

Cheater’s Bowl: Human vs. Computer Search Strategies for Open-Domain Question Answering

Anonymous EMNLP submission

Abstract

For humans and computers, the first step in answering an open-domain question is retrieving a set of relevant documents from a large corpus. However, the strategies that computers use fundamentally differ from those of humans. To better understand these differences, we design a gamified interface for data collection – Cheater’s Bowl – where a human answers complex questions with access to both traditional and modern search tools. We collect a dataset of human search sessions, analyze human search strategies and compare them to state-of-the-art multi-hop QA models. We show that humans query logically, apply dynamic search chains and utilize world knowledge to boost searching. We demonstrate how human queries can improve the accuracy of existing systems and propose the future design of QA models.

1 The Joy of Search: Only for Humans?

A grand goal of artificial intelligence research is to design agents that can search for information to answer complex questions. Modern day question answering (QA) models have the ability to issue text-based queries to a search engine (Qi et al., 2019, 2021; Xiong et al.; Zhao et al., 2021; Adolphs et al.; Nakano et al.), and use multiple iterations of querying and reading to search for an answer. However, there is still a performance gap between machines and humans.

Dan Russell describes humans with virtuosic search ability in his book *The Joy of Search* (Russell), and describes search strategies that: use world knowledge; use parallel search chains, abandon futile threads; and use multiple sources and languages. However, while we can all admire Dan Russell’s search skills, it does not answer the question: how far are computers’ searches from humans’?

This paper tries to answer this question with a collection and comparison of human and computer

search strategies. We create "Cheater’s Bowl", an interface that gamifies answering questions, with the addition of tools such as a traditional search engine, a neural search engine, and modern QA models. We collect a dataset of human search sessions while using our interface to answer complex open-domain multi-hop questions (Section 3). We analyze the differences between human and computer search strategies and detail where current models fall short (Section 4). Substituting queries generated by models with human queries significantly improves model accuracy. We propose design suggestions for future QA models, and our dataset can serve as the foundation for training them (Section 5).

Our main contributions are the following:

- We create an interface for answering questions with access to modern tools.
- We collect a dataset of human search sessions.
- We compare human and computer strategies for QA, and show that humans apply dynamic search chains, utilize world knowledge and reason logically.
- We propose improvements for future query-driven QA models.

2 How Humans and Computers Search

To compare how humans and computers form queries to answer questions, we first need to have a level playing field and set up our vocabulary. Sometimes, we will need to speak abstractly about who is trying to answer the question without distinguishing between the human and the computer. In these cases, we refer to them as an “agent”, which can be either the human or the computer. We assume that the agents do not know the answers directly and that they create text-based queries to find the answer (we discuss the alternatives, closed book QA, directly forming dense queries and other computer systems, in Section 6).

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019

020

021
022
023
024
025
026
027
028
029
030

031

032
033
034
035
036
037
038
039

040
041

042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

057
058
059
060
061
062
063
064
065
066

067
068
069
070
071
072
073
074
075
076
077
078
079
080

We assume that humans and computers, given an initial question, form a text query q_0 . The i th query q_i retrieves a set of documents $\mathcal{D}_{i+1} = \{d_1, \dots, d_{|\mathcal{D}_{i+1}|}\}$ from a large corpus of documents \mathcal{D} , where in our setting is all the paragraphs in Wikipedia pages. The retrieved documents provide additional information, allowing the agent to answer the question or compose a new query q_{i+1} . We denote $\mathcal{E}_i \subseteq \mathcal{D}_i$ as the set of documents that provide helpful information – evidences – for answering the question with answer a or composing subsequent queries $\{q_j | j > i\}$. It is possible that $\mathcal{E}_i \neq \mathcal{D}_i$ since not all of the retrieved documents are relevant to question answering, and an agent might only read a few of them. This process repeats until the agent answers the question. We represent the iterative question-answering process as action path: $A = (q_0, \mathcal{E}_1, q_1, \mathcal{E}_2, q_2, \dots, \mathcal{E}_k, a)$.

2.1 Human Queries

How humans form queries when they search for an answer depends on many factors, as summarized by [Allen \(1991\)](#): the experience of the user searching for information, how much the user knows about the topic, and whether they are finding completely new information or navigating to a specific information source they have seen before. Beyond the intrinsic knowledge of particular users, users often have particular strategies that they favor. For example, users may copy/paste information into a document, keep multiple tabs open, or always turn to a particular source of information first ([Aula et al., 2005](#)).

2.2 Computer Systems

Thanks to the recent development of machine learning and natural language understanding, researchers have developed computer systems that can answer open-domain questions by generating text-based queries. GoldEn Retriever ([Qi et al., 2019](#)) generates a query q_k at reasoning step k by selecting a substring from current reasoning path R_k , which is the concatenation of the question Q and previously selected retrieval results at each reasoning step: $R_k = (Q, d_1, d_2, \dots, d_k)$, $R_0 = (Q)$ (note that for questions with $n \geq 1$ clues/sentences, we use their concatenation as the full question $Q = (Q_0, Q_1, \dots, Q_{n-1})$). GoldEn Retriever then select a document d_{k+1} from the set of documents \mathcal{D}_{k+1} retrieved by q_k , append d_{k+1} to the current reasoning path and form an updated reasoning path R_{k+1} . IRRR ([Qi et al., 2021](#)) further advances GoldEn Retriever by allowing queries to be any subsequence of the reasoning path, though still much less flexible than human queries. At each step, these systems only select one document as the evidence for further actions, i.e., $\mathcal{E}_i = \{d_i\}$. Thus the action path $A = (q_0, \{d_1\}, q_1, \{d_2\}, q_2, \dots, \{d_k\}, a)$.

2021) further advances GoldEn Retriever by allowing queries to be any subsequence of the reasoning path, though still much less flexible than human queries. At each step, these systems only select one document as the evidence for further actions, i.e., $\mathcal{E}_i = \{d_i\}$. Thus the action path $A = (q_0, \{d_1\}, q_1, \{d_2\}, q_2, \dots, \{d_k\}, a)$.

3 Cheater’s Bowl: Gamified Data Collection For Human Searches

3.1 Motivation

High-stakes trivia competitions are meant to be a test of who knows more about a particular topic. However, it has occasionally been plagued by cheater scandals ([Tedlow, 1976](#); [Trotter, 2013](#)). The move to online trivia competitions during the Corona pandemic brought a new form of cheating to the fore: people would see a trivia question and quickly try to use a search engine to find the answer.

Some of the online discussion around online cheating revealed that some people actually enjoyed doing these quick dives for information. Thus, one of the goals of this paper is to see if we could (1) sublimate these urges into something more wholesome, (2) gather some useful data to understand human expert search. To answer these questions, we create an gamified interface ([Figure 1](#))—which we call Cheater’s Bowl—to help players find answers.

Because the people interested in this come from the trivia playing community, they know substantially more about the topics being asked about than, say, crowdworkers. This puts them closer to the “expert” category as discussed by [Allen \(1991\)](#). We draw our questions from the Quizbowl format ([Boyd-Graber et al., 2012](#), QB), which are a sequence of clues with the same answer of decreasing difficulty (as decided by a human editor). We also include questions from HotpotQA ([Yang et al., 2018](#)), a popular dataset for multi-hop question answering. We filter the questions in two ways to ensure that both humans and computers are challenged. We discard all but the two hardest clues, which should be difficult for most humans (even our experienced player base). For computers, we try to answer all of these questions with current state-of-the-art BERT-based model on these data ([Rodriguez et al.](#)) with a single hop. If the model is able answer the question with any number of clues, we exclude it from the questions set used in data collection.

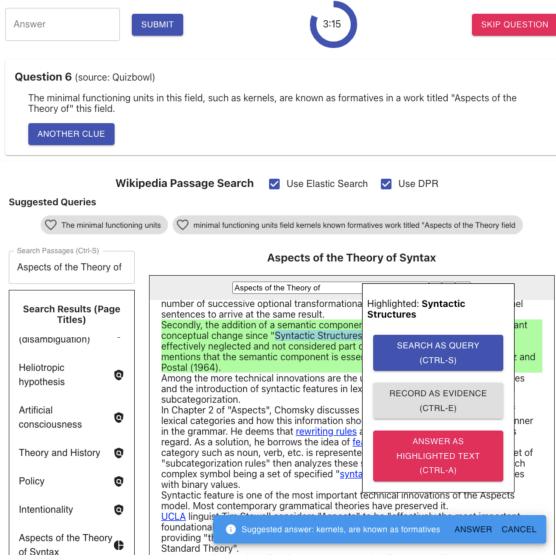


Figure 1: User interface for Cheater’s Bowl, an interface to collect user traces as they try to answer difficult questions. Players see a question (top), can search for information (left), view information (center), and give their answer (top) with associated evidence (right).

3.2 Game Interface

The player is presented with a question, initially with only one clue. To start searching, the players have the option of typing their own queries in the search box, or clicking on a model-suggested query (from IRRR or GoldEn). The search engine returns results from two different retrievers: BM25, a sparse index based on lexical similarity; and DPR (Karpukhin et al., 2020), which uses dense vector embeddings of passages. Both retrievers index and return paragraphs from Wikipedia pages. We use ElasticSearch (Gormley and Tong, 2015) to implement BM25, and for DPR, we directly use the pretrained model they provided.

Both retrievers return the top passages by cosine similarity. Players can click on the Wikipedia page titles of the passages; the full Wikipedia page is then shown in the main document display with the passage highlighted.

The tooltip provides shortcuts to directly query the search engine from highlighted text, record it as an evidence, or submit it as an answer. Players are encouraged to highlight and record text as evidence if it helped them find the answer. Note that even if a player does not record evidences, those paragraphs that the player have read which contains words in the queries or answer are automatically recorded as evidences.

If the player finds the the question difficult to

answer, they are free to skip the question or ask the system to reveal another clue.¹

Human-computer collaboration. In addition to the queries from GoldEn and IRRR, players also see IRRR’s answers. Players can directly answer the question with suggested answers (but are encouraged to find evidence to back it up).

Scoring system. Our goal is to create an interface that is both fun and useful for collecting relevant information. Players are rewarded for having the highest score, and they earn points by: (1) answering more questions, as each question adds to their score; (2) answering questions correctly (100 points for each correct answer); (3) answering quickly, as the possible points decrease with a timer (four minutes for QB questions, three for HotpotQA); (4) answering with fewer clues, as it makes the question easier (each clue removes ten points); (5) recording more evidence. Each recorded evidence is awarded 10 points.

3.3 The Player Community

We recruit 31 players from the trivia community who played the game over the course of the week. The top player answered 895 questions, and 13 players answered at least forty questions. After filtering out empty answers and repeated submission of a same player on the same question, we have collected 2545 questions-answering pairs from QB of which 1428 were correctly answered (56%), as well as 315 questions-answering pairs from HotpotQA, of which 225 were correctly answered (71.43%).

3.4 A Question Answering Example

To see how a player might answer the question with our interface, we present a question answering example with corresponding player actions (Figure 2). Answering this question requires figuring out who the main speaker was (Prem Rawat) and then figuring out his nationality to get to the final answer, India. The player answers the question by using two hops: first to “Millennium ’73” and then to “Prem Rawat”, and finally uses commonsense reasoning to answer “India”. Player actions and seen paragraphs are automatically recorded through the process.

¹For QB questions only with a maximum of one additional clue.

Question: “A 15-year-old religious leader originally from this country spoke at a highly anticipated event at which it was predicted that the Astrodome would levitate; that event was Millennium ’73”. Answer: “India”.
(1) Query q_0 = “Millennium ’73” (Substring of question)
(2) Select and read Wikipedia page: “Millennium ’73”. Manually record evidence d_1 = “ It featured Prem Rawat, then known as Guru Maharaj Ji, a 15-year-old guru and the leader of a fast-growing new religious movement.”
(3) Query q_1 = “Prem Rawat” (Substring from evidence d_1)
(4) Select and read Wikipedia page: “Prem Rawat”. Manually record evidence d_2 = “Prem Pal Singh Rawat is the youngest son of Hans Ram Singh Rawat, an Indian guru.”
(5) Answer a = “India” (Derived from evidence d_2)

Figure 2: An example of player actions for question answering with action path $A = (q_0, \mathcal{E}_1, q_1, \mathcal{E}_2, a)$, where $\mathcal{E}_1 = \{d_1\}$ and $\mathcal{E}_2 = \{d_2\}$. The player uses substring from question and evidence as queries, and derived final answer from an evidence. We highlight the source of actions in blue.

254 4 Human vs. Computer Search Strategies

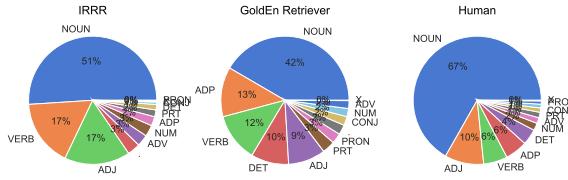
255 4.1 Strategies in Common

256 Both humans and computers can search from the
257 Wikipedia corpus using text-based queries, process
258 the retrieval results, and give an answer. From
259 data collected in Cheater’s Bowl, both humans
260 and computers often create queries from the ques-
261 tion: 83.05% of human queries have at least one
262 word from the question, while 84.61% of GoldEn
263 queries and 99.75% of IRRR do. And both use
264 terms from the evidence they find to create new
265 queries: 14.47% of human queries have at least
266 one word from retrieved evidence, while 19.13%
267 of GoldEn and 28.30% of IRRR queries do. Both
268 reformulate their queries based on the comprehen-
269 sion of previous evidence, which aims at retrieving
270 different targets at different steps (Xiong et al.).

271 4.2 Strategy differences

272 **Humans use fewer but more effective keywords.**
273 The most salient difference between human and
274 computer queries is that human queries are shorter.
275 Human queries contain 2.67 words on average
276 (standard deviation of 2.46); while GoldEn Re-
277 triever contain 7.03 ± 6.84 words, and IRRR words
278 have 12.76 ± 5.64 . Human queries focus on proper
279 nouns and short phrases as queries (Figure 3). Fig-
280 ure 1 shows that humans tend to select the most
281 specialized term—e.g., the entity most likely to
282 have a comprehensive Wikipedia page—which re-
283 quires world knowledge. In contrast to humans’
284 desire for precision, models seem to prefer recall
285 with as many keywords as possible, hoping that it
286 retrieves something useful for the next hop.

287 **Humans use world knowledge to narrow search**
288 **results.** Unlike computers, humans sometimes
289 use words that are not in the question or in evi-
290 dence: 16.30% of queries have terms in neither



291 Figure 3: Proportion of different part-of-speech tag used
292 in queries. Part-of-speech tags are detected using Natu-
293 ral Language Toolkit (NLTK) (Bird et al., 2009).

294 evidence or question text (compared to 0% for
295 both computer methods). In the first example in
296 Table 1, the player’s first query is derived from
297 the question but adds “auxiliary”, recognizing that
298 “treating” a compound makes it an auxiliary in the
299 reaction. Players also reported in the feedback
300 survey that adding a subject category (for exam-
301 ple, adding “chemist” when querying a person in
302 chemical-related questions) can be useful for spec-
303 ifying search results. Although there are cases when
304 players directly query terms closely related to the
305 answer, in most cases, people use commonsense
306 to help narrow the search scope or utilize domain-
307 specific knowledge they have learned from previ-
308 ous searches. These patterns could be potentially
309 learned by QA models.

310 **Dynamic query refinement and abandonment.**
311 Although both humans and computers use query
312 reformulation as a search strategy, how humans
313 reform their queries is more advanced. Not all re-
314 trieval documents help lead to the answer: some
315 are irrelevant, and some are even misleading. In
316 cases when human agents have not found any help-
317 ful information from the documents \mathcal{D}_i retrieved
318 by query q_i , or when they are confused and un-
319 sure, the human agent does not need to use any
320 document from \mathcal{D}_{i+1} for making new queries, i.e.
321 $\mathcal{E}_{i+1} = \emptyset$, but can instead write a new query q_{i+1}
322 by adding more constraint words and deleting dis-

Question and answer	First query		
	Player	IRRR	GoldEn Retriever
Q: Evans et al. developed bisoxazoline complexes of this element to catalyze enantioselective Diels-Alder reactions. A: Copper	Evans auxiliary	Evans et al. developed bisoxazoline complexes element catalyze enantioselective Diels-Alder reactions	Evans et al.-
Q: This quantity’s name is used to describe situations in which there exists a frame of reference such that two given events could have happened at the same location. A: time	frame of reference same location	quantity’s name used describe situations exists frame reference two given events could happened location	quantity’s name is used to describe situations
Q: Discovered in 1886 by Clemens Winkler, this element is used in glass in infrared optical devices, its oxide has been used in medicine, and its dioxide is used to produce glass with a high index of refraction. A: Germanium	Clemens Winkler	Discovered 1886 Clemens Winkler element used glass infrared optical devices oxide used dioxide used glass high index refraction	Discovered in 1886 by Clemens Winkler
Q: In ruling on these documents, the Court held that the “heavy presumption” against prior restraint was not overcome. A: Pentagon Papers	heavy presumption prior restraint	ruling documents Court held “heavy presumption” against prior restraint overcome	ruling on these documents, the Court
Q: One of this director’s films introduced the cheery song “High Hopes,” while another describes the presidential campaign of Grant Matthews. A: Frank Capra	high song hopes	One director’s films introduced cheery song “High Hopes” describes presidential campaign Grant Matthews	director’s films introduced the cheery song “High Hopes,”

Table 1: The first query for each question made by different agents. Human queries contain fewer keywords and focus more on precision, while computer queries focus more on recall.

tracting terms from q_i to restricts the search scope, or abandon q_i and write a completely new query. In Russell (2019), Daniel described querying “stop-light parrotfish sand” for finding out the relationship between parrotfish and geology, however, the results are too diffuse to be useful. He then modified his query to be “parrotfish sand” which yields good results.

However, for GoldEn Retriever and IRRR, even when irrelevant documents are retrieved from a bad query q_i , the model is compelled to select some $d_{i+1} \in \mathcal{D}_{i+1}$ as evidence, append to the reasoning path, and generate subsequent queries accordingly. As an example, to answer the question

He lost the presidential election in 1930, which was not good enough for him as later that year he seized power at the head of an army-backed coup. (Answer: Getúlio Vargas (a Brazilian president))

IRRR queries “lost presidential election 1930 year seized power head army backed coup” but an article about Brazil is not in the returned results. IRRR then appends a paragraph from the irrelevant page about the Nigerian “Olusegun Obasanjo” to the reasoning path, leading to the next query “lost presidential election 1930 later year seized power head army backed coup Olusegun Obasanjo” which prevents finding a relevant Brazilian page.

Multiple search chains. We define a search chain as a chain of searches $(q_s, q_{s+1}, q_{s+2}, \dots, q_t)$ where new searches are closely dependent on old ones, either by q_{i+1} being a refinement based on q_i or q_{i+1} is composed with evidences \mathcal{E}_{i+1} retrieved from q_i . A search chain breaks when q_i is abandoned and q_{i+1} is a new query unrelated to previous evidence. While existing computer agents can only use a single search chain, human agents can use multiple search chains, either pre-planned parallel search chains that focus on different perspectives of the question, or starting a new one if previous chains failed to lead to the answer. When answering the question

This modern-day country was once ruled by renegade Janissaries known as dahije, who massacred this country’s elite, known as knez, in 1804. (Answer: “Serbia”)

the player first makes a query about the mentioned title “knez”, and next queries “Knyaz”, which is a substring of the evidence retrieved by the first query. However, these queries failed to retrieve useful results since “knez” and “Knyaz” are common titles in ancient Slavic lands. The player then abandons this search chain and starts a new one by making the query “dahije”, which allows the player to retrieve the Wikipedia page “Dahije” that includes the answer “Serbia”.

320
321
322
323
324
325
326
327

334
335
336
337

338
339
340
341
342
343
344
345
346

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

376 **Swapping Engines** The *Joy of Search* is re-
 377 plete with searches over different sources: Google,
 378 Google Scholar, Google Earth, etc. While we only
 379 give players access to Wikipedia, we allow play-
 380 ers to switch between ElasticSearch and DPR. In
 381 contrast to multi-hop systems which typically use
 382 trained, dense retrievers, players prefer Elastic-
 383 Search (87% of queries) over DPR. Some of this
 384 is probably familiarity: most search engines (in-
 385 cluding Wikipedia’s) are term-based retrievers. In
 386 the post-task survey, players prefer ElasticSearch
 387 because it is most useful when looking for an ex-
 388 act Wikipedia page – the specific Wikipedia page
 389 always ranked top among search results. It is also
 390 helpful for checking answers: they often query an
 391 answer candidate for double-checking, which helps
 392 boost their answer accuracy. ElasticSearch is better
 393 for this specific strategy.

394 **Beyond a Bag of Words.** However, this is not
 395 always the case; when humans do use DPR, they
 396 adapt their query styles for better retrieval. Some
 397 players reported that they could retrieve desired
 398 results with natural language queries when using
 399 DPR. Those queries usually come from longer se-
 400 quences in question and evidence. For example,
 401 when answering the question

402 Mathilda Loisel goes into debt to replace paste
 403 replicas of these gemstones, one of which is “As
 404 Big as the Ritz” in an F. Scott Fitzgerald short
 405 story. (Answer: “Diamond”)

406 the player queries ““As Big as the Ritz” in an F.
 407 Scott Fitzgerald short story.” with DPR, which
 408 retrieves the Wikipedia page “The Diamond as Big
 409 as the Ritz” containing the answer.

410 Players also reported searching Google with nat-
 411 ural language queries when finding answers to
 412 open-ended questions with various options, e.g.,
 413 “How often should I wash my car?”. In these scenar-
 414 ios, humans may search for relatively vague queries
 415 and synthesize an answer from multiple retrieval
 416 results. WebGPT (Nakano et al.) explores a similar
 417 setting by training GPT-3 (Brown et al.) to search
 418 queries in natural language, aggregate information
 419 from multiple web pages and answer open-ended
 420 questions. Due to the limitation of Cheater’s Bowl
 421 where for most of the QB questions, the answer
 422 could be matched to a unique Wikipedia entity (Ro-
 423 driguez et al.), players have the goal of finding
 424 one specified answer with minimal ambiguity, thus
 425 most querying deterministic keywords is a more
 426 appropriate query style.

5 Existing Models and Future Design

427 Although we present queries suggested by state-
 428 of-the-art multi-hop QA models to players, players
 429 would rather write their own queries (Figure 4).
 430 Most players understand why QA models query the
 431 way they do (Figure 5) and agree that queries re-
 432 trieve helpful results, but players doubt the utility.
 433 This is an intrinsic difference between humans and
 434 models: human queries strive for a “direct hit” with
 435 two to three search results, as Jansen et al. have
 436 found that most humans only access results on the
 437 first page. In contrast, verbose model queries hope
 438 search results contain *something* helpful—it does
 439 not mind reading through a dozen search results.
 440 Another reason might be that QA models do per-
 441 form much worse than human: for QB questions
 442 randomly given to players, 56.58% of the ques-
 443 tions are correctly answered by players, while only
 444 44.21% are correctly answered by IRRR.²

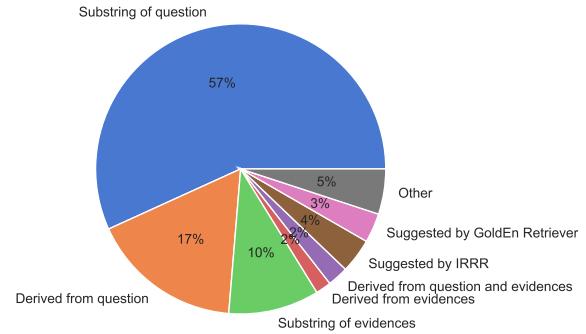


Figure 4: Source of player queries. Only a small proportion of queries are suggested by QA models.

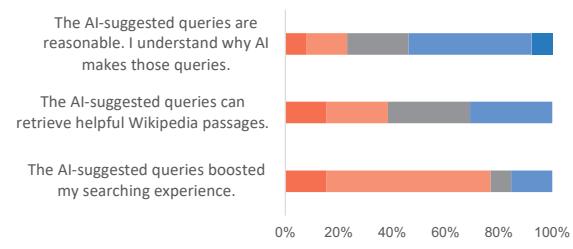


Figure 5: Player feedback for queries suggested by QA models. Although most players understand why they make those queries, players doubt the utility.

²For questions randomly sampled from HotpotQA, human accuracy of 71.43% is slightly lower than IRRR accuracy of 79.02%. We consider this to be due to the synthetic construction of HotpotQA dataset lends itself to straightforward searches, and is much easier than QB questions to differentiate human and QA model performances.

446 5.1 Improve Existing Models with Human 447 Actions

448 Though QA models failed to help humans advancing
449 their searches, could the accuracy of the QA
450 models increase if we replace computer queries
451 with humans’?

452 We convert human queries into IRRR’s format
453 and ask IRRR to carry on querying and answering.
454 More precisely, given the full action path $A =$
455 $(q_0, \mathcal{E}_1, q_1, \mathcal{E}_2, \dots, q_{k-1}, \mathcal{E}_k, a)$ of question Q , for
456 each $0 \leq j \leq k-1$, we trim the action path that
457 ends to a query q_j to form a partial human action
458 path $A_j = (q_0, \mathcal{E}_1, q_1, \mathcal{E}_2, \dots, q_j)$. We initialize
459 the human reasoning path R with $R = (Q)$. For
460 each \mathcal{E}_i ($1 \leq i \leq j$) in action path A_j , if $\mathcal{E}_i \neq \emptyset$,
461 we append the most crucial document $d_i \in \mathcal{E}_i$ to
462 the reasoning path R . Our order of priority for
463 $d \in \mathcal{E}_i$ is that: source of player answer > source
464 of some query > manually recorded by the player
465 as evidence. We consider the converted human
466 reasoning path $R_l = (Q, d_1, d_2, \dots, d_l)$ to be the
467 reasoning path of reasoning step l , where $l \leq j$
468 since there might be empty \mathcal{E}_i . Note that we result
469 in $R_0 = (Q)$ from $A_0 = (q_0)$.

470 We compare how well do IRRR performs on the
471 questions set \mathcal{Q}_l for two settings: querying and
472 answering from scratch (**scratch**) v.s. initializing
473 the reasoning path R_l from the human reasoning
474 path and using q_j as the next query (**init from hu-**
475 **man**). Here \mathcal{Q}_l is the set of questions where partial
476 human actions A_j could be converted to human
477 reasoning path at reasoning step l ($0 \leq l \leq 2$).
478 Obviously $\mathcal{Q}_2 \subseteq \mathcal{Q}_1 \subseteq \mathcal{Q}_0$. We have converted
479 $|\mathcal{Q}_0| = 1122$, $|\mathcal{Q}_1| = 462$, $|\mathcal{Q}_2| = 195$ questions
480 in total. The difficulty of questions in \mathcal{Q}_2 is, in
481 general, greater than questions \mathcal{Q}_0 since humans use
482 at least three queries for answering the questions in
483 \mathcal{Q}_2 , while using at least one query for \mathcal{Q}_0 .

484 Initializing from human actions significantly im-
485 proves the accuracy of the final answer (Table 2),
486 outperforming querying from scratch by 10.26%
487 for questions in \mathcal{Q}_2 . The human queries can unlock
488 reasoning paths that make previously unanswerable
489 questions answerable within three steps. While hu-
490 mans cannot get much from computer queries, the
491 reverse is certainly true. We further qualitatively
492 analyze why human actions are helpful to models.

493 **Better selection of keywords.** For questions
494 where IRRR answers correctly with human initial-
495 ization but fails alone, 91.48% of the first queries
496 are substrings or derived from the question. Models

497 Questions	498 Scratch	499 Init from human
$500 \mathcal{Q}_0$	$501 44.21\%$	$502 50.45\%$
$503 \mathcal{Q}_1$	$504 38.10\%$	$505 42.42\%$
$506 \mathcal{Q}_2$	$507 27.69\%$	$508 37.95\%$

509 Table 2: IRRR answer accuracy of querying from
510 scratch v.s. initializing from human actions.

511 select more keywords (Section 4.2); however, this
512 strategy might fail when the retrieval results are too
513 diffuse. In the last example from Table 1, the first
514 IRRR query retrieves weakly related documents,
515 and IRRR appends a paragraph from “Cultural im-
516 pact of the Beatles” to the reasoning path. Since
517 IRRR can only use a single search chain, the sec-
518 ond and third query follows previous evidence and
519 retrieves more irrelevant documents. In compari-
520 son, the player query “high hopes song” allows
521 IRRR to find “High Hopes (Frank Sinatra song)”
522 and use it as evidence. That paragraph contains key
523 information—the film *A Hole in the Head*—which
524 unlocks the film’s director, Frank Capra.

525 **World Knowledge.** A small proportion of human
526 queries “improves” the model accuracy because it
527 directly includes the answer or shortcuts to the
528 answer. As an example, the first human query for
529 the question

530 The first one of these to be directly observed was
531 obtained by the solution of TBF in an antimony-
532 based superacid.

533 is “George Olah”, the researcher who researches
534 “superacids” and is known by the player. IRRR uses
535 this shortcut to find the answer “carbocations” on
536 the Wikipedia page “George Andrew Olah”.

537 5.2 Design Suggestions for Future Models

538 Based on the strategic differences between human
539 and QA models, we propose improvements for fu-
540 ture query-driven QA models.

541 **Retriever-Aware Queries.** The model should be
542 able to interact with the retrieval system, dynam-
543 ically refine imperfect queries based on retrieval
544 results and abandon search chains that cannot lead
545 to the answer. Query refinement could be achieved
546 by deleting and adding words, using search oper-
547 ators (Adolphs et al.), or adding masks to tokens
548 for dense queries (Zhang et al., 2021). If retrieval
549 results are irrelevant to the question, the model
550 should discard the results: $\mathcal{E} = \emptyset$, avoiding the

537 introduction of noise for future query generation.
538 Models should be able to dynamically select search
539 engines and specify search sources suitable for each
540 query.

541 **Incorporate Common Sense and World Knowledge** 542 Instead of using substring or subsequence
543 from questions and previous evidence as queries,
544 the model should also be able to query other words
545 and terms it considers helpful, either by using a lan-
546 guage model, knowledge base, or selecting from a
547 set of commonly useful terms.

548 **Check Your Work.** 549 Models should explicitly
550 query candidate answers to check their correctness,
551 a simple yet effective strategy humans use.

552 A model that satisfies the above design principles
553 could be implemented using reinforcement learning
554 with well-defined reward functions. Given human
555 action data collected in Cheater’s Bowl, such a
556 model could be trained by behavior cloning.

557 6 Related Work

558 **Human Usage of Search Engines.** 559 Our work is
560 similar to previous research that analyzes the be-
561 havior of humans using search engines. [O’Day](#)
562 and [Jeffries](#) discovered that it is crucial to reuse the
563 results from the previous searches to address the
564 information need. [Lau](#) and [Horvitz](#) evaluated the
565 logs of the Excite search engine and found that each
566 information goal requires 3.27 queries on average.
567 [Jansen et al.](#); [Huang](#) and [Efthimiadis](#) have found
568 that contextual query refinement is a widely used
569 strategy. Queries are refined by incorporating back-
570 ground information and evidence from past search
571 results, which usually include examining results
572 titles and snippets. Our work provides many of
573 the same features as these previous papers but adds
574 neural models to retrieve passages, AI-suggested
575 queries and answers. Our analysis is focused on
576 comparing human and computer search strategies
577 and how they may benefit each other in search. In
578 addition, our task gamifies the search task and uses
579 specially designed QB questions, which is intended
580 to make the task more challenging.

581 **Question Answering Agents.** 582 Previous work has
583 explored agents that issue interpretable text-based
584 queries to a search engine to answer questions.
585 [GoldEn Retriever](#) ([Qi et al.](#), 2019) generates a
586 query by selecting a span from the reasoning path,
587 and [IRR](#) ([Qi et al.](#), 2021) further advances the
588 [GoldEn Retriever](#) by allowing queries to be any

589 subsequence of the reasoning path. ([Adolphs et al.](#))
590 train an agent using reinforcement learning to in-
591 teract with a retriever using a set of search opera-
592 tors. [WebGPT](#) ([Nakano et al.](#)) is a large language
593 model based on GPT-3 ([Brown et al.](#)) that searches
594 queries in natural language, and aggregate informa-
595 tion from multiple web pages to answer open-ended
596 questions.

597 **Alternative Models** 598 In this work, we only com-
599 pare human search strategies with computer sys-
600 tems that answer questions by searching text-based
601 queries. Modern retrievers are able to directly per-
602 form vector similarity search of the encoded ques-
603 tion with the corpus ([Karpukhin et al.](#), 2020; [Xiong](#)
604 et al.; [Zhao et al.](#), 2021), or hop through differ-
605 ent documents by following structured links ([Asai](#)
606 et al.; [Zhao et al.](#)), or resolving coreference ([Chen](#)
607 et al.). However, we consider that vector-based
608 queries are confusing black boxes for human play-
609 ers. Thus, computer systems using vector-based
610 queries could hardly collaborate with humans.
611 Most players reported utilizing the interwiki links
612 in Wikipedia pages and directly jumping to other
613 Wikipedia pages. We consider that following struc-
614 tured links or resolving coreference could be equiv-
615 alently achieved by text-based query-generation
616 systems through querying the corresponding term
617 and selecting the corresponding Wikipedia page.
618 Although computer agents might perform different
619 strategies with different models and systems, only
620 humans are all-purpose agents that can combine all
621 the strategies and perform flexible searching.

618 7 Conclusion

619 Open-domain and multi-hop QA is an important
620 problem for both humans and computers. Towards
621 the goal of comparing how human and computer
622 agents search and answer complex questions, we
623 created an interface with the purpose of collect-
624 ing human data on answering questions with ac-
625 cess to tools such as traditional and neural search
626 engines, question answering models that suggest
627 queries and answers. We find that humans often use
628 shorter queries, apply dynamic search chains, and
629 use world knowledge. We believe that future QA
630 models should have the ability to generate novel
631 queries, “discard” irrelevant results, and explicitly
632 check the answers. A question-answering agent
633 could be ultimately trained on our collected dataset
634 using reinforcement learning.

635 Limitations

636 The first limitation of this work is that we only
637 provide Wikipedia as the single source for infor-
638 mation retrieval because Wikipedia is the common
639 retrieval source used in open-domain QA models;
640 hence we failed to directly illustrate the human
641 behavior of searching over multiple sources. The
642 second limitation is that for human-AI collabora-
643 tion, we mainly use IRRR and GoldEn Retriever
644 as the representative of AI models since they are
645 state-of-the-art multi-hop QA models that generate
646 text-based queries. QA models that use different
647 strategies could be further explored and compared
648 with human strategies.

649 Ethical Concerns

650 We took steps to ensure our data collection process
651 adhered to ethical guidelines. Our study was IRB-
652 approved. We paid players who actively partici-
653 pated in the gamified data collection process (\$130
654 for awarding top players and \$25 for the raffle).
655 We got feedback from the online trivia community
656 before and after launching our game (Appendix A).
657 We will release our data to the public domain.

658 References

659 Leonard Adolphs, Benjamin Boerschinger, Christian
660 Buck, Michelle Chen Huebscher, Massimiliano Cia-
661 ramita, Lasse Espeholt, Thomas Hofmann, Yannic
662 Kilcher, Sascha Rothe, Pier Giuseppe Sessa, and
663 Lierni Sestorain Saralegui. [Boosting Search Engines](#)
664 with Interactive Agents.

665 Bryce Allen. 1991. Topic knowledge and online cat-
666 alog search formulation. *The Library Quarterly*,
667 61(2):188–213.

668 Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi,
669 Richard Socher, and Caiming Xiong. [Learning to](#)
670 [Retrieve Reasoning Paths over Wikipedia Graph for](#)
671 [Question Answering](#).

672 Anne Aula, Natalie Jhaveri, and Mika Käki. 2005. Infor-
673 mation search and re-access strategies of experienced
674 web users. In *Proceedings of the 14th international*
675 *conference on World Wide Web*, pages 583–592.

676 Steven Bird, Ewan Klein, and Edward Loper. 2009. *Nat-*
677 *ural Language Processing with Python*, 1st edition.
678 O'Reilly Media, Inc.

679 Jordan Boyd-Graber, Brianna Satinoff, He He, and
680 Hal Daume III. 2012. Besting the quiz master:
681 Crowdsourcing incremental classification games.

682 Tom Brown, Benjamin Mann, Nick Ryder, Melanie
683 Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
684 Neelakantan, Pranav Shyam, Girish Sastry, Amanda
685 Askell, Sandhini Agarwal, Ariel Herbert-Voss,
686 Gretchen Krueger, Tom Henighan, Rewon Child,
687 Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
688 Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
689 teusz Litwin, Scott Gray, Benjamin Chess, Jack
690 Clark, Christopher Berner, Sam McCandlish, Alec
691 Radford, Ilya Sutskever, and Dario Amodei. [Lang-](#)
692 [uage Models are Few-Shot Learners](#). In *Advances in*
693 *Neural Information Processing Systems*, volume 33,
694 pages 1877–1901. Curran Associates, Inc.

695 Jifan Chen, Shih-ting Lin, and Greg Durrett. [Multi-hop](#)
696 [Question Answering via Reasoning Chains](#).

697 Clinton Gormley and Zachary Tong. 2015. *Elastic-*
698 *search: the definitive guide: a distributed real-time*
699 *search and analytics engine*. " O'Reilly Media, Inc.". 699

700 Jeff Huang and Efthimis N. Efthimiadis. 2009. [Analyz-](#)
701 [ing and evaluating query reformulation strategies in](#)
702 [web search logs](#). In *Proceedings of the 18th ACM*
703 *Conference on Information and Knowledge Manage-*
704 *ment*, CIKM '09, page 77–86, New York, NY, USA.
705 Association for Computing Machinery.

706 Bernard J. Jansen, Danielle L. Booth, and Amanda
707 Spink. 2009. Patterns of query reformulation dur-
708 ing web searching. *J. Am. Soc. Inf. Sci. Technol.*,
709 60(7):1358–1371.

710 Bernard J. Jansen, Amanda Spink, and Tefko Saracevic.
711 2000. [Real life, real users, and real needs: a study](#)
712 [and analysis of user queries on the web](#). *Information*
713 *Processing & Management*, 36(2):207–227.

714 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
715 Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
716 Wen-tau Yih. 2020. [Dense passage retrieval for open-](#)
717 [domain question answering](#). In *Proceedings of the*
718 *2020 Conference on Empirical Methods in Natural*
719 *Language Processing (EMNLP)*, pages 6769–6781,
720 Online. Association for Computational Linguistics.

721 Tessa Lau and Eric Horvitz. 1999. Patterns of search:
722 [Analyzing and modeling web query refinement](#). In
723 *Proceedings of the Seventh International Conference*
724 *on User Modeling*, UM '99, page 119–128, Berlin,
725 Heidelberg. Springer-Verlag.

726 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
727 Long Ouyang, Christina Kim, Christopher Hesse,
728 Shantanu Jain, Vineet Kosaraju, William Saunders,
729 Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
730 Krueger, Kevin Button, Matthew Knight, Benjamin
731 Chess, and John Schulman. [WebGPT: Browser-](#)
732 [assisted question-answering with human feedback](#).

733 Vicki L. O'Day and Robin Jeffries. 1993. [Orienteer-](#)
734 [ing in an information landscape: How information](#)
735 [seekers get from here to there](#). In *Proceedings of*
736 *the INTERACT '93 and CHI '93 Conference on Hu-*
737 *man Factors in Computing Systems*, CHI '93, page

738	438–445, New York, NY, USA. Association for Com-	Chen Zhao, Chenyan Xiong, Jordan Boyd-Graber, and	791
739	puting Machinery.	Hal Daumé III. 2021. Multi-step reasoning over un-	792
740	Peng Qi, Haejun Lee, Tg Sido, and Christopher Man-	structured text with beam dense retrieval. In <i>Pro-</i>	793
741	nning. 2021. Answering open-domain questions of	<i>ceedings of the 2021 Conference of the North Amer-</i>	794
742	varying reasoning steps from text. In <i>Proceedings of</i>	<i>ican Chapter of the Association for Computational</i>	795
743	<i>the 2021 Conference on Empirical Methods in Natu-</i>	<i>Linguistics: Human Language Technologies</i> , pages	796
744	<i>ral Language Processing</i> , pages 3599–3614, Online	4635–4641, Online. Association for Computational	797
745	and Punta Cana, Dominican Republic. Association	Linguistics.	798
746	for Computational Linguistics.		
747	Peng Qi, Xiaowen Lin, Leo Mehr, Zijian Wang, and	Chen Zhao, Chenyan Xiong, Corby Rosset, Xia Song,	799
748	Christopher D. Manning. 2019. Answering complex	Paul Bennett, and Saurabh Tiwary. Transformer-XH:	800
749	open-domain questions through iterative query gen-	Multi-evidence Reasoning with Extra Hop Attention.	801
750	eration. In <i>Proceedings of the 2019 Conference on</i>		
751	<i>Empirical Methods in Natural Language Processing</i>		
752	and the 9th International Joint Conference on Natu-		
753	<i>ral Language Processing (EMNLP-IJCNLP)</i> , pages		
754	2590–2602, Hong Kong, China. Association for Com-		
755	putational Linguistics.		
756	Pedro Rodriguez, Shi Feng, Mohit Iyyer, He He, and		
757	Jordan Boyd-Graber. Quizbowl: The Case for Incre-		
758	mental Question Answering.		
759	Daniel M. Russell. <i>The Joy of Search: A Google In-</i>		
760	<i>sider’s Guide to Going Beyond the Basics.</i> MIT		
761	Press.		
762	Daniel M. Russell. 2019. <i>The Mystery of the Parrot-</i>		
763	<i>fish, or Where Does That White Sand Really Come</i>		
764	<i>From? How to Triangulate Multiple Sources to Find</i>		
765	<i>a Definitive Answer.</i> The MIT Press.		
766	Richard S. Tedlow. 1976. Intellect on television: The		
767	quiz show scandals of the 1950s. <i>American Quar-</i>		
768	<i>terly</i> , 28(4):483–495.		
769	Keenan Trotter. 2013. Harvard and the question of quiz		
770	bowl cheating. <i>The Atlantic.</i>		
771	Wenhan Xiong, Xiang Li, Srini Iyer, Jingfei Du, Patrick		
772	Lewis, William Yang Wang, Yashar Mehdad, Scott		
773	Yih, Sebastian Riedel, Douwe Kiela, and Barlas		
774	Oguz. Answering Complex Open-Domain Questions		
775	with Multi-Hop Dense Retrieval.		
776	Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,		
777	William Cohen, Ruslan Salakhutdinov, and Christo-		
778	pher D. Manning. 2018. HotpotQA: A dataset for		
779	diverse, explainable multi-hop question answering.		
780	In <i>Proceedings of the 2018 Conference on Empiri-</i>		
781	<i>cal Methods in Natural Language Processing</i> , pages		
782	2369–2380, Brussels, Belgium. Association for Com-		
783	putational Linguistics.		
784	Chen Zhang, Yuxuan Lai, Yansong Feng, and Dongyan		
785	Zhao. 2021. Extract, integrate, compete: Towards		
786	verification style reading comprehension. In <i>Find-</i>		
787	<i>ings of the Association for Computational Linguis-</i>		
788	<i>tics: EMNLP 2021</i> , pages 2976–2986, Punta Cana,		
789	Dominican Republic. Association for Computational		
790	Linguistics.		

802 A Player Feedback Survey

803 We gathered valuable feedback from our players
 804 about the data collection experiment, both to un-
 805 derstand our human strategies, and improve our
 806 system to be more enjoyable. We sent them a ques-
 807 tionnaire with the following questions:

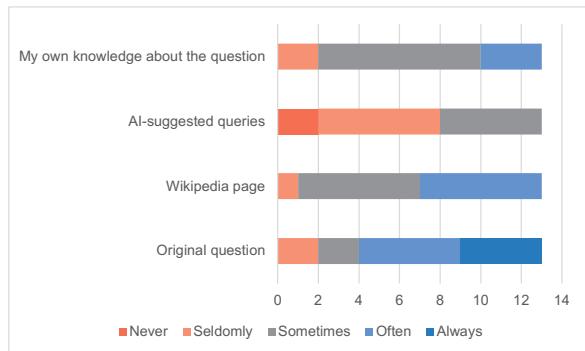
- 808 • Which search engine do you prefer?
- 809
- 810 • How do you like these search engines?
- 811
- 812 • How often do you search for things from these
 813 sources? (1 to 5):
 - 814 – Original question
 - 815 – Wikipedia page (resulted from previous
 816 search)
 - 817 – AI-suggested queries
 - 818 – My own knowledge about the question
- 819
- 820 • Please rate how much you agree with each of
 821 the statements (1 to 5):
 - 822 – The AI-suggested queries boosted my
 823 searching experience.
 - 824 – The AI-suggested queries can retrieve
 825 helpful Wikipedia passages.
 - 826 – The AI-suggested queries are reason-
 827 able. I understand why AI makes those
 828 queries.
- 829
- 830 • Select the search strategies you have applied.
 831 (List of strategies)
 - 832 – Search (multiple) keywords/specialized
 833 terms
 - 834 – Utilize the links in Wikipedia pages, di-
 835 rectly jump to another page
 - 836 – Use world knowledge about the ques-
 837 tion/domain
 - 838 – Learn domain-specific knowledge from
 839 the results, and use them in future search
 - 840 – Add proper words to restrict the range of
 841 results (for example, the subject category
 842 like “philosophy”, “chemistry”, name of
 843 the topic, ...)
 - 844 – Try name variants, e.g., Matthew C Perry
 845 → M. C. Perry
 - 846 – Refine the previous query if it doesn’t
 847 yield any helpful results
 - 848 – At the beginning/when unclear, make
 849 simple & broad query (e.g. a single noun
 850 or phrase)

- 851 – Search candidate answer to verify its cor-
 852 rectness
- 853 – Chain of searches: next query is based
 854 on previous search results
- 855 – Parallel searching chains: use multiple
 856 separate search chains.
- 857 – Search in multiple search engines.
- 858 – Search in multiple languages
- 859
- 860 • Could you tell us more about your search strat-
 861 egy, and why you use it?
- 862
- 863 • What feature would you like to see included
 864 in this app? Is there a feature that will make
 865 finding answers easier, but we don’t have it
 866 yet?
- 867
- 868 • Any other feedback for Cheater’s Quizbowl?

869 Overall we received 13 responses.

870 The large majority (13) of respondents preferred
 871 ElasticSearch over DPR (2), with most saying
 872 ElasticSearch better met their expectations: the
 873 Wikipedia page in their queries always ranked top.
 874 The two players who also like DPR consider DPR
 875 can retrieve what they are looking for when using
 876 natural language queries.

877 As is shown in Figure 6, players mostly queries
 878 from the original question, and also from the previ-
 879 ous retrieval results. Players seldomly use queries
 880 suggested by the QA models.



881 Figure 6: Source of player queries. Respondents re-
 882 ported that they seldomly use queries suggested by the
 883 QA models.

884 Most respondents didn’t find the AI suggested
 885 queries useful, but most thought they were sensi-
 886 ble, and sometimes retrieved relevant passages
 887 (Figure 5).

888 The majority of respondents used the following
 889 strategies: clicking on Wikipedia links, refining
 890 the previous query, searching the candidate answer

881 to validate it, creating a search chain where the
882 next query is based on the previous passages, using
883 multiple search chains, and using world knowledge.
884 All strategies listed above received at least two
885 respondents claiming that they have used it.

886 People also reports diverse strategies they have
887 applied. Interesting responses includes

888 I think the inclination toward keyword search has
889 to do with the desire for "the" answer rather than
890 "an" answer. I definitely use natural language
891 queries in normal searches, but usually when I
892 am looking for a subjective answer, or a variety
893 of options. I might google something like "how
894 often should I wash my car" or "what's the best
895 teapot" - questions that have possible answers, but
896 not a single objectively correct answer. In those
897 cases I'm happy to sort through many responses
898 to synthesize an answer. But in Quizbowl (and
899 especially in this case given the time/search con-
900 straints) I don't want to spend time typing a long
901 query, or paraphrasing what's in the question, and
902 I definitely don't want to risk getting answers that
903 are contradictory or ambiguous. The goal is to
904 search something specific and uniquely identify-
905 ing that leads clearly to a single correct answer
906 and keywords just seem so much safer for that
907 goal.

908 Check the AI suggestions, and use one of them
909 if they seem sensible, or type my own. Then
910 develop it from there, based on the top results and
911 seeing if there are any leads.

912 I used different strategies for different questions.
913 I figured out quickly that the AI-generated queries
914 were mostly not helpful for me unless they were
915 one person's name. In those cases I found myself
916 scanning biographical entries from the beginning
917 and eventually getting a clue that would help me
918 find an answer. Adding a subject category like
919 philosophy or chemistry in the initial search was
920 often useful. Questions about the content of lit-
921 erary texts and visual art were really difficult to
922 search; I could get closer to the answer but not all
923 the way there.