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Abstract—Memory-centric computing systems have demonstrated superior performance and efficiency in memory-intensive
applications compared to state-of-the-art CPUs and GPUs. 3-D stacked DRAM architectures unlock higher I/O data bandwidth than the
traditional 2-D memory architecture and therefore are better suited for incorporating memory-centric processors. However, merely
integrating high-precision ALUs in the 3-D stacked memory does not ensure an optimized design since such a design can only achieve
a limited utilization of the internal bandwidth of a memory chip and limited operational parallelization. To address this, we propose
3DL-PIM, a 3-D stacked memory-based Processing in Memory (PIM) architecture that locates a plurality of Look-up Table (LUT)-based
low-footprint Processing Elements (PE) within the memory banks in order to achieve high parallel computing performance by
maximizing data-bandwidth utilization. Instead of relying on the traditional logic-based ALUs, the PEs are formed by clustering a group
of programmable LUTs and therefore can be programmed on-the-fly to perform various logic/arithmetic operations. Our simulations
show that 3DL-PIM can achieve respectively up to 2.6 x higher processing performance at 2.65x higher area efficiency compared to a

state-of-the-art 3-D stacked memory-based accelerator.

Index Terms—Processing-in-Memory, Look-up Table, 3-D Memory, Parallel Processing, Data Encryption, Deep Neural Networks

1 INTRODUCTION

With the rapid growth of emerging Artificial Intelligence (AI)
and data-intensive applications, the memory-centric computing
paradigm is quickly gaining attention [1]-[10]. The performance
of the traditional computing devices (i.e. CPU and GPU) on
such memory-intensive applications is limited by the narrow-
bandwidth, high-latency off-chip communications with the mem-
ory devices of the system [11], [12]. However, processing within
the memory chip alleviates this performance bottleneck by ex-
ploiting the high internal bandwidth of the memory for parallel
computing. At the same time, latency and energy dissipation from
data movements are reduced significantly.

The processing-in-memory systems (PIMs) are designed for
accelerating applications/tasks with inherent data parallelization
such as the Al acceleration tasks that incorporate large-dimension
matrix-vector (GEMV) and matrix-matrix (GEMM) multiplica-
tions, the cryptography and data encryption tasks [6], etc. Further,
the emergence of 3-D stacked memory technologies has inspired
the development of high-performance PIM accelerators [7], [13].
This is because of several distinct advantages that the 3-D stacked
memory has over the traditional 2-D Dual Inline Memory Module
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(DIMM). For example, the 3-D stacked memory technologies such
as HMC [14] and HBM [15] can achieve up to an order higher
bandwidth, and up to 5x higher energy efficiency, and several
times larger aggregated die area over the traditional 2-D memory
configuration, allowing the placement of more processing circuitry
on the same die footprint [16].

However, the memory-centric computing domain has its own
challenges that are primarily related to resource limitations and
design optimization. These challenges arise when complex and
sophisticated processing engines with a large area overhead are
incorporated within the small form factor Memory chips [8], [9],
[17]. Although this approach provides the functional sophistica-
tion required by the applications, it also limits the maximum
operational parallelization and low Bandwidth utilization [18].
Despite this, there is a noticeable trend of PIM computing units
becoming increasingly larger in the past couple of years [7], [10],
[17], [19].

In contrast, shrinking down the ALU footprint would enable
the integration of pluralities of ALU within a bank. This would
allow each ALU unit to access the within-the-bank bitline-based
which is significantly wider than the bank I/O bus. This would
unlock the scope for remarkably higher operational parallelism
and utilization of data bandwidth. We observe that leveraging
look-up tables (LUT) for performing computations [4], [5], [10],
[20] is an ingenious way to reduce the footprint of a flexible
processing architecture. Unlike a CMOS-logic-based ALU in
which different logic blocks are dedicated to specific operations,
a single LUT can perform various operations depending on how
it has been programmed. Therefore, a LUT can execute many



different logic/arithmetic functions without incurring incremental
area, power, and latency overheads for each functionality [4], [5],
[10], [20]-[22]. However, LUTs should only be utilized for low-
precision computing (e.g. 4-bit) [10] since the area of a LUT scales
up exponentiallyc with the operand precision and may occupy a
large area for large operational precision.

Conveniently, the usage of excessively large LUTs can be
averted by decomposing a large-precision computation into a
series of lower-precision sub-operations and executing those via
a group of tiny LUTs instead. By assembling such a group of
LUTs together, it is possible to perform larger-precision, complex
operations with minimal LUT overheads. However, these LUTs
must also be programmable (i.e. re-writable) such that these can be
adapted for performing a wide range of logic/arithmetic operations
required to support a diverse range of applications. To this end,
we propose a 3-D stacked memory-oriented PIM architecture
(3DL-PIM) consisting of many low-footprint, programmable
PEs formed of interconnected LUT clusters. By leveraging the
programmability of the constituent LUTSs, the proposed PEs
can diverse domains of applications, such as Al acceleration,
Data Encryption, and Matrix-Matrix/Vector arithmetic. We
also integrate a multitude of these PEs within the memory
banks to expose a collectively wider data bandwidth to the
PEs and achieve improved operational parallelism. With the
aid of a custom, programmable Instruction Set Architecture (ISA),
the proposed PIM can be programmed (i.e. re-written) on the fly to
support a wide range of logic/arithmetic operations for performing
versatile tasks e.g. data encryption, linear algebraic applications,
and Al training and inferences.

For maximum performance optimization, it is also essential to
facilitate fast communication among the PEs. While prior works
have relied on data-copying between banks [8]-[10] or have used
complex and expensive networks [23]-[25], we instead leverage a
low-cost bitline-based internal communication mechanism [26] to
facilitate high-bandwidth and low-latency communication chan-
nels among groups of PEs within the banks. We evaluate the
performance of the proposed 3DL-PIM architecture for multiple
application domains, including Deep Neural Network (DNN)
acceleration, Data encryption, and Matrix-Vector Arithmetic. We
also compare the performance with state-of-the-art traditional
processors such as CPUs, GPUs, and other contemporary 2-D and
3-D memory-based accelerators. To summarize, in this work we
propose the following novel contributions:

1)  We propose 3DL-PIM, a 3-D stacked memory-based
memory-centric processing architecture with many pro-
grammable, tiny, LUT-based PEs for flexible and energy-
efficient data-parallel computing. In order to implement
a specific logic/arithmetic operation, these PEs are pro-
grammed appropriately, making it possible to implement
an arbitrary number of different logic/arithmetic opera-
tions without any incremental overhead. The PEs are in-
corporated within the memory banks for optimal usage of
the internal data bandwidth of the memory organization.

2)  We propose a custom bank-level controller, accompanied
by a custom, programmable Instruction Set Architecture
(ISA) for programming the LUTs to perform specific
logic/arithmetic operations and also for conducting the
execution of the operation via fixed-length instructions.

3)  We evaluate the proposed architecture for a wide range of
applications including Data Encryption, Linear Algebraic
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Applications (BLAS), and Al Acceleration (i.e. CNNs
and Transformer).

The remaining part of the paper is outlined as follows: Section
2 provides a brief overview of the related works, Section 3
discusses the microarchitecture of 3DL-PIM in detail, Section
4 demonstrates the LUT-based implementations of important
logic/arithmetic operations in the 3DL-PIM PEs, and Section
5 discusses the architecture and the operational mechanism of
the 3DL-PIM bank Controller Unit (BCU) and Instruction Set
Architecture (ISA). These are followed by Sections 6 covering
various technical aspects of the hardware-level integration of the
PEs within the memory organization. Finally, Section 7 presents
the experimental evaluations of 3DL-PIM and its comparative
benchmark with the state-of-the-art, which is followed by con-
cluding remarks in Section 8.

2 RELATED WORKS

The 3-D memory architecture is formed by stacking multiple
DRAM dies vertically on top of a base logic die [14]. The stacked
dies are interconnected with a large number of vertical through
silicon vias (TSV). The 3-D stacked memory technologies gained
popularity as a potential solution to the ‘memory wall’ problem,
thanks to its TSV-based I/O bandwidth which can be several times
higher than the standard 2-D DRAM chips [16]. Two distinct 3-
D stacked memory organizations have been proposed so far: a)
Hybrid Memory Cube (HMC), and b) High Bandwidth Memory
(HBM/HBM2). The organization of HMC is partitioned into many
vertical columns called ‘vaults’ that consist of vertically aligned
segments of each stacked die and its localized TSV bundle. On the
other hand, HBM features centralized TSV bundles and a memory
organization closely resembling the standard 2-D DRAM. The
TSV interconnects act as channel I/Os that are interfaced to planar
bank-group buses in each die.

The 3-D stacked memory-centric accelerators can be classified
either as Near Memory Accelerators, with the processing logic
located only on the base die [23], [24], [27], or Near Bank Accel-
erators, with processing logic located within the memory dies [7]-
[10], [17], [28], [29]. In general, the Near-Bank Accelerators enjoy
lower data-access latencies and improved data bandwidth than the
Near Memory Accelerators, albeit at a higher design complexity.
Some Near-Bank Accelerators, such as SpaceA [29] incorporate
heterogeneous processing logic on different stacked memory dies
to facilitate a streamlined execution flow in the vertical direction.
These accelerators may be aimed at a single specific application
[10], [17], [23], [24], [29], or capable of supporting multiple
application domain/ general purpose computing [8], [9], [28].

While the Near-Bank Accelerators [8]-[10], [17], [28], [29]
offer better optimization of data access/ communication overheads
compared to the Near-Memory Accelerators [23], [24], [27],
[30], these are still able to only utilize a fraction of the bank-
internal bandwidth of DRAM. Therefore, a significantly higher
data-bandwidth utilization would be possible if the processing
logic were to be placed within the banks. However, the Processing
Engines in the existing Near-Bank Accelerators are far too large
to be fitted within the banks [8]-[10], [17]. This inspires us to
develop compact, lightweight Processing Engines/Elements that
can be placed within the banks to expose significantly wider, low-
latency datapath between the memory and the processor.
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Fig. 1. Overview of the 3DL-PIM architecture integrated, including a) an overview of the organization of the used memory platform (HBM2 in the
Pseudo Channel mode), b) arrangement of the 3DL-PIM PEs inside a memory bank, c¢) architecture of a PE, d) a detailed view of the router of a

PE, and e) a detailed view of a LUT-core in a PE.

3 PROPOSED 3DL-PIM ARCHITECTURE
3.1 PIM Microarchitecture
3.1.1 Overview
The proposed 3DL-PIM architecture consists of many parallel
processing elements placed within the memory banks. A DRAM
bank is a 2-D array of memory cells. Each row of data in this
array is connected to a common wordline which can be activated
via a row address. Once activated, a page of data is released on to
the bitlines which are sensed and latched by the sense amplifiers
(SA). One of several columns of data can be selected from the
sense amplifiers via the column address. The physical organization
of a DRAM bank, however, is more complex than that. Inside a
bank, groups of wordlines are bundled together to form subarrays
[31], primarily with the goal of reducing the physical lengths of
the bitlines for improving electric and capacitive properties. Each
subarray has its own set of SAs and local row buffers that copy
data from the SAs. The proposed 3DL-PIM PEs are located in
rows between each pair of subarrays and are interfaced with the
local row buffers of the respective subarrays via extended bitlines.
Our approach of integrating the PEs within the memory banks
makes 3DL-PIM compatible with different 3-D stacked memories
including HMC [14], HBM [15], and HBM2 [32]. In this section,
we discuss the implementation of this architecture on the HBM?2
memory platform which consists of eight channels distributed
across eight channels. Each channel is further divided into a pair
of pseudo channels (pCH) consisting of sixteen banks. The 128-
bit channel I/O bus is split into a pair of 64-bit wide pCH I/O
buses that can operate autonomously in pCH mode of operation.
Figure 1 presents a hierarchical view of the 3DL-PIM architecture,
showing a) a higher-level memory organization of HBM2, b) the
arrangement of the PEs inside a PIM-bank, c) the architecture of a
PE, d) the architecture of the router of a PE, and e) the architecture
of a LUT-core.

3.1.2 PE Organization
Figure 1(a) and (b) respectively shows the baseline memory

organization and the arrangement of the 3DL-PIM PEs inside
a bank. We refer to the banks containing the PEs as the ‘PIM-
Banks’. The PEs are arranged in horizontal arrays (rows) inside
the PIM bank such that each row of PE is located between a pair of
subarrays. The placement of the PEs inside the bank is facilitated
by replacing a portion of the subarrays [7]. Each PE is able to
directly interact with the subarray above it via the subarray’s local

row buffer. Four PEs in a row have shared access to any subarray.
The row of PEs can also communicate with other subarrays via a
set of subarray interlinks [26], as discussed later in Section 3.1.6.

3.1.3 PE Microarchitecture
3DL-PIM PEs are designed to perform a wide range of
logic/arithmetic operations exclusively using LUTs. The LUT-
based computing approach achieves improved energy efficiency
and lower latency than the traditional ALU-based computing
paradigm due to having comparatively fewer stages of transistors
and fewer logic-switching activities per operation [4], [5]. Each PE
consists of eight Look-up Tables (LUT) based processing cores,
termed the ‘LUT-cores’, for performing micro-computations, as
shown in Figure 1(c). A LUT-core contains one 8-bit LUT that
can be programmed to perform any logic/arithmetic operation on
a pair of 4-bit operands or a single 8-bit operand. The LUT-cores
as well as the other components of the PE are interconnected
by a router that facilitates parallel communications among all
the interconnected nodes. With the aid of the router, the PE can
combine parallel operations across all the LUT-cores in multiple
stages to implement more complex and sophisticated operations.
As shown in Figure 1(c), alongside the LUT-cores and the
router, a PE also contains a 16-bit accumulator register, an internal
Bus, and an I/O buffer for managing the data flow in and out of the
PE. The I/O buffer accesses and latches data in large granularity
from the local row buffer of the neighboring memory subarray
via a crossbar switch. The data buffering enables the PEs to
maximize data re-use, especially for applications with irregular
memory access patterns. The I/O buffer is conveniently sized to
512-bit so as to achieve a balance between buffering capacity and
circuit overhead.

3.1.4 LUT-core Microarchitecture

The LUT-Cores act as 8-bit processors with programmable func-
tionality. Figure 1 (e) shows a detailed view of the LUT-core
architecture. Each LUT-core contains an 8-bit LUT formed of
eight 256-bit buffers, paired with an 8-bit 256:1 Multiplexer. The
LUT is programmed using a set of eight 256-bit function-words.
A LUT-core additionally contains a pair of 4-bit Input registers,
A and B that receive the operands from the router. These registers
collectively control the select pins of the LUT to perform a LUT
‘look up’ and access a pre-programmed output. The output of the
LUT-core is either forwarded to the router or recirculated to the
input registers for repetitive operations.



3.1.5 Intra-PE Communication
A PE contains an internal Bus of the same width as the I/O
buffer that allows the content of the I/O buffer to be distributed to
different components of the PE, as depicted in Figure 1(c). The /O
buffer may contain a batch of up to sixty-four 8-bit data operands
called the data-words, or a pair of 256-bit function-words. The
LUT-cores are able to read the function-words directly from the
PE-bus. On the other hand, the data-word are accessed from the
I/O buffer in pairs by the router via the Bus. A Read/Write Pointer
enables the router to select a pair of data-words at a time. Once
received by the router, the data-word pair is distributed to the
LUT-cores that perform a series of same or different operations.
The microarchitecture of the PE’s router is shown in detail in
Figure 1(d). It is essentially a crossbar switch, implemented with
a set of 4-bit multiplexers. The router is capable of forwarding
the 8-bit output of a LUT-core either to the input port of another
LUT-core, the PE accumulator, or the I/O buffer via the PE bus.
Also, it can perform this task in parallel across all the LUT-cores.
Each of the communication channels of the router has a pair of
4-bit sub-channels that are parallel and independent of each other.
Therefore, an 8-bit output of one LUT-core can be fed to the same
or two different LUT-cores as two individual 4-bit operands.

3.1.6 Inter-PE Communications

Although the PEs can directly access only their neighboring
subarrays, they also have passive access to all the subarrays in the
PIM bank. This is facilitated by leveraging a subarray-interlinking
mechanism that connects the local bitlines of every neighboring
subarray via access transistors [26]. As shown in Figure 1(b), this
mechanism enables a page of data to hop across multiple subarrays
at a time via the interlinks to reach a different destination subarray
and be accessed by the adjacent row of PEs.

3.2 Data Access Mechanism

The PEs access data from their neighboring subarrays via the local
row buffer of the subarray. First, a target wordline is activated
which causes a page of data to be copied from the corresponding
memory row to the local row buffer. In the proposed configuration,
four PEs are connected to the local row buffer such that a 2kb wide
segment of the buffer is visible to each PE. A PE accesses this data
via multiple read operations. Since the I/O buffer of the PE has
a capacity of 512b (64B), the PE needs to perform exactly four
consecutive reads. A crossbar switch allows the PE to access a
different 64B block of data during each read, as depicted in Figure
1(c). Conversely, the outputs are written back to the local row
buffer from the I/O buffer of the PE via the crossbar switch.

3.3 Control Architecture
3.3.1 Bank-level Control

The 3DL-PIM architecture is equipped with multiple custom-
designed controller units to operate the PEs. All the PEs in a
PIM-bank are controlled by the same Bank Controller Unit (BCU).
Further, the corresponding PIM-banks across all the paths share a
common BCU. Figure 2 (a) shows the connectivity scheme of the
BCUs to a set of PIM-banks. The BCU has a custom-designed
Instruction Set Architecture (ISA) that decodes a stream of in-
structions generated by a host device and outputs corresponding
control-words for operating all the PEs inside a PIM-bank. The
BCU has a custom-designed architecture specifically aimed to
operate the PEs. It leverages the control-TSVs to transmit 128-
bit wide PE control-word per clock to operate the PEs in the
designated memory banks. The detailed operation of the BCU is
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Fig. 2. The overview of the 3DL-PIM control architecture, includes a) a
higher-level view, and b) a bank-level view. The PIM-banks across the
Pseudo Channels (pCHs) in the Memory Cores presented as Bank 0,
1,2, ---, n, are operated by Bank Controller units (BCU) placed in the
logic die. Inside each PIM-bank, multiple parallel Process Columns are
operated synchronously by the corresponding BCU.

discussed in detail in Section 5. Using a single BCU for controlling
all the PEs in a bank inevitably enforces operational homogeneity
within a Process Column. However, since the targetted applica-
tions are characterized by highly regular and repetitive operations
(e.g. MAC), this does not tend to be a significant performance
limiting factor.

The BCUs are placed in the logic die of the 3-D stacked
memory and utilize the control-TSVs to transmit the control
signals to the target bank across multiple paths. The placement
of the BCUs in the logic die is inspired by two factors. First,
the BCU features a relatively larger amount of logic circuitry,
including registers, counters, decoders, and multiplexers. Second,
since each BCU operates multiple banks across all the stacked
memory chips, it is easier to distribute control signals from the
base die via the TSVs.

3.3.2 Process Columns

Inside each PIM-bank, the PEs are arranged in rows between
pairs of subarrays. The placement of the PEs is facilitated by
replacing several subarrays in the bank. As discussed previously
in Section 3.1.5, novel ‘subarray interlinks’ are leveraged to
bridge the local bitlines of the neighboring subarrays [26]. This
communication essentially leads to the forming of a novel mul-
tiprocessing architecture called the Process Column, consisting
of the PEs aligned along a column (Y-direction), as shown in
Figure 2(b). A Process Column also includes the portions of
the subarrays that the corresponding PEs are connected to. Each
bank contains four Process Columns that are operated by the
same BCU, effectively forming a 4-way parallel Single Instruction
Multiple DATA (SIMD) processing layout. The subarray segments
belonging to a particular Process Column act as shared memory
for all the PEs in that Process Column. As a result, these PEs
can share the workload of a common task, e.g. the workload
from a Neural Network Layer. Contrary to the widely used 2-
D spatial arrangements (e.g. the 2-D systolic arrays implemented
in the Nvidia Tensor Cores and Google TPU), Process Column
is essentially a 1-D multiprocessing layout aimed at simplifying
the control architecture and minimizing circuit overhead. While
this approach requires the mapping of Matrices and Vectors to be
flattened to a 1-D spatial distribution, this does not compromise
the system’s performance in any way. However, the added benefit
of utilizing the Process Column layout is a significant reduction in



the complexity of the spatial data/operation distribution compared
to an equivalent 2-D multiprocessing layout.

4 IMPLEMENTATION OF OPERATIONS

Each PE of the proposed 3DL-PIM architecture can perform
various complex operations by executing simpler, lower-precision
computations in the LUT-cores in multiple stages. By program-
ming the LUT in the core in a specific way, it can be used
to perform virtually any operation such as bitwise logic, addi-
tion, subtraction, multiplication, shifting, substitution, compari-
son, pooling, etc. As a result, it is compatible with multiple
application domains, including Al-oriented applications such as
CNN, RNN, LSTM, and Transformer acceleration, linear alge-
braic applications such as matrix/vector arithmetic, finite-element
methods, and cryptographic applications such as AES encryption.

4.1 Multiply-and-Accumulate (MAC)

The MAC operation is the building block for any matrix-vector
(GEMV) and matrix-matrix (GEMM) multiplication task and
therefore is extensively utilized by fully connected, convolutional,
and attention layers in the DNNs. Conventionally, a MAC op-
eration is performed via sequential execution of individual mul-
tiplication (MUL) and addition (ADD) operations. However, we
partially parallelize these two operations and thereby combine
them into one continuous operation that requires fewer clock
cycles to execute. Alongside minimizing the latency, this also
maximizes resource utilization in the PE. The 8-bit MAC oper-
ation is decomposed into a series of 4-bit multiplications and 4-bit
additions in multiple clock steps. First, both of the 8-bit operands,
a and b are disintegrated into 4-bit segments: ag-ay, and by-
br.. Then these segments cross-multiplied to generate four partial
products Vo-V3 such that Vg=ay, Xby, Vi=ay Xbg, Vo=ag Xbr,
and Vi=agy XbH.

Next, the partial products are added in several stages to gen-
erate the product of a and b. Also, the product is added alongside
the accumulation from the previous rounds of MAC operations
using the scheme shown in Figure 3(a). Figure 3(b) shows the
programming scheme of the LUT-cores in a PE for performing
this operation. Three LUT-cores in the PE are programmed as 4-bit
multipliers and five LUT-cores as 4-bit adders. Finally, the step-
wise implementation of the whole process inside a PE is presented
in Figure 3(c).

As can be seen from Figure 3(c), the accumulation is initiated
at t=2, as soon as the partial products VO-V3 are generated. The
16-bit accumulated MAC output of two 8-bit inputs is generated
as four 4-bit segments A0-A3 and is contained in the accumulator.
During different stages of the accumulation operation, the 4-
bit segments of the previous MAC output are fetched from the
accumulator. These values are represented as A0-A3 written in
green text in Figure 3c. The new MAC output overwrites the
older values in the accumulator. It takes only eight clock cycles to
perform the whole operation.

4.2 Maxpooling

The maxpooling operation is primarily required by CNNs for
downsampling the feature maps. In order to perform 4-bit max-
pooling, a LUT-core can be programmed to compare between a
pair of 4-bit inputs and forward the comparatively larger value as
the output. By cascading two such 4-bit maxpooling LUT-cores,
it is possible to implement an 8-bit maxpooling operation. The
8-bit Max-pooling requires only three LUT-cores and therefore
can be executed two-way parallel in a PE. The Maxpooling layer,
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Fig. 3. Overview of 8-bit fixed-Point multiply-and-accumulate (MAC)
operation in 3DL-PIM. (a) shows the operation-decomposition algorithm
utilized for representing the 8-bit in terms of 4-bit operation, (b) shows
the programming scheme of the LUT-cores of a PE for performing 8-
bit MAC, and (c) shows the step-wise implementation of the operation
inside a PE. In this figure, the left and right arrows coming out of each
LUT-core represent the most and least significant 4-bit of the outputs
of the LUT-cores respectively. Green texts represent data from the prior
round of operation. The clock steps of the operation are designated by
the values of 't" while the letters |, J, K, L, M, N, and P respectively
represent the corresponding stages of the partial addition operation.
During each clock, the numeric tags accompanying the letters designate
the concurrent operations across the LUT-cores.

which is also implemented by sliding a filter across an activation
map, can be orchestrated in a similar manner to the Convolutional
Layer. This involves multicasting the Maxpooling filter, followed
by the distribution of even slices of the activation map to each PE
in the Process Column.

4.3 Substitution/Transformation

Substitution operations are required by multiple application do-
mains. For example, ReLU and TanH Activations, required by
the DNN acceleration applications can be performed via LUT-
substitution. Similarly, Rijndael S-BOX substitution and Galois
Field multiplication for AES Encryption can be carried out by
replacing the input with a predefined value as output. Therefore,
these operations can be performed in a single step in a LUT-core.



4.4 Other Operations

Alongside the aforementioned operations, the proposed 3DL-PIM
PE can also support standard bitwise logic operations as well as
arithmetic operations such as addition, subtraction, modulus, etc.
Other operations involve bit-rotation, left and right shifting, and
bit-padding operations. Further, 3DL-PIM can also support all the
aforementioned operations with other fixed-point precision of the
data operands (i.e. 6-bit/4-bit), with improved performance and
energy efficiency. In Section 7 we present performance evaluation
for Al inferences with 4-bit precision. This feature also opens
up opportunities to implement various approximate computing
techniques on the same hardware.

5 INSTRUCTION SET ARCHITECTURE

In order to implement different logic/arithmetic operations dis-
cussed in Section 4, the 3DL-PIM architecture is equipped with
custom-designed Controller Units. Identified as the Bank Con-
troller units (BCU), each unit is responsible for operating all the
Processing Elements (PE) within a bank. The BCUs are placed in
the logic die of the 3-D stacked memory and utilize the control-
TSVs to transmit the control signals to the banks.

5.1 Bank Controller Architecture
5.1.1 Instruction Format

Figure 4 shows a high-level view of the ISA of the BCU. The
BCU consists of an Instruction Register, an Instruction Decoder,
several internal registers, Counters, a Controller/Sequencer unit,
and Data and control buses. It utilizes a fixed-length instruction-
word format that can be divided into three segments: 5-bit wide
Opcode, 16-bit wide PE Mask, a 10-bit wide Pointer. The
Opcode represents various operations supported by the 3DL-PIM
ISA. In the current format, the ISA can support up to 32 different
Operations. Table 2 lists several fundamental Instruction Opcodes
and their functionalities.

The PE Mask bits of instructions provides selectivity over
which PEs will execute a SIMD instruction. By setting a Mask
bit to high, the corresponding PE is excluded from executing the
instruction. The Pointer bits of an instruction-word allows a fine-
grained selection of operands in the I/O buffer. The Pointer bits
may a) hold the row and column address of a block of data in the
subarray, b) act as a pointer to function-word a LUT-core latches,
or c) act as data-pointer to the I/O buffer of the PE.

5.1.2 Controller/Sequencer

The Opcode is decoded in the Instruction Decoder and forwarded
to the Controller/Sequencer unit, as shown in Figure 4. An opcode
points to the first control-word corresponding to the instruction
inside the Controller/Sequencer unit. The following control-words
for that instruction are executed sequentially during the consec-
utive clock cycles. The control-words are distributed across the
ISA as well as to all the PEs via the control bus. As indicated in
Figure 4, a control-word has two distinct segments. One segment

TABLE 1
Specifications of various fixed-Point Operations in a PE

# of Clocks  Parallel Ops./PE

Operation
8-bit MAC
8-bit Maxpool
8-bit Substitution
4-bit MAC
4-bit Maxpool
4-bit Substitution
4-bit Bitwise Op
8-bit Bitwise Op
16-bit Bitwise Op
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consists of control signals for the PE, identified as the PE control-
word. The other segment controls the internal registers of the BCU
itself, identified as the BCU Control. PE control-word consists of
router control commands and PE data flow control commands. A
detailed discussion of the PE Control mechanism is presented in
Section 3.3.2.

The Controller/Sequencer unit is micro-coded on a pro-
grammable memory device. This design choice is inspired by mul-
tiple advantages. First, micro-coding of the control-words reduces
the use of logic circuitry and simplifies the designs. This also
reduces the power consumption compared to an equivalent logic-
based Controller. Second, new operations can be implemented or
the existing operations can be modified/optimized in the future by
simply reprogramming the control-word bits.

5.1.3 Implementation of the Instructions

The Instructions supported by the BCU are either memory access
instructions, logic/arithmetic instructions, or LUT programming
instructions, as shown in Table 2. Depending on the nature of
the instruction, the Pointer bits of an instruction-word may be
used as a memory address, a data pointer in the I/O buffer, or
a LUT pointer. For LDB and STB, which are memory access
instructions, the Pointer bits represent the address to a particular
column in a DRAM row. For logic/arithmetic instructions such as
MAC, RLU, and MPL, the Pointer bits of an instruction act as a
pointer to data in the I/O buffer, which can contain up to 64 8-bit
data/ 128 4-bit data operands. The PRG instruction reprograms
the LUT-cores of a PE in real-time using new function-words and
leverages the Pointer bits as LUT addresses. Each of the eight
LUT-cores in a PE contains eight 256-bit latch banks and therefore
the Pointer bits can select any of the sixty-four latch arrays in a
PE for reprogramming.

5.2 PE Control Mechanism

A PE is operated by the 128-bit wide PE control-word received
via the control-TSVs, as shown previously in Figure 4, and in
more detail in Figure 5. This includes Routing signals as well
as PE Dataflow control signals. The routing signals control the
router of the PE to facilitate parallel communications among all
the components of the PE, each of which is regarded as a com-
munication node. A PE contains twelve communication nodes,
including eight LUT-cores, two I/O ports, and an accumulator
register with two ports, as shown in previously Figure 1(c) and
1(d). Each node has a pair of 4-bit independent outlet channels,
X and Y, that are respectively operated by the X Route and Y
Route signals. Both channels can transmit data to twelve different
destination nodes (including their own node). Furthermore, the
data can switch over between X and Y channels at each node via a
set of Switch signals. The X Route, Y Route, and Switch signals
for all twelve nodes make up the router control segment of a PE
control-word. As seen in Figure 5, the PE Dataflow control signal
consists of two 10-bit segments called A_En and B_En that are
used for activating/deactivating ten pairs of internal registers.

6 DESIGN CHOICES AND MOTIVATIONS

In this section, we critically discuss some of the key design
choices made during the development of the proposed 3DL-PIM
architecture and justify the motivations.

LUT-Cluster-Based Computing: One key challenge of perform-
ing computations using LUTs is that the size of a LUT scales
up exponentially with the bit-precision of the operands [4]. We
overcome this challenge by replacing large LUTs with a group
of smaller, 8-bit LUTs within each PE. The collective footprint of
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Fig. 4. Instruction Set Architecture of the Bank Controller Unit (BCU) of 3DL-PIM. A 32-bit wide fixed-length instruction is decoded to generate
control-words from a micro-coded Controller/Sequencer unit. A control-word is distributed across the internal registers as well as the PEs, via the

control bus and the control-TSVs.

TABLE 2
CNN-Oriented Instructions and their functionalities

Opcode  Functionality
LDB Reads the contents of a memory row in the I/O buffer
OuT Writes the PE accumulator back to a specific location in

the I/O buffer and resets the accumulator

STB Writes 1/O buffer back in the designated Memory Row
PRG Programs a LUT-core with the contents of the I/O buffer
MAC Multiply and Accumulate two 8-bit data from the I/O buffer
RLU ReLU Activation on multiple 8-bit data from the I/O buffer
MPL Max-pooling out of a pair of 8-bit data from the I/O buffer

such a group of LUTs is multiple orders lower than a single, larger
LUT. For example, replacing a 16-bit LUT-core with a group of
eight 8-bit LUT cores results in a 64 X reduction of area overhead.
However, in order to implement the same set of operations using
smaller LUTs, various operation decomposition techniques are to
be leveraged [4], [10]. Therefore, we form the 3DL-PIM PE by
combining a group of 8-bit LUT-Cores and interconnecting these
cores with a flexible router that allows seamless distribution of
decomposed micro-operation among the LUT-cores within the PE.
In-Bank Computing: We place the PEs within the memory banks
so that these are not dependent on the narrow-width bank I/O for
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Fig. 5. A detailed view of the PE control-word received by the PEs via

the control-TSVs.

it possible to transmit the same amount of data concurrently to all
the PEs inside the Process Columns. Overall, 3DL-PIM PEs enjoy
a remarkably superior bandwidth than the inter-PE communication
based on the bank I/O bus [7], [10] or custom networks [25], [33]
proposed by prior 3-D stacked memory-based PIMs. Furthermore,
the PEs in the Process Column have shared access to all subarrays.
Therefore, the subarrays collectively act as a large shared cache to
the Process Column and facilitate optimum data re-use.

Our performance evaluations, presented in Section 7, include
the latency and power consumption associated with the in-bank
data accesses and data movements. While the data movement la-
tencies are modeled using the timing parameters of the interlinked
subarrays [26], the data access latencies are based on the standard
DRAM timing parameters such as the row access latency, tRAS).
This is because, although the proposed model of incorporating
PEs within a bank involves the replacement of several subarrays,
the functionality of the remaining ones is unaffected by this
modification. Further, the PEs are interfaced to the sense amplifiers
on the bitlines, which effectively prevents the PEs from loading the
bitlines, unlike prior bitwise processing architectures [34], [35].
Power Optimizations: We choose to implement the proposed
3DL-PIM architecture on 3-D stacked memory (e.g. HBM/HBM?2)
because of improved power supply and a larger aggregated chip
area than the 2-D DIMM DRAM configuration [36]-[39]. More-
over, the physical I/O pins, which account for a large portion of
power consumption (e.g.up to 80% for HBM2), remain inactive
during PIM operation [7], [8], [13]. Alongside, the PEs of the
proposed 3DL-PIM perform internal buffering of blocks of data
in order to reduce the rate of memory activity rate significantly, as
discussed previously in Section 3. Therefore although we integrate
a large number of low-power, LUT-based PEs in each stacked
HBM2 memory chip, the overall system power consumption of
3DL-PIM remains near the rated power of the standard memory
module (i.e. 10W/chip) [13]. The power consumption figures of
different 3DL-PIM configurations are reported in Table 4.

7 EXPERIMENTAL EVALUATION

7.1 Experimentation Setup

The PEs and the BCU of 3DL-PIM are designed and verified
in the HDL environment. The device parameters are reported in
the 20nm technology node and are obtained from ASIC physical
synthesis of the PEs using the Synopsys Design Compiler tools.
The synthesis is performed in compliance with memory chip spec-
ifications, e.g. only four metal layers are utilized in the synthesis
of the PEs. We also present the inter-subarray communication
parameters in [26] the 20nm technology node. For modeling the



latency and energy consumption from data accesses (read/write)
by PEs from neighboring subarrays, we utilize the tRCD (Row-
to-Column Delay) timing and the read/write energy for DDR4
DRAM in the 22nm technology node [40]. The hardware perfor-
mance parameters are summarized in Table 3.

We utilize a Python-based analytical model of the 3DL-PIM
PE to formulate different logic/arithmetic operations in the LUT-
based processing environment of a PE. These operations are then
implemented in the HDL simulation model for further verification.

7.2 Device Configurations

We evaluate the proposed 3DL-PIM architecture via its HBM2-
based implementation. HBM2 is a state-of-the-art 3-D stacked
memory architecture that has been explored for PIM adoption
[7]. We integrate 3DL-PIM in the memory by re-purposing mul-
tiple banks in each pCH. Each PIM-bank contains four Process
Columns, operated by a shared BCU. We present three device
configurations of 3DL-PIM: LP-3DL-PIM, MP-3DL-PIM, and
HP-3DL-PIM, with different number of PIM-banks in each pCH.
Table 4 presents different technical aspects of the three configu-
rations. The purpose of adopting three different configurations is
to offer adaptability to various application domains with varying
computational demands and power specifications. For example,
the LP-3DL-PIM configurations are aimed at the low-power edge
and mobile applications with power consumption below the rated
power (i.e. 30W) of the standard HBM2 module [38]. On the
other hand, HP-3DL-PIM is a high-performance variant of 3DL-
PIM with 4x higher parallel processing performance than the LP-
3DL-PIM configuration.

7.3 Performance Benchmarking
7.3.1  AES Encryption

We choose to implement the Advanced Encryption Standard
(AES) encryption algorithm to demonstrate the capability of
the proposed 3DL-PIM architecture to perform data-encryption.
Besides the AES encryption algorithm is characterized by LUT-
friendly computations [22]. AES is a fixed-size block-cipher-based
encryption algorithm. Each data block (i.e. plaintext) undergoes
several iterations of an encrypting function called the Round
Function, consisting of four consecutive processes of Subbytes,
Shiftrows, Mixcolumns, and Add Roundkeys. The proposed 3DL-
PIM architecture can perform all the logic/arithmetic operations
required for performing AES Encryption(i.e. s-box substitution,
bitwise XOR, Galois-field multiplications, etc.), along with in-
situ Key Expansion for 128/192/256-bit keys. We evaluate AES
Encryption performance for the 128-bit key which involves four-
teen iterations of the Round Function. Each PE spends 1223 clock

TABLE 3
RTL Properties of 3DL-PIM components
Component Latency Max. Clock  Power (mW)/ Area
(nS) Freq. (GHz) Energy(1J) (mm?2)
LUT-core 0.63 1.59 0.93 (Dyn.) 0.002
0.45 (Leak.)
Processing 0.63 1.59 6.24 (8-bit) 0.021
Element (PE) 5.43 (4-bit)
Bank Control 0.392 1.59 0.079 0.0005
Unit (BCU)
Inter-subarray 106.07/ 0.033/
Comm. 140.35/ N/A 0.043/ N/A
(1/7/15 hops) 186.07 0.062
Data Access 6.77 N/A 0.0011 N/A
(tRCD)
TSV 1 2.133 46x107° ———

TABLE 4
Hardware Specifications of the 3DL-PIM Configurations
Features LP-3DL- MP-3DL- HP-3DL-
PIM PIM PIM
Total PIM-banks 32 64 128
P. Column/ Pseudo channel 8 16 32
No. of BCUs 2 4 8
PIM Circuit Overhead 9.53 % 19 % 38.1 %
Max. Power/ Die (W) 32 6.37 12.75

cycles to process one plaintext block, accompanied by 440 clock
cycles of operation for performing the corresponding key expan-
sion. The AES encryption throughput is evaluated for HP, MP,
and LP-3DL-PIM configurations and compared with the Nvidia
GTX TITAN X (Maxwell) GPU in Figure 6(a). Even though AES
encryption is a compute-bound application, all configurations of
3DL-PIM achieve higher processing throughput than Titan X. This
is primarily due to having a significantly larger number of compact
PEs working in parallel than the GPU for all cases. Moreover,
3DL-PIM also achieves 22.9x higher energy efficiency in this
application by: a) nearly eliminating the energy overhead from
data movements, and b) performing computations on the proposed
LUT-based PEs instead of the traditional logic-based ALUs.

7.3.2 Matrix-Vector Applications

We evaluate the performance of the proposed 3DL-PIM architec-
ture for three microtasks: Matrix-Vector Multiplication (GEMV),
and Matrix-Matrix Multiplication (GEMM) with 8-bit precision
for various input sizes (N=1-10000). These operations are mapped
across four banks in a pCH in the MP-3DL-PIM configuration.
Figure 6(b) presents the latencies of the GEMV and GEMM
operations with different dimensions. It can be observed that
the latency of the GEMV operation, which is memory-bound,
scales up only linearly with increased dimension thanks to the
elimination of stalling latencies from memory accesses.

Based on the implementation of large GEMM and GEMV
operations, we also map Transformer in the proposed 3DL-
PIM architecture. We evaluate performance for the BERT base
architecture with twelve layers of transformer blocks and a hidden
size of 768 and 12 self-attention heads. Our performance eval-
uations show that the HP, MP, and LP-3DL-PIM configurations
respectively achieve 57 inputs/s, 114.5 inputs/s, and 229 inputs/s
of throughput on BERT inferences with 8-bit fixed-point precision,
with an energy-efficiency figure of 4.49 inputs/J. This makes
it 22% more energy-efficient at BERT inferences compared to
the Nvidia Tesla A100 GPU which achieves 4.39 inputs/J of
computational energy efficiency at int§ operational precision [41].
The higher energy efficiency of 3DL-PIM compared to A100 can
be attributed to the memory-bound nature of the BERT inference
application which is characterized by very large GEMV and
GEMM tasks with limited data re-use. Thanks to the proximity
of data to the PEs within 3DL-PIM, it performs more efficient
computing with minimal data re-use than the state-of-the-art GPU.
7.3.3 CNNs
We benchmark the parallel processing performance of all three
configurations of 3DL-PIM for the inferences of the CNN algo-
rithms: AlexNet, VGGNets (16, 19), GoogleNet, Inception V2,
ResNets (18, 34, 50), and SqueezeNet for 8-bit and 4-bit fixed-
point data-precisions. The input dimensions are 224 X224 x3 for
all the CNNs, except for Inception V2 which has the input di-
mensions of 229x229x 3. For all three of the 3DL-PIM hardware
configurations, we map image threads to all the PIM-banks and
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cryption and (b) Matrix and Vector arithmetic. The AES E
performance is presented in terms of throughput (GBps) and |
against Nvidia GTX Titan X GPU for reference. The performanc
PIM for matrix/vector arithmetic applications is evaluated in
latency by mapping each task across a single pCH of the MP
configuration.

run identical instruction streams across all the BCUs in
maximize the parallel throughput.

For ensuring maximum data reuse and optimization of perfor-
mance, a specific data orchestration pattern can be adopted. We
exclusively explore weight-stationary data orchestration in which
the weight matrices of the DNNs are arranged at reserved locations
in the subarrays and are never re-written whereas the distribution
of the input/activation matrices/vectors in the subarray is flexible.
As a result, while distributing large matrix-vector multiplications
across multiple banks/chips in the system, only the input vector
(or its portion) requires to be distributed across those chips.
Thanks to the high bandwidth and low latency of the TSV-based
communication, as shown in Table 3, this communication does not
contribute a significant performance overhead.

Figure 7(a) presents the maximum achievable throughput of
the three 3DL-PIM configurations for various CNN inferences
with 8-bit and 4-bit precisions respectively. HP-3DL-PIM achieves
a maximum throughput of respectively 1859.3 frames/s and 2953.5
frames/s for 8-bit and 4-bit fixed-point precision inferences of
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Fig. 7. Performance benchmark of the three configurations of 3DL-PIM,
in terms of maximum (a) parallel throughput (frames/s) and (b) energy
per frame (joule) with 8-bit and 4-bit fixed-point precision inferences for
various CNN algorithms.
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largest CNN in comparison, are respectively 82.56 frames/s and
132.2 frames/s. The 4-bit fixed-point precision inferences offer
nearly 60% higher parallel performance than the 8-bit precision
inferences. Although performing CNN inferences with 4-bit fixed-
point data precision inevitably affects the inference accuracies, it
has been shown that the loss of accuracy can be minimized by
using advanced quantization techniques [42]. Figure 7(b) presents
the breakdown of energy consumption from the computational
workload as well as the data communications during a single
frame of inference with respectively 8-bit and 4-bit fixed-point
precisions for various CNNs. It can be observed that the energy
consumption from the data communications is at least two orders
lower than the energy consumption from the computations across
all CNNs. Such energy efficiency in the data communications is
attained by restricting data movements only within the respective
Process Columns during processing

Figure 8 demonstrates the optimization of data accesses and
movement latencies by virtue of the proposed data-communication
scheme within the Process Columns. Figures8 (a) and (b) show
inference latency breakdown for a single frame of CNN inference
with 8-bit and 4-bit data precision, respectively. During inferences,
the output feature maps of the CNN layers are efficiently redis-
tributed to different subarrays within the Process Column via the
ultra-high-bandwidth subarray interlinks. As a result, the data-
movement latency does not account for more than 2% of the
overall inference latency for the benchmarked CNNs.
7.4 Comparative Evaluation
7.4.1  Comparison with Traditional Processing Devices
We compare 3DL-PIM with several high-end traditional comput-
ing devices (i.e. CPU and GPU) for ResNet-50 and VGG-19
inferences with 8-bit fixed-point precision. Figure 9(a) presents
a comparison of 3DL-PIM with CPUs: Intel Core 19-10920X),
Xeon Gold 5218T, Xeon Platinum 8270, Xeon Platinum 8380,
and a GPU: Nvidia TITAN-X, in terms of performance per
unit power consumption (Frames/s-W) [43], [44]. It can be ob-
served from Figure 9(a) that HP-3DL-PIM offers significantly
more power-efficient performance compared to all the devices in
comparison. For example, it achieves 130% higher performance
for unit power consumption at 8-bit fixed-point inferences of
ResNet-50, compared to Intel Xeon Platinum 8380, a state-of-
the-art high-performance server-grade CPU. HP-3DL-PIM also
achieves higher energy efficiency for both ResNet-50 inferences
(4.8x) and VGG-19 inferences (1.47 %) than the GPU for a single
stream of images. The GPU becomes more energy-efficient for a
larger batch size of 8. This is because, for larger batch sizes (i.e.
8), the GPU is capable of pipelining multiple inference threads



in each shader core and therefore achieving improved energy
efficiency at processing [44]. However, such sophistication also
comes with a significantly larger chip footprint (942 mm?) and
power consumption (i.e. 250W) than the proposed memory-centric
processing architecture with a power consumption of only 4-
13W per stacked die (92 mm?). However, the comparative energy
efficiency is highly subjective to the nature of the application
domain as well. For example, as discussed previously in Sections
7.3.1 and 7.3.2 respectively, the proposed 3DL-PIM is 22.9x
more energy-efficient at AES encryption than the TITAN X GPU
and 22% more efficient at BERT inferences with 8-bit precision
than the Tesla A100 GPU.

7.4.2 Comparison with Memory-Based Accelerators
We also compare 3DL-PIM with several memory-centric acceler-
ators, including 2-D DRAM-based in-situ Al accelerators DRISA
[2] and SCOPE [3], 3-D stacked memory-based near-memory Al
accelerators NeuroCube [23] and Tetris [24], and HBM2-based
accelerator called FIMDRAM [7], [8] in terms of raw computing
performance (TOPs/s) normalized to a unit area (mm?) and unit
thermal design power (TDP) in Watts in Figure 9(b). We use HP-
3DL-PIM, the highest-performance variant of the proposed 3DL-
PIM architecture for this comparison. The performance parameters
for all the devices are normalized to the 22nm technology node.
It can be observed from Figure 9(b) that 3DL-PIM offers
noticeably more energy-efficient and area-efficient computing per-
formance compared to all the devices in comparison. Both DRISA
and SCOPE are massively parallel bitwise processing architectures
with very high processing throughput (1.06 TOPs/s and 7.08
TOPs/s, respectively). However, these architectures incur a high
memory access rate for bitwise processing which makes these
susceptible to high DRAM leakages. Also, there is a significant
dynamic power dissipation from a large number of CMOS logic
gates operating in parallel, resulting in lower area efficiency and
energy-efficiency than 3DL-PIM. NeuroCube and Tetris place PEs
only on the base logic die of the 3-D stacked HMC memory
architecture. Alongside having relatively large PEs, these devices
also incorporate on-chip Networks (NoC) to interconnect the
PEs which, in turn, accounts for a significant area overhead and
additional power dissipation. FIMDRAM [8], which is also the
base design for the commercially designed Aquabolt-XL [7], [13],
incorporates large floating point ALUs on the stacked memory
chips in a near-bank layout, with 2.65x larger PEs than 3DL-PIM.
But as discussed previously in Section 6, this architecture can only
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Fig. 9. Performance Comparison of 3DL-PIM with (a) several high-end
CPUs and a GPU in terms of ResNet-50 and VGG-19 inference through-
put normalized for unit power consumption, and (b) memory-centric
accelerators DRISA, SCOPE, NeuroCube, Tetris, and Samsung’s PIM-
HBM in terms of performance per unit area (TOPs/s-mm?2) and unit
power consumption (TOPs/s-W).
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TABLE 5
Comparison of PE attributes of DRAM-based PIMs
Device #PEs Area Power MAC Power x
(mm?) W) Delay(ns)  Delay(nJ)
DRISA 32768 0.001 0.003 1768 5.3
-3T1C
DRISA 16384  0.0025 0.006 2110 12.66
-1T1IC-NOR
SCOPE 65536  0.0028  0.0026 56 0.145
Vanilla
SCOPE 65536  0.0029  0.0026 200 0.52
H2D
FIMDRAM 128 0.721 N/A 1.67 N/A
HP 8192 0.021 0.0062 5.04 0.031
-3DL-PIM

chip, resulting in 2.6 X lower overall processing throughput and
6.76 X lower performance per unit power than HP-3DL-PIM.

Table 5 presents a quantitative comparison of the PEs of
DRISA, SCOPE, FIMDRAM, and the proposed 3DL-PIM in. It
can be observed that the bitwise processing PIMs, DRISA, and
SCOPE are characterized by a large number of very small PEs
that are essentially formed of a group of bitwise logic gates
each. On the other hand, FIMDRAM, which is a near-bank
accelerator, features large PEs located outside memory banks.
Each PE contains 16 floating-point ALUs (FPUs) for 16-way
parallel operation. Further, these FPUs can pipeline their operation
to achieve the lowest operational latency of all the PIM devices in
comparison. In contrast, the proposed 3DL-PIM has a significantly
larger number of smaller (41.8 x) PE footprints than FIMDRAM.
Conveniently, the power consumption of a 3DL-PIM PE is also
very low and comparable to the bitwise processors, DRISA and
SCOPE. This, along with the low operational latency of 3DL-PIM
allows it to achieve the lowest power-delay-product (PDP) of all
the devices in comparison.

We also compare the proposed 3DL-PIM with another LUT-
based memory-centric accelerator on 3-D stacked memory called
DLUX [10]. DLUX is a near-bank accelerator that combines
LUT-based computing with CMOS logic to support full-precision
FP multiplications. Aimed primarily at Deep Learning Training
applications, DLUX incorporates large LUT-based Process En-
gines (PE) in a 1:1 ratio with the number of banks. Although
DLUX can support FP computations, a large portion of the
FP computation is carried out with the aid of CMOS logic,
alongside the LUT-based computations. In contrast, the proposed
3DL-PIM features a significantly larger number of compact PEs
(i.e. 64 PEs/bank) that leverage only LUTs to perform fixed-
point precision computing. These PEs are 19.7x smaller than the
Process Engines of DLUX. A detailed comparison of these two
architectures is presented in Table 6. Thanks to the within-the-
bank placement of PEs, 3DL-PIM achieves remarkably lower data-
access energy during computations (<8%) compared to DLUX
(66.1%). Alongside, 3DL-PIM can expose a wider datapath and
data bandwidth to its PEs by accessing data directly from the
memory bitlines within the banks. Also, the collective energy
consumption/ALU access for each bank is 13.8x lower for 3DL-
PIM than DLUX.

Alongside DLUX, several recent memory-centric accelerators
such as iPIM [17], and AxXRAM [28] also leverage the near-
bank computing layout. Compared to DLUX, iPIM, and AxRAM,
the proposed 3DL-PIM has respectively 221 x, 103x, and 4.73 X
lower energy consumption (pJ) per access of a parallel processing
queue. The footprint of a processing queue as well as the overall



TABLE 6
Architectural Comparison of DLUX [10] and the Proposed 3DL-PIM

Attributes DLUX 3DL-PIM
LUT Area (mm?) 0.0095 0.002
ALU/Bank (mm?) 2 64

PE Area (mm?) 0.4146 0.021
ALU Area (mm?2) (MVMx1/ VUx1/ PU x1) (LUT-core x1)
0.244/0.1172/0.004 0.002
Area Overhead 34% 9.53/19/38.1 %
PE Memory (Kb) 32 0.5
Energy/Access (pJ) (MVM/VU/PU) (PE/Process Column)
139.96/3.6/64.3 0.06 /0.941

computing area overhead per chip of 3DL-PIM are also compara-
ble with these architectures. For example, while DLUX and iPIM
have respectively 34.02% and 10.71% area overheads, depending
on the hardware configuration, the computing circuitry in 3DL-
PIM occupies between 9.53% and 38.1% of chip area.

8 CONCLUSIONS

In this work, we present 3DL-PIM, a highly flexible, LUT-
based Processing in Memory architecture implemented on the
3-D stacked memory platforms that can offer massively parallel
processing performance on a wide range of memory-intensive
applications. We develop a novel LUT-based programmable Pro-
cessing Element architecture that can facilitate a wide range of
logic/arithmetic operations at low power consumption. A large
number of such Processing Elements are integrated within the
memory banks to maximize bandwidth utilization and support
massively parallel computing. We benchmark the hardware for
data encryption, Al acceleration, and linear algebraic applications.
Our hardware simulations demonstrate that the proposed 3DL-
PIM architecture can offer up to 2.6X superior processing per-
formance compared to state-of-the-art 3-D stacked memory-based
near-bank accelerator, thanks to its 2.65x smaller and similarly
energy-efficient LUT-based ALUs.
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