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Abstract—Recent years have witnessed a surge in hybrid IoT-
cloud applications where an end user distributes the desired
computation between the IoT and cloud nodes. While achieving
significant speed up, the major caveat of this approach is data pri-
vacy. Privacy-preserving methods have received major attention
in the past few years, mainly because they can potentially solve
this issue. Among several proposals, methods based on dynamic
encoding and perturbation offer flexibility and low overhead.
However, they often consider a weak adversary model or overlook
practical limitations such as encoding latency and complexity.
This work proposes a new privacy-preserving method to address
these issues. The key contributions of this paper are twofold.
First, unlike state-of-the-art, it proposes a new approach based on
evolutionary algorithms to systematically evaluate the robustness
of the encoding algorithm against a large population of potential
adversaries. Second, it develops a dynamic obfuscation strategy
that balances latency requirements in a realistic IoT-cloud hybrid
ecosystem and privacy demands. Additionally, our method offers
a unique benefit: it can be used alone for privacy protection,
or it can be integrated with most existing methods to enhance
privacy and reduce latency. The applicability and effectiveness
of our proposed methods are thoroughly evaluated using two
popular deep neural networks in a real-world IoT-cloud setting.
We study the impact of our approach on important metrics, such
as accuracy and privacy. Our results show that our proposed
method can improve the overall privacy of a given IoT-cloud
hybrid ecosystem by more than 10% on average.

Index Terms—Privacy-Preserving, IoT-cloud hybrid systems,
machine learning

I. INTRODUCTION

The increase in popularity of IoT devices, the growing
availability of low latency network connections, and large
investment in cloud servers collectively have increased the
popularity of collaborative IoT-cloud computation platforms
significantly [1], [2]. In such an ecosystem, the IoT devices
offload their data to cloud servers for computation, using a
low-latency network (e.g., 5G, WiFi). Such offloading greatly
improves the end-to-end latency as the majority (or even all)
of the computation is done on a high-end high-performance
cloud server rather than the resource-constrained IoT device.
This collaboration also improves energy efficiency on the IoT
device since it only does the minimal work required to offload
the computation instead of locally computing it [1].

Among various popular applications of collaborative IoT-
server computation is machine learning, particularly deep
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learning applications. Recent advancements in deep learning
have allowed users to achieve high accuracy in a new class of
tasks including vision, natural language processing, and voice
recognition. Leveraging a collaborative ecosystem, further
allows IoT end-users to leverage these new machine learning
capabilities even when a low-end resource-constrained IoT
device is being used [3], [4]. The main concern in this ecosys-
tem, however, is security and privacy [5]-[9]. As IoT devices
become more common, their reliance on remote servers brings
a growing concern for privacy.

To alleviate this quandary, privacy-preserving computation
has received lots of attention recently [10]-[22]. These meth-
ods allow cloud computing while protecting privacy. Getting
the right balance between privacy, inference accuracy, and end-
to-end latency, however, remains a key challenge.

An emerging method in this area is hybrid encoding meth-
ods [7], [21]-[24]. The key idea in a hybrid method is to first
divide the original model (typically a deep neural network)
into two parts, one residing in the IoT device, and the other
(rest of the network) staying in the server (see Figure 1a). The
network is then retrained with the goal of instructing the IoT
device to remove sensitive aspects of the end-user data without
affecting the other aspects. This could improve the privacy-
accuracy tradeoff, as only the private information would be
obfuscated, ideally [24].

Motivation. While various hybrid methods have been pro-
posed in prior work [6], [7], [10], [23], [25]-[28], none has
considered the potential challenges that this approach could
create on a resource-constrained IoT device. Particularly, to
ensure privacy, the IoT device becomes responsible to detect
and remove sensitive information from the raw input data. In
other words, hybrid methods shift the burden of encoding to
the IoT device. Thus, one of the main challenges in this field
is finding privacy solutions that can handle complex networks
and tasks without causing a significant increase in overall
latency and energy usage.

The second issue motivating the need for our new approach
is that existing work often underestimates the adversary’s
capabilities. This is mainly due to the fact that hybrid methods
are primarily inspired, and based upon, machine learning
techniques for removing bias and unfairness [26] and hence
only consider a passive adversary where the attackers only
attack at a single point in the network (i.e., the intersection
between IoT and server) and use one or very limited number
of strategies to infer private information.

The reality, however, is that the attack-defense scene is con-
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Fig. 1: An overview of two main contributions proposed in our
framework, Chery. (a) Existing work uses adversarial training
to slice the network into encoder and classifier (Mg and
M¢) to protect privacy. (b) Chery improves the state-of-the-
art by adding adversary-aware (left) and latency-aware (right)
techniques that enhance privacy and latency.

stantly evolving, and hence the adversary should be modeled
as an active and dynamic player who adaptively changes their
strategy. To achieve this, new systematic methods should be

developed.

Our Contribution. This work improves the state-of-the-art
by proposing a new framework that leverages a context-aware
design strategy to improve the accuracy-privacy tradeoff while
satisfying latency requirements. Context, in this paper, refers
to practical and realistic considerations such as latency, threat
model, and adversary capabilities.

Our proposed solution presents two key contributions. First,
to improve privacy, our solution introduces and leverages a
new criterion called adversary-aware. The main insight is that
existing hybrid methods do not properly and extensively model
an adversary in their setting, therefore, as will be shown in
detail, the achieved privacy decreases. To fix that, we propose
multiple new strategies including systematically diversifying
the adversary and their capabilities using a metaheuristic
evolutionary algorithm. This is in contrast with the existing
methods where only a simple weak adversary was considered.

Second, to improve latency without sacrificing privacy
and/or accuracy, a new latency-aware training strategy that
Jjointly optimizes latency and privacy is proposed. The key
insight is that our algorithm leverages both encoding and
perturbation to balance latency and privacy. This is achieved
by developing a smart and adaptive perturbation mechanism.

A high-level overview of the key contributions of our work
is shown in Figure 1 where (a) shows an existing hybrid
method where an adversarial algorithm is used to slice the
network. On the other hand, Chery adds two new features
namely adversary-aware and latency-aware (Figure 1b) which
will be described, in detail, in Sections III-D and III-E,
respectively. Further, our method can be implemented on
top of existing mechanisms, extending their capabilities and
improving privacy, latency, and accuracy.

We evaluate our method using two large datasets using
two popular convolutional neural networks. We report our
results using three important metrics: latency, privacy, and
accuracy; and show the impact of each feature introduced in
Chery on these metrics. Our results show that privacy can be
improved by about 10% on average compared to the baseline.

We also compare Chery with various state-of-the-art methods

and highlight the advantages of our approach.

In short, the contributions of our paper are as follows:

« We design a new heuristic evolutionary-based algorithm that
improves privacy by finding a more powerful, realistic, and
diverse adversary.

« We further improve the solution and balance latency and
privacy by developing a new dynamic obfuscation algorithm
that dynamically employs both encoding and perturbation.

« We implement our framework in a real hybrid IoT-server
system and evaluate privacy, accuracy, and end-to-end la-
tency using multiple deep-learning networks and datasets.
The remainder of this paper is structured as follows. In

Section II, we discuss the related work. Section III describes

the design of Chery in detail. The implementation and results

are provided in Sections IV and V, respectively. We briefly
discuss other important considerations in our framework in

Section VI. The paper is concluded in Section VIL

II. RELATED WORK

For an IoT-server ecosystem, effective privacy-preserving
methods allow the end-users to receive the public cloud
service while protecting data privacy. To achieve this, privacy-
preserving methods provide an effective capability by ob-
fuscating their personal information before sending them to
the remote server. Such obfuscation comes in various forms
including using encryption [19], [29], [30], embedding [23],
[25], perturbation [16], [31], and even hardware-support [17],
[32]. Instead of obfuscation, another possible solution is based
on privacy-preserving truth discovery [33], [34]. The key
challenge in all these methods is providing the best tradeoff
between privacy and cloud service accuracy while satisfying
latency requirements in a collaborative loT-server ecosystem.

A popular method for obfuscation is homomorphic encryp-
tion [19], [29], [35]-[39] which leverages encryption and its
unique ability to perform computation over encryption to en-
sure privacy. The great advantage of homomorphic encryption
is its provable privacy guarantees. Similarly, are methods based
on other cryptographic primitives, such as garbled circuits and
secret sharing [20], [40], [41]. Compared to each other, each
method offers various capabilities and is suitable to a particular
set of problems (e.g., linear vs. non-linear layers for machine
learning computation) [19]. The caveat in these solutions is
the notable increase in end-to-end latency. This is caused by
the significant computational overhead dictated by using these
cryptographic-based methods [39].

A closely related solution is based purely on hardware
and particularly trusted execution environments (TEEs) [17],
[18], [32]. Methods based on this mechanism rely on the
confidentiality and integrity guarantees provided by the hard-
ware enclaves — a special hardware primitive existing in
modern systems. Similar to methods based on homomorphic
encryption and others, methods based on TEEs also suffer
from latency overhead as they are not fundamentally suitable
for large-scale and memory-intensive workloads such as deep
learning applications.

Also applicable to privacy-preserving computation are meth-
ods based on the differential privacy (DP) concept. DP is
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a probabilistic privacy mechanism that provides a formal,
information-theoretic security guarantee. DP methods have
become the de facto standard for protecting private data in
databases and machine learning training [15], [42]-[44]. The
goal is typically to limit what can be inferred from the model
about individual training records. Possible solutions include
adding perturbation to gradients, model parameters, and/or the
objective function. While existing work shows that DP is quite
useful during the training phase, its application to inference is
an open question.

Due to the latency issue, there is a need for methods that can
provide acceptable privacy without compromising the system’s
latency, energy efficiency, and other critical aspects. To answer
this need, hybrid methods have received lots of attention
lately [6], [7], [10], [23], [25]-[28]. The key benefit of these
approaches is that they largely minimize the computation
overhead needed for ensuring privacy. Instead, the network
is distributed between the IoT device (client) and the server
while the network is also retrained using special algorithms
that are designed to ensure privacy.

There are two major shortcomings in the state-of-the-art
hybrid methods. Firstly, they are not “resource-aware” as they
do not take into account practical issues such as latency
and energy efficiency that arise when an encoding task is
delegated to the IoT device. Second, unlike other established
security problems existing methods only consider a weak and
stationary adversary, and hence are not “adversary-aware”.

III. SYSTEM DESIGN
A. Overview

We design and implement Context-Aware Hybrid Encoding
Privacy-Preserving (CHERY), to provide privacy-preserving
capabilities for deep learning applications in IoT-server
ecosystems. The main objective of our design is to develop
a context-aware framework. Particularly, we aim to develop a
method that achieves excellent privacy-accuracy tradeoff while
being (a) adversary-aware and (b) latency-aware.

At high-level, our system consists of three major compo-
nents: (i) an encoder that resides in the IoT device and is
responsible for obfuscation and providing privacy by mapping
the input (raw) data to a private intermediate representation,
(ii) a classifier that is uploaded into the cloud and is responsi-
ble for the main classification task (e.g., image classification),
and (iii) a training strategy/algorithm that is responsible for (a)
creating and/or distributing the two aforementioned networks
and (b) designing a mechanism for training each network and
for evaluating three important metrics, privacy, accuracy, and
latency. Fig. 1a shows this structure at the high level where
an original network is divided into an encoder and classifier
using an algorithm (called “baseline™).

B. Technical Challenges

There are two main technical challenges in designing our
method. We describe them in the following:
« Jointly optimizing accuracy-privacy-latency: A key chal-
lenge for hybrid-based privacy-preserving mechanisms is
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Fig. 2: Steps taken in our design for developing Chery and
outputting a new context-aware privacy-preserving model.

finding the right balance between competing metrics,
namely inference accuracy, data privacy, and overall latency.
For more privacy, a more complex encoder is desired,
which in turn impacts the latency. Similarly, a stronger
encoding could help privacy but it would negatively impact
the accuracy (i.e., sending less information changes both
privacy and accuracy). We explain how Chery solves this
problem by proposing a context-aware algorithm.

o Modeling the adversary: The other main challenge for
hybrid methods is the lack of proper modeling of the
adversary. Incorrect assumptions about the adversary could
result in a false sense of privacy, hence care should be taken
during the design. We explain our adversary-aware strategy
to address this issue.

C. System Architecture

The systems analyzed in this work are deep neural networks
that are used for classification. In Section IV, we will describe
the details of networks used for evaluations. In any of those
networks, there are two major components in our framework:
an encoder and a classifier.

The overview of design steps for Chery is shown in Fig.
2. Briefly, to design Chery, we take an existing adversarial
training strategy (we call it “baseline”), and build our method
on top of that. Knowing the baseline training strategy, we then
slice the original network into two parts: encoder and classifier.
In the first step, we slice this network at a randomly chosen
layer. Due to practical reasons, we limit the random number,
T, to be smaller than L /2 where L is the total number of layers
in the given network. In other words, we limit the slicing such
that the encoder is always less than half of the network. This
is due to latency constraints. In Section III-E, we describe this
constraint in more detail.

There are two fundamental options for the encoder and
classifier networks. The first option is to assign the original
DNN to the classifier (e.g., Resnet, VGG, etc.) and then design
an encoder by introducing new additional layers that are added
to the beginning of this classifier. The second option is to
divide the original network and use the initial layers as the
encoder while the rest completes the classification task.

Our analysis shows that the second option has several
advantages. First, existing high-performance classifiers are
highly optimized and fine-tuned thus adding additional layers,
especially at the beginning, completely disrupts the feature ex-
traction functionality of these networks and hence significantly
reduces the accuracy. Dividing the network, on the other hand,
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does not impact the original functionality of the network and
therefore has minimal impact on the accuracy.

Second, adding additional layers at the beginning not only
hurts the accuracy but also introduces additional latency as
more computation is added to the overall system. Adding new
layers for the encoder, however, decouples the design of the
encoder from the classifier and hence provides flexibility.

Using this strategy, the fundamental question becomes what
is the optimal slicing? To find the best slicing, we first need
to define the baseline training strategy (we call it baseline
since it does not support context-aware features which will be
described later).

Chery leverages adversarial training as the baseline strategy
as it has become an effective method for privacy-preserving
recently [6], [25], [26]. In short, adversarial training in the
context of privacy-preserving is an optimization problem that
optimizes the tradeoff between two competing objectives:
accuracy and privacy.

There has been an extensive body of work on developing
an effective adversarial algorithm for privacy-preserving. The
main difference between them is how the problem is formu-
lated and how privacy is measured. The two main themes are
either based on (a) leveraging a proxy network to measure
privacy (i.e., it is used as a discriminator to evaluate the
success of encoding) or (b) measuring the mutual information
between the encoded vs. the private information. In both cases,
the underlying goal is the same. Reward the model if it can
successfully remove sensitive information and penalize it if
this removal hurts accuracy. To balance the two competing
objectives, a regularization factor is typically used.

To improve latency and privacy, state-of-the-art slightly
optimizes the slicing and finds a more balanced point where
the joint privacy latency is optimized. However, to the best of
our knowledge, there is no existing work that investigates this
further. This is where we introduce our two main contribu-
tions of this paper: adversary-aware and latency-aware designs
to improve latency and privacy in state-of-the-art (these are
steps 3-5 in Fig. 2).

D. Adversary-Aware Design

Before describing the details, it is important to mention that
privacy (adversary-aware) and latency (latency-aware) features
are NOT independent of each other, and adjusting one impacts
the other. As a result, both metrics should be optimized jointly.
However, to simplify the description, we first assume that the
network is sliced while considering latency, and now we are
focusing on privacy (i.e., adversary-aware). In Section III-E,
we then describe how both can be jointly optimized.

More formally, we formulate our problem using the follow-
ing definitions.

Definition 1 (ADV): The ADVANTAGE (Adv) of a classifi-
cation algorithm, f : X — Y is defined as

M

Adv[f(@)] =Y (y(@)ef(2)e — (1 = y(@)e) f(2)e),

c=1

where y(z). is a binary vector indicating the ground-truth
label for the input x, and f outputs the likelihood (0 < p <

1) for each class (of total M classes). Given this definition,
for each observation, we have 0 < Adv(f) < 1. Using this
definition, we then define Privacy Leakage as follows:
Definition 2 (PM): To measure privacy leakage, we define
PRIVACY METRIC (PM) as:
_ D veex Adv(A(z))

PM(A) e 7

where X = {X1, Xo,..., X,,} € Z*"*" is an input dataset
and A(.;04) is the model used by the adversary to infer the
predefined private attribute.

Definition 3 (Junction and Cut): To train an encoding
algorithm for a neural network, an L layer network is CUT
into two pieces, encoder, E, and classifier, F. The first d layers
are assigned to E, while the rest, L — d, are assigned to F'.
In existing algorithms, the attacker receives its input from the
JUNCTION of the cut, i.e., the output of the layer d.

In this setting, an adversary could leverage this fundamental
vulnerability where during the training only a pre-defined
proxy for the attacker is assumed (called discriminator or
D), while during the inference, the adversary can adaptively
change their strategy. Particularly, an adversary has two major
control knobs to extract information: location and architecture.

Definition 4 (Adaptive Adversary): To launch an attack, an
adversary can perform either or both of these methods:

(ARCH.) Find A st. PM(A) > PM(D),
(Loc.) Findl st. [(I > d)&&[PM(D(z;)) > PM(D(xq))]].

The first strategy indicates that an adversary can find a new
architecture such that it can achieve higher information leakage
compared to the discriminator architecture used during the
training. The second strategy suggests that an adversary can
find a new location, [, that is different from the original loca-
tion of D during training (noted as d) and can achieve higher
leakage. Note that this new location should be in later layers of
the network (i.e., [ > d) since the existing methods [6], [10],
[25], [45]—[51] all assumed that the discriminator is connected
to the JUNCTION (cf. Definiton 3).

The ultimate goal in designing an encoding algorithm is to
find the best tradeoff between privacy and accuracy. While
there are a few studies for finding a theoretical lower bound
for the privacy-accuracy trade-off [10], [47], [52], [53], a
practical consideration is if and how the optimum trade-off can
be found? To explain, we draw analogies from cryptography
where the objective is fairly similar.

Definition 5 (Perfect Encoding): An encoding algorithm,
R(E,D,F), is PERFECT if Vm; € M and ¢; = E(m;;0g)
and any “efficient” algorithm, A(c;|i<j<r) = Sc, We have:

PT[A(Cl) ‘SH S €,
where ¢ is ‘negligible’ (user-defined), S = {s1, s2,..., 8} is
a discrete set of [ private labels, and L is the total number
of locations. Perfect encoding can also be formulated by
Definition 1, where the goal is to achieve Adv(A) = r Es
(i.e., 7 is chosen at random from set \5).
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Given the definitions above, the fundamental challenge is
computing Adv(A) for any arbitrary algorithm given an adap-
tive adversary. Unlike cryptosystems, finding the best-known
attack strategy for machine learning is not well-formulated, as
the field is continuously evolving [54]. Instead, we propose a
heuristic optimization algorithm where instead of finding the
unknown theoretical limit, one can perform an iterative search
in the state space domain and pick the best candidate among
the data points.

Specifically, we propose a metaheuristic evolutionary al-
gorithm based on the method proposed by Real et al. [55].
The goal is to find a more sophisticated adversary so that
the encoder becomes more robust and hence the end-to-end
privacy increases.

Unlike existing algorithms, the problem we have in Chery
is slightly different since the adversary does not have a fixed
input (location strategy in Definition 4). Noting this difference,
the evolutionary algorithm designed in Chery has two main
parameters to consider: input and model. In existing models,
including the algorithm developed by Real et al. [55], the
assumption is that the input is fixed. In our setup, however,
this process should be repeated M times, and only the best
candidate among all should be chosen. M refers to the number
of layers in the classifier. For example, if the original network
has L = 20 layers, and we split the network to N = 4 for the
encoder and M = L — N, then the search algorithm should
find the best network among sixteen possible locations.

Given this new requirement, the execution time of our
search algorithm becomes a primary concern since searching
one layer (with fixed inputs) is fairly time-consuming as shown
in the literature [55], [56], and now multiple iterations of that
search are needed.

We make two main optimizations in Chery to address
this issue. First, our initial investigation of a few datasets
shows that the final few layers of the classifier consistently
perform poorly compared to the initial and intermediate layers.
Intuitively, this was expected as the features in the final layers
are already heavily filtered and typically only relevant to the
main classification task (i.e., the non-sensitive information).
The initial and intermediate layers, however, still have relevant
information which potentially could be extracted. Using this
observation, we adjust Chery to discard the last 25% of the
network (this number is based on initial observation on our
chosen dataset and may not be always generalizable. We
believe as a rule of thumb a number between 20-30% is a
safe assumption without sacrificing optimality).

The second optimization proposed is that we observe that
some locations consistently outperform the rest. We study this
further and find that this phenomenon can be explained by a
new metric called prediction probability.

Definition 6 (Prediction Probability): We define PREDIC-
TION PROBABILITY (PP) as:

PP = MI(z;5) Xx SNRy(z, ),

where z; is the input to the layer [ and M1 is the mutual
information between z; and private task, s. SN R is the ratio
between the number of features that are ‘important’ for the
private task and the total number of features in that layer and
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Fig. 3: Details of our heuristic evolutionary algorithm for
finding a better, more sophisticated adversary network to
improve overall privacy.

derived from calculating the importance of each feature for
a given task and then selecting the top-n features based on a
threshold (6).

Intuitively, PP predicts the layer where an adversary is
most likely to infer sensitive features, balancing information
vs. noise. Using this, we set argmax(PP) as the location for
the adversary’s network in our search algorithm.

Using these two optimizations reduces the overhead to only
about 1.6-1.65x, as opposed to more than 10x without them
(i.e., about an order of magnitude). For the search itself,
we use an evolutionary algorithm to find the best-performing
adversary. Since in this work, we only focus on image datasets,
we only consider CNNs.

The overview of the algorithm is shown in Fig. 3. The
algorithm starts with an initial population. To make our
search more accurate and faster, we observe that creating a
manual but carefully-crafted initial population is extremely
helpful. To create these candidates, we pick six manually-
created networks. Details are provided in Section IV. One
key challenge in our setup is that given the input location
of the adversary varies, the input size and the structure of
each network have to be adjusted for each layer. Therefore, we
create multiple instances of the same initial candidate networks
with modified sizes — i.e., for the initial population, P = 6, we
create P x M networks. Recall that we discard the final quarter
of the original network, thus M here refers to M = .75L—N.

We then train these hand-crafted groups of networks which
then collectively create our initial population. At each step
of our evolutionary search algorithm, Chery then picks two
candidates at random and compare them. The fitness function
used for comparison is the accuracy of the network with
regard to inferring private labels. For example, if we have
a dataset with human faces, private labels can be defined as
inferring people’s genders while other attributes in the picture
are considered public. The accuracy of the adversary is then
defined as how well the candidate network can detect genders
given an encoded input. Details of the datasets and training
are provided in Section IV. After comparison, the candidate
with higher accuracy stays, and the other candidate is removed
from the population by Chery.

Each winner candidate after each comparison is then gone
through the mutation process. We use the strategy proposed by

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on August 31,2023 at 23:28:59 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3288523

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX XX

Algorithm 1: Adaptive Adversary algorithm in Chery.

Data: input z, public task y, private task s, latency ¢,
minimum threshold 7', Encoding algorithm
Enc(6), Max number of iterations T'T;

Result: A;

// Step 1l: Initialization

Create an initial population manually (N = P);

Repeat to create different sizes (N = M x P);

Loc = argmax(PP) ;

Train E, F,and D using data above;

iter = 1;

// Step 2: Optimization

while iter > T1 || (Quality <T) do

Pick M; and M; at random from IV;

Calculate PPy using Ey, Fp,Dg; // 0 ={i.j}

Diocation = ArgMaxz(PPy);

10 {Acc, Pr} = Ency(z,y,s,E,D, F);

1 Mutate winner(M;, M;);

12 Update N and Quality;

13 iter = iter + 1;

14 end

Output A;

B A W N -

e e 9 &

-
wn

Real et al. [55] where we use a collection of different mutation
strategies to create a new child. Briefly, the mutation includes
adding/removing an entire layer, changing hyperparameters
such as learning rate, changing filter size and stride, etc. We
refer the readers to the work by Real et al. [55] for full details.
This newly trained child is then put back into the population
and the algorithm continues.

The termination criteria for our search algorithm is when
Chery reaches a pre-defined iteration OR if the changes in
accuracy’s improvement are less than a pre-defined threshold
for T' consecutive comparisons. For the latter, Chery uses a
variable called quality to keep track of the last comparison
and the winner’s accuracy. It then uses a counter to terminate
the algorithm if needed. Algorithm 1 shows the full details.

The final outcome of the adversary-aware step is a network,
A, that indicates the best adversary’s network and its location.
Next, we describe our latency-aware strategy and how these
two methods are combined and added to our baseline pipeline.

E. Latency-Aware Design

The design of Chery, so far, includes an original network
that is sliced into the baseline structure with an encoder
and a classifier. In Section III-D, we improved this design
by designing an evolutionary algorithm that finds a better
adversary network for a given slice.

We now turn our focus to finding a better strategy for slicing.
Combining the slicing, training, and adversary’s network,
Chery provides notable improvements in privacy and latency
over the state-of-the-art.

To find a better slicing, we need to consider two competing
phenomena. First, larger encoders are preferred since (a) due
to the data processing inequality principle [23], less informa-
tion is available at later layers, and (b) more layers assigned

to the encoder allow us to train a more powerful encoder that
learns what features to remove and what to contain.

The competing factor, however, is the latency constraint.
Since the encoder has to be operating on the IoT device, adding
a more complex encoder incurs latency and storage overheads.
Given the significant imbalance between the computation
capabilities of the IoT and the server in a hybrid ecosystem, to
minimize latency (and energy consumption) it is preferred to
offload as much as possible to the server, hence the smallest
possible encoder is desired in a hybrid ecosystem.

Given these two contradicting considerations, Chery uses
the following strategy. We make this key observation that
instead of adding more layers to the encoder, Chery can
employ perturbation in addition to encoding which means that
the encoder size could be kept unchanged while more privacy
is achieved via perturbation. The fundamental difference be-
tween perturbation and encoding is that creating perturbation
is significantly less computationally intensive especially if they
are created dynamically on the fly or sampled from a pre-
trained distribution [57].

While perturbation is computationally cheaper than en-
coding, naive usage of perturbation could lead to a large
reduction in the classifier’s accuracy. Note that the key dif-
ference between encoding and perturbation is that the encoder
intelligently removes sensitive information while perturbation
equally impacts both sensitive and non-sensitive information.

Using the above insights, Chery slices the network such
that the encoder is the largest possible without violating a pre-
defined latency requirement (recall that adding more layers to
the encoder means more computation for the IoT and hence
higher end-to-end latency). Using this slicing, Chery then
starts an iterative process to train the encoder, classifier, and
adversary networks.

There are various perturbation techniques in the literature
for creating efficient perturbation in a privacy-preserving set-
ting [11], [31], [57], [58]. Chery leverages a perturbation
strategy based on the method proposed by Miresghallah ef
al. [59]. Unlike this method, however, Chery uses a combina-
tion of encoding and perturbation. This requires generating and
updating noise tensors based on the new encoder design after
each iteration. Furthermore, unlike the method proposed by
Miresghallah et al. [59] which leverages mutual information
(with a proxy), Chery uses the feedback from the adversary
network to train and improve the noise generation block. As
extensively discussed in Section III-D, this results in a more
accurate estimation of privacy.

The complete overview of Chery’s training algorithm with
baseline, the adversary-, and latency-aware components are
shown in Fig. 4. Briefly, Chery first slices the network with
the largest possible encoder without violating the latency
requirement. An initial population is then created for adver-
saries using this slicing. Using either adversarial and/or mutual
information (cf. Section III-A), the slices are trained. For
training, five adversary networks are chosen at random from
the initial population. This includes training the encoder, the
perturbation, and the classifier.

The trained slices are then fed into the algorithm described
in Section III-D, to find the best adversary. The chosen net-
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Fig. 4: The steps needed for retraining the network and
updating the encoder and perturbation (noise) blocks.

work is then used to frain the encoder first and the perturbation
block next. The final hybrid network is ready at this point.

An important observation made in our design process is the
impact of the initial setting (especially the initial population)
on the overall quality of the design. To mitigate this depen-
dency, an additional optimization is to rerun Chery’ training
algorithm using a different initial condition and then pick the
best candidate among all runs. This, however, comes at an
additional training overhead.

IV. IMPLEMENTATION AND SETUP

We use two datasets to evaluate Chery: CIFAR100 and
CelebA. They both have been used extensively in the literature.
Similar to prior work [24], we use VGG-16 for CelebA
dataset and Resnet-18 for CIFAR100. We specifically used two
different networks to investigate the applicability of Chery to
different networks.

For CIFAR100 we define fine classes as private while iden-
tifying the coarse classes (superclasses) as the main (public)
task. Among different superclasses, we particularly focus on
“People” and define sensitive information as the fine labels
within this class while everything else is considered public.

For CelebA, we define gender (male attribute) as private
information. CelebA has 40 binary features, and we assume
the main task is identifying all features except gender.

The baseline models are trained on a server with A5000
GPUs and more than 100 GB of memory. We use PyTorch
with ADAM optimizer and 0.01 learning rate to train the
baseline models. The training and tasks needed for Chery are
also implemented and executed on the same server. Using this
infrastructure, the Chery’s training time for each network was
about 8 hours. In Section VI, we discuss various techniques
for improving training time.

We use a Raspberry Pi (Model 4) to represent the IoT
device for latency estimations in the paper. As described in
Section III, Chery slices the network into an encoder and a
classifier where the encoder is placed in the IoT device while
the classifier is offloaded to the server. When we report latency,
we always mean end-to-end latency (i.e., encoder, network,
and classifier). We assume a Wi-Fi connection between the
IoT and Server with a few MB/s data rate.

We use the method proposed by Jaiswal et al. called In-
variant Representations through Adversarial Forgetting (AdvF

for short) [25] as our baseline since it is publicly available
and outperforms prior work. To create our initial population
described in Section III-D, we use the adversary networks
proposed in AdvF [25] and DeepObfuscator [24] and create
five variants of those by manually adding one or two more
layers and/or changing the hyperparameters.

For our evolutionary-based search, we set N = 50, P = 6,
and 7' = 1000. We observe that our search terminates due to T’
and not because it reaches the maximum number of iterations.

Metrics. When we report accuracy in this section, we always
report average accuracy across all labels. Both networks are
first trained with the original network (without encoding) to
achieve high accuracy. Similar to prior work, out of more
than 200k samples for CelebA, we use 160K images to train,
and the rest for testing and validations. For CIFAR-100, 40K
samples are used for training, while the other 20K is used for
testing and validations.

We report privacy as the classification accuracy of the
private label (i.e., gender for CelebA, and fine classes for
CIFAR100) using the attacker’s network (A in Algorithm 1).
Unlike accuracy, we report the best classification accuracy for
privacy (i.e., the worst-case).

Finally, the latency is reported as the end-to-end latency
starting from the IoT device until the classification is con-
cluded on the server.

V. RESULTS

In this section, we report the results for our adversary-aware
(Section III-D) and latency-aware (Section III-E) features. We
then report the overall improvement when both are combined
(i.e., our context-aware solution).

Adversary-Aware Results. We report the privacy-accuracy
tradeoff when Algorithm 1 is used to improve privacy. As
explained in the previous section, two networks (Resnet-18
and VGG-16) and two datasets (CelebA and CIFAR100) are
used in our experiments.

The results are shown in Fig. 5. The “baseline” refers to
the original model when Adversarial Forgetting (AdvF) [25] is
used, while “CHERY” refers to our model when Algorithm 1
is used to improve the adversary modeling in the baseline
model. The figure shows five data points representing different
values of T (quality in line 6 of Algorithm 1).

Both optimum accuracy and privacy are sought-after (i.e.,
the top-left corner of Fig. 5), however, the practical reasons
discussed extensively in this paper illustrate that increased
privacy adversely affects accuracy, as presented in the figure
(i.e., higher privacy results in lower accuracy). As a result, the
user has to pick a design point based on their needs.

Our method enhances the baseline model, as demonstrated
by the fact that it outperforms the baseline at nearly all design
points. This implies that Chery grants the user a stronger
accuracy-privacy tradeoff by either giving improved privacy
for the same level of accuracy or vice versa. This is achieved
by modeling the adversary more rigorously as described in
Section III-D.

The trend is fairly similar for both datasets and among
various tradeoff points. The privacy results for CelebA are
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Fig. 5: The privacy-accuracy when using Chery’s evolutionary algorithm to find a better adversary and retrain the network.
The top left corner is the desired spot (higher accuracy and higher privacy).
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Fig. 6: The privacy-latency tradeoff for baseline and Chery. Each vertical line is one configuration in our setup. Latency

numbers are normalized with respect to the first configuration.

lower since the minimum privacy (random guessing) for
CIFAR-100 is 1 — 1/5 = .8 so at best 80% privacy can be
achieved, whereas for CelebA this number is 1 — 1/2 = .5.

Concerning accuracy, CelebA has a slightly higher accuracy
rate because its baseline privacy level is higher than CIFAR-
100, around 90% versus around 80%.

An important note to highlight is that the methods proposed
by Chery is orthogonal to the existing baseline, and hence,
can be directly applicable to any new or existing hybrid-based
privacy-preserving approach including that proposed recently
by Osia et al. [23] and Li et al. [24].

Latency-Aware Results. We report the latency-privacy trade-
off when the method described in Section III-E is used. Similar
to the adversary-aware experiment, we compare the result with
the same baseline model (AdvF on Resnet-18 and VGG-16).

Results are shown in Fig. 6. Similar to the previ-
ous experiment, we analyze the impact of Chery on both
datasets/networks. Unlike the previous experiment, the x-axis
here shows the latency, i.e., each vertical line refers to one
slice (same encoder size) and hence similar latency. Numbers
are normalized with respect to a setup with only one layer as
the encoder. The y-axis shows privacy for a given slice in each
setup. Note that the latency is reported as end-to-end latency
which includes latency for computing the encoder on the IoT
device (Raspberry Pi), network, and server.

The results indicate that for a given slice (i.e., same size
encoder), Chery achieves better privacy. Alternatively, for a
given privacy budget, Chery improves the overall latency.

Regarding the privacy-accuracy tradeoff, we present the
results for CIFAR-100 dataset in Fig. 7. The results are

0.9
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5 07 — o
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1 1.39 1.67 1.92 2.08
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(normalized w.r.t. one-layer encoder)

Fig. 7: Decrease in accuracy when using noise+encoding
(Chery) vs. when only using the encoding (baseline).

shown for the same setup described in Fig. 6. The important
observation is that adding noise has an impact on accuracy.
This impact, however, is mitigated as the encoder becomes
more sophisticated with more layers as Chery needs to do
less work to achieve the desired level of privacy.

For a shallower encoder, however, Chery needs to add more
noise which results in a larger drop in accuracy. While not
shown here, we observe a similar trend for CelebA dataset.

Context-Aware Results. To conclude the results, we examine
the impact of using Chery compared to the baseline when
both features are used. To measure this, we combine the steps
described in the first and second experiments. The complete
step-by-step design can also be seen in Fig. 2 (cf. Section III).

The results are shown in Fig. 8 for CIFAR-100 dataset. In
this figure, the x-axis shows the encoder size (as a proxy to
latency), whereas the first bar shows the original configuration
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Privacy ] [)) [)) ] ©
Dynamic Perturbation ] @) ] O ]
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TABLE 1. Comparison to the prior work. For each category @ means that best in that category (e.g., for privacy higher is
better but for training difficulty ® means less difficulty/complexity).
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Fig. 8: Adversary accuracy (lower is better) when using Chery
with adversary- and latency-aware features compared to the
baseline and the original configuration with no privacy.

where no encoding is used. The y-axis shows the adversary
accuracy (i.e., 1 — privacy). For the original network, this is
around 79% as this essentially becomes the accuracy of the
original classifier to infer fine classes.

The other three groups of bars each show one configuration
for the encoder where the percentage indicates the amount
of computation assigned to the encoder (effectively the slice
location). The results are shown for the baseline and Chery
when BOTH adversary- and latency-aware features are used.

The results reveal that Chery improves the state-of-the-art
by around 10% on average across all encoder sizes, where
this gain is achieved through the combination of adversary-
and latency-aware features (similar results were observed for
CelebA, although not shown here for brevity).

An interesting observation is that the results in Fig. 8 are not
the linear combination of what has been seen in experiments
one and two. This was expected as the impact of latency-aware
on the baseline is more significant on the baseline compared to
the adversary-aware configuration since the encoder has been
already improved on the latter.

We did not investigate larger encoders as (a) the latency
overhead becomes prohibitive and (b) the loss in accuracy is
sufficiently low for encoder sizes 20% and larger.

VI. DISCUSSIONS

Comparison with prior work. We compare our results in six
different categories with four prior works that are most relevant
to Chery. The works we compare are Adversarial Forgetting
(AdvF [25]), an adaptive perturbation method proposed by
Miresghallah er al. [57], DeepObfuscator [24], and a hybrid
method proposed by Osia et al. [23]. The rationale behind
choosing these works is that they leveraged encoding to
achieve privacy for a deep learning application.

This comparison is shown in Table I. We qualitatively
compare our work in categories such as how the adversary

is modeled, how each method considers IoT latency, and how
difficult and time-consuming it is to train each model. Further,
we also compare our model with prior work when considering
privacy and accuracy as the main two factors in any privacy-
preserving design as well as whether each method is using a
dynamic perturbation mechanism in their system.

To summarize, Chery improves the state-of-the-art in var-
ious factors including latency, privacy, and accuracy. This
comes thanks to the more accurate modeling of the adversary
and considering latency and privacy jointly.

Training Time. One key challenge in Chery is the increase
in training time due to adding adversary- and latency-aware
features. Leveraging a heuristic search specifically can increase
the training time and difficulty, especially for larger networks.

To address this issue, several optimization techniques at
the algorithm and hardware levels could be employed. For
example, as discussed in Section III-D, by discarding some
portion of the network, the search time for the evolutionary
search algorithm could significantly decrease.

Further, as described in prior work [55], hardware par-
allelization could greatly improve the training time. Given
that the candidates in the search algorithm can be analyzed
independently, multiple worker threads could perform the
search in parallel. Finally, the search size itself could be
adjusted as the execution time is essentially a tradeoff between
training time and the quality of the network.

For this work, as discussed in Section IV, only a few hours
were required to perform the training. For larger networks,
however, the above optimization techniques could be used
more aggressively to balance the training time with the design
quality. Lastly, the training time itself is not a huge concern
as this needs to be done only once for each network.

Scalability. Another important consideration for Chery, and
generally other encoding and/or perturbation-based privacy-
preserving mechanisms is scalability. Existing work mostly
focused on simple to medium size neural networks. However,
the current trend in utilizing highly deep neural networks raises
the scalability question for these methods.

The fundamental challenge in using encoding for a larger
network is the overhead incurred by the IoT device due to the
need for a larger encoder, which results in greater latency.
Consequently, concerns about latency become even more
pressing, and techniques such as Chery that can intelligently
balance between privacy and latency become more useful.

The other orthogonal problem here to address scalability is
designing more sophisticated adversarial training algorithms.
A Dbetter baseline could improve the overall privacy and
latency. As mentioned earlier, the key advantage of Chery is
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that it is applicable to any adversarial-based method and hence
could directly get benefit from a better algorithm.

Metric for Privacy. Finding an effective strategy for measur-
ing privacy is an important and critical challenge in our setup
and other related work. Some work used similarity metrics
to measure privacy [24]. Others borrowed the concept of
k-anonymity [23]. Another group of work leverages mutual
information as the main indicator [31]. However, most works
have used a proxy network to measure privacy.

The underlying rationale for using a neural network to
estimate privacy is that such a setup is closest to reality and
potentially would be what an actual adversary use to extract
information. The recent advancements of theory and imple-
mentation in image classification and computer vision have
further strengthened this theory given that machines largely
outperform humans in most image classification datasets.

Privacy-Preserving Capabilities. Chery provides a context-
aware privacy-preserving scheme which improve the state-
of-the-art in two fronts. First, for the same latency budget,
the overall privacy is improved since Chery can model the
adversary more efficiently and/or employs perturbation to
satisfy the privacy requirements without sacrificing latency.
Second, for a given privacy budget, Chery improves the overall
latency and accuracy. This is achieved by the latency-aware
strategy explained in Section III and the adaptive algorithm
described in the same section.

VII. CONCLUSIONS

A novel privacy-preserving technique using encoding and
perturbation was proposed for improved privacy. Two main
contributions were made to this approach. Firstly, an evolution-
ary algorithm-based method was proposed to systematically
assess the robustness of the encoding technique against po-
tential adversaries. Secondly, a dynamic obfuscation strategy
was developed to balance latency requirements and privacy
demands in a realistic IoT-cloud hybrid setting. The effective-
ness of this approach was evaluated against two deep neural
networks, measuring important metrics such as accuracy and
privacy. Results and analysis showed that the proposed method
enhances privacy in IoT-cloud ecosystems.
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