
SIS epidemics coupled with evolutionary social distancing dynamics

Keith Paarporn and Ceyhun Eksin

Abstract— A major factor contributing to the difficulties in
epidemic forecasting is the unpredictable nature of the popula-
tion behavior that can either mitigate or exacerbate the spread
of a disease. In this paper, we consider a game-theoretic frame-
work for modeling the disease prevalence dependent response
of the population behavior in a susceptible-infected-susceptible
(SIS) epidemiological model. Our behavioral response model is
based on replicator dynamics, where the individuals’ underlying
payoffs dynamically change in response to the prevalence of the
disease. The coupled dynamics highlight the interplay between
the epidemic state and distancing behaviors. We establish a
critical threshold on the incentive parameters for which below
the threshold, the state in which the disease is endemic and
the population does not cooperate with the recommended
public health measures is globally asymptotically stable (GAS).
Above the threshold, we find through extensive numerical
simulations that a variety of dynamical outcomes emerge.
For some parameters, an interior equilibrium in which the
endemic state is mitigated and a fraction of the population
socially distancing is stable. For other parameters, a stable limit
cycle about this interior state emerges. The arising rich set of
dynamics demonstrate the potential of the modeling framework
for epidemic forecasting.

I. INTRODUCTION

The public’s willingness to comply with recommended
public health measures, e.g. masking, social distancing, can
dramatically alter the trajectory of the disease in a population
as evidenced by multiple peaks and varying outbreak sizes
across different localities during the COVID-19 pandemic
[1], [2]. The mounting evidence on behavior driven trajec-
tory of the COVID-19 pandemic spurred strong interest in
modeling of population response during the pandemic [3]–
[7]. In such models, behavior of the population evolves
endogenously in tandem with disease prevalence. Such
mechanistic models of population awareness and behavior
during a disease outbreak documented potential issues and
biases in disease forecasting when behavior is unaccounted
for [8], [9]. These early mechanistic models focused on
the mitigating effects of behavior on disease spread. Yet,
population behavior not just mitigated but often exacerbated
disease spread during the COVID-19 [3], [10]. Moreover,
mechanistic models often rely on feedback mechanisms with
conceptual parameters that are hard to estimate using data
given the complexity of understanding population incentives.

Recently, game-theoretic modeling of population behavior
emerged as a more principled approach to modeling popula-
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tion behavior [5], [11]–[14]. In a game-theoretic framework,
the perceived costs and benefits of public health measures
are the explicit and tangible parameters of the behavior
model that are easier to estimate [15]. When the costs and
benefits are also coupled with the disease dynamics, they
exhibit rich set of dynamics including growing oscillations
and bifurcations [5], [12], [13], [16], [17].

In this paper, we consider the same game-theoretic frame-
work as the one considered in [13]. In particular, the per-
ceived benefits of the recommended public health measures
is dynamically coupled with the disease prevalence. The
public’s cooperation level evolves according to replicator
dynamics taking into account the current cooperation level,
where the underlying matrix game payoffs from cooperation
and defection changes as the disease prevalence changes.
The replicator dynamics drives the public cooperation level
toward an equilibrium when the disease state is constant. In
our setting, the disease and replicator dynamics evolve in
tandem. Specifically, we consider SIS (susceptible-infected-
susceptible) disease dynamics in which the transition rate
from S to I is modulated by the cooperation level of the
population. We note that the model exhibits a similar set of
dynamics as those observed in [13], [17].

In the standard SIS disease dynamics, there are two
equilibria: 1) disease-free and 2) endemic equilibria, that are
globally stable respectively when the infection rate is less or
greater than the healing rate. In our coupled SIS and evolu-
tionary behavior model, we also have the global asymptotic
stability (GAS) of the disease-free state (Theorem 3.1), if
the infection rate is less than the healing rate— identical
to the condition established in [13]. Considering simplified
disease dynamics, i.e. the SIS model, allows us to establish
payoff conditions for the GAS of the endemic equilibrium
under full defection when infection rate is larger than the
healing rate (Theorem 4.2). In particular, the payoff condition
depends on both the infection and healing rates inherent
to the disease, and the relation between the game payoff
parameters in disease-free (good) and disease prevalent (bad)
states. We also numerically analyze the local stability of en-
demic equilibrium with partial cooperation levels for payoff
parameter values that do not satisfy the payoff conditions
for GAS of the endemic equilibrium under full defection.
Our simulations identify payoff parameter regions for GAS
of the endemic equilibrium under partial cooperation, and
stable limit cycles indicating the existence of bifurcations.
These results demonstrate that a rich set of dynamics arise as
a result of the coupling between game-theoretic behavior and
disease dynamics, even for the simplest of disease dynamics.

IEEE Control Systems Letters paper presented at
2023 American Control Conference (ACC)
San Diego, CA, USA. May 31 - June 2, 2023

979-8-3503-2806-6/$31.00 ©2023 AACC 4308

Authorized licensed use limited to: Texas A M University. Downloaded on August 31,2023 at 22:52:07 UTC from IEEE Xplore.  Restrictions apply. 



II. COUPLED SIS EPIDEMIC MODEL

A. SIS epidemic model

We consider a well-mixed population of unit mass. The
disease state of an individual is either susceptible or infected.
Let i ∈ [0, 1] be the fraction of infected individuals and
s = 1 − i be the fraction of susceptible individuals. In the
SIS epidemic model, these evolve according to the following
dynamics

i̇ = β · (1− x) · i · s− α · i
ṡ = −β · (1− x) · i · s+ α · i (1)

where β > 0 is the rate at which infected individuals transmit
the disease to susceptibles, α > 0 is the rate at which
infected individuals heal from the disease, and x ∈ [0, 1] is
the proportion of individuals in the population that comply
with recommended health measures, e.g. social distancing.
In the next section, we will assume that x changes over time
according to an evolutionary game dynamic coupled with the
state of the epidemic (1). That is, incentives for individuals
to take recommended actions dynamically change as the state
of the environment, i.e. the fraction of infected individuals
i, changes.

B. Evolutionary social distancing dynamics

In the framework of feedback-evolving games [18], we
consider individuals in a population that either cooperate
with recommended health measures, or defect from them.
The incentives to either cooperate or defect is determined by
an environmental state – here, we will take the susceptible
fraction s as the environmental state. We say the environment
is good if s = 1, and bad if s = 0. Individuals evaluate
payoffs by comparing their current strategy to other strategies
in the population according to the payoff matrix

As = s

[
R1 S1

T1 P1

]
+ (1− s)

[
R0 S0

T0 P0

]
(2)

where the first row corresponds to the payoff of a cooperator
against another cooperator (first column) or a defector (sec-
ond column). Similarly, the second row denotes the payoffs
to a defector. In a bad environmental state (s = 0), the payoff
matrix is given as A0. We will not place any restrictions on
the structure of A0 .

In a good environmental state (s = 1), we will assume the
payoff entries in the matrix A1 follow a Prisoner’s Dilemma
game. They satisfy δTR1 ≜ T1 − R1 > 0 and δPS1 ≜ P1 −
S1 > 0. Here, defection becomes a dominant strategy. The
interpretation of this assumption is that when there is no
disease circulating in the population, individuals will have no
incentive to follow the recommended public health measures.

Individuals occasionally learn about the strategies of other
members in the population and their payoffs, upon which

they have an opportunity to revise their strategy1. Given that
a fraction x ∈ [0, 1] of individual are cooperators (and 1−x
are defectors) and environmental state s ∈ [0, 1], the average
payoff to a cooperator and defector are given, respectively,
as

uC(x, s) ≜ x ·Rs + (1− x) · Ss

uD(x, s) ≜ x · Ts + (1− x) · Ps

(3)

where Rs, Ss, Ts, and Ps are defined as the entries of (2).
We assume the fraction of cooperators x evolves according
to the replicator dynamics

ẋ = x(1− x)(uC(x, s)− uD(x, s)). (4)

The fraction of cooperators increases if the payoff a coopera-
tor attains in the population exceeds the payoff that a defector
attains, and decreases otherwise.

Overall, we will focus on the following autonomous
dynamical system with state p = (x, i) ∈ Γ ≜ [0, 1]2:

ẋ = Fx(x, i) ≜ x(1− x)(uC(x, 1− i)− uD(x, 1− i))

i̇ = Fi(x, i) ≜ β · (1− x) · i · (1− i)− α · i
(5)

The above system dynamics admit unique solutions because
they are polynomial functions on a compact domain, and
are thus locally Lipschitz. Through standard arguments (e.g.
Nagumo theorem), the interior of the state space, Γo ≜
(0, 1)2, is positively invariant with respect to the system (5).

Lemma 2.1. If (x(0), i(0)) ∈ Γo, then (x(t), i(t)) ∈ Γo for
all t ≥ 0.

We are interested in identifying equilibrium points and
conditions for which they are globally asymptotically stable.

Definition 1. An equilibrium point p∗ ∈ Γ is globally
asymptotically stable (GAS) if for any solution of (5)
with initial condition (x(0), i(0)) ∈ Γo, it holds that
limt→∞(x(t), i(t)) = p∗

We consider a point to be GAS if all trajectories starting
in the interior Γo converge to it.

III. RESULTS: DISEASE-FREE EQUILIBRIUM

In this section, we consider the regime β ≤ α where the
infection rate is smaller than the healing rate. We find that the
disease-free equilibrium under full defection, pDFE = (0, 0)
is globally stable.

Theorem 3.1. Suppose β ≤ α. Then the disease-free
equilibrium with full defection, pDFE = (0, 0), is GAS.

Proof. First, we observe that the only equilibrium points of
the system (5) that lie in Γ are the isolated points (0, 0) and
(1, 0). One can verify that the point pDFE is locally stable.

1The process in which agents revise their strategies is called a revision
protocol [19]. Many distinct types of revision protocols, e.g. pairwise
comparison, induce the replicator dynamics. For agents to perform these
revision protocols, it is not necessary for them to physically interact with
one another in order to learn about others’ payoffs – these may be learned
through information sources such as media and social networks. Thus, we
assume the interactions that underlie the replicator equation do not factor
in to the physical epidemic spreading process.
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The point (1, 0) is a saddle that attracts only the trajectories
starting on the border {(x, i) : x = 1, i ∈ [0, 1]}. Moreover,
Fi(x, i) < 0 for all (x, i) ∈ Γo. Hence, there cannot exist
a periodic orbit in Γo. By the Poincaré-Bendixson Theorem,
the point pDFE must be GAS. ■

In this scenario, any disease outbreak becomes eradicated
and the population ceases to follow any health measures.

IV. RESULTS: ENDEMIC EQUILIBRIUM WITH FULL
DEFECTION

In this section, we present our main findings on the
stability of equilibrium points of (5) under the regime β > α
where the infection rate is larger than the healing rate.
We find that an endemic equilibrium with full defection,
p∗
D = (0, 1− α

β ) emerges in this regime. In this equilibrium,
the disease is not eradicated, yet the entire population ceases
to follow any health measures.

Recall that while we place assumptions on the structure
of the payoff matrix A1 (we will assume that the payoff
parameters δTR1, δPS1 > 0 are fixed throughout), we do not
place any restrictions on the structure of A0, i.e. the payoffs
in the bad environmental state. Our results will hence specify
conditions on the deviation parameters δSP0 ≜ S0 −P0 and
δRT0 ≜ R0 − T0, which measures the payoff advantage (or
disadvantage) in the bad environment that C has over D
against a defector and cooperator, respectively. The result
below specifies conditions for which p∗

D is asymptotically
stable.

Theorem 4.1. Suppose β > α. Then the endemic equilibrium
with full defection, p∗

D = (0, 1− α
β ) is locally stable if and

only if
δSP0 < δ∗SP0 ≜

α

β − α
δPS1. (6)

Proof. The Jacobian of the dynamics at an arbitrary point p
to be

J(p) =

[
∂Fx

∂x (x, i) ∂Fx

∂i (x, i)
−βi(1− i) β(1− x)(1− 2i)− α

]
(7)

where
∂Fx

∂x
(x, i) = x(2− 3x) [iδRT0 − (1− i)δTR1]

+ (1− x)(1− 3x) [iδSP0 − (1− i)δPS1]

∂Fx

∂i
(x, i) = x2(1− x)(δRT0 + δTR1)

+ x(1− x)2(δSP0 + δPS1)

(8)

At the point p∗
D, the Jacobian is

J(p∗
D) =

[
uC(0, α

β )− uD(0, α
β ) 0

−α(1− α
β ) α− β

]
(9)

The characteristic polynomial becomes

(λ− (α− β)) · (λ− ϵ((1− α

β
)δSP0 −

α

β
δPS1)) = 0 (10)

The first eigenvalue α − β is negative. The second eigen-
value is negative if and only if fD(0, α

β ) > fC(0,
α
β ), or

equivalently, (1− α
β )δSP0 − α

β δPS1 < 0. ■

Note that p∗
D is unstable if and only if the opposite

condition holds. Viewing (δSP0, δRT0) ∈ R2 as the payoff
parameter space, p∗

D is stable in the half-space defined by
δSP0 < δ∗SP0, where δ∗SP0 is a constant. We will refer
to this region where the payoff advantage of a cooperator
over a defector in the bad environment is less than δ∗SP0

as the left half-space. While Theorem 4.1 asserts that p∗
D

is locally stable, we can further establish that it is globally
asymptotically stable in a large sub-region of the left half-
space.

A. Global asymptotic stability in the left half-space

The following result provides conditions on the parameter
space for which global asymptotic stability (GAS) of p∗

D can
be established.

Theorem 4.2. The equilibrium p∗
D is GAS if (δSP0, δRT0)

belongs to the region

{δSP0 < δ∗SP0}\
{
δRT0 ≥ 1

2b2

[
−b1 +

√
b21 − 4b0b2

]}

(11)
where

b0 ≜ (a0 + δSP0 +
α

β
δTR1)

2 − 4δSP0a0

b1 ≜ −2(1− α

β
)(a0 + δSP0 +

α

β
δTR1) + 4a0

b2 ≜ (1− α

β
)2

(12)

with a0 ≜ (1− α
β )(δSP0 − δ∗SP0).

The above result provides sufficient conditions for p∗
D to

be GAS. We note that p∗
D appears to be GAS in the omitted

region in (11) via extensive numerical simulations2 of the
state trajectories (Figure 1 Center). In the omitted region,
two additional interior equilibrium points emerge.

We now develop the analysis to establish Theorem 4.2.
The i-isocline is

Ii ≜ {p ∈ Γ : Fi(p) = 0}

= {p : i = 0} ∪
{
p : i = 1− α

β(1− x)

}
(13)

Note that p∗
D lies in the first component above. The x-

isocline is

Ix ≜ {p ∈ Γ : Fx(p) = 0}
= {p : x = 0 or 1}∪{

p : i=
xδTR1 + (1− x)δPS1

x(δRT0 + δTR1) + (1− x)(δSP0 + δPS1)

}

(14)
The intersection points of Ii and Ix in the state space Γ yield
equilibrium points of the system. We call an equilibrium
interior if it lies in Γ0. Observe that an interior equilibrium

2Future work will be devoted to establishing GAS of p∗
D in the omitted

region.
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Theorem 4.1

Fig. 1: (Left) The state space Γ and isoclines Zx and Zi in the regime of Lemma 4.1, δSP0 < δ∗SP0 and δRT0 < 0. Here, δSP0 = 0.3,
δ∗SP0 = 0.5, and δRT0 = −2. (Center) State trajectories (blue curves) in the parameter region omitted in Theorem 4.2. The blue circles
indicate initial conditions. In this regime, two interior equilibria emerge from the intersection of Zx and Zi. The equilibrium p∗

D appears
to be globally asymptotically stable. (Right) The left half-space with respect to payoff parameters (δSP0, δRT0). Lemmas 4.1 and 4.3
establish global asymptotic stability of p∗

D in the regions shown. The region omitted in Theorem 4.2 is the region above the solid red
line. In all plots, we set δTR1 = 1.5, δPS1 = 0.25, α = 0.2, and β = 0.3.

results from the intersection of the two curves

Zi(x) ≜ 1− α

β(1− x)

Zx(x) ≜
xδTR1 + (1− x)δPS1

x(δRT0 + δTR1) + (1− x)(δSP0 + δPS1)

(15)

More specifically, (x, Zi(x)) is an interior equilibrium if
and only if Zi(x) = Zx(x) and x ∈ (0, 1 − α

β ). Detailed
properties of the function Zx are given in Appendix A. We
begin the analysis by considering the lower-left quadrant.

Lemma 4.1. If δSP0 < δ∗SP0 and δRT0 < 0, then p∗
D is

GAS.

Proof. We first claim that there are no interior equilibria in
this regime. A proof of this claim is provided in Lemma A.1
in the Appendix.

There are a total of three isolated equilibrium points:
(0, 0), p∗

D, and (0, 1). We have shown that p∗
D is locally

stable if δSP0 < δ∗SP0, and the other two rest points are
unstable. To prove global asymptotic stability, we need to
show there cannot be any periodic orbits in the interior
Γo. The global stability then follows from the Poincaré-
Bendixson Theorem. First, we consider the region 0 <
δSP0 < δ∗SP0. Here, Zx(x) intersects the state space Γ but
does not intersect the i-isocline – see Figure 1 (Left). We
can identify a non-empty subset

X+ = {(x, i) ∈ Γ : i > Zx(x)} ⊂ Γ (16)

for which Fx(x, i) > 0 if (x, i) ∈ X+ and Fx(x, i) < 0 if
(x, i) ∈ Γ\X̄+. Here, X̄+ indicates the closure. We claim
any trajectory that starts in X+ leaves X+ in finite time. To
see this, observe the compact set X̄+ lies above (w.r.t. the
i coordinate) and does not intersect the i-isocline. Hence,
Fi(x, i) < m1 < 0 for all (x, i) ∈ X̄+, where

m1 = max
(x,i)∈X̄+

Fi(x, i). (17)

Hence, there cannot be any periodic orbit contained in X̄+.
We also have Fx(x, i) < 0 for all (x, i) ∈ Γ\X̄+. Hence,
there cannot be a periodic orbit contained in Γ\X̄+.

Next, we claim any trajectory starting in Γ\X̄+ can never
enter X̄+, i.e. Γ\X̄+ is a positively invariant set that contains
p∗
D. This fact follows from an application of Nagumo’s

Invariance Theorem. Let h(x, i) = Zx(x) − i defined for
(x, i) ∈ Γ, such that h(x, i) > 0 → (x, i) ∈ Γ\X̄+.
The boundary h(x, i) = 0 is precisely the x-isocline in
Γ, and for any (x, i) satisfying h(x, i) = 0, ḣ(x, i) =
[Fx(x, i), Fi(x, i)] · [∂Zx

∂x ,−1] = [0, Fi(x, i)] · [∂Zx

∂x ,−1] > 0.
Since any trajectory starting in X̄+ ends up in Γ\X̄+, and

Γ\X̄+ is positively invariant with no periodic orbits (since
Fx(x, i) < 0), we can conclude that there is no periodic orbit
in Γ. By Poincaré-Bendixson, p∗

D is globally asymptotically
stable.

Now, we consider the remaining region δSP0 < 0. The
non-existence of periodic orbits here follows from the fact
that Fx(x, i) < 0 for all (x, i) ∈ Γo. To see this, we consider
the four possible cases from the proof of Lemma A.1.
• Zx(0), Zx(1) < 0. Then Zx(x) < 0 for all x ∈ [0, 1]. Note
the numerator of Zx, num(x), is positive for all x ∈ [0, 1].
Hence, the denominator, den(x), must be negative for all x ∈
[0, 1]. The condition that Fx(x, i) < 0 for any (x, i) ∈ Γo is
equivalent to

uC(x, 1− i)− uD(x, 1− i) = i · den(x)− num(x) < 0

⇐⇒ i > Zx(x)
(18)

which is satisfied.
• Zx(0), Zx(1) > 1. The fact that Fx(x, i) < 0 for all
(x, i) ∈ Γo follows analogous arguments from above.
• Zx(0) < 0, Zx(1) > 1. Here, den(x) < 0 for x ∈ [0, xd)
and den(x) > 1 for x ∈ (xd, 1]. For x ∈ [0, xd), the
condition is equivalent to (18), which is satisfied here. For
x ∈ (xd, 1], the condition is equivalent to i < Zx(x), which
is satisfied here.
• Zx(0) > 1, Zx(1) < 0. The fact that Fx(x, i) < 0 for all
(x, i) ∈ Γo follows analogous arguments from above. ■

We now turn our attention to the remaining quadrant
δRT0 ≥ 0. Recall that solutions x ∈ (0, 1−α

β ) to the equation
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Zi(x) = Zx(x) yield interior equilibria. We find there can
be at most two, which are found to be:

x± ≜
1

2a2

[
−a1 ±

√
a21 − 4a2a0

]
(IPs)

where

a2 ≜ δSP0 − δRT0

a1 ≜ δRT0 − 2δSP0 +
α

β
(δSP0 + δPS1 − δRT0 − δTR1)

= −(a0 + a2 +
α

β
(δRT0 + δTR1))

a0 ≜ (1− α

β
)(δSP0 − δ∗SP0)

(19)
Observe that x± have non-zero imaginary part if and only
if a21 − 4a2a0 < 0. The following Lemma provides an
equivalent condition in terms of the payoff parameters.

Lemma 4.2. Suppose δSP0 < δ∗SP0 and δRT0 > 0. The roots
x± from (IPs) have non-zero imaginary part if and only if

−b1 −
√
b21 − 4b0b2
2b2

< δRT0 <
−b1 +

√
b21 − 4b0b2
2b2

(20)

where b0, b1, and b2 are defined by (12).

Proof. The result follows by expressing a21 − 4a2a0 < 0
using expressions from (19). We omit detailed calculations
for brevity. ■

Let us denote ΩI ⊂ R2 as the pairs of parameters
(δSP0, δRT0) that satisfy (20). Because the roots are imagi-
nary, the isoclines never intersect and hence there are no rest
points in the interior. We can establish global asymptotic
stability of p∗

D in this regime. Note that the two bounds
given in (20) coincide at δSP0 = δ∗SP0, yielding the value
δ∗SP0+

α
β δTR1

1−α
β

.

Lemma 4.3. Suppose δSP0 < δ∗SP0 and δRT0 > 0. Then
if (δSP0, δRT0) ∈ ΩI or δRT0 ≤ 1

2b2
[−b1 −

√
b21 − 4b0b2],

then p∗
D is GAS.

Proof. Under the given conditions, one can show in a similar
manner to Lemma A.1 that there are no interior equilibrium
points. The proof of stability then follows similar arguments
from Lemma 4.1 that were used for the first region 0 <
δSP0 < δ∗SP0. Essentially, one can identify a nonempty
subset X+ ⊂ Γ and show that no periodic orbit can exist
in Γo. We omit exact details for brevity. ■

The above result combined with Lemma 4.1 establishes
Theorem 4.2.

V. NUMERICAL STUDIES: ENDEMIC EQUILIBRIUM WITH
PARTIAL COOPERATION

In this section, we will consider the right half-plane
δSP0 ≥ δ∗SP0, in which p∗

D is no longer stable. We primarily
study, through numerical simulations, stability properties of
an interior endemic equilibrium that emerges in this regime.
First, we establish a characterization of this equilibrium.

Proposition 5.1. Suppose δSP0 > δ∗SP0 and assume that
δTR1−δPS1 > 0. Then there is a unique interior equilibrium
point, given by p∗

int ≜ (x−, Zi(x−)), where x− is given in
(IPs).

Proof. The proof is omitted for space concerns. ■

The interior equilibrium p∗
int reflects an endemic epidemic

state where a fraction of the population complies with health
measures. The endemic level here is less severe than the level
in p∗

D with full defection, where the infected fraction is 1−α
β .

Simulating the dynamics, we observe a variety of dynamical
outcomes and stability properties of the equilibrium p∗

int.
Sample trajectories are shown in Figure 2. These outcomes
are linked to the eigenvalues of the Jacobian matrix J(p∗

int).
In particular, Figure 2 (Left) indicates that
• In H1, the eigenvalues of J(p∗

int) are real and negative.
Here, we observe that p∗

int is GAS.
• In H2, the eigenvalues of J(p∗

int) are a complex conjugate
pair with negative real part. Here, we observe that p∗

int is
GAS.
• In H3, the eigenvalues of J(p∗

int) are a complex conjugate
pair with positive real part. Here, p∗

int is unstable and we
observe trajectories converging to a stable limit cycle that
contains p∗

int.
Thus, if we take δRT0 as a bifurcation parameter, the

stability properties of p∗
int change as it traverses up from H1

to H2, and from H2 to H3. From the numerical simulations,
p∗

int undergoes a supercritical Hopf bifurcation as it traverses
from H2 to H3.

VI. CONCLUSIONS

We considered SIS disease dynamics coupled with pop-
ulation behavior. The population behavior modulated the
change in the number of infected by adjusting the pub-
lic’s cooperation level with the recommended public health
measures. The public’s cooperation level evolves according
to the replicator dynamics on game payoffs determined
by the disease prevalence. We established the GAS of the
endemic disease state with complete defection of public
health measures based on the relative payoff values of the
games in the good and bad states. Our results also show that
the rich set of dynamics, e.g., stable limit cycles, bifurcations,
exhibited as a result of the coupling between SEIR or SEIRS
disease dynamics and population behavior [13] are retained
when we consider the simpler SIS disease dynamics. The
rich set of dynamics that arise as a result of the coupling
between the game-theoretic behavior model and the disease
dynamics, and the tangible set of payoff parameters related
to the cost and benefits of public health measures provide
suitable modeling framework for forecasting epidemics using
available data.
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Fig. 2: (Left) Numerical characterization of the eigenvalues of the Jacobian at the unique interior equilibrium p∗ in the right half-plane,
δSP0 ≥ δ∗SP0. (Center) State trajectories (blue curves) in the H2 regime, where p∗ has complex conjugate eigenvalues with negative
real part. The initial conditions are shown as blue circles. p∗ appears to be globally asymptotically stable. Here, (δSP0, δRT0) = (2, 8).
(Right) State trajectories from two initial conditions (blue dots) in the H3 regime, where p∗ has complex conjugate eigenvalues with
positive real part. Trajectories appear to converge to a stable limit cycle that contains p∗. Here, (δSP0, δRT0) = (2, 15). In all plots, we
set δTR1 = 1.5, δPS1 = 0.25, α = 0.2, and β = 0.3.
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APPENDIX

A. Properties of the x-isocline

The function Zx(x) : R → R possesses the following
properties. It has a single point of discontinuity at

xd ≜
−(δSP0 + δPS1)

δRT0 + δTR1 − (δSP0 + δPS1)
. (21)

Thus, Zx(x) is defined for all x ∈ R\{xd}. Zx is strictly
monotone on R\{xd}.
• If δSP0δTR1 − δPS1δRT0 > 0, then Zx(x) is
strictly increasing on R\{xd}. It holds that Zx(x) >

δTR1−δPS1

δTR1−δPS1+δRT0−δSP0
for x < xd and Zx(x) <

δTR1−δPS1

δTR1−δPS1+δRT0−δSP0
for x > xd.

• If δSP0δTR1 − δPS1δRT0 < 0, then Zx(x) is
strictly decreasing on R\{xd}. It holds that Zx(x) <

δTR1−δPS1

δTR1−δPS1+δRT0−δSP0
for x < xd and Zx(x) >

δTR1−δPS1

δTR1−δPS1+δRT0−δSP0
for x > xd.

• If δSP0δTR1 − δPS1δRT0 = 0, then it takes the constant
value Zx(x) =

δPS1

δSP0+δPS1
for all x ∈ R.

Lemma A.1. If δSP0 < δ∗SP0 and δRT0 < 0, then there are
no rest points in Γ0.

Proof. The proof is omitted for space considerations. ■
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