneity and dynamic
changes within cell populations that can be obscured in traditional bulk analyses. While an in-
depth discussion on these topics is beyond the scope of this review, advances and challenges
of this field have been reviewed in previous publications [126–128].

Biobank metabolomics
Increasing the availability of metabolomic data in biobanks will allow metabolomic investigations
to be performed at an unprecedented scale. For example, the UK Biobank will soon release
NMR-measured metabolomic data for over 200 metabolites measured on the Nightingale
platform in baseline blood samples (N ~500 000) and at the first repeat assessment visit
(N ~20 000). The first 120 000 samples were recently released to UK Biobank researchers.
Early investigations of these data illustrate the potential for biobank-scale metabolomic analyses,
such as the recent identification of correlated multi-metabolite scores for severe pneumonia and
Coronavirus 2019 (COVID-19) [129]. While widespread availability of biobank metabolomic data
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presents an exciting research frontier, it is likely to create challenges in terms of disparate quality
control and analysis across studies, which will be important for researchers to address.

Metabolomic studies in diverse populations
While the field of metabolomics offers promising potential for biomarker discovery, guiding clinical
interventions, and improving diagnostics, the stark lack of participant diversity in metabolomic in-
vestigations could exacerbate existing health disparities. For example, the population distribution
of the ~82 000 participants in the COMETS consortium as of 2019 was 70% European, 18%
Asian, 6% African, and 2% Hispanic [1]. Although some evidence has demonstrated broad
agreement in metabolomic signatures of BMI and glycemia across pregnant women from diverse
populations [130] and across dietary metabolites independent of self-reported race or ethnicity
[131], other diverse studies have found that population background modifies associations be-
tween metabolomic profiles, insulin resistance, and metabolism [132–134]. Insufficient statistical
power across populations is currently a limitation for most diverse metabolomic studies, and fur-
ther research in larger, more diverse populations is needed to understand the potential metabolic
differences between populations and the influence of sociocultural factors on these differences. A
recent analysis of 1251 serummetabolites in a deeply phenotyped cohort found that diet and gut
microbiome factors were most predictive of metabolite levels [46], both of which widely differ
based on geography and sociocultural factors. Thus, in addition to the need for increased repre-
sentation of diverse populations within the USA, representation of individuals across the globe is
needed to comprehensively understand metabolomic variation across populations.

Multipopulation studies may help reveal the complexities that contribute to health disparities in
disease risk. To this end, diverse metabolomic studies will need to implement a comprehensive
framework that includes social determinants of health, such as structural racism, discrimina-
tion, stress, employment status, insurance coverage, access to care, immigration status, in-
come, and language, among other factors, as potential contributors to metabolite variation
[135]. To increase participation of under-represented individuals, it will be essential for investi-
gators to engage community members early on at the study design stage to ensure that re-
search questions addressed are relevant to the community and to establish strategies for
biobanking and data governance to ensure that the community benefits from research findings
[136–138].

Concluding remarks
In this review, we provide an introduction to the field of metabolomic epidemiology, discussing
technological, study design, quality control, and statistical considerations, opportunities and
challenges in the field, and emerging innovations that hold promise to uncover new biological in-
sights. The metabolome has the potential to improve our mechanistic understanding of disease
while also allowing for the identification of biomarkers that may inform prevention and screening
strategies. While significant progress has been made to address the unique challenges of the
field of metabolomic epidemiology, many remain that will need to be addressed in coming
years (see Outstanding questions). Furthermore, efforts need to be made now to ensure that
this rapidly emerging field will lead to equitable improvements in healthcare across diverse
populations.
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Outstanding questions
What additional insights can be gained
from metabolites measured from less
accessible tissues that may be more
relevant to a given disease and how
well do those levels correlate with more
accessible circulating metabolites?

How can the process of harmonizing
metabolites across platforms be eased
to increase study power?

How can the large number of ‘unknown’
or ‘unidentified’metabolites contribute to
biological interpretations of metabolomic
epidemiology investigations?

How can the complex correlation
structure of metabolites be optimally
leveraged in statistical analyses?

Are metabolomic findings in one
ancestral population transferable to
other ancestral populations?

Will meta-analyses of metabolomic ep-
idemiology studies prove to be an ef-
fective way to increase study power,
as has been found with GWAS?
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