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DYNAMIC PROGRAMMING EQUATION FOR THE MEAN FIELD
OPTIMAL STOPPING PROBLEM”™
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Abstract. We study the optimal stopping problem of McKean—Vlasov diffusions when the
criterion is a function of the law of the stopped process. A remarkable new feature in this setting
is that the stopping time also impacts the dynamics of the stopped process through the dependence
of the coefficients on the law. The mean field stopping problem is introduced in weak formulation
in terms of the joint marginal law of the stopped underlying process and the survival process. This
specification satisfies a dynamic programming principle. The corresponding dynamic programming
equation is an obstacle problem on the Wasserstein space and is obtained by means of a general It6
formula for flows of marginal laws of cadlag semimartingales. Our verification result characterizes
the nature of optimal stopping policies, highlighting the crucial need to randomize stopping. The
effectiveness of our dynamic programming equation is illustrated by various examples including the
mean variance optimal stopping problem.
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1. Introduction. In this paper we study a McKean—Vlasov type of optimal
stopping problem, where the state dynamics and/or the reward function depends on
the law of the stopped process. To be precise, given X and an independent Brownian
motion W, consider

tAT tAT
(1.1) Xt:XO—i—/ b(s,XS,EXS)ds—l—/ o(s,Xs,Lx,)dWs,
0 0

where 7 is a stopping time and Lx_ denotes the law of X;. We emphasize the impact
of 7 on Lx_, in particular, Lx, is equal neither to EXQAS nor to Exg |s=-, where X°
denotes the unstopped process:

t t
(1.2) X0:XO+/ b(s,Xg,EXg)ds—l—/ o(s, X7, Lxo)dW.
0 0

Our optimization problem is, for some functionals f and g, defined on a space of
probability laws,

(1.3) Vo:=supk [/T f(s7XS,£XS)ds] +9(Lx.).
T 0
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When b,0, and f do not depend on Lyx, and g(Lx.) = E[p(X;)] for some function
¢ :R? = R, the above problem reduces to a standard optimal stopping problem; see,
e.g., Shiryaev [25]. The mean field optimal stopping problem (1.3) can be viewed as
the limit of a multiple stopping problem over a large system interacting through the
empirical measure:

tAT; ) ) )
Xi =z +/ b(s, X%, fis)ds + o (s, X2, i) AW, g = — Zaxl
0

(1.4)
V= sup [E[ Z/ f(s, X% fis) ds—i—g( 25X )] ,
(T15TN)
where 6, denotes the Dirac-measure, and (W1,..., W¥) are N x d-dimensional Brown-

ian motions. We refer to Kobylanski, Quenez, and Rouy-Mironescu [17] for general
multiple stopping problems, and we shall investigate the convergence issue in an ac-
companying paper [26].

There has been much attention on mean field games of optimal stopping in the
literature; see, e.g., Bertucci [2], Bouveret, Dumitrescu, and Tankov [4], Carmona,
Delarue, and Lacker [10], and Nutz [21]. Given {u; }+>0, consider the optimal stopping
problem,

(15) Vg = supE [ [ s x2 s + gt Xf-,m] ,
T 0

where X* is unstopped and solves a standard SDE (not McKean—Vlasov type as in

(1.2)):
t t
X}t :XO+/ b(&Xﬁ',,uS)ds—&—/ o(s, XH us)dWs.
0 0

Assume the above problem has an optimal stopping time 7*(p.); then the mean field
game problem is to find a fixed point {u;};>0, namely the mean field equilibrium:
L e = s t > 0. We remark that in the last mean field game, for given {;}1>0,
the dynamics of X* does not depend on the stopping time 7 and the optimal stopping
problem (1.5) is a standard one as in [25], so it has a completely different structure
than our optimal stopping problem. We would also like to mention Li [18], Briand,
Elie, and Hu [5], and Djehiche, Elie, and Hamadene [12] for closely related works
on mean field type reflected BSDEs, and see Belomestny and Schoenmakers [1] for
a numerical method for mean field type optimal stopping problems. However, in all
these works, again the dynamics of the state process does not depend on the stopping
time 7. To our best knowledge, our work is the first in the literature to study the
optimal stopping problem where the dynamics depends on the law of the stopped
process, or, say, as in (1.4) the interaction is through the stopped particles.

Besides the obvious connection with large interacting particle systems, the general
form (1.3) is convenient for many other applications. For example, by considering the
unstopped state process X in (1.2), the optimal btopping of mean variance problem
sup, {E[X?] — 3 Var(X?)} corresponds to g(u) = [ (x— 32%)u(dx) + ([ zp(dz))? for a
square integrable measure p. Another example is the optlmal stopping problem under
probability distortion, used in behavioral economics, which corresponds to g(u) =
JoZ e(u([U=(y), 00))dy, for some utility function U : R — [0, 00), and some distortion
function ¢ : [0,1] — [0,1]. When X? is a geometric Brownian motion and the time
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horizon is infinite, Pedersen and Peskir [22] proved the existence of optimal stopping
time for the mean variance problem, and Xu and Zhou [29] obtained the optimal
stopping time for the probability distortion problem for some special shapes of the
functions ¢ and U (convex, concave, or reverse S-shaped). We remark that these
problems are typically considered to be time inconsistent problems, as we will explain
in the next paragraph, and the existing literature considers only the static problem,
namely the existence of optimal stopping time for the problem over a fixed time
interval ([0,00) or [0,7]). We shall study the problem (1.3) systematically and, more
importantly, dynamically. We remark that, even when we consider only the unstopped
state process X, our dynamic approach for the optimal stopping problem (1.3) seems
new.

It is well known that standard optimal stopping problems can be solved by the
dynamic programming approach; see, e.g., El Karoui [14] and Shiryaev [25]. The
situation here is more subtle because of the involvement of the law. In order to have
a dynamic programming principle (DPP), it is crucial to choose the right variable,
which stands for the information one needs to make the dynamic system “Markovian.”
Indeed, if we define V' (¢,x) as the dynamic value function for problem (1.3) on [¢, T
with initial condition X; = x, which in the case (1.4) means we observe only the
state x; of one particular player ¢, the DPP would fail. Consequently the problem is
often viewed as time inconsistent in the standard sense. Moreover, even if we define
V (t, ) as the dynamic value function for problem (1.3) on [¢,7] with initial condition
Lx, = i, the DPP would still fail.

Our first observation is that a successful DPP requires the introduction of the
survival process I; := 1,4 . To be precise, we will have the desired DPP if we write
the dynamic value function as V' (t, L(x,,1,)), that is, to maintain the time consistency,
we need to know not only the current states of all particles, but also which particles
are still surviving. Moreover, we formulate a weak relaxed version of (1.1) by allowing
for randomized stopping times induced by the set P(¢,m) of all joint distributions P
of the stopped process and the corresponding stopping time, started at time ¢ from
the initial distribution m. Such a weak formulation is particularly convenient here for
two reasons:

e the set of controls has been shifted from the stopping times into P(¢,m), which
we will prove to be compact, implying the existence of an optimal P* to the mean
field optimal stopping problem as long as f and g are upper-semicontinuous;

e shifting the state variable from the process X into the flow of joint marginal
distributions, denoted as {P(x,,7,)} in order to emphasize its dependence on P, enables
us to establish a DPP and to derive a dynamic programming equation on the space
of measures to characterize the value function V.

More precisely, given that the laws are deterministic, our following DPP is very easy
to establish:

S
V(t,m)= sup / ELf(r, X, Pex, 1) )dr + V (s,P(x. 1.))-
PeP(t,m)Jt
Such a dynamic programming approach has also been used successfully in the mean
field control literature, where the state variable is Lx, ; see, e.g., Carmona and Delarue
[9, Chapter 6], Pham and Wei [23], Wu and Zhang [28], and Djete, Possamai, and
Tan [13].
The corresponding dynamic programming equation is as usual derived by means of
1t6’s formula. It6’s formula for functions on Wasserstein space of probability measures
has been established for continuous diffusions by Buckdahn et al. [6] and Chassagneux,
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Crisan, and Delarue [11] and for jump-diffusions by Li [19] and Burzoni et al. [7].
However, [19, 7] require the law of the state process to be continuous under the
Wasserstein distance, while in our case it is quite possible that ¢ —— Py, is dis-
continuous. We thus first extend 1t6’s formula so that both the state process and its
law can have jumps. Our proof follows the standard derivation, based on the linear
functional derivative. We introduce an appropriate time discretization and reduce our
derivation to the standard It6’s formula for cadlag semimartingales. We also refer to
the independent work of Guo, Pham, and Wei [15], who prove similar results by using
density arguments under slightly different technical conditions; see Remark 3.3.

Together with the DPP, our It0’s formula immediately leads to the desired dy-
namic programming equation, an obstacle problem on the Wasserstein space. We
shall characterize the value function, provided its sufficient regularity, as the unique
classical solution of the obstacle problem, and we will use the value function to charac-
terize the structure of the optimal stopping time. The regularity of the value function,
of course, remains a challenging problem in general, and we will therefore investigate
the viscosity solution approach for the obstacle problem in another accompanying
paper [27].

The paper is structured as follows. In section 2, we set the mean field opti-
mal stopping problem in weak formulation and establish the DPP. In section 3 we
prove the Itd’s formula for possibly discontinuous flows of measures of semimartin-
gales, which in particular allows us to differentiate smooth functions along the flow
{P(x,,1,) }tefo,r)- In section 4 we derive the dynamic programming equation for the
value function and establish its classical solution theory. Section 5 is dedicated to
some examples illustrating the connection with the standard optimal stopping theory
and shedding more light on a class of criteria including the mean variance one. We also
provide an explicit example which exhibits both features of pure stopping strategies
and randomized ones. In section 6 we provide two extensions. Subsection 6.1 extends
our results to the infinite horizon setting, and subsection 6.2 provides a quick discus-
sion of the extension to the case where the process X is a jump-diffusion. Finally,
Appendices A and B report some technical proofs.

Notation. We denote by P(£2, F) the set of probability measures on a measurable
space (2, F) and by P2(€2, F) the subset of square integrable probability measures in
P(Q, F), equipped with the 2-Wasserstein distance W,. When (2, F) = (R, B(R?)),
we simply denote them as P(R?) and Py(R?). For a random variable Z and a proba-
bility P, we denote by Pz :=Po Z~! the law of Z under P. For vectors x,y € R® and
matrices A, B € R"*™, denote z-y:=> ., x;y; and A: B:= tr(ABT).

2. Formulation of the mean field optimal stopping problem. Let T < oo
be fixed, and let  := C%([~1,T],R?) x 1°(|-1,T]) be the canonical space, where

e C°([-1,T],R%) is the set of continuous paths from [—1,T] to R%, constant on
[—1,0);

e 1°([—1,T)) is the set of nonincreasing and cadlag maps from [—1,T] to {0,1},
constant on [—1,0), and ending with value 0 at T.
We equip 2 with the Skorokhod distance, under which it is a Polish space. The choice
of the extension to —1 is arbitrary; the extension of time to the left of the origin is
only needed to allow for an immediate stop at time ¢ =0.

We denote Y := (X, I) the canonical process, with state space S :=R% x {0,1}, its
canonical filtration I = (F})¢c—1,77, and the corresponding jump time of the survival
process I:

(2.1) T:=inf{t >0:I; =0} so that I; :=1Iy_1:, for all t € [-1,T].
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By the cadlag property of I, 7 is an F-stopping time. Denote further
Qi :=[t,T) x P2(S), and Q, :=[t,T] x Pa(S), t€[0,T).

Let (b,0, ) : [0,T] x RY x P5(S) = R? x S x R and g : Po(R?) — R, where S}
denotes the set of d X d nonnegative symmetric matrices. Throughout the paper,
the following assumption will always be in force, where Py(S) is equipped with the
Whs-distance.

Assumption 2.1. (i) b,o are continuous in ¢ and uniformly Lipschitz continuous
in (z,m).

(ii) f is Borel measurable and has quadratic growth in o € R%, and the following
function F' is continuous on [0,T] x Pa(S):

(2.2) F(t,m):= y ft,z,m)m(dz,1).

(iii) g is upper-semicontinuous and locally bounded and is extended to Pa(S) by
g(m) :=g(m(-,{0,1})).

Define the stopped McKean—Vlasov dynamics on [0, T7:
(2.3)
X, =X, —|—/ b(r, X, Py )I.dr +/ o(r, X, [Py,,,)ITdWT[P and Iy =1y 14<,,
0 0

where a solution P of the last SDE is defined by the requirement that the following
processes M and N are P-martingales on [0,T]:

(24) M =X 7/ b(r, X;,Py.)I.dr and N := M? 7/ o*(r, X,,Py,)I.dr.
0 0
Note that X = X A, and in particular X7 = X, P-a.s.
We then focus on the mean field optimal stopping problem: given p € Po(R?),

T T
(2.5)  Vy:=sup EF {/ for, X, [Pyr)dr} +9(Px,.)= sup/ F(r,Py,)dr + g(Py,),
P 0 P Jo

where the supremum is taken over all solutions P of the McKean—Vlasov SDE sat-
isfying the constraint Px, = p and P(lp— = 1) = 1. We recall that this problem is
motivated by the N-multiple optimal stopping problem (1.4), whose convergence is
studied in our accompanying paper [26].

In order to solve this problem, we use the dynamic programming approach, made
possible by an appropriate dynamic version of the problem. This requires taking as
a state the joint distribution m; of the variables Y; = (X¢,I;), which leads to the
dynamic value function

T
(2.6) V(t,m):= sup / F(r,Py)dr + g(Py,.), (t,m)€ Qy,
PeP(t,m) Jt

where P(t,m) is the set of probability measures P on (2, Fr) such that

e Py, =m and s€[—1,t) = Y; is constant, P-a.s.;

e the processes M, N of (2.4) are P-martingales on [t,T], so that, for some P-
Brownian motion WF,

27) X,=X, +/ b(r, X, Py ) dr + o(r, X,, Py ), dWF, I,=I,_1,.., P-as.
t
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PROPOSITION 2.2. For any (t,m) € Qq, the set P(t,m) is compact under the
Wasserstein distance Ws. Consequently, existence holds for the mean field optimal
stopping problem (2.6).

We relegate this proof to Appendix A. Our main result of this section is the
following DPP.

THEOREM 2.3. For any (t,m) € Qo and s € [t,T], we have the DPP

(2.8) V(t,m)= sup / F(r,Py, )dr+V(s,Py,_ )
PEP(t,m) Jt

= sup /F(r,ﬂ’yr)dr—FV(s,U’ys).
PeP(t,m) Jt

Proof. Denote, for any probability measure P on (2, Fr),
T
J(t,P):= / F(r,Py,)dr + g(Py,).
t

We start with proving the first equality of (2.8). Let V(t,m) denote the middle term
of (2.8). Fix an arbitrary P € P(¢,m), and denote m :=Py, .

First, for any time partition 7: —1 =%y < - - <t < s <tpmp1 < - <tpmyn =17,
introduce the finite measure: for any A; € B(S),

Vﬂ'(AO X X Am+n) = [P(}/c.— € m?;oAiv )/tm+j € Am—i—jv.j =1,... 7n>-

It is clear that {v,}, satisfies the consistency condition, and thus it follows from the
Kolmogorov extension theorem that there exists a probability measure P on (Q, Fr)
such that {v, } is the finite distribution of the process Y under P. It is straightforward
to verify P € P(s,m), and Py, =Py, for all r € [s,T]. Thus,

J(t,P) = / F(r,Py. )dr + J(s,P)
t
:/ F(r,[Pyr)dr—i—J(s,[IS)g/ F(r, Py, )dr + V(s,Py. ).
t t

Since P € P(t,m) is arbitrary, we obtain V (t,m) <V (t,m).

On the other hand, given m, by Proposition 2.2 there exists Pe P(s,m) such
that J(s, [IB) =V (s,m). For the above time partition 7, we introduce another finite
measure: for any A; € B(S),

Ve(Ag X - X Amin)

- [ [ﬁmm

=0

Y- = y] x E H 1Am+j (}/t'm+j)’Y -=Y fn(dy)
j=1

Applying the Kolmogorov extension theorem again there exists a probability measure
P on (Q, Fr) such that {v;}. is the finite distribution of the process Y under P. It
1s clear that P =P on Fs—, and {Y;_,Y, ;s <r <T} has the same distribution under
P and P, and {Y,,r < s} and {Y,,r > s} are conditionally independent under PP,
conditional on Y, . We shall emphasize that this conditional independence is valid
only conditional on Y,_, and the process Y is in general not Markov under P. 1t is
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obvious that the processes M, N in (2.4) remain P-martingales on [t, s]. Moreover, for
any s <s1<so<T,any 0=1tg < - <t <85 <tpmy1 < - <lymyn = S1, and any
bounded measurable function o1 : RtDE SR o, : R — R,

[E[P |:[M82 - Msl]@l (}/to’ s ’Y;5m)302(}/tm+1 yeee ?th+n )}

= [E[P [[E[P [[M52 - MSl](p2 <Y;5m+1 PR ’Y;‘/m+n)

Yoo ] x E¥ [p1(Ya, ..., Y2,)

v, ]|

=70 X B 1 (Yigs -, Y3, )|V ]| =0,

Then M is a P-martingale on [s,T] as well, and hence a F-rpartingale on [t,T]. Simi-
larly we can show that N is a P-martingale on [¢,T], then P € P(¢,m). Therefore,

/SF(n Py, )dr +V(s,Py, ) :/SF(r, Py, )dr + J(s,P)
- / F(r,Py, )dr + J(s,P) = J(t,P) <V (t,m).

Since P € P(t,m) is arbitrary, we obtain V(t, m) <V (t,m), and hence the first equality
of (2.8).

It remains to prove the second equality of (2.8). First, since Iy < I,_, it is obvious
that P(s,Py,) C P(s,Ys_), and thus V(s,Py,) < V(s,Py,_) for all P € P(¢,m). On
the other hand, for any P € P(t,m), set P € P(t,m) to be such that P =P on F,_
and I, =1, for all r > s, P-a.s. Then ﬂsys =Py,_, and thus

/F(T,PYT)dT+V(S,ﬂDy37):/ F(r,Py )dr +V(s,Py.)
t t

< sup / F(r,Py, )dr+V(s,Py,).
PeP(t,m) Jt

This completes the proof immediately. 0

In order to derive the dynamic programming equation, we follow the usual proce-
dure, which requires It6’s formula along the flow of measures {Py, }1<s<7, as we shall
develop in the next section.

3. Itd’s formula for flows of laws of semimartingales. In contrast with the
available literature reviewed in the introduction, our 1t6’s formula allows for possible
jumps for both the semimartingale and its flow of marginal laws m = {m,}. The
mapping s — m is also cadlag and we shall denote

(3.1)
Jrm) :={seT:ms#m,_}, Jf(m):={s€T:ms=ms_} forallTC][0,T].

We first introduce the notion of linear functional derivative in the same spirit as
Carmona and Delarue [9, Definition 5.43] and Cardialaguet et al. [8].

DEFINITION 3.1. (i) u: Po(RY) — R has a linear functional derivative if there
exists

Smu:Pa(RY) x RY - R

such that d,,u is continuous for the product topology and
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e the mapping y — Omu(m,y) has quadratic growth in y, locally uniformly in m.
That is, for any compact set £ C Po(RY), sup,,cz [6mu(m,y)| < C=[1+ |y[?];
e for all m,m’ € Po(R?),

(3.2) u(m') —u(m) = /0 » Smu(Am’ + (1 — N)m,y)(m’ —m)(dy)d\;

(i) Cy2([0,T] x P2(RY)) denotes the set of functions u : [0,T] x Po(RY) = R such
that

o diu, S, Oyomu, ajyamu exist and are continuous in all variables;

. 8§y(5mu is bounded in y, locally uniformly in (t,m).

Here the subscript 2 in 021 2 refers to the growth conditions so as to ensure appropriate
square integrability in the analysis below.

By abusing the notation, in the following statement, we let Y denote a general
cadlag R -valued semimartingale on [0,7]. We denote Y the continuous part of Y;
Y=Yy + Mf + A¢ the Doob—Meyer decomposition, where M€ is the martingale part
and A€ is the finite variation part; ||A¢||; the total variation process of A¢; and (M*€);
the quadratic variation process of M¢€.

THEOREM 3.2 (It&’s formula). Let u € Cy2([0,T] x Po(RY)), and assume
2

(3.3) E A7+ M+ | D Y=Y || | <oo.

0<s<T

Then, denoting m = {m}o<s<r the marginal laws of Ys,

(3.4)

w(T,mr) =u(0,mg) / Oru(s,ms)ds

/ Oyomu(s,ms,Ys) - dAS + / yOmu(s,mg, Ys) 1 d(M€)

+ Z (s,ms) —u(s,ms_)]+E Z (5mu(s,mS,Ys)fému(s,ms,Ys_)) .

s€J(o,1)(m) SEJ(COYT](m)

The proof of this result is relegated to Appendix B. Note that (3.4) exhibits
two different sums: one refers to the jumps of Y and the other to the jumps of the
marginals m. The Poisson process provides a simple example of pure jump process
with continuous marginals (i.e., Jio 7)(m) = 0).

Remark 3.3. The above It6’s formula was derived independently by Guo, Pham,
and Wei [15] by using a density argument through cylindrical functions. Our approach
is more straightforward, as it reduces quickly to the proof of the standard It6’s for-
mula. Notice that our set of conditions is slightly different from theirs (none of them
implies the other); see Remark 3.14 in [15]. Notice also that we may have stated our
results under different sets of assumptions, as the proof requires appropriate integra-
bility conditions on the product between the derivatives of u and the corresponding
characteristics of the semimartingale Y. Clearly, this can be achieved by a trade-off
between the conditions on v and Y.
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We now specialize the discussion to the case Y := (X,I). Noting that P»(S) C
Py (R4H1), we may restrict Definition 3.1 to Po(S) only.

DEFINITION 3.4. Let C3%(Q,) denote the set of functions u: Qy — R such that
sty Sty OpOpu, 02, 0mu exist and are continuous in all variables, and 0%, 0mu is
bounded in x, locally uniformly in (t,m), where the functional linear derivative takes
the form &,u : (t,m,x,i) € Qy x R? x {0,1} — R satisfying, for any t € [0,T] and
m,m’ € Pa(S),

u(t,m’) —u(t,m) :/0 /S5mu(t, Am’ + (1 = XN)m,z,7)(m’ —m)(dz,di)dA.

In this case, of course there is no need to consider the derivative of d,,u with
respect to the i-variable. Instead, we denote

(3.5) Omu; (t,m, ) := dpu(t,m,z,i) for i € {0,1} and Dju:= dpnus — dmuo.

Ezample 3.5. Let us define, for a given probability measure P, u(m) := @(m[y]),
with ¢ smooth and m[y]:=37,_ | [pa¥(2,4)m(dz,i). Then we compute

Smu(m, x,i) = @' (m[y])¢(x,4) and Dyu(m, z) =¢'(m[y])[¢ (2, 1) = (x,0)].

Recalling the infinitesimal generator of X, we define

(3.6) Lu(t,m):= ﬁtu(t,m)Jr/ Lydmuy(t,m,z)m(dz,1), where
Rd

L 0muy (t,m,x) :=b(t,z,m) - Opdpmus (t,m,z) + %Jz(t,x,m) : 8§x6mu1(t,m,x).

We now state the It6 formula for m := {m, := Py, }s¢;_1,77. Note that in Theorem 3.2,
we consider the jumps on (0,7]. However, in light of DPP (2.8), it is more convenient
to consider the jumps on [0,7"), namely we include the jump at the initial point instead
of the ending point. Such an adjustment is straightforward.

COROLLARY 3.6. Let m € Py(S), P e P(0,m), and u e Cy*(Q,). Then,

T
3.7 w(T,mp_)=u(0,m)+ /0 Lu(s,ms)ds

+ Z [u(s,mgs) —u(s,ms_ )] +EF
s€Jjo,r)(m)

/ Dyru(s,mg, Xg)dI| .
JC

[o,T)(m)
Proof. We can easily see that Y; —Y,_ =(0,1; — I5_) and

YE=(Xs,Io_), dME=(o(s,Xs,ms)dWF,0), dAS=(b(s,Xs,ms)ds,0).
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Then (3.3) obviously holds true. Now following Theorem 3.2, but by considering the
jump at 0 instead of at T', we have

T T
w(Tymp_) —u(0,m)= / Opu(s, ms)ds + £r / OyOmui(s,ms, Xs) - b(s, Xs,ms)ds
0 0

+%/0 02 Omur (s,me, Xo) 1 d(X)s | + Z [u(s,ms) — u(s,ms_)]

SGJ[O)T) (m)

+EF Z [Omu(s,ms,Ys) — Smul(s,ms, Ys_)]

SGJ[%’T)(m)

:/0 Lu(s,ms)ds + Z [u(s,ms) —u(s,ms_)] +E°

s€Jjo, 1y (m)

/ Dyu(s,my, X)dI, |
J

(0,7 (m)

where the last equality is thanks to the fact that Iy # I,_ if and only if I, = 0,
I, =1. 0

We remark that in this case Jigr1(m) = {s € [0,T] : P(r = 5) > 0}. That is,
Jjo,7(m) is the collection of all atoms of 7 under P.

4. Obstacle problem on the Wasserstein space.

4.1. The dynamic programming equation. We first introduce a partial order
=< on Py(S): we say that m’ <m if

(4.1)  m/(dz,1)=p(z)m(dz,1), and m'(dz,0) = [1 — p(z)]m(dz, 1) + m(dz,0),

for some measurable p : R? — [0,1], i.e., m’(dz,1) is obtained from m by randomly
stopping a proportion 1 — p(x) of the surviving particles. In our context, m;- = Py, _
and m; = Py,, with P € P(t,m), so that m; =< m;— with conditional transition
probability

(4.2) plx)=pt,z)=P(Li=1| Xy =2a,;_=1).

Remark 4.1. The set {m' : m’ < m} is compact, as it is in continuous bijection
with {m € Pa(S x {0,1}) : o (x,i)~t =m}, with (x,i,i’) the projection coordinates
on S x {0,1}.

Our main objective is to show that the dynamic programming equation corre-
sponding to our mean field optimal stopping problem, as deduced from the DPP
(2.8), is
(4.3)

min [~ (Lu+ F)(t,m')] =0, Dru(t,m,-) >0, u(T,-) =g, for all (t,m) € Qo,
m’eC,y (t,m)

where Cy(t,m) = {m' <m:u(t,m’) = u(t,m)}.

By analogy with standard optimal stopping, we call (4.3) the obstacle problem on
the Wasserstein space. The different components of this equation have the following
interpretation.

Remark 4.2. (i) As will be proved in Lemma 4.3, the inequality Dju(t,m,-) >0
expresses the natural monotonicity of the optimal stopping problem, i.e., u is increas-
ing for <. In other words, the larger the set of surviving particles, the larger the value
function.
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(ii) Cy(t, m) is the collection of admissible stopping strategies at time ¢, i.e., those
that preserve the value function for smaller sets of surviving particles.

(ili) The equation min,, cc, t,my- (Lu 4+ F)(t,m’) = 0 characterizes the sets of
particles that are optimal to keep diffusing (in the same spirit as the classical HJB
equation, where the min characterizes the optimal controls). Note that C,(t,m) is
compact, as a closed subset of the compact set {m’ < m}; see Remark 4.1. Therefore
the min is attained by the continuity of (Lu + F)(¢,-). Finally, as m € Cy(t,m), we
have —(Lu + F)(t,m) > 0.

(iv) The boundary condition u(T,-) = g is due to (2.6) directly. Moreover, the
boundary condition implies that u(¢t,m) = g(m) for all ¢ € [0,T] and m € dPs(S) :=
{m € P2(S) : m(R%, 1) = 0}, i.e., all particles are stopped. Indeed, in this case
{m' :m’ 2 m} = {m} and thus C,(¢t,m) = {m}. Recall (2.2) and (3.6); then (4.3)
implies that —0;u(t,m) = —(Lu + F)(¢t,m) = 0. This clearly implies that u(t,m) =
w(T,m) = g(m) for all ¢t €[0,T).

LEMMA 4.3. Let u: P2(S) = R admit a linear functional derivative. Then w is
nondecreasing for < if and only if Dru(m,-) >0 for all m € Pa(S).

Proof. First, assume Dyu(m,-) > 0 for all m € Py(R?). Then, for m’ < m with
corresponding transition probability p, we have

1
w(m) — u(m’) = / Dru(Am + (1 — N, 2)[1 — p(a)]m(da, 1)dA > 0.
0 JRe
Conversely, assume that u is nondecreasing for =, i.e., u(m’) < u(m) for all
m’ <X m. Introduce N := {z : Dyu(m,z) < 0}; pe(x) := 1 —elpn(x), € € (0,1),
and the corresponding measure m. defined by (4.1). Then (m —m.)(dz,di) = (2i —
1)elp(z)m(dx,1), and thus

0< ~[u(m) ~ u(m)] = % /O /S SN+ [1— N, ) (m — m) (der, di)dA

(4.4) :/0 /NDIu()\m +[1 = AJmL, z)m(dz, 1)dA.

Note that {Am + [1 — Alm. : A €[0,1],e € [0,1]} C P=2(S) is compact; then Dyu(Am +
[1 — A]Jm.,z) has quadratic growth in z, uniformly in A,e. Moreover, sending € — 0,
since m. — m and Dju is continuous in m, applying the dominated convergence
theorem we obtain from (4.4) that [, Dru(m,z)m(dz,1) > 0, which is possible only
if m(N,1)=0. That is, Dyu(m,z) >0 for m(-,1)-a.e. z. Since Dju is continuous in
(m, ) and the set {m € Pa(S) : supp (m(-,1)) = R%} is dense in P(S), then one can
easily show that Dyu(m,x) >0 for all (m,z) € P2(S) x R<. O

4.2. The main results.

THEOREM 4.4. If V defined in (2.6) is in Cy°(Qy), then it is a solution of (4.3).

Moreover, for any (t,m) € [0,T) x Pa(S), P* € P(t,m) is optimal for V(t,m) if
and only if, denoting m* = {m} := P}, fo<s<T,

—(LV 4+ F)(s,m:) =0, V(s,mi)=V(s,mk_), forallselt,T],

(4.5) DV (r, mj,XT)lJ[ct T)(m*)(T) =0, P*a.s., where mk :=m¥|s=r.

Proof. Step 1. We first prove that

(4.6) —(LV + F)(t,m) >0, D;V(t,m,z)>0, forall (t,m,z)€ Qo x R%
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Fix (¢t,m). For any m’ < m, we may choose P € P(¢,m) such that Py, = m/, and
I,=1, s€[t,T), P-as. For § € (0,7 —t), by DPP (2.8) we have

t+45
V(t,m) > / F(s,Py,)ds + V(t +6,Pix,s0).
t

Send 4 — 0, and note that P(x,.; 1) = Px,.1,) = m/. Then by the continuity of V
we have V(t,m) > V(t,m’). Since m’ < m is arbitrary, by Lemma 4.3 we see that
DV >0.

To prove that —(LV + F)(¢t,m) > 0, we consider P € P(t,m) such that Iy =1I;_,
s € [t,T)], P-a.s. Applying Ité’s formula (3.7) on [¢,t 4 | under P, we see that all the
terms involving the jumps are equal to 0. Then by DPP (2.8) we have, denoting
mg = |PYS,

t+5 t+3
0> V(t+8.muss) — Vit,m) + / F(s,my)ds :/ (Lu+ F)(s,ms)ds.
t t

Note that ms; — m as s ] t. Then by the continuity of Lu + F one can easily see that
—(LV 4+ F)(t,m) > 0.

Step 2. In this step we prove the equivalence of the optimality condition (4.5).
First, if P* € P(t,m) satisfies (4.5), applying It6’s formula (3.7) on [¢,7') we obtain
immediately

T T
V(t,m)=V(T,Py, )— / LV (s,Py. )ds = g(Py,.) +/ F(s,Py. )ds.
t t

As f has quadratic growth in z, locally uniformly in (¢, m), we may switch the integral
and the expectation in the expression of F', and thus P* is optlmal
Next, fix an optimal P* € P(¢,m) such that V(t,m) ft (s, [P*
g(Py..). Denoting mj := Py, s > ¢, with m =m;_, then by DPP (2.8) and Ito s
formula (3.7) we have

T
O:/t WV + F)s,m2)ds+ 3 [Vi(s,m2) = V(s,mi)]

s€J¢, 1) (m*)

+E

D[V(s,m:,XS)dIS] .
J[CtYT)(m*)

By Step 1 we have V(s,m%) < V(s,m*_). Together with (4.6), we see that all three
terms in the right side above are nonpositive, and then all of them should be 0:

(4.7)
(LV + F)(s,m}) =0, ae.sc[t,T]; V(s,m;)=V(s,m;_)for all s & Jyr)(m*);
DiV(s,m%, Xs)dI; =0, P*-a.s.
J[fs,T)(m*)

Since LV + F'is continuous and, for s € J§ 5 (m*), by definition m{ =mJ_ and hence
V(s,m%) = V(s,m%_), then the first line of (4.7) implies that the first line of (4.5)
holds for all s € [t,T). Moreover, since 7 is the only jump point of I, the second line
of (4.7) is clearly equivalent to the second line of (4.5).

Step 3. Finally we complete the verification of (4.3). First by (2.6) V(T,m) =
g(m). Then, by Step 1, it remains to verify min,, ec, t,m)[—(LV + F)(t,m")] = 0.
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Noting that m;_ =m and setting s =¢ in the first line of (4.5), we have m; € Cy (t,m).
Thus

0< min [—(LV+F)(t,m)] <—(LV + F)(t,m;) =0,

T m’eCy (t,m)
and therefore the equality holds. ]

THEOREM 4.5 (verification). Let u € Cy*(Q,) be a solution of (4.3). Then
u=V.

Proof. We prove the theorem by using the obstacle equation (4.3) to construct
an e-optimal control for (2.6). We fix m € P,(S) and assume for simplicity that ¢ =0.

Step 1. We first prove that « > V. For an arbitrary P € P(0,m), we apply 1t6’s
formula (3.7) and obtain, again denoting m = {m, := Py},

w(T,mr_)=u(0,m) +/O Lu(s,ms)ds

(4.8)
+ Z [u(s,ms) — u(s,ms_)] +EF

SEJ[O’T) (m)

/ DIu(s,mS,Xs)dIS] .
J

{0,y (m)

By (4.3) and Lemma 4.3 we have u(s,ms) < u(s,ms—). Then, (4.3) and (4.8) imply
that

T T
w(0,m) > u(T,mpr_) — /t Lu(s,ms)ds > g(mr) —&—/t F(s,ms)ds.

Since P € P(0,m) is arbitrary, we obtain «(0,m) >V (0,m).

Step 2. We now show that u < V. Let n > 1, t; := %T, 7=0,...,n. We define
P™ € P(0,m) and my := Py recursively such that mg_ =m, and for j=0,...,n -1,
thanks to Remark 4.1, '

my, € Cu(tj,my,_) s.t.— (Lu+ F)(t;,m{)=0 and m; Oi_lzm?j oi ts€ [t tir1)-

By the arguments of Proposition 2.2 applied to P(0,m), and by (2.7), one can easily
show that Wa(my,m;) < C—ﬁ, s € [tj,tj41), for some constant C,, > 0 which may
depend on m but is uniform on n. Moreover, by Proposition 2.2 and the compactness
of [0,T], we see that the set {Py,,Py,_ : s € [0,T],P € P(0,m)} is compact. As
RS C’21 ’2(60)7 Lu+ F' is continuous and then uniformly continuous on this set. Then,
there exists a modulus of continuity function p such that

— (Lu+ F)(s,m3)
:—([I.u—i—F)(&m?)+(|]_u+F)(tj,m?j) <p(z; 4 3%

By Ito’s formula (3.7), and noting that P™ is constructed such that there is no con-
tribution of the jump terms, we have

>7 s €[t tj41).

T
uw(0,m) =u(T,mp_) — / Lu(s,my)ds
0

T T C T C
< n n iR R v4 o am)
‘g(mTH/t F(s’mS)d8+Tp(n+\/ﬁ>— (O’m)+Tp(n+ﬁ>

Sending n — oo, we obtain «(0,m) < V(0,m). d
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4.3. Some discussions on optimal stopping policies. Proposition 2.2 guar-
antees that the mean field optimal stopping problem has an optnnal randomlzed
stopping strategy, i.e., a probability measure P* on  s.t. g(Py, ) + ft (s,P} )ds =
V(t,m). A pure stopplng strategy corresponds to the case Where the condltlonal
transition probability in (4.2) ps(-) € {0,1} for all s € [t,T]. In this case, the optimal
stopping time is in closed-loop, i.e., 7 is a stopping time w.r.t. to the P*-augmented
filtration of X, and the obstacle equation (4.3) reduces to

(4.9)

. B A _ . o)
i [ F)(Em ) =0, ultm)= s a(t.m?), ulir =g, (t.m) €
where m? :=mo (x,il(x))7}, and B, (t,m) :={A € B(R?) : u(t,m?) = u(t,m)}.

We now discuss heuristically how to use the value function V' to construct an
optimal stopping time, provided V € C21 ’2(Q0). In light of (4.5) and recalling that
D;V >0, introduce

(4.10) K(t,m):= {a:e[Rd:DIV(t,m,a:):O}.

Fix (0,mg-). We set m_ :=mp_ and construct m* for V(0,mg_) in several steps.
Step 1. First, by (4.3) and Remark 4.1, there exists mg € Cy(0,m_) such that
mg < mi_ and (LV 4+ F)(0,m$) = 0. In particular, if m$_ ox~! is continuous on
{Io— =1}, there exists A € B(R?) such that Iy = Iy_14:(Xo), and thus the optimal
stopping time is a pure strategy at 0.
Step 2. Let P* be a weak solution to the following McKean—Vlasov SDE:

(4.11) Py, =mg, X satisfies (2.3) and I; = Iolix, ek (s,Py ) 0<s<t} P*-a.s.

Assume mj := Py, is continuous up to certain ¢; > 0. Then the optimal stopping
time between [0,%1) is a pure strategy: 7 = inf{t > 0: X; ¢ K(t,m])}. Note that,
since V is the value function, we should have (LV + F)(¢t,m;) =0 for t € [0,¢1). We
shall remark though that the McKean—Vlasov SDE (4.11) is path dependent and has
discontinuous coefficients, so in general it is hard to solve. Moreover, the case that
t1 =0 is even more difficult to solve.

Step 3. We have obtained mj _ from Step 2. As in Step 1, we may find m;}, €
Cy (t1,mf ) at t; such that m; <mj _ and (LV + F)(ty,m} ) = 0. Then following
Step 2 again we can hopefully extend m* to certain to > t1. Repeating the procedure,
we may construct m* on [0, 7.

We emphasize again that this procedure is just to illustrate the idea, in particular,
it could be helpful for constructing approximate optimal stopping times, as we saw
in the proof of Theorem 4.5, Step 2. In general it is hard to realize this procedure, in
fact, even the existence of a classical solution is a very challenging task. Nevertheless,
in subsection 5.3 below we will present an example where V' is smooth and we can
construct the 7 explicitly. We also remark again that the optimal stopping time in
the continuous region constructed in Step 2 above is always a pure strategy, while in
the jump region in Step 1 the optimal stopping time could be indeed mixed, but will
also be a pure strategy when the distribution of the survival particles at that time is
continuous.

5. Examples.

5.1. Connection with standard optimal stopping. In this subsection we
consider the case that b and ¢ do not depend on the Py(S)-valued variable. For a
measurable function ¢, we define the optimal stopping problem
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(5.1) V(t,m):= [Pe%g) )[E[P[go(XT)], (t,m) € Q,.

We also introduce v(t,z) := V(,0(5,1)), which is related to the standard obstacle
problem

(5.2)
min{— (v + Lv),v — 9} =0, o(T,-)=¢, where Lv:=b-0,v+ %O’2 02,0

To be consistent with Definition 3.4, let Cy?([0,7] x R?) denote the set of v €
CY2([0,T] x R%) such that 92, v is bounded. This condition can be relaxed in this
case though.

PROPOSITION 5.1. Assume veCy?([0,T] x RY). Then,

(i) = [s((t,x)i + (x)(1 —i))m(dz,di), and V is a classical solution of
the correspondmg obstacle equation on the Wasserstein space;

(ii) the probability measure P* s.t. T =inf{s >t:v(s, X5) =¢(Xs)} on {L;— =1},
P*-a.s., is optimal for the problem V (t,m). In particular, we see that T is a pure
stopping strategy under P*.

Proof. Denote by u the right-hand side of the expression in (i). Then u € C (QO)
with

Opu(t,m) = y Opu(t,x)m(dx, 1), dpu(t,m,x,i) =v(t,z)i + e(x)(1 —1),

OuOmur (t,m, ) = Opv(t,x), 02, 6muy(t,m,z) =02 v(t,x) for all (z,i)€S.

We then show that u is a solution of (4.3). First, by (5.2),
Diu=v—9>0 and —Lu(t,m)= | —Lov(t,x)m(dz,1)>0.
R4

Defining A; := {z:v(t,x) — p(z) >0} and m*t :=mo (x,ila,(x)) !, we have
u(t,m) — u(t,mA) = / [olt,) — (a))m(dz, 1) =0,

and therefore m4t € Cy,(t,m). As —Lv(t,x) =0, z € A;, we have —Lu(t,m?t) = 0.
Thus, v is a solution of (4.3), and we deduce that v =1V by Theorem 4.5.

To see that (ii) holds, notice that the flow m} :=Pj. is s.t. m} = (mj_)* for all

€ [t,T). Then P* clearly satisfies (4.5) and thus is optlmal for V(t m). 0

5.2. Convex functions of the expectation. Let d=1, ¥, h,p: R — R, with
o convex. We consider the optimal stopping problem:

(5.3) Vt,m):= sup  [E7[p(X)] + (¥ [h(Xr)])]
PeP(t,m)
This is an extension of the mean variance optimal stopping problem. Introducing the

convex dual ¢*(a) :=supger{af — ©(8)}, we may write

V(t,m)=sup [ — ¢*(a) + Va(t,m)], with Vo(t,m)

a€R

= sup  EX[Yu(X7)], Yo =1+ ah.
PeP(t,m)
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Assuming uq(t,z) := Vo(t,d(z,1)) € 021’2([07T} x R), it follows from Proposition 5.1
that
Vi (t,m) = / [ta(t, )i+ ful@)[L —i]]m(dz, di),

S

—LV,(t,mA) =0, where A; := {x:uy(t,x) > p(t,z)};
DV, (t,m,z) =u(t,x) —p(t,x) =0, whenuy(t,z)=(t,z).

(5.4)

Since « is one-dimensional, it is not hard to find o (¢, m) s.t. V(t,m) = Vi« (4,m) (£, m)—
e*(a”(t,m)).

Moreover, fix (t,m) and let P* € P(t,m) be the optimal measure for the problem
Viar(¢,m)(t,m), as constructed in the previous subsection. Then it is obvious that P*
is optimal for V(¢,m) as well, and by Proposition 5.1(ii), 7 is an optimal stopping
strategy under P*.

Remark 5.2. Let d =1. Another natural example is the optimal stopping of the
expected shortfall:

V(t,m):= Pegg’m) ESF(Xp) for all (t,m) € Q,

for some fixed « € (0, 1), where ESE denotes the expected shortfall under P, i.e., for
any random variable Z with law p,

1 [« 1

65  o)=22) = [ 0 @d=int {5+ = (@5 i},

where ¢,(Z):=inf{z: pu(Z <z)>~}.

Here the second equality has been established by Rockafellar and Uryasev [24]. Tt
is not clear whether this value function is smooth, so that the result of the current
paper does not apply. A similar comment applies to the optimal stopping under prob-
ability distortion. These two examples are discussed in our accompanying paper [27],

which addresses the possible nonsmoothness by introducing an appropriate notion of
viscosity solution.

5.3. Construction of a smooth solution. In this subsection we construct an
example where the obstacle problem indeed has a classical solution. First, set b =0,
o =1, and thus, for any P € P(t,m),

(5.6) X=X, +WF W} P-as. on{I,_=1}.
Next, let a € C*([0,T]) and ¢ € Cy%([0,T] x Ry) be positive functions such that
(5.7) Orp(t,x)=0forz >a; and Oyp(t,x)>0forz < ay.

One such example can be (¢, ) := e~lac—a)™1? Moreover, we introduce another

positive function ¢ € C?(R) with bounded derivatives and set
(5.8) uo(t,m):=[T —t]e(t,vo(m)), where wvg(m):= / Y(x)m(dx,1).
R

PROPOSITION 5.3. Under the above setting, ug € Cy>([0,T] x Po(S)), and ug is
the classical solution to the obstacle problem (4.3) with

(5.9) F(t,m):=—Lug(t,m) — [vo(m) — at]+, g:=0.
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We remark that this F' may not take the specific form of (2.2), which is mainly
motivated from applications but not really required for our theory. Since this example
is just for illustration of the theory, we content ourselves by allowing for this more
general F. We emphasize again that in general it is hard to have classical solution
for our obstacle problem, and therefore we shall investigate viscosity solutions in our
accompanying paper [27].

Proof. First, by Definition 3.1 one may easily verify §,vo(m,z,1) =¥(x), dmvo
(m,2,0) = 0, Byuo(t,m) = [T — p(t, vo(m)) — p(t, vo(m)), S, 1) = [T —
10,0 (t, vo(m))1h (), dmuo(t,m,2,0) =0. Then it is clear that ug € Cy*(Qy).

We now show that ug satisfies (4.3). Clearly, uo(7,.) =0=g, and

(5.10) Drug(t,m,x) = [T — t]0xp(t,vo(m))p(z) >0, —Lug(t,m)— F(t,m)
= [vo(m) — at]+ >0.

In particular, —(Lug + F)(¢,m) = 0 when vo(m) < a;. Finally, when vo(m) > a,
combining (5.7) and (5.8), we have

(5.11) Cuo (t,m) ={m' Zm:vo(m’) € [as,vo(m)]}, t<T.
Set m,, < m by (4.1) with p(x) = UO‘E;H). Then m), € Cy,(t,m) with vo(ml) = as.
Therefore,
min ~ — (Lug + F)(t,m') < —(Lug + F)(t,m}) = [vo(mfk)—at]+:0.
m/€Cy, (t,m)
This, together with (5.10), completes the proof. ]

In the rest of this subsection, we construct an optimal P* € P(0,mo_) for the
problem Vg :=V(0,mp-) = ug(0,mp—). For simplicity we assume

N

x

(5.12) T=2,9¢(x):=e"2, and Xy=0, l— =1, mp_-a.s.
We next specify the function a, which relies on two functions k; on [0,7] x R:

E[¢(z+Wy)], ri(t ) ::[E[w(x—l-Wt)l{W;Q}],
t,0)

Ko( x):
(5.13) _ )+ 21— )2 100 (t) + SE[r1(t — 1, W1)]1(1.2)(¢),

= 3[ro(t,
where W} :=supg <<, W;. Recalling Karatzas and Shreve [16, Chapter 2, Proposition
8.1] for the joint density of (W, W), by direct calculations we have 0 < Oyko(t,z) —
Ogkr(t,x) = 0 as t — 0. Then 0;k1(0,x) = Osko(0, x), which implies that a}, = h} =
a)_, that is, a € C1([0,T7)).

PROPOSITION 5.4. Under the above setting, an optimal P* has the following
structure:
(i) At time 0, there is a massive stop with P*(Iy=1)= 1
(ii) There is no stop during the time interval (0,1]: I = IO, 0<t<1, P*-a.s.
(iii) Particles stop continuously during the time interval (1,2):

(5.14) T=inf{t >1: Xy — X; >1} A2, Pras.on{ly=1}.

(iv) All the remaining particles stop at time 2.
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Proof. (i) Note that in this case

1 1
(5.15) vo(mo—) = E™ [¢(Xo)lo-| = ¢(0) =1> 3 = 510(0,0)=ao.
Then —(Lug + F)(0,mo—) = vo(mo—) — ap > 0, and we have to stop some particles
immediately. We may choose mf such that m{(Ilp=1) = %, and then ¢ =0 is a jump
point of m*, and

« 1
vo(mg) =E"0 [¢(Xo)Io| = 2 and thus  — (Lug + F)(0,mg) =vo(mg) — ag =0.

Moreover, since vg(mg) € [ao,vo(mo-)], by (5.11) we have m§ € Cy,(0,mo_). This
implies that uo(0,mg) = uo(0,m_), and then it follows from (4.5) that P* is optimal
at t=0.

(ii) For the P* specified in the proposition, we have I; = Iy and hence X, = W~
on {Ip =1}, 0<t <1, P*-as. By (5.13) we see that vo(m;) = r0(t,0) < az, which
implies that —(Lug + F)(0,m;) =0, 0 <t < 1. Since no particle stops during this
period, then by (4.5) again P* is optimal on [0, 1].

(iii) We first note that if we continue to keep all particles on {Ip = 1} alive
after ¢t = 1, then we will have vo(m;) = 3r0(t,0) > a; (since kg > k1) and thus
—(Lug+ F)(0,m¢) > 0, which is not optimal. So after ¢t =1, we start to stop particles,
and our structure allows us to stop the particles continuously in the sense m;j is
continuous in ¢. Indeed, by (5.6) and (5.14),

r=inf{t>1:WF —WF >1}A2, P*as. on{lh=1}.
Then, for t € (1,2),
vo(mp) = [$(X0) 1] =B [9(X0) Io1 )]
—F {w(W{P* +WE - WI[P*)1{1021}1{Sup1gs§t[W,2’*7W{P*}<1}}
_ %[E”’* [m(t - 1,W1”’*)] —a,.

Therefore, —(Lug + F)(0,m;) =0, 1 <t <2.
Next, for any 1 <t < 2, clearly m} is continuous, and thus ug(t, m}) = ug(t,m;_).
Moreover, since vo(m;) = ag, by (5.10) and (5.7) we have

Drug(t,my, Xi) = [T = t]0x¢(t, v0(mg))p(Xe) = [T — 8]0 (t, ar)ih(Xe) = 0.

Then by (4.5) again we see that P* is optimal on [1,2).

(iv) This is required by our formulation of the problem. |

Remark 5.5. (i) For the P* in Proposition (5.4), m; has two jumps, one at t =0
and the other at ¢ = 2. In particular, the stopping at t = 0 is randomized. Indeed,
since Xo =0 under mg_, there is no A € B(R) such that E™-[4)(X)14(X0)] = ao.
(ii) If Xy has continuous distribution under mg_, say, with density po(z), then it is
possible to have a pure stopping strategy. Indeed, let x¢p be a median of Xy. Set T,
¥, Io—, Ko, k1 as in (5.12) and (5.13), and modify the a in (5.13) as follows:

ag = [/_%’fo(taw)m(ﬂf)dx + 21— )% 10,1y (t)

N / Bl (t— 1+ W)l po(@)dirl g (1),
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By the same arguments as in Proposition 5.4, the following pure stopping strategy is
optimal:

e At time 0, there is a massive stop for the particles Xo > zo: o = L{x,<z}>
P*-a.s.

e There is no stop during the time interval (0,1]: I; =1y, 0 <t <1, P*-a.s.

e Particles stop continuously during the time interval (1,2) following (5.14).

e All the remaining particles stop at time 2.

6. Some extensions.

6.1. Infinite horizon case. This subsection is dedicated to the case T'= +o0.
For any (t,m) € Qq, let P(t,m) denote the set of P such that Py, = m and (2.7)
holds on [t,00). We shall always assume as follows.

Assumption 6.1. (i) Assumption 2.1 holds true on [0, 00);
(i) [y supep,s) |F(t,m)|dt < oo;
(iii) for any (¢,m) and P € P(t,m), Xoo :=lims_, oo X exists, P-a.s.
We remark that one sufficient condition of (ii) above is that |f(¢,2,m)| < Ce=* for
some constants C, A > 0, and a special case of (iii) is

1
(6.1) d=1, b=byr, o=0g, b0—§o§<0.
That is, the unstopped process X° in (1.2) is a geometric Brownian motion and
X% =o0.
We also define I, := 0. This allows the case 7 = +00 and guarantees that P (¢, m)
is compact. The infinite horizon optimal stopping problem then is written simply

(6.2) V(t,m):= sup / F(s,Py,)ds+g(Px_) forall (t,m) € Q.
PeP(t,m) Jt

The corresponding obstacle equation on Wasserstein space is

(6.3) min  —[Lu+ F](t,m') =0, Dyu(t,m,-) >0, (t,m) € Qy,
m’ECu(tam)

with boundary condition u(co, ) =g.

Now by considering the problem on [0, co], we see that all the definitions as well as
all the results in the previous sections on the finite horizon remain true in the infinite
horizon.

Remark 6.2. In the infinite horizon, one may naturally consider the time ho-
mogeneous case, that is, b,0, f do not depend on ¢. Then V = V(m) is also time
homogeneous, and thus (6.3) becomes an elliptic problem: recalling (3.6),

(6.4) min  — [/ L0mur(m’,2)m’ (dx, 1) + F(m')| =0, Dru(m,-) >0,
m’eCy(m) R4

for all m € Py(8S),
with boundary condition u = g on 9P5(S) := {m € Po(S) : m(R%, 1) = 0}. We leave
the details to interested readers.

6.2. Mean field optimal stopping of a jump-diffusion. This last subsection
is dedicated to an informal discussion about the case where (X, I) is a stopped jump-
diffusion, i.e., Iy =1;_1,., and
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(6.5)

S

S S
Xo= Xt [ W Xemo)Ldrt [ ot Xoomo) LW, + [ 9%, me ),
t t t

where 7 is a pure jump process with intensity As := As(s, Xs,ms) and whose jump size
is defined by a distribution v, and 7, := (s, Xs—,ms_) satisfies the usual conditions.
We refer to Burzoni et al. [7], who characterized the mean field optimal control of
a jump-diffusion by a dynamic programming equation (in the viscosity sense). The
result of this section may be seen as a complement to the context of mean field
optimal stopping. We consider the optimal stopping problem (2.6), where P(¢,m) is
the set of probability measures such that the canonical process (X, I) satisfies (6.5).
Then, the value function still satisfies the DPP (2.8). In order to formally derive
the corresponding dynamic programming equation, we need to find the differential
operator associated with the dynamics (6.5), which follows from It6’s formula (3.4) in
the present jump-diffusion case. Let u € C’21 2 (Qp)- Observing that the discontinuities
in the flow m = {m} are only due to I (as n has an intensity, hence no atoms), by
shifting the jump at s to ¢ as in (3.7), we have

u(s,ms—) =u(t,ms;—) + /S Lu(r,m,)dr + Z [u(r,m,) —u(r,m,._)] + Tp,

¢ r€J¢,5)(m)

where Jp:=EF Z (5mu(r, my, X, 1) — 5mu(t,mr,Xr_,Ir_))
TEJﬁ,S)(m)
We next compute Jp. Denote ¢, () := p(r,m,,-) for any function ¢ and An, :=

nr—nr—. Note again that Jp; 4)(m) is countable and thus 7 does not jump at Jy; ) (m),
a.s. Then

Jp = [E[P Z [5mur(X7’f + ’YT<XT7)I’I‘7A,'7T7 Ir) - 6mur(X7’7>Ir* )]
_TGJ[‘;TS)(m)

=EF Z [6mur(Xr— + v (Xo ) - Ay, 1) — 677LUT(XT—7I'I”):|
_TeJﬁ,s)(m)

+ [EIP Z [5mur(X'r‘7aIr) _5mur(Xr77]r_ )]
_TEJ[?S)(m)

= [E[P |:/tg /[Rd [6mur(Xr +y7r(Xr)IraIr) - 5mur(Xr»Ir)]V(dy)’yr(Xr))‘r(Xr)IrdT

+EF / Dru,(X,)dI, |,
L/ Jft,o) (m)

which implies that the differential operator corresponding to the dynamics (6.5) is

Lt m) = Lutm) + [ [Sn(tm s+ (tm. o)
(R)?
— Smur (t,m, z) [YA(t, m, 2)v(dy)m(dz, 1).
Then, the dynamic programming equation corresponding to our problem is

Igir(l - (L"Pu+ F)(t,m') =0, Dyu(t,m,.) >0, u(T,-) = g, (t,m) € [0,T] x Py(S).
m’'eCy (t,m
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All the results of the previous sections can be adapted under appropriate assumptions.

Appendix A. Proof of Proposition 2.2. We assume for simplicity ¢ =0 and
fix m € P(S). Let C,, denote a generic constant which may depend on T' and m but
is independent of P. We proceed in three steps.

Step 1. We first prove the following uniform integrability: denoting X7 :=

SUPo<s<T | X!,

(A.1) sup  EF[|X}%] < Cm, lim  sup E7[|X7[1ix:>p] =0.
PeP(0,m) R—=00pep(0,m)

Indeed, for any P € P(0,m), first by standard arguments we derive from (2.7) that
EF[|X%|%] < CE™[1 + | X0|?] € Oy, In particular, this implies that the set {Py, : P €
P(0,m),0 < s < T} is bounded under W5. Then, for any p > 2, by (2.7) again we
have EF[| X% |P|Fo] < Cp p[1+|X0[P], P-a.s., where Cy, , may depend on p as well, but
is still independent of P. Now for any R > 0,

P X |2 Ply=2 P (2
B[ IX3 102 m) < B X0 P vy | + B |1 I{H’Timsz

) 1 |X*|3
P * 12 I T
<E X v+ 5E [T
) 1 EP[1X 53] Fo]
P | P * |2 —F &
=" [E° (X PR Loz | =E

< Om2E" [[1 + |X0|2]1{1+|X0\Z\/§}} + C:}ng[m [1 * |X°|2} '

Notice that the right side above does not depend on P; then it clearly implies (A.1).

Step 2. We next show that P(0,m) is closed under the weak convergence. Let
{P"}n>1 € P(0,m) converge weakly to some P*>. Since P{y , = m for all n,
we have P$° = m. Then it suffices to show that the processes M, N in (2.4) are
P°-martingales on [0,7"]. We shall report only the detailed argument for M, as it is
immediately adapted to N.

Notice that the support of P> is separable under the Skorokhod distance dgx, as
a subspace of the separable metric space 2. Then it follows from the Skorokhod’s rep-
resentation theorem (see Billingsley [3, Theorem 6.7]) that there exists a probability
space (Y, F°, P°) and processes {Y" := (X", I")},,>1 and V> := (X, I*°) defined
on this space such that
(A.2) Py =PY.. for all n < oo, and dsx (Y",Y>®) — 0, Pl-ass.

n—o0

For all n > 1, the P”-martingale property of M translates to
(A.3) EF’[(MP — MM)p(Y?,)] =0 forall € Cp(Q) and 0<t<s<T

with M = X" — [b(r, X7, P} ) I"dr and Cy(9) the set of R%-valued bounded con-
tinuous functions on Q. Moreover, for r € [t,T], by the Lipschitz continuity of b we
have

[b(r, X2, PY0) = b(r, X720, P )| S CIXT = X2+ Wa(PYn, Py )]
Sending n — oo, by (A.2) we have | X — X2°| — 0, P%-a.s. and P, — Pg’ﬁ" weakly.

Then, by the 2-uniform integrability (A.1) of {P{.},>1, we have W;(H’?m, PY o) —0;
see Carmona and Delarue [9, Theorem 5.5]. Thus
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b(r, X", PY.) — b(r, X2°,PYo), PP-as.
T~ n—oo T

Moreover, as b is Lipschitz and {X"},,>1 are uniformly integrable (as the 2-uniform
integrability of (A.1) implies the l-uniform integrability), then {M™},>1 are uni-
formly integrable. The convergence for the Skorokhod distance also implies the con-
vergence of Iy, to I%,. This allows us to take the limit in (A.3) as ¢ € C(£2), hence
[E[PO[(M;>o — M)(Y35)] =0. By the arbitrariness of ¢ € C,(Q2), this proves M is a
PO-martingale, or equivalently that M is a P°°-martingale.

Step 3. We now show that P(0,m) is compact under Ws. Let {P"},>1 C P(0,m).
First, by the first estimate in (A.1) and noticing that I is bounded by 1, one can easily
obtain a uniform bound for the conditional variation of Y under all P"™; then by Meyer
and Zheng [20, Theorem 4] we see that {P"},,>1 is relatively weakly compact, namely
there exists a weakly convergent subsequence. By Step 2, without loss of generality
we assume the whole sequence P™ — P> € P(0,m) weakly. Moreover, by the second
estimate in (A.1) {P"},>1 is 2-uniformly integrable; then it follows from Carmona
and Delarue [9, Theorem 5.5] again that lim, . W2(P™,P>) = 0. This proves the
compactness of P(0,m).

Finally, since g is upper-semicontinuous, the above compactness implies the exis-
tence of optimal P* for the mean field optimal stopping problem (2.6).

Appendix B. Proof of Theorem 3.2. Let =, denote the convex hull of
{ms,ms—:0<s<T}:

BEm = {)\ms,qt(lf)\)mt/:OS/\g1,0§s§t§T,s’:s,sf,t':t,tf}CPg([Rd').

We first show that =y, is compact. Indeed, for any (\,,s.,,t, ), there exists a conver-
gent subsequence and we may assume without loss of generality that (A, sp,t,) —
(A, s,t). By considering different cases, one can easily show that, possibly along a
subsequence, for some s',t" we have A,my + (1 = AN)my — Amy + (1 = N)my € Epy,
and thus =, is compact.

Denote AY; :=Y, —Y,_ and ;P :=3"_ _, AY,. By (3.3) it is clear that

(B.1) E[YZ[+|YP|7] <oo, where Yj:i= sup [Vi|, [YP]:= > |AY|.
0<s<T 0<s<t

For n > 1, set At:= %, t; :=1iAt, i=0,...,n. Then, for each 1,

tig1 1
(B.2) w(tipr,my,,, ) — u(t;,my,) = / Ou(s, my,,, )ds + / E[ﬁt)‘i+l]d/\,
ti 0
where gt{_H = 5mu(ti,mf‘i, Y, - 5mu(ti,mf‘i,Y,}i), m;\i =y, + [1— Amy

7:+1) i1t

By the standard It6’s formula,

tnit 1
&, = / [rgd.dY;+2r§%d<W>s} + / Ay P,
tn (

trytngi]

where Tl:=0wu(s,my,,,), I2*:=0,0nu(t;,m},Ys), I3*:= aiyému(ti,m;\i,YS),

1
ri ;:/ Aybmu(ts,my,,0Y, + [1 — 0]Y,_)do.
0
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Note that my mfﬁi € Zm, and by the growth conditions in Definition 3.1 we have

i+1

(B.3)
<O [P <O+, <O PP <O+ Y]+ Ve ]l

Then

e ([ ez ane.) ] < oe[ (o miPion) ]

gC[E[l—i— Y72 + <MC>T} < 0.

This implies fol [E[ftt’"+1 2. dM¢)dA =0, and thus
T
w(Tym7) =u(0,mg) +/ I'lds
0
1
-‘r/ E
0

Fix I, s, and send n — co. By the regularity of u we have, denoting m? := Am,_ +
[1— Ams,

dA.

T
/ (D32 dAS + T3 1 d(Y )] + / rirdy”
0 (0,7]

Il = ou(s,ms), I2*— 8y5mu(s,m;‘,Ys), A 8§y5mu(s,mi‘, Ys),
1
i _>/ Oybmu(s,m},0Y; + [L —0]Y,_)do, as.
0

By (3.3), (B.1), and (B.3), we may apply the dominated convergence theorem to
obtain

T 1 T
u(T,mr) =u(0,mg) —|—/ Opu(s,ms)ds +/ E [/ [8y6mu(s,m§‘7Ys) -dAS
0 0

0
1
+ 05, 0mu(s,m},Ys) : d(Y°),] +/(0 T]/O Oydmu(s,m}, 0V, + [L — 0]Y,_)dodY.” |dx.

Since A€ and (Y¢) are continuous, and m, has at most countably many jumps, then
T
w(T,mr) =u(0,mg) +/ Oru(s,ms)ds + Jp
0

(B4)  +E

i

T
/0 [0ySmu(s,ms,Ys) - dAS + aiyému(s,ms,Ys) d(Y°)s]

1 1
where Jp:=E [ / / / Oydmu(s,m},0Y; + [L — 0]Y,_)dodY.Pd\
o J(,1]J0

It remains to compute Jp. First, by Fubini’s theorem,

(B.5)

1 1
Ip=E| > //ayamu(s,mg,ey;ﬂl—a]YS,)dedAAYS =E| Y Abnu|,
0 JO

s€(0,T) s€(0,T)

1
where Ad,,us ::/ [6mu(s,m;\,YS) — 6mu(s,m§‘,Ys_)]d)\.
0
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Note that (0,7 = Jio,7(m) U J{ 7 (m). Since Jo,7)(m) is countable, then

(B.6)

E Z Adus | = Z [E[A(Smus]: Z [5mu(s,ms)—(5mu(s7ms,)]7

s€J(o,1](m) s€J(o,1)(m) s€J(o,7)(m)

where the second equality is due to (3.2). Next, for s € J§ 7 (m), we have m) =ms,
0<A<1. Then

BT E| Y Adpus| =E| Y [dmuls,me,Ys) = Gmuls,ms, Yo )]

SEJ(CO,T](m) seJ(CO,T](m)

We emphasize that, since J@ 5, (m) is uncountable, unlike in (B.6) we cannot switch
the order of E and Esej(c (m) 85 above. Now plugging (B.6), (B.7) into (B.5), and
0,T

then plugging (B.5) into (B.4), we complete the proof.
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