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Abstract. This paper is a continuation of our accompanying paper [M. Talbi, N. Touzi, and
J. Zhang, Dynamic Programming Equation for the Mean Field Optimal Stopping Problem, https://
arxiv.org/abs/2103.05736, 2021], where we characterized the mean field optimal stopping problem
by an obstacle equation on the Wasserstein space of probability measures, provided that the value
function is smooth. Our purpose here is to establish this characterization under weaker regularity
requirements. We shall define a notion of viscosity solutions for such an equation and prove existence,
stability, and the comparison principle.
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1. Introduction. In our previous paper [26], we characterized the so-called
mean field optimal stopping problem by a dynamic programming equation on the
Wasserstein space, which we call an obstacle equation on Wasserstein space by anal-
ogy with the equation corresponding to the standard optimal stopping problem (see,
e.g., El Karoui [10] or Shiryaev [25]). More precisely, we proved that the value func-
tion of our optimization problem is the unique solution of the obstacle equation on
the Wasserstein space, provided it has C1? regularity (in an appropriate sense). We
note that, besides its obvious connection with multiple stopping problems over a large
interacting particle system, this obstacle equation provides a convenient tool for many
time inconsistent optimal stopping problems. We also remark that our mean field op-
timal stopping problem has a structure quite different from the mean field games of
optimal stopping.

However, as in the case of the standard optimal stopping problems, one can
rarely expect a classical solution for the obstacle equations. In particular, the infinite
dimensionality of the space of measures makes the regularity requirement even harder
to meet. Our goal of this paper is thus to develop a viscosity solution theory for
the obstacle problem on the Wasserstein space, which as is well-known requires much
weaker regularities.

There have been some serious efforts on viscosity solutions of nonlinear par-
tial differential equations on the Wasserstein space. We first mention the paper by
Cardaliaguet and Quincampoix [3], which considered a first order Hamilton—Jacobi—
Isaacs equation on Wasserstein space arising from deterministic zero-sum games with
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random initial conditions. The comparison principle for viscosity solutions was es-
tablished by combining the doubling variables argument with Ekeland’s variational
principle. We may also mention the work of Gangbo, Nguyen, and Tudorascu [13]
and Jimenez, Marigonda, and Quincampoix [14], who also define a notion of viscosity
solutions for Hamilton—Jacobi equations by using subdifferentials. Another approach
followed by several authors (see, e.g., Pham and Wei [22]) consists in exploiting Li-
ons’ idea [19] of lifting the functions on the Wasserstein space into functions on the
Hilbert space of random variables and then using the existing viscosity theory on
Hilbert spaces (see, e.g., Lions [16, 17, 18] and Fabbri, Gozzi, and Swiech [11]). More
recently, Cosso et al. [6] defined viscosity solutions for Hamilton—Jacobi equations by
requiring the global extrema on the Wasserstein space for the tangency property of
the test functions.

In the context of mean field control problems in a path dependent setting, Wu
and Zhang [27] proposed a notion of viscosity solutions for parabolic equations on
the Wasserstein space, inspired by Ekren, Keller, Ren, Touzi, and Zhang [7, 8, 9,
23]. Note that the natural idea which consists in taking Wasserstein balls for the
viscosity neighborhood (as in Carmona and Delarue [4]) leads to serious difficulties as
the Wasserstein ball is in general not compact. Instead, [27] restricted the viscosity
neighborhood of some point (¢, ) (where ¢ is a time and p a measure) to the compact
set of all possible laws of the controlled state process starting from this point. Another
remarkable work by Burzoni et al. [2], in the context of mean field control of jump-
diffusions, restricted the viscosity neighborhood in another way, so as to guarantee
compactness. They proved a comparison result by the doubling variables argument.
To do this, they succeeded in constructing a smooth metric which serves as a test
function, but unfortunately restricts the scope of the method to the case when the
coefficients of the controlled dynamics do not depend on the space variable.

We shall follow the approach of [27]. We consider the joint law of (Xra¢, 1r>4))
as the variable of the value function, where X is the state process and 7 is the stop-
ping time. As in [27] we define viscosity solutions by using the set of such laws over
all stopping times 7. This neighborhood set of laws, for a given initial condition,
is compact under Wasserstein distance and thus is desirable for the viscosity theory.
We show that, under natural conditions, the value function of the mean field optimal
stopping problem is indeed the unique viscosity solution of the corresponding obstacle
equation on Wasserstein space. We shall also establish the stability and the compar-
ison principle for the viscosity solutions. To prove the latter, one key ingredient is
a smooth mollifier for continuous functions on the Wasserstein space, introduced by
Mou and Zhang [20]. However, to obtain some uniform estimates of the smooth mol-
lifier which are needed in our proof of comparison principle, as in [20] we require the
coefficients to be Lipschitz continuous under the 1-Wasserstein distance, rather than
the more natural 2-Wasserstein distance.

As applications of our viscosity theory, we invest several time inconsistent optimal
stopping problems, including problems related to mean variance, probability distor-
tion, and expected shortfall. By considering the law (instead of the value) of the
stopped state process as the variable, we show that the value functions are indeed the
unique viscosity solution to the corresponding obstacle equation on the Wasserstein
space. Moreover, our results can be easily extended to the infinite horizon case.

The paper is organized as follows. In section 2, we present the mean field optimal
stopping problem, the corresponding dynamic programming equation, and some of its
elementary properties. Section 3 is the main section, where we propose our definition
of viscosity solutions and prove the main results. Section 4 is devoted to several
applications. Finally, we prove some technical results in the appendix.
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Notation. We denote by P(2, F) the set of probability measures on a measurable
space (Q,F), and Po(Q,F) := {m € P(F) : [,d(zo,z)*m(dx) < oo} for some
xo € 2, where d is a metric on Q. P2(Q, F) is equipped with the corresponding
2-Wasserstein distance W,. When (€2, F) = (R?, B(R?)), we simply denote them as
P(R?) and Py(R%). For a random variable Z and a probability P, we denote by
Py :=PoZ~! the law of Z under P. For vectors x,y € R™ and matrices A, B € R"*"™,
denote z -y := Y1  x;y; and A: B:=tr(ABT). We shall also write “USC” (resp.,
“LSC”) for “upper (resp., lower) semicontinuous.”

2. The obstacle problem on Wasserstein space.

2.1. Formulation. Let T < oo be fixed and Q := C°([-1,T],R?) x I°([~1,T7)
be the canonical space, where

e C°([—1,T],R%) is the set of continuous paths from [—1,T] to R, constant on
[_L 0)7

e I°([~1,7)) is the set of nonincreasing and cadlag maps from [—1,T] to {0,1},
constant on [—1,0), and ending with value 0 at T.
We equip 2 with the Skorokhod distance, under which it is a Polish space. Note that
the choice of the extension to —1 is arbitrary; the extension of time to the left of the
origin is only needed to allow for an immediate stop at time ¢t = 0.

We denote Y := (X, ) the canonical process, with state space S :=R? x {0,1},
its canonical filtration F =FY = (Ft)te[—1,1], and the corresponding jump time of the
survival process I:

T:=inf{t >0:I; =0} so that I;:=1y_14, for all t € [-1,T].

By the cadlag property of I, 7 is an F-stopping time.

Let (b,o,f) : [0,T] x R? x Py(S) — R? x R4 x R with o taking values in
nonnegative matrices, and g : Po (Rd) — R. In the following assumption, which will
always be in force throughout the paper, P2(S) is equipped with the W, distance.

Assumption 2.1. (i) b,o are continuous in ¢ and uniformly Lipschitz continuous
in (z,m).
(ii) f is Borel measurable and has quadratic growth in z € Rd, and

(2.1) F(t,m):= | f(t,z,m)m(dz,1) is continuous on [0,7T] X Pa(S).

R4
(iii) g is USC and locally bounded and is extended to P2(S) by g(m) := g(m(-,{0,1})).

Introduce the dynamic value function
T
(2.2)  V(t,m):= sup {/ F(r, IP’yT)dr—I—g(IP’yT)}, (t,m) €10, T] x Pa(S).
PeP(t,m) t

Here P(t,m) is the set of probability measures P on (€2, Fr) s.t. Py, =m, the paths
s € [—1,t) = Y, are constants, P-a.s., and the processes
(2.3) M =X — / b(r, X,,Py )I,dr and M MT — / o?(r, X,, Py )1 dr

t t

are P-martingales on [t,T], that is, for some P-Brownian motion W¥,

stXt—l—/ b(r,XT,IP’y,,,)ITdr—&—/ U(T,XT,]P’y,,_)IrdWF, I,=1, 1,.,, P-as.
t t
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A special element of P(t,m) is P=P"" under which X is unstopped. That is,
(2.4)
X=X, —|—/ b(r, X,., Py )I.dr —i—/ o(r, XNI@YT)ITCZWF, I, =11y 1y(s), P-a.s.
t t

Note that Y. =Y A-, and in particular Y =Y., P-a.s. Moreover, from the definition
of F in (2.1), we have ftT F(r,Py,)dr =E [ f(r,X,,Py,)dr.

We recall from our first paper [26] that P(t,m) is compact under the Wasserstein
distance Ws, and thus existence holds for the mean field optimal stopping problem

(2.2). Furthermore, we have the dynamic programming principle (DPP): for any
selt, T,

(2.5) V(t,m)= sup / F(r,Py.)dr +V(s,Py,_ )}
PeP(t, m)

= sup /Fr]P’y)dr+V(s ]Py)}
PeP(t,m)

2.2. Differential calculus. We next recall some differential calculus tools on
the Wasserstein space. We say that a function u : P2(S) — R has a functional linear
derivative §,,u: P2(S) x S — R if

u(m’) —u(m) :/0 /S5mu()\m’ + (1= XN)m,y)(m’ —m)(dy)dX for all m,m’ € Py(S),

Omu is continuous for the product topology, with P2(S) equipped with the 2-Wasserstein
distance, and has quadratic growth in = € RY, locally uniformly in m € Ps(S), so as
to guarantee integrability in the last expression. As in [26], we denote

(2.6)  dpui(t,m,z) :=pu(t,m,z,i) for  ie€{0,1}, Diu:=0,u1 — du0,
and we introduce the measure flow generator of X

Lu(t,m) := Ozu(t,m) / L:0mur (t,m, x)m(dz, 1),
where L, 0,u1 :=b 0z0u1 + 02 02 dmus.

(2.7)

Throughout this paper, we denote
Qi :=[t,T) x Po(S), and Q, :=[t, T] x P2(S), t€[0,T).

DEFINITION 2.2. Let Cy%(Q,) be the set of functions u: Q, — R s.t.
® Oy, 6ty OO, 02, 6,mu1 exist and are continuous in all variables,
® 92 5,,u1 is bounded in x, locally uniformly in (t,m).

The following Itd’s formula is due to [26, section 3]: for any u € Cy*(Q,) and
PeP(0,m),
uw(T,mr_) =u(0,m) +f0T Lu(s,ms)ds
(28) + ZSGJ[D,T)(m) [u(s,ms) - u(&ms,)]
P
B | S Drls,me, X)dIL].

where m := {m, := Py, }s¢i—1,1), Jr(m) := {s € T : my; # m,_}, for all subsets
T C[0,77, and JE(m) its complement set in T.
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2.3. The dynamic programming equation. Given two probability measures
m,m’ € Pa(S), we say that m’ < m if m/(-,1) is absolutely continuous w.r.t. m(-,1)
with density bounded by 1, i.e.,

(2.9)  m/(dz,1)=p(z)m(dz,1), and m'(dz,0) = [1 — p(z)]m(dz,1) + m(dz,0),

for some measurable p : R? — [0,1]. In other words, m’(dz,1) is obtained from
m by randomly stopping a proportion 1 — p(x) of the surviving particles. In our
CODteXt, my_ = ]P)(Xm]t—) and my = P(Xu[t)? with P € P(t, m), so that my = mMy— with
conditional transition probability p(x) =pi(z) :=P(L;=1|X; =z, =1).

The following property (proved in Appendix A) will be used often in this paper.

LEMMA 2.3. For an arbitrary m € Pa(S),
(i) the set {m':m’ < m} is compact,
(ii) any compact subset K(m) C {m’ : m’ < m} has a smallest element for =<, i.e.,
there exists m € K(m) such that for all m’ € K(m), we have that m' < m implies that
m’ =m.

The dynamic programming equation corresponding to our mean field optimal
stopping problem is the infinitesimal counterpart of the DPP (2.5) and is defined by

(2.10) min{ min [—(Lu+F)(t,m’)},(D,u)*(t,m)}zo, (t,m) € Qo,

m’eCy (t,m)
with boundary condition u|t—r = g. Here the function (Dju), is the LSC envelope of

Dyu: (t,m)— inf Dru(t,m,x),
! ( ) z€Supp(m(-,1)) ! ( )

which is USC, but not continuous, in general, and the set
Cu(t,m):={m' 2m:ut,m’) >u(t,m)}, (t,m) e Qo,

indicates the set of positions in Qg which improve u by stopping the corresponding
particles.

For the purpose of the present paper, we note that this equation is slightly different
from the obstacle equation introduced in our previous work [26]:

- if u is a classical solution of (2.10), then it is nondecreasing for < (see [26,
Lemma 4.3]), and thus C,(¢t,m) is characterized by an equality, as in [26];

- despite the remaining differences, the two equations define the same solution,
but this does not seem to have an immediate proof; we emphasize, however, that the
equivalence between these two equations is a direct consequence of our uniqueness
result in [26, Theorem 4.5] and the comparison Theorem 3.13 below.

Our objective in this paper is to develop a notion of viscosity solution for this
equation which bypasses the strong regularity requirements of classical solutions. As
usual, we start by introducing the notions of the sub- and supersolutions.

DEFINITION 2.4. Let u e Cy*(Q,).
(i) u is a classical supersolution of (2.10) if

2.11) min { — (Lu+ F), Dyu}(t,m) >0 for all (£,m) € Qo.
ii) u is a classical subsolution of (2.10) if

(
(
(2.12) min{ — (Lu+ F), (Dsu). }(t,m) <0 for all (t,m) € Qq s.t. Cy(t,m)={m}.
(

ili) u is a classical solution of (2.10) if it is a classical supersolution and subsolution.
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3. Viscosity solutions.

3.1. Definition and consistency. For ¢ >0 and (¢,m) € Qq, we introduce the
neighborhood

Ns(t,m) := {(s,ﬁz) :s€t,t+0],PeP(t,m), me {IP’ysf,IPys}}.
Note that, as the closure of a cadlag Py (S)-valued graph, Nj(¢,m) is compact, by the
compactnesses of [t,t+ 0], P(t,m), and {(Py,_,Py,)}scjt,t4o) for any P e P(t,m).
DEFINITION 3.1. Let u: Qy — R. We say that u is N-USC (resp., N-LSC) if

u(t,m) > limsup u(s,m) (resp., u(t,m)
(s,m)—(t,m)

< liminf wu(s,m)) for all (t,m) € Q,,

T (s,m)—(t,m)
where the limits are sequences (t,,my) — (t,m) with (t,,my,) € Np_i(t,m).

Note that the standard WWs-semicontinuity implies the N-semicontinuity. For a
locally bounded function u: Q, — R, we introduce its N-LSC and A/-USC envelopes
relatively to P(t,m), us, and u*, respectively:

ue(t,m):= liminf wu(s,m), u*(t,m):= limsup u(s,m)for all(t,m) € Q,
(s,m)—(t,m) (s,m)—(t,m)

where the limits are taken on all sequences {t,,mp}n>1 converging to (t,m) with
(tn,mpn) € Np_t(t,m) for all n. We then introduce the sets of test functions

= ._ L2/ Y. (o _ _
Au(t,m) = {gp € Cy7(Qy) : (p —ux)(t,m) Nrar%iicn)(@ uy) for some § > 0},

L 1.2/~ \ . % _ . %
Au(t,m):= {50602 (Qy):(p—u )(t,m)—Nil(ltl’I}n)Qp u*) for some §>O}.

DEFINITION 3.2. Let u: Qo — R be locally bounded.
(1) w is a viscosity supersolution of (2.10) if, for any (t,m) € Qo,

1
(3*(; m) > u.(t,m’) for all m' <m and — (Lo + F)(t,m)>0for all ¢ € Au(t,m).
(i) u is a viscosity subsolution of (2.10) if, for any (t,m) € Qg s.t. Cyux(t,m)={m},
(3.2) min{— (Lo + F), (D). H(t,m) <0 for all p € Au(t,m).
(iii) w is a viscosity solution of (2.10) if it is a viscosity supersolution and subsolution.

Remark 3.3. Without loss of generality (w.l.o.g.), we may assume that the maxi-
mum in the definition of Au(t,m) is strict. Indeed, for ¢ € Au(t,m), we set

B(s,1m) 1= p(s,1m) — (s — )2 — (M(R% 1) —m(R,1))” for all (s,7m) € Q.

It is obvious that @ € C3%(Q,). As @(s,/m) = @(t,m) if and only if s =t and m =m
(since m(R% 1) = m(R%, 1), and observing that in this case m = Py, < m for some
P € P(t,m)), we deduce that ¢ € Au(t,m) and the maximum is strict. Moreover,
simple computations show that 0;p(t,m) = Opp(t,m) and Lp(t,m) = Le(t,m). An
analogous statement holds for Au(t,m). d

Our first result shows the consistency between classical and viscosity solutions.
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THEOREM 3.4. Let u € Cy%(Qq). Then u is a classical sub- (resp., super-)
solution of (2.10) if and only if it is a viscosity sub- (resp., super-) solution of (2.10).

Proof. (i) Let (t,m) € Qo. If u is a viscosity super/subsolution, then given its

smoothness we have u € Au(t,m) N Au(t,m), and we immediately deduce that u is a
classical super/subsolution. In particular, by [26, Lemma 4.3], u being nondecreasing
for < implies that Dyu > 0.
(ii) Assume w is a classical supersolution of (2.10). By (2.11) we see that Dyu > 0; then
by [26, Lemma 4.3] again we see that u is nondecreasing for <. Now let ¢ € Au(t,m)
with corresponding 6. Introduce ¢ := ¢ —u and let P € P(t,m) be defined by (2.4) s.t.
X is unstopped under P. By the definition of Au(t,m), we have 1 (t,m) > (s, Py.)
for all s € [t,t+ 4]. Applying Ito s formula (2.8), since the jump terms are equal to
zero under P, we obtain 73 Lq/)(s Py, )ds > 0. Sending § — 0, by the continuity
of s+ Py, we have —ILa)(t, m) >0, hence —(Lg + F)(t,m) > (Lu—i—F)(t m) >0 by
the supersolution property of u.

Assume now that u is a classical subsolution. Let ¢ € Au(t, m) with corresponding
d, and assume that (Dy).e(¢t,m) >0 and C\,(t,m) = {m}. By definition of Au(t,m),
we have

(3.3) [ —u](t,m) <[p—u|(s,Py,) forall s€lt,t+],PeP(tm).

Set s = ¢ in (3.3); then it follows from the arbitrariness of P € P(¢,m) that [p —
u](t,m) < [p — u](t,m’) for all m’ < m. Following the arguments of [26, Lemma
4.3], we deduce from above that D[ — u|(t,m,-) <0, and therefore (Dyu).(¢t,m) >
(D7)« (t,m) > 0. The subsolution property of u then implies that —(Lu+F) (¢, m) <O0.
Using Itd’s formula (2.8) under P again on [t,t + §], we get from (3.3) that —(ILy +
F)(t,m) < —(Lu+ F)(t,m) <0. a

3.2. Some regularity results. In this subsection, we present some regularity
results which will be used in the rest of this section. Since our main focus is the
viscosity properties, we postpone their proofs to Appendix A.

LEMMA 3.5. Under Assumption 2.1, the value function V is USC under Ws.

THEOREM 3.6. (i) Assume f and g are uniformly continuous in (t,z,m), under
Ws for m; then V is continuous on Qq, under Wy for m.
(i1) Assume further that b,o are uniformly Lipschitz continuous in m under Wy, and
f,g are uniformly continuous in m under Wy ; then V is also continuous in m under

Wi.

Even for the standard optimal stopping problems, one can hardly expect the value
function to be smooth. We next establish a regularlty result for the value function
when X is unstopped. For (t,m) € Qo, let P e P(t,m) be as by (2.4), and define

(3.4) U(t,m):=g IP’Y / F(r, IPY

LEMMA 3.7. For p=b,0, f,g, assume @ is continuous in t and Oy p, dmp, xdmp,
02 5 exist and are continuous and bounded and that, for ¢ =b, 0, all the derivatives
ofgo are Lipschitz up to order 2. Then U € C1%(Q,) with bounded 8,,6,,U, 0,6, U and
in particular U € Cl 2(QO) Moreover, if b,o, f,g are uniformly Lipschitz continuous
m m under Wy wzth a Lipschitz constant L, then U is uniformly Lipschitz continuous
in m under Wy with a Lipschitz constant Cf,.
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Finally, we introduce a smooth mollifier for functions on the Wasserstein space.

LEMMA 3.8. (i) Let U : P2(S) — R be continuous. There exists {Up}tn>1 in
C*(P2(8)) such that lim,, o0 SUP,,,c pq |Un(m) —U(m)| =0 for any compact set M C
Pa(S). (ii) Let U : P1(S) — R be continuous under Wy. There exists {Uy, }n>1
in C™°(P2(S)) N CO(P1(8S)) such that limy, oo SUp,,c pq |Un(m) — U(m)| = 0 for any
compact set M C P1(S). (iii) Assume further that U is Lipschitz continuous under
Wi ; then we may choose {Up}n>1 to be Lipschitz continuous under Wi, uniformly
mn.

The mollifier is adopted from Mou and Zhang [20]. Note that the extension of
the state space from R? in [20] to S here is straightforward. We remark that if U is
Lipschitz continuous under Ws, in general the Lipschitz continuity of U,, under W,
is not uniform in n.

3.3. Viscosity property. We first need a simple lemma whose proof is post-
poned to Appendix A.

LEMMA 3.9. (i) Let v:Pa(S) — R be N-LSC, and m € Pa(S) s.t. v(m)>v(m')
for all m' < m with continuous conditional transition probability. Then v(m) > v(m’)
for all m’ < m.
(ii) Let p € C°(Qq,R) admit a continuous linear functional derivative d,p. Assume
we have (Drp).(t,m) >0 for some (t,m) € Qo. Then ¢ is nondecreasing for =< in a
neighborhood of (t,m).

THEOREM 3.10. The value function V' is a viscosity solution of (2.10).

Proof. First, by Lemma 3.5, V inherits the local boundedness of g.
(i) We first verify the viscosity supersolution property. Fix (t,m) and ¢ € AV (t,m).
We may assume w.l.o.g. that [Vi —¢|(t,m) =0. Let § >0 and (¢, mp)n>1 € N5(t,m)
converging to (¢,m) s.t. V(t,,my) = Vi (t,m), and denote 7, := [V —¢]|(tn, mn) >0,
as V >V,. Thus, we have n, = O By the DPP (2.5), we have

M+ o (tn, mp) =V (tn, mn) > / F(r,Py" )dr +V(sn, Py.")
t

n

Sn Sn
> [ PCE Vo B 2 [RGB+ (o B
tn tn
where P = P € P(tn,mn) is defined by (2.4) such that X is unstopped,
and sn =ty + hy with by, == /M, V0 —1. Thus, by Itd’s formula, the above gives
fs" (Lo + F)(r, P?")dr > 0. Send n — oo; since h, —0, we obtain —(Ly +

F) (t m
We now prove the remaining part of the supersolution property. Let m' < m
with transition probability p. By Lemma 3.9(i), we may assume w.l.o.g. that p is
continuous. For all n > 1, define m], < m,, as the measure obtained from m,, by
applying the same p. leen the continuity of ¥y and the compactness N (t m), we see

by (2.9) that Wa(m/,,m’) e 0. Let B € P(tn, my) be s.t. ]P’Y”’ " =m,, and
I,=1,, B _as. for all s>t,. By (2.5),

(3.5) V(tn,mu,) > F(r Pm”’m")dr +V (s, Pm"’m ) forall s>t, and n>1.

tn
Taking s =t,, and liminf,,_, in (3.5), we obtain Vi (t,m) > V.(t,m’) as V(t,,m,) —
Vi(t,m).
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(ii) We next verify the viscosity subsolution property. Let (¢,m) and ¢ € AV (t,m)
be s.t. Cy«(t,m) = {m} and (Drp).(t,m) > 0. We may assume w.l.o.g. that [V* —
o|(t,m) = 0. Let 6 > 0 and (t,,my)n>1 € N5(t,m) converging to (¢,m) such that
V(tn,mn) n—) V*(t,m), and denote —n,, := [V — ¢|(tn,my,) < 0. Thus n, e 0.

For n > 1, since g is USC and P(tn,mn) is compact, there exists P € P(t,,, my,) s.t.
V(tn,mn) ft (r,Py")dr + g(Py."). By DPP, we have

Sn T
Vtn,mn) > /t PPy dr + V (50, Pl ) 2 /t F(rP)dr + g(F),

n n

where s,, :=t,, + h,, with h, := ./, Vn~!, and thus,

(3.6) V(tn, mn) :/ F(r,Py ) dr + V (s, Py™).
t n

n

Noting that P™* € P(t,,m,) C P(t,m) for all n, and P(¢,m) is compact, we may
extract a subsequence (still denoted the same) s.t. P™* — P* for some P* € P(t,m).
n—oo
As the trajectories r — Py" are cadlag and s, | ¢, this implies Wh(Py™ ,m*) — 0,
s sn n—oo

where m* := Py, < m as P* € P(t,m). Thus, taking the limsup,, ,., in (3.6) and
recalling V' (t,,,my) — V*(t,m), we have V*(t,m) < V*(t,m*). As Cy«(t,m) = {m},
we obtain m* =m. Moreover, (3.6) also implies that

(3.7) =1+ @(tn, mp) < / F(r, P;L’;*)dr + @(sn,P;’;_) for all n > 1.
t

n

Let By, (m,d) denote the W, ball centered in m, with radius 6. By Lemma 3.9(ii),
the fact that (D). (¢t,m) > 0 implies that ¢ is (strictly) increasing for < on [t,t+0J) X

By, (m,d) for a possibly smaller § > 0. By convergence to (t,m), we have {Py",t <
7 < sp} C B, (m,d) for n large. Then Dro(r,Py” ,-) >0 and o(r,Py" ) > o(r, P ¥
for t < r < s,. Using the fact that the trajectories are cadlag, by applying Ito s
formula on (3.7) we obtain —(Ly + F)(t,m) <0. |

3.4. Stability. B

THEOREM 3.11. Let {F.}eso be a family of functions from Qg to R such that
F, = F uniformly on compact subsets of Qq, and let {us}eso and {v:}eso be two

E—>

families of wviscosity subsolutions and supersolutions of (2.10) with F; instead of F,
respectively. Assume that the following relazed semilimits are finite:

u(t,m):= limsup wu.(s,m), and v(t,m):=  liminf  v.(s,m),(t,m) € Qy,
(e,5,m)—(0,t,m) (e,8,m)—(0,t,m)

where the limits are sequences (En,tn,my) — (0,t,m) with (tn,m,) € Np_(t,m).
Then u (resp., v) is an N-USC (resp., N-LSC) viscosity subsolution (resp., superso-
lution) of (2.10).

Proof. (i) We prove the stability of the supersolution first. Observe that we may
assume w.l.o.g. that v, is N-LSC as v(t,m) = liminf . s 5)—(0,t,m) (Ve )« (s,m). Also
note that v is clearly N-LSC in the sense of Definition 3.1.

Fix (t,m) € Qo, and ¢ € Av(t,m) with corresponding 4, and s.t. (£,m) is a strict
maximizer of ¢ —wv on Nj(t,m); see Remark 3.3. By definition, there exists a sequence
(Enstn,mn) — (0,t,m) s.b. ve, (tn,my) — v(t,m). Note that (¢,,m,) € Ns(t,m) for

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/19/23 to 132.174.255.3 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

VISCOSITY SOLUTIONS FOR OBSTACLE PROBLEMS 1721

all n large; then we can find &' < § s.t. Ny (tn,mn) C Ns(t,m). Let (£,,7,) be a
maximizer of ¢ — v, on Ny (t,, my). We first note that

(3.8) (bnyi0n) — ().

Indeed, (£,,7,) € Ns: (tn, m,) C N5(t,m) for all n. Thus, by compactness, there exists
a subsequence (still named 1,,) converging to some (¢,71) € Ns(t,m). Observing that

[ —v](t,m) = lim [¢ —ve, ](tn, mp) <liminf[p — van](fn, M)
n— o0 n— 00

<limsup[p — ve, | (tn, n) < [@ — v](E,m),
n—oo
we conclude from the fact that (¢,m) is a strict maximizer of ¢ — v on Nj(t,m) that
(t,7n) = (t,m), and thus (3.8) holds true. Then, given that (t,,m,) and (f,,7m,)
have the same limit, we have Ny (£,,1M,) C N/ (tn,m,) for some §” < §' and n large
enough. Then, as (f,,7m,) is also a maximizer on N/ (f,,7,), the supersolution
property implies — (L + F., )(f,,1,) >0 for n large enough, and we derive the first
part of the supersolution property of v by sending n — oo.

We now prove that v is increasing for <. By Lemma 3.9(i), it suffices to prove that
v(t,m) > v(t,m’) for a given m’ < m with continuous conditional transition probability
p. We define for all n the measure m/, < m,,, obtained from m,, by applying p. As
Ws(my,m) — 0 and p is continuous, similarly to the proof of Theorem 3.10, we

see that Wh(m!,,m') — 0. Moreover, by the supersolution property of v, we have
n—oo

Ve, (tn,my) > v, (tn,m)) for all n > 1, and we conclude by taking the liminf that
v(t,m) >v(t,m’), as the left-hand side of the inequality converges.

(ii) We now prove the stability of the subsolution. Similarly to (i), we may assume
that {uc}eso is a family of A-USC viscosity subsolutions of (2.10), and observe that
u is clearly N-USC. Let (¢,m) and ¢ € Au(t,m) be such that (t,m) is a strict local
minimizer of ¢ —@. Assume that Cz(t,m) = {m} and (D;p).(t,m) > 0. Following
the same argument as in the previous step, replacing maximizers with minimizers, we
may construct (f,,77,), converging to some (£,71), and satisfying the inequalities

[ —a](t,m) >limsup [p — uc, |(tn,70,) > lminf [p —ue |(tn,0) > [p — ] (t, 7).
n— 00 n—00

By the strict minimum property of (t,m), this again implies that (£,772) = (t,m), and
lim,, - sotte, (tn, My ) =a(t,m). By Lemma 2.3, we may now take

m}, € argmin Cy,_ (n,170).
=<

By compactness, there is a subsequence {m}},>1 converging to some m*. As
Ue, (tny 1) < e, (£, my;) for all n, by definition of C., (,,70,), taking the lim sup
implies (¢, m) <u(t,m*), hence m* =m as Cz(t,m) ={m}. As (D;p).(t,m) >0, 1,
and m;, are both in a neighborhood where ¢ is strictly increasing for n large enough,
and thus [ — uc |(tn, ) > [p — ue, |(£,,m%), which implies equality by definition
of (tn,7,) and the fact that (f,,m%) € Nz (tn,my,). Then ¢ € Au., (f,,m%). As
Ch.. (tn,m5) = {m}, the viscosity subsolution implies —(L¢ + FL, ) (£,,m%) < 0 for
n large enough, and we conclude by letting n — oo.

Remark 3.12. A natural extension of the stability result is to allow the pertur-
bation of b and o. However, this would change the definition of P(t,m) in (2.3),
and therefore our viscosity neighborhoods Ns(¢,m). Although we expect the stability
property to remain true, this would require extending P(¢,m) in some sense, which
would go beyond the scope of the present paper.
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3.5. Comparison.

THEOREM 3.13. (i) Let u be an N -USC wviscosity subsolution of (2.10) satisfying

uli=r < g. Assume further that f is uniformly continuous in (t,z,m) under Ws.
Then u<V.
(ii) Let v be an N-LSC wiscosity supersolution of (2.10) satisfying v|;—r > g. Assume
further that b, o, f, g can be extended to P1(S) under Wy continuously, b is uniformly
Lipschitz continuous in (x,m) under Wy, and o has the reqularity required in Lemma
3.7. Thenv>V.

Proof. (i) We first compare V and u. Assume by contradiction that w(t,m) >
V(t,m) for some (t,m). Then, for £ > 0 small enough,

T
(3.9) u(t,m) — e (t,m) > sup {/ F(r,Py. )dr + g(IP’YT)},
PeP(t,m) t

where @ (s,m) :=e[(T —t) +m(R?% 1)]. Let (t*,P*) be s.t.
(3.10) (u—pe)(t*,m*) + /t F(r,Py )dr

— max {(u—g@a)(s,m)—|—/tSF(T,IP’yT)dr},

(s, m,P) € Np_4(t,m) X P(t,m):
me{Py__ Py}

where m* is the optimal argument in {Py., Py, }. Clearly t* <T. Indeed, if t* =T,
then (T,m*) € Ny_(t,m), and by (3.10) and (3.9) we have

T
(T, m*) — em* (R, 1) + / F(r, Py )dr > (u— g2)(t,m)
T ! T
> sup {/ F(r,]P’yT)dr—&—g(PyT)}E/ F(r,Py )dr +u(T,m"),
t t

PeP(t,m)

as u(T,-) < g. This is the desired contradiction. Moreover, by Lemma 2.3, we may
choose m* to be the smallest one which keeps the same value (u — @) (t*, m*). Note

that this change is only at ¢* and thus has no impact on the value of |, tt F(r,Py, )dr.
Then

(3.11) (u— @), m*) > (u—:)(t*,m') for all m* #m’ <m*.

Furthermore, we note that since m — m(R% 1) is increasing, by (3.11) actually we
have

(3.12) w(t*,m*) >wu(t*,m') forall m*#m'<m*, namely C,(t*,m*)={m"}.

Next, let fT, f~ denote the positive and negative parts of f, respectively, and pg
the modulus of continuity function of f. Introduce

It is clear that f*,f are also uniformly continuous in (s,z,7) (under W,). For
€ >0, by Lemma 3.8(i) let i:,?; be a smooth mollifier (under W) such that

|i:_i+‘§€ - _

67 |?n _? ‘S on P(t*7m*)'
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Then, for all (s,m) € Nr_¢- (t*,m*) with corresponding P € P(¢*,m*), and t* <r <s,
considering the case m =Py, , we have

EP[‘f+5XSaP(Xs,I)) s = T8, X, m) 5 }SpO(W2(P(XS,IT)aP(Xs,IS,)))
< po(VE (L~ T 12)) < po(VER (11 — T, 2)) = po (R, 1) — (R, 1)[ ).

Then E°[f*+(s, Xs,P(x..1,))Ls—)] > EF[f (s, X;,mm) ;] and, similarly,E*[f~ (t*, X;»,
Pox. 1) i) < EF[f (t*, Xy-,m)I;-]. Thus, by (2.1) and the regularity of f, we have

F(r,Py,) =E° [ £(r, X, Py, )T, | =BF [ £+ (r, X, Py, )T, = £ (r, X, Py, )1,
= B[ (X, Py ) o = £ (r, X, Py, ) e
>E" [f+(8 Xo,Pex, 1) - — f_(t*’Xth(Xs,Ir))It*} —p(s—t%)
(
£

z]EP

T

+ S Xs7m) 5— _f (t*aXt*7m)It*:| —p(S—t*)

z]EP 5, X, 1)1 ?;(t*,xt*,m)ft*] —%—p(s—t*)

for some modulus of continuity p which can be chosen to be smooth on (0,00). That
is,

F(r,Py,)> /i:(s,x,ﬁl)iﬁl(dx,di) — /?;(t*,l‘,ﬁl)i m*(dx,di) — % —p(s—1t").

In the case m = Py,, following similar arguments we see the above still holds true.
Denote

67 (5,70) ::/f:(s,x,m)i m(dx,di)—/f;(t*,x,m)i m* (da, di),
U2 (5,77) 1= o (5,77) — (5 — 1°) [¢s<s,m> e t*)}

which are obviously in Cs*(Q,). Then, by (3.10),

S

(u=92) (", m") = (u— @) (t",m") > (u = ¢c)(s,m) +/t F(r, Py, )dr

> (1= 925 (5= 19) 02 (50) = § = s = 1) = (w02 5.0
Thus ¥? € Au(t*,m*). Note that
(L2 + FI(t,m*) = (L. — 62+ - + F|(€7,m) = =2 = 628", m") + = + F(t",m")
—2§+ 12 ey = T 0 oo ) + P )
/U (&, 2,m*) — T~ (t*,2,m*)]i m* (dz, di) + F(t*,m*)
+ [, >ff*<t*,x,m*>]z'm*(dz,dz‘>+F<t*,m*>:i<o;

3
(Drl)(s,m)=e— (s —t")(Dro2)(s,m), and thus (D). (t*,m*)=ec>0.

<-

OJ\O) OJ\(")
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Recalling (3.12), this contradicts the viscosity subsolution property of w.
(ii) We next compare V and v. Fix € > 0. For each n > 1, denote t; := t(") =t L
0 < i < n. First, note that, for (¢t,m) € Qp, it follows from the continuity of the

coefficients that

V(t,m):= lim V,(¢,m), where
n—oo

T
Vatom)i= s { [" PPy i+ By},
PeP,, (t,m) t

Pn(t,m):= {IP’ € P(t,m) : T takes values in {t1,...,t,} N [t,T],IP’—a.s.}.

Step 1: We show that (V,, — v)(tn_1,-) < % Assume to the contrary that there
exists my_1 such that (V v)(tn 1,Mp—1) > =. By the definition of Py, (t,—1,mn_1),
we have V,( ft (r IPY )dr + g(IP’;;n) t € (tn—1,T], where P e P(t,m) is
defined by (2 4)

Let d1,d2 > 0 be small numbers which will be specified later. Applying Lemma
3.8(ii), (iii), let (g, fx,br) be the smooth mollifier of (g, f,b) (under W;), where by,
is also mollified in (¢,z) in a standard way, such that ||gr — glleo + || fx — flleo < 61,
|bx —bllco < b2, and g, is Lipschitz continuous under W; with a Lipschitz constant Ly,
depending on k, and by, is uniformly Lipschitz continuous in (z,m) under W with a
Lipschitz constant L independent of k. By otherwise choosing a larger L we assume
o is also uniformly Lipschitz continuous in (x,m) under W; with Lipschitz constant
L. Let U*1F2 be defined by (3.4) corresponding to (bk,, o, gk, » fx, ). Then, by Lemma
3.7,

(3.13)
OUFF2 (t,m) + /

1
[bk2 00U 4 207 02,6 Uf " + fi, | m(da, 1) =0,
Rd

and Ukvk2 ig Lipschitz continuous in m under W; with a Lipschitz constant C’L’Lk1
independent of k5. Here, 5mel’k2 is in the sense of (2.6). This, in particular, implies
050Ut < Cp 1, for all ka. Then, we deduce from (3.13) that

(3.14)
(LU*1k2 4 Fkl)(t,m)‘ — ’/(b “by,) - Dub UM 2 (de, 1)‘ <Cpp,, 0 for all ky > 1,

where Fy, (t,m) := [ga fr, (t,z,m)m(dz,1) as in (2.1). Moreover, since
T
m,k =t,m,k
Ukl’kz(tvm) gk1(P§’T 2)+/ Fkl(r7]P)§/T 2)d?",
t

where P is s.t. X is unstopped with drift coefficient by, instead of b, one can
easily show that

T
Ukl,kz (t7m) — (g(Pi}?) —+ / F(T’, PI;;T ) >
t

for 1,02 small enough. Then

< <
Clo1 +d2] < 4n

T
mtn—1,m tn—1,m
V, (tnfly mnfl) = sup { F(Ta ]P)Y,, ' )d’l“ + g(]P ' )}
m’' Xmy, 1 tn—1
< sup Ukvke (tn_1,m") + £
m'<mp_1 4n
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By the supersolution property, v is nondecreasing for <, hence

€
S (Vn - U)(tn—hmn—l) S sup (Ukl,kz - U)(tn—hm/) + —.

m/ <Xmap_1 4n

Slo

This implies that

ki,ka 7)) —
(3.15) max {(U v)(s,m) Z 0 T 2o,

(s,M)EN T (tn_1,mn_1)

T—s 3e T €
}> >
n

for n sufficiently large. Note that (U**2 —v)(T,Py,) < (gr, — 9)(Py,) < & for
all P € P(t,_1,mp_1) and v is N-LSC; then by compactness of Nz (t,_1,m,_1)
there exists an optimal argument (t*,m*), t* < T, to the above maximum. Thus

o(s,m) = U2 (s,m) — T=% € Av(t*,m*), and therefore,

1

0< —(Lo 4 F)(t*,m") = (LU 2 + B, ) (t*, m*) + (Fy, — F)(t*,m*) — -

* * 1

<CL,ry, 02+ (Fy, — F)(t",m") — o

where the last inequality is thanks to (3.14). Fixing k; so that (Fj, — F)(t*,m*) < 5-

and setting Jo small enough, we obtain the desired contradiction.

Step 2: We show that (V;, — v)(t,_2,+) < 2. Assume to the contrary that there

exists my_» such that (V;, —v)(t,—2,mp_2) > ==. By the DPP, we have

tnfl
Vn(tn72amn72) = sup / F(?“, ]P)Yr)dr + Vn(tnfla]P)Y(tn_l),)}v

]P)E,Pn(tn727mnf2) tn—2
Observe the fact that v being a viscosity supersolution of (2.10) also implies that v+ =
is a viscosity supersolution. Moreover, by Step 1, we have (v+£)(t,—1,7) > Va(tn—1,-).

Thus, using the same procedure as in Step 1 (where V,, replaces g on (t,,_2,tn—1]), it
follows that

(e (o4 ) 5

Finally, by backward induction, we have (V;, — v)(tn_j,-) < L for all j € {0,...,n},
and thus (V,, —v)(t,-) < e, which implies by the arbitrariness of n and e that v > V. O

3.6. Infinite horizon case. As in [26, section 6.1], we may formulate the prob-
lem in infinite horizon (i.e., in the case T'= 00) by replacing Assumption 2.1 with the
following conditions.

Assumption 3.14. (i) Assumption 2.1 holds true on [0, 00);
(i) [y SUPmep,(s) |F (t,m)|dt < oo;
(iii) for any (¢,m) and P e P(t,m), Xo :=lim;_,o0 X; exists, P-a.s.

We remark that one sufficient condition of (ii) above is that |f(¢,z,m)| < Ce™*
for some constants C, A > 0, and a special case of (iii) is

1
(3.16) d=1, b=byx, o=opz, 607508<0;

see, e.g., Pedersen and Peskir [21] and Xu and Zhou [28]. The last condition implies
that, under P in (2.4), the unstopped process X is a geometric Brownian motion
vanishing at infinity.
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Assumption 3.14 allows us to include the case 7 = oo in our framework and to
preserve the compactness of P(¢,m) in the infinite horizon setting, so that all our
previous results extend immediately.

Remark 3.15. A study of the general infinite horizon would of course be of very
relevant interest. In standard optimal stopping, this is addressed by adding a dis-
count factor to the reward function E[e~""¢(X,)], assuming F = 0 for simplicity.
However, embedding this in our formulation is more involved as E[e™""¢(X,)] =
Ele~"Jo I:d54(X )], which is a function of the joint law of X and the path of I. We
therefore leave it for further research.

4. Examples. In this section we revisit the three examples studied in [26] and
add a new example concerning probability distortion. Note that in [26] we assumed
that the value functions are smooth, which is hard to verify. In this section we show
that they are the unique continuous viscosity solution of the corresponding obstacle
problem. Note that we shall allow both 7" < co and T'= oo, and correspondingly we
always assume Assumption 2.1 or 3.14, and we shall report the detailed arguments in
the case T' < oo only. Moreover, for simplicity in this section we always assume f =0.

4.1. Connection with standard optimal stopping. Assume for this example
that b and ¢ do not depend on the measure variable m. For a measurable function
(I R? — R, we define the optimal stopping problem

(4.1) V(t,m) = o )]Eﬂ“’ [z/J(XT)],(t,m) cQ,.

That is, g(p) := [ga ¥ () p(dz) for p € Py (R%). We also introduce v(t, z) := V (¢, d(a,1))s
which is related to the standard obstacle problem: recalling (2.7),

(4.2)
min{—(0; + L)v,v — ¢} =0, o(T,)=1, where Lv:=b-0,v+ %02 (02 0.

PROPOSITION 4.1. Assume b,o do not depend on m, o satisfies the reqularities
required in Lemma 3.7, and v is uniformly continuous. Then V is the unique con-
tinuous viscosity solution of the corresponding obstacle equation (2.10), and it holds
that

(4.3) V(t,m)= / [o(t,2)i + () (1 —i)|m(dz, di).
]
Moreover, there exists a pure strategy optimal stopping time.

Proof. First, by the uniform continuity of 1 one can easily show that g is uniformly
continuous in m under Wj. Then by Theorem 3.6 V' is continuous in ¢ and uniformly
continuous in m under Wy. Thus it follows from Theorems 3.10 and 3.13 that V is
the unique viscosity solution of (2.10).

It remains to verify (4.3). Let P* € P(t,m) be such that

(4.4) T=inf{s>t:v(s,X;) =v(Xs)}, P"-as. on {[;_=1}.

By the standard optimal stopping problem (see, e.g., Karatzas and Shreve [15, Ap-
pendix DJ), v is continuous and P* is optimal. Then by (4.1) we derive (4.3):

V(t,m)= Rdw(m)m(da:,())—&—/RdEP* [w(XT)!thx}m(da;,n

= [ waym(dr.0)+ /R ot zymde, 1),
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Moreover, clearly the optimal stopping time determined by (4.4) is a pure strategy. O

We remark that, by utilizing (4.3), it is possible to prove the uniqueness of the vis-
cosity solution under weaker requirement on o. We leave the details to the interested
reader.

4.2. A generalization of the mean variance problem. Consider the optimal
stopping problem:

(4.5) Vitm)i= s o(ET(Xr)]).

where 1 : R? — R for some k >1 and ¢ : R* — R. That is, g(u) = ©( Jpa () p(d)).

PROPOSITION 4.2. Let b,o satisfy the conditions in Theorem 3.13(ii), 1 be uni-
formly continuous, and ¢ be continuous. Assume further that either i is bounded or
p 1s uniformly continuous. Then V is the unique continuous viscosity solution of the
corresponding obstacle equation (2.10).

Proof. Note that when [¢] < C, we have |EF[)(X7)]] < C and thus in (4.5)
we may replace ¢ with the truncated function pc(2) := w(‘z‘%z), z € R*, which is
uniformly continuous. Then in both cases, we may assume w.l.o.g. that ¢ is uniformly
continuous, and therefore, g is uniformly continuous in g under W. Then the result
follows from Theorems 3.6, 3.10, and 3.13. ]

Remark 4.3. (i) In the case that ¢ is convex, ¢(z) :=sup,[az — ¢*(a)], we have

V(t,m) =sup [Va(t,m) — ¢*(a)], where Vu(t,m) ::Peilg) )EP[a (X))

Let a*(t,m) be the optimal argument; then the optimal P* for Vi« m)(t,m) is also
optimal for V' (¢,m), and thus by Proposition 4.1 there exists a pure optimal strategy
for V(t,m).

Moreover, let P* be the optimal control for V(0,m) and V- (g,,)(0,m) as above,
and denote mj := Py, . Then, by the DPP for V" and for V,«(o,m), we have

V<ta m;&kf) = V(Oam) = Va*(O,m) (Ovm) - 90*(04* (Ovm))
= Va*(O,m) (ta m:—) - <P* (Ol* (Oa m))
That is, a*(0,m) is optimal for sup,, [V, (¢, m;_)—e*(a)] or, say, a*(t,m;_) = a*(0,m)

for all ¢.
(ii) A more special case is the mean variance problem: for some constant A >0,

A A
(46) d:]-a k:27 1[}1(.%):1', 11)2(53):5027 ¢(21722):Zl+§’2%7 522'
In the homogeneous case (3.16) with T = oo, Pedersen and Peskir [21] solved the
problem V' (6(, 1)) and the optimal stopping time is a pure strategy. We are in a much
more general framework. However, we should point out that (4.6) does not satisfy the
technical conditions in Proposition 4.2.

4.3. Expected shortfall. Let d = 1, and fix some « € (0,1); we consider the
mean field optimal stopping problem

V(t,m):= o %%f,m) ESL(Xr) for all (t,m) € Q,,
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where ESE denotes the expected shortfall under P, i.e., for any r.v. Z with law u,

@n o =Esi2) = | Ca(@ar=int {54+ 1 [ -9 e},
where ¢y(Z):=inf{z: p(Z <z)>~}.

Here the second equality has been established by Rockafellar and Uryasev [24].

PROPOSITION 4.4. V is the unique continuous viscosity solution of the corre-
sponding equation.

Proof. Clearly, x + (z — 8)% is Lipschitz continuous with Lipschitz constant
1. By (4.7), this implies that g is Lipschitz continuous, and, given our assumptions
on the coefficients, we conclude similarly to Proposition 4.2 that the required claim
follows. 0

Note further that

1
V(t,m)= ,(%Iel% {ﬂ + ng(t,m)}, where Vjz(t,m) ::Pgijr({m) EF (X7 — B)*].

One can easily show that limg_,o0[8+ 2= Va(t, m)] = limg_, oo [B+ 12 V(t,m)] = o0,
where the second equality is due to a € (0,1). Then there exists optimal * =
B*(t,m) € R such that V(t,m) = 8* + 2=Vj-(t,m). Therefore, similar to Remark
4.3(1), V(t,m) and V3~ (t,m) share an optlmal P* € P(t,m), which is a pure optimal
strategy as in Proposition 4.1.

Moreover, in the homogeneous case with (3.16) and 7' = oo, one can easily show
that V and Vj are independent of ¢, and Vg(m) ="m(Ry,1 —&—ﬁ) x — B)Tm(dx,0)
whenever m(R,{0,1}) =1.

4.4. Probability distortion. Consider the following optimal stopping problem
under probability distortion:

(48) Viem= s [ (Rn 2 )i

where ¥ : R — [0,00) is a utility function, ¢:[0,1] —[0,1] is a probability distortion
function ¢(0) =0,¢(1) =1, and ¢ is strictly increasing. That is, g(u) = [ @(u({1 >

PROPOSITION 4.5. Let b,o satisfy the conditions in Theorem 3.13(ii), ¢ be a
uniformly Lipschitz continuous probability distortion function, and v be uniformly
continuous. Then V is the unique continuous viscosity solution of the corresponding
obstacle equation (2.10).

Proof. As in the previous examples, it suffices to show that g is uniformly contin-
uous in m under Wi. Assume arbitrary i, ps € Po (Rd) and, for i =1,2, let & be a
random variable on (€, F,P) such that P¢, = y; and E¥[|€; — &[] = Wi (1, p2). Then

o) = 9] < [ [e(B(E) 2 2) ~ (B0 2 9)|

= C/OOO E? 1622y — Liwienz=||d2 = CEF [Ju&) - w(&)] |-

Since 1 is uniformly continuous, we see that g is uniformly continuous in u
under W;. 0
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Remark 4.6. (i) In the homogeneous case (3.16) with T = co, Xu and Zhou [28]
solved the optimal stopping problem V(d(,,1)) for appropriate ¢,, and the optimal
stopping time is a pure strategy.

(ii) The mean variance and probability distortion problems are typically viewed as
time inconsistent, as the DPP does not hold for value function v(t,z) := V (t,0(5,1))-
However, we emphasize that, by viewing m as our variable, V satisfies the DPP and
the problem is hence time consistent. 0

Appendix A. Technical results.

Proof of Lemma 2.3. (i) The set {m’:m’ < m} is in continuous bijection with
the compact set {1 € Pa(S x {0,1}) : /o (x,i)~! =m}, with (x,i,i’) the projection
coordinates on S x {0,1}. This shows the compactness of {m’ :m' < m}. (ii) As
the map m’ € K(m) — m/(R% 1) is continuous and K(m) is compact, there exists
m € K(m) st. m € argminm,eK(m)m’(Rd, 1). Let m’ € K(m) be such that m’ < m
with some corresponding transition probability p; see the definition in (2.9). Then,
clearly m/(R% 1) < m(R% 1) and thus equality holds by minimality of m(R% 1). As
p <1, we conclude that m’ =m. d

Proof of Lemma 3.5. For each (t,m) € Q, and P € P(t,m), we extend P to (2, Fr)
as follows: denote P € ’ﬁ(tﬂn), X=X, I =1, se€[-1,1), P-a.s. We prove the
lemma in two steps.

Step 1. For any compact M C Pa(S), denote Ppg := U(t)m)e[QT]XM?s(t,m). For
each (¢t,m), P € P(t,m), and R > 1, following the proof of [26, Proposition 2.2] we
have

B[] <C [ Jafm(de, {0.1))
R4
B X PLxirem] <O [ (1401 + = mide 0.1)),
e s = VR
where X7 :=supg<s<r |Xs|. By the compactness of M, one can easily see that

sup EF [|X5?] < oo, Jim  sup EF (|52 Lxz2ry) =0.
HDEPM - PEPM

Then the set Prq is compact. That is, for any (tn,my) € [0,7] x M and P" ¢
P(tn,my), there exists a subsequence, still denoted the same, such that p" — P
under W, for some P* € Py(2, Fr).

We may assume w.l.o.g. that (tn,mn) (t*,m*) under Wy for some (t*,m*) €
[O T] x M. We next show that P’ e P(t*,m*). Indeed, for any § > 0, we have

— 9 <t, <t*4 ¢ for all n large enough. By the required convergence, it is obvious
that Xo=Xpo_5,1g = Iin_g5,8 < t* =9, I@’*—a.s., and ]IAD;HS = m*. Thus, by sending
60— 0, Xy =Xy, Iy =11, s < t*, P -a.s. and ]fl’; = m”*. Here we used the fact
that X has continuous paths. Moreover following the arguments in [26 Proposition
2.2] again, we see that the processes M and MM in (2.3) are p* -martingales on
[t* +6,T] for all § >0, and hence also on [t*,T] (again since X is continuous). That
is, P* € P(t*,m*).

Step 2. We now show that V' is USC. Fix (¢,m) and choose (t,,, my) — (t,m) such
that limy, oo V(tn, my) = limsup(t ) (¢, m)V(f m). For each n, let P" € P(t,, m,)
be optimal: V(t,,my) ft (r, Py, )dr 4 g(Py,.). Note that M := {m,mp,,n > 1} C
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P2(S) is compact. By Step 1, we may assume w.l.o.g. that P s Pe ﬁ(t,m). Then,
since F' is continuous and g is USC in m, we have

n—r oo n—oo

T
lim V(t,,m,)= lim {/ F(T,I@’;r)dr—l—g(I@;T)
¢

n

T
g/ F(r,Py )dr + g(Py, ) < V(t,m).
t

This means that V is USC. O

Proof of Theorem 3.6. (i) follows similar but easier arguments than (ii), so we
prove (ii) only. Let pp denote the modulus of continuity of f, g under W,. We proceed
in two steps.

Step 1. Fix t € [0,T] and m,m € Pa(S). For any P € P(t,m), by possibly enlarging
the space, there exists (X;,I;_) on the space (€2, F,P) such that

Pix, i, )=, IEPD)NQ — X+ L — I || = Wh (m, ).
Consider the following SDE on the space (2, F,P): for Y := (X, 1),
(A1)
S S
X=X, +/ b(r, Xy, Py ) Idr +/ o(r, XT,IE”};T))ITdVVf7 I..=1.1;, P-as.
t t
Denote AY :=Y — Y. Note that I, = I,I,_, then

(A2) sup |AL|=I|AL_|<|AL_|, and thus ]E]P[ sup |AIT|}§W1(m,m).
t<r<T t<r<T

Moreover, for ¢ =b, o, by the desired Lipschitz continuity under Wi, we have

‘(P(T, erpffr))fr - (P(T7 XT7HDY,~)IT

<C[IAX, |+ Wi(Py,Py,)] + C[1+ X, []|AL .
By standard estimates, one can show that

Bf[ sup |X] <ClL+ X%
t<s<T

T
By [|AX, 1] go/ W2 (Py, Py, )dr + C|AX,[2 +C sup Ef[1+|X,[%)|AL_[%
s t<s<T
(A.3)
T 3
B aX.] < [ Wiy By )dr) + ClAX + O+ X AL |
This implies that

T 1
B flax.) <o [ Wiy Py ar) + OB [lax |+ 1+ AT

T 2
Wiy, Pr) <C [ Wiy, Py, + (B [|AXi] + [+ XA ])
By Gronwall’s inequality we have, for any R >0,

sup Wi(Py. ,Py,) < CE [|AX,| +[1 + | X]|| AT |

t<s<T

(A.4) < CRWy (m, 1) + CE [|Xi| Ly, (23 | = O
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Notice that P:=Po (X,I)~! € P(t,7n). Then

7" ]PY dr +g(]P)yT) V(t,m)

:(>\

g/ E°[f(r, X, Py, )T, — f(r, X, Py )] dr + [g(Py;) — g(Py,.)]

<o (Wl(IE”{/TJF’yT)) + /tT P [po(mxrp + po (Wi (Pg., Py,)) + | £(r, XT,]P’YT)HAI,” .
The uniform regularity of f implies that
|f(r, X, Py, )| < 1f (7,0, Py, )| 4+ C1X, [ < O [1 4 | X,
where the constant C),, may depend on m. Then, by (A.2), (A.3), and (A.4), we have
BP (£, X0, Py, IIAL ] < CuBP (14 X, AL

< Co” [|AL- |+ po(6r) + [AX] + [+ X[ AL || < Cou W1 (m, 1) + p0 (68)]-

Plugging this into (A.5), we have
T A
| B+ By~ Vit
t

T
< o [Walm,i) + po(0r)] + [ ¥ [pn(IAX, )l
t
Since P € P(t,m) is arbitrary, for some appropriate modulus of continuity p we have
V(t,m) —V(t,m) < Cpp(dr). Switching m,m, and noticing that we may still use X;
in dr, we have

(A.6) [V (t,m) = V(t,m)| < Cop(dr)-
Fixing m and send m — m under W, we see that

limsup [V (t,m) — V(t,m)| < Cmp(C]EP[IXtH{IXt\ZR}D
m—m
for any R> 0. Now sending R — oo, we see that limp_,., V(¢,m) =V (t,m).
Step 2. Let t <t and m € P»(S). By DPP we have

(A7) V(t,m) sup
]P’EP(t m)

{
= sup {/ (r,Py.) d7‘+V(tPY)}

PeP(t,m)
V(t,m)= sup V(t,m

m’/<m

/ (r,Py. )dr + V (£, Py, )}

First, for any P € P(t,m), note that m’ :=Po (X;,I; )~! <m; then

V(t,Py, )=V (Em) <V(EPx, 1, ) = V(EPx, 1)) < Cup(dr),
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thanks to (A.6) and (A.4), where, following similar arguments as in Step 1,
(A8) 6 1= CREF[|X; — X, + CEF | Xi[1qpx, 12y
< CRE]P[l + |Xt|] V t—t + CEP [|Xt|1{|Xf,\ZR}]'

Since P € P(t,m) is arbitrary, by (A.7) we have

t
V(t,m)—V(t,m)< sup / F(r,Py. )dr 4+ Cpnp(dr) < Cmp(dr).
PeP(t,m) Jt

Next, for m’ <m, choose P€ P(t,m) s.t. [y=1;_,t<s<t and Po (X;,[;)"' =
m/. Then

7
V(t7m,) - V(tam) < V(Ev P(Xt,[{)) - V(Ea P(X,j,[g)) - / F(T7 PYr)dT < Omp((sR)
¢
Since m’ <'m is arbitrary, by (A.7) we have
V(t,m)—V(t,m) <Cnp(dr), and thus fV(t,m) - V{4, m)’ < Crp(Or).

This, together with (A.8), implies the desired regularity immediately. 0

Proof of Lemma 3.7. We shall apply the results in Buckdahn et al. [1]. For
this purpose, we extend functions on P(S) to Po(RY x R). Let ¢ : R — R be a
smooth function with bounded derivatives s.t. 0 < ¢ <1, ¢(0) =0, ¢(1) = 1, and
® 1 € Po(RY x R) — m € Py(8S), with

m(A,1):= /}Rgﬁ(y)m(A, dy), m(A,0):= /R[l —o(y))m(A,dy) for all Ae B(Rd).

Now for ¢ =b,0, f,g, define @(t,x,m) = @(t,z,®(1n)). ¢ inherits the regularity of ¢
on Py(R? x R).

Next, fix a filtered probability space (€2, Fr, F,P) on which is defined a d-dimensional
Brownian motion W. For any (t,7), let & € L?(F;RY), n e L2(.7-'t, R) be such that
IP’(f ») = m. Consider the following SDE on [t, T'] with solution Y =(X,I):

:§+/S b(r, X, By, )¢(fr)dr+/s6(n?? Py, )o(I)dW;
A t t
I, = nl[t,T) (8)7 ]P’—a.s.

We then define, recalling (2.1),

T
U(t,m) ::g(I@’YT) —|—/ E(r,Py )dr, where FE(r,m):= " f(r, @, m)im(dx, di).
t
We remark that, since b and o are not necessarily bounded, the coefficients of the
SDE for X are not Lipschitz continuous in I. However, since Iis already given, such
Lipschitz continuity is not needed. In particular, we can apply [1, Lemmas 6.2 and
7.1] so that oU ,8mU , agmff exist and are continuous and bounded. Here d,U is
the Lions derivative and satisfies 6mU(t,m,g) = 833(57;1(7(25,7?1,3)); see, e.g., Carmona
and Delarue [5, Volume 1, Chapter 5]. We also remark that in [1] the function U
takes the form U (t,z,7m) while here U does not have the z-variable. Moreover, note
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that each m € P(S) can be viewed as an element of P(R? x R) with support included
in S. Since ¢(0) =0,$(1) =1, one can easily see that U(t,m) = U(t,m). Then clearly
Ue 021 ’Q(QO). Finally, the W Lipschitz continuity of U follows arguments similar to
that of Theorem 3.6, and we thus omit the proof here. 0

Proof of Lemma 3.8. (ii) and (iii) follow directly from [20, Theorem 3.1], after
the straightforward extension to P2(S), as we will do next. Thus we shall only prove
(i). For ease of presentation, we assume d = 1.

Fixing n > 1, we construct U, as follows. First, let H,,,¢" € C*(R), j € Z, satisty

0<H,<1, Supp(H,)C { 3;,32”], H,(z)=1for |z|<mn, |0.Hp|< §;
n n -1 5+1 n n Jjj+1
0<¢} <1, Supp(¢})C T e b 95 () + ¢y () =1for all z € 0 n |

See [27, (3.3)] for a construction of ¢7. Next, for each j € Z, define

(A.9) / 67 () H (2)plde) + 10y / 1 — H,(a)]u(de)

for all finite measure p on R. We emphasize that, slightly different from [27], here the
p will be m(-,7) whose total measure is less than 1 and thus it is not a probability
measure. Note that ¢} >0 and 37, ;97 = p(R). Moreover, denote Z, := {j € Z:
l7] < 2n?} with size N,, :=4n? +1, and

A, = {Z: {zi}jez, :|zj| <N, ? for all j#0, and zp:=— Z zj}.
JEZ\{0}
We now define, for each Z€ A,, and m € P(S), i=0,1,
(A.10) n(dz,i,2): Z w” ; 6i (dz), 1&}1(#72)
JE€Ln

NN+1[W( )+ (R)[z\;“%”

Note that |z9| < N,; 2, and thus z/)”(,u, Z) > 0. One may easily verify that

2 V()= Niv il Z 0y ) + %If)} = ) + B8 =

JELn

n(Ri,2)= > r(ml(-,i m(R,i), and thus mn(S,2)=1.
JELn
In particular, this implies that m,, (-, 2) € P2(S) for every Z € A,,, where the square

integrability follows from the fact that Supp (m,(+,%)) is finite. Finally, let ¢, be a
smooth density function with support A,,, and we construct

(A.11) Un(m)::/A U(man (- 2)Ca(2)dZ, m € Pa(S).

n

The smoothness of U, follows from the same arguments as in [20, Theorem 3.1].
However, we note that [20] uses the W;-distance and requires M to be a compact
subset of P;(S). This is mainly for the uniform Lipschitz continuity of U,, which holds
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only under W;. Here we provide a proof for the uniform convergence of U,, under
Ws,. We first show that

(A.12) M= {mn(~,Z) meM,n>1,7¢€ An} C P2(S) is compact.

Indeed, fix R > 0. Denote Z5 :={j € Z, : |j| > nR} for n > £ Then

[ i 9= 3 Tz,

ja/> R} s

= % L [optnte) + m®) [+ 5]

JELE

From the construction of 1/);., one can easily verify that
j* 2
> Lupmap<2 [ jalm(d)
sezn {lal>R}
Moreover, note that |z;| < N, 3 for all j € ZY. Then, for n > £,
2 4 2 . j C
|| *m, (dx, i, 2) < 2 |z|*m(dz, i) + =m(R,i)—
{lal >R} {lal>R} jan " Ny

Cm(R,i Cm(R%, i
< 2/ aPm(da, i) + SR 2/ |z[2m(da, i) + ’”(722)
{o|>R} Nn {|2|>R} R

On the other hand, when n < £, we have Jeei>m) |z|>m,, (dx,i,Z) = 0. Thus,

C
sup E / |lz|2my, (d,i,Z) <2 sup E / |lz|?m.(dz, i)+ o5
meMn>1,7eA, S5 J{je|> R meM S5 J{j21> Ry R

Since M C P3(8S) is compact, we have lim p— o0 SUP;e a1 D 2i—0.1 f{lx\>R} |z|>m(dw,i) =
0. Then

lim sup E / ‘$|2mn(dx,i,g) =0.
R0 meMn>1,2€A, ;=57 J{|z|>R}

This proves that M is uniformly square integrable, and therefore compact in Py(S).
Next, note that M is also compact in P (S); by [20, (3.15)] we have

(A.13) lim sup Wi(my(-,2),m)=0.

N0 meM,ZEA,

Then, for any R >0,

W2 (mn(-,2),m) < RWy(my (-, 2 —|—C’Z/ E|x\ my(dx,i,2) + m(dz, z)]

1=0,1

This, together with the uniform integrability of M and (A.13), implies immediately
that

(A.14) lim sup  Wa(my,(-,2),m)=0.

=0 meM,ZeA,
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Finally, by the compactness (A.12), we see that U is uniformly continuous on M.
Then it follows from (A.11) and (A.14) that lim,_,o sup,,eaq |Un(m) —U(m)|=0. O

Remark A.1. While not used in the paper, the following property is interesting
in its own right: if U is monotone under =, then so is the U, constructed in (A.11).
Indeed, assume U is increasing, and let m’ < m with transition probability p. For
each Z€ A, by (A.9) and (A.10), it is clear that

0< @?(m’(-, 1),2) < qﬁj”(m(, 1),7), and thus
B (2) =2 (m/ (-, 1),2) /7 (m/ (-, 1), 2) € (0, 1].

Since m:(dx, {0,1}) = m(dz,{0,1}), it is also obvious that >, g, @?(m’(-,i)j’) =
> im0 V7 (m(+,4),2). Then my,(-,2) <my(-, 2) for each Z'€ A, with transition prob-
ability p(-, 2) satisfying p(2,2) = p;(Z) for all j € Z,,. Then, since U is increasing, by
(A.11) we see that U, (m') <U,(m).

Proof of Lemma 3.9. (i) Let m’ < m with transition probability p. As m is a
probability measure on (S, B(S)), it is a Radon measure. Then, by Lusin’s theorem
(see Folland [12, 7.10]), we may find for all k> 1 a continuous py : R* — [0, 1] s.t.

m({z:p(x) # pe(@), 0,1)) < 7.

Let {m}, }x>1 be the measures obtained from m by applying the transition probabilities
{pk}r>1, and ¢ a bounded and continuous function. Then

| [ s@m@miz) - [ s@pmds )| < 7 o]
R R

and thus mj (dz,1) converges weakly to m/(dz,1). We do similarly with mj (dz,0),
and thus mj, converges weakly to m'. As {mj} },>1 is uniformly integrable, we have
limy—y 00 Wa(mj,,m') = 0. As v is nondecreasing for <, we have v(m) > v(m/},) for all
k>1. Then, as v is N-LSC, we have v(m) > liminfy_,o, v(m}) >v(m’).

(ii) As (Drep). is LSC, there exists 6 > 0 s.t. (Drp). >0 on [¢,1 4 ] x By, (m,d). Let
(s,mgp), (s,m1) be in this neighborhood, s.t. m; < mg with transition probability p.
Then, we have

1
o(s,mg) — (s, mq) :/0 y Dirp(t,Amg + (1 — N)mq,2)(1 — p(x))m(dz, 1)dA.

By convexity of By, (m,d), we have Dyo(t, Amg + (1 — A)myq,-) >0, hence the desired
result. a
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