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Abstract—Emerging applications including deep neural net-
works (DNNs) and convolutional neural networks (CNNs) employ
massive amounts of data to perform computations and data
analysis. Such applications often lead to resource constraints
and impose large overheads in data movement between memory
and compute units. Several architectures such as Processing-in-
Memory (PIM) are introduced to alleviate the bandwidth bot-
tlenecks and inefficiency of traditional computing architectures.
However, the existing PIM architectures represent a trade-off
between power, performance, area, energy efficiency, and pro-
grammability. To better achieve the energy-efficiency and flexibil-
ity criteria simultaneously in hardware accelerators, we introduce
a multi-functional look-up-table (LUT)-based reconfigurable PIM
architecture in this work. The proposed architecture is a many-
core architecture, each core comprises processing elements (PEs),
a stand-alone processor with programmable functional units built
using high-speed reconfigurable LUTs. The proposed LUTs can
perform various operations, including convolutional, pooling, and
activation that are required for CNN acceleration. Additionally,
the proposed LUTs are capable of providing multiple outputs
relating to different functionalities simultaneously without the
need to design different LUTs for different functionalities. This
leads to optimized area and power overheads. Furthermore, we
also design special-function LUTs, which can provide simultaneous
outputs for multiplication and accumulation as well as special
activation functions such as hyperbolics and sigmoids. We have
evaluated various CNNs such as LeNet, AlexNet, and ResNet-
18,34,50. Our experimental results have demonstrated that when
AlexNet is implemented on the proposed architecture shows a
maximum of 200× higher energy efficiency and 1.5× higher
throughput than a DRAM-based LUT-based PIM architecture.

I. INTRODUCTION

The rapid advancements in hardware fabrication and inte-
gration, along with the software applications, lead to the de-
velopment of various fields, including computer vision, image
processing, artificial intelligence (AI) and natural language
processing. These emerging applications led to an eventual
increase in the demand for performance and efficiency, along
with the data to be observed and analyzed. Machine learning
(ML) and deep learning (DL) are introduced as a panacea to
process and analyze such vast amounts of data [1]–[3].

To meet hardware efficiency and other performance require-
ments, several architectural innovations have been proposed in
recent years. Custom-designed accelerators such as application-
specific integrated circuits (ASICs) [4] though are energy
efficient and optimized, they have extremely low flexibility.

On the other hand, Field-programmable gate array (FPGA) [5],
[6] accelerators address the programmability challenges but are
hindered by low energy efficiency, complexity, and volatility
challenges. For executing DL/ML applications, central pro-
cessing units (CPUs) are less energy-efficient than ASICs.
Thus, conventional von Neumann architecture-based computing
systems, including general-purpose processors (GPPs), central
processing units (CPUs), and graphics processing units (GPUs)
[7] have extremely low energy efficiency and latency [2],
[8]. This excessive cost of computing efficiency [2], [8] is
associated with the expensive memory access and data move-
ment caused by the physical separation between the processing
unit and the memory unit inside a conventional von-Neumann
architecture.

Computing architectures such as ‘non-von Neumann’ archi-
tectural paradigms [9] including processing-in-memory (PIM)
a.k.a In-Memory Computing (IMC), near-data processing
(NDP), are introduced to alleviate data transfer bottleneck [10].
IMC architectures [11] perform the computations on the mem-
ory chip itself and exhibit higher energy efficiency compared
to other paradigms due to its intra-memory communication and
computations. Numerous PIM designs are implemented on a
wide range of emerging memory technologies such as tradi-
tional volatile static random access memory (SRAM) [12] and
dynamic random access memory (DRAM) [11], [13]–[16], as
well as non-volatile memory technologies like Resistive RAM
(ReRAM) [17], and Magnetic RAM (STT/SOT-MRAM) [18].
However, DRAM is the most widely used memory technology
for manufacturing external memory devices due to its higher
memory density, lower power consumption, and lower cost of
production compared to other memory technologies [19].

To overcome the limited processing speed of IMC, look-
up-table (LUT)-based PIMs have emerged as a panacea [6],
[20]. Numerous works have been introduced in recent years
that use memory LUTs for performing arithmetic and logical
computations [14], [16]. Although several designs propose
implementing PIM architectures utilizing the LUTs, the ex-
isting architectures are confined to specific applications and
operations i.e., lacks the flexibility to be adapted to other
applications and programmability. The LUTs and PIM systems
are designed to support only one type of functionality and only
one type of application, either a compute-intensive or memory-
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intensive application with limited performance when executing
other types of applications [20]. Therefore a flexible hardware
platform that supports a variety of CNN/DNN operations is
required.

To address these challenges and offer a larger degree of func-
tional flexibility and programmability, we introduce a DRAM-
based multi-functional look-up-table-based reconfigurable PIM
architecture that supports existing and emerging applications
with low overheads and high programmability. This proposed
architecture consists of multiple clusters embedded with many
heterogeneous reconfigurable LUT cores. Each cluster com-
prises three types of LUT cores: ALU LUT core, special ALU
(S-ALU) LUT core, and special-function (SF) LUT core.

Unlike the existing works [14], [16], [21]–[23], the proposed
LUT cores are heterogeneous multi-functional special LUT
cores i.e., each of these cores are capable of performing distinct
operations from each other and can provide multiple outputs
corresponding to multiple functionalities in a multiplexed man-
ner, thereby called multi-functional LUTs. This approach not
only provides a reduced number of LUTs but also increases
the utilization efficiency and functional support offered by
LUTs. The ALU-LUT cores are specifically programmed to
implement the MAC operations in the PIM. The special ALU
(S-ALU) LUTs can provide multiple outputs relating to differ-
ent functionalities simultaneously without the need to design
different LUTs for different functionalities. For instance, S-
ALU LUT cores can be programmed to do both multiplication
and addition on the same given input in a single clock cycle.
Thus providing the output of both operations without the need
of programming two cores separately to do multiplication and
addition operations. This leads to optimized area and power
overheads. Finally, the special-function (SF) LUTs are designed
to implement special-function operations such as hyperbolics
and sigmoid, ReLU operations. In order to provide inherent
computing support for MAC operations, activation operations
such as sigmoid, hyperbolic, and ReLU, nine LUT core design
exploration in a cluster is adapted.

To summarize, the novel contributions of this work are:

• We propose a novel heterogeneous multi-functional look-
up-table-based reconfigurable processing-in-memory ar-
chitecture to address the energy efficiency and flexibility
criteria for computing architectures.

• Presenting a flexible architecture by introducing recon-
figurable LUTs capable of performing multi-functional
operations required to process different layers of a neural
network for CNN acceleration.

• We propose special heterogeneous multi-function LUTs
capable of producing multiple outputs for multiplication,
accumulation, sigmoid, and hyperbolic, ReLU operations.

• We proposed three different kinds of LUT cores with
different functionality: ALU LUT core, S-ALU LUT core,
and SF-ALU LUT core, which are specially designed
to tackle multi-functional operations required for various
CNN acceleration.

• We evaluate the proposed architecture on various CNN
architectures including LeNet, AlexNet, ResNet-18, -34,

-50, and show that it outperforms the state-of-the-art
techniques in terms of throughput, energy efficiency, and
accuracy.

II. BACKGROUND AND RELATED WORKS

Deep Neural Network algorithms are dominated by a large
number of simplistic, data-parallel computations, such as con-
volutions and matrix multiplications. These operations can be
executed with a very high level of operational parallelism in the
hardware. Non-von Neumann architectures such as Processing-
in-Memory also known as In-Memory Computing devices
are being widely investigated for DNN/ CNN applications in
recent times. PIM architectures are able to perform massively
parallel simple computations at surprisingly low latency and
high energy efficiency. PIM architectures are memory-centric
architectures [11], [13], which are entirely implemented on a
memory chip. PIM devices have been demonstrated to offer
better parallel performance than most CPUs and ASIC devices
[7], as well as, better energy efficiency than GPUs [16].
This virtually eliminates the data bandwidth bottleneck of off-
chip communications, otherwise suffered by state-of-the-art
processing devices [2].

Recently, numerous works have been proposed on in-
memory computing hardware accelerators using conventional
CMOS and emerging memory devices. To overcome the large
latency overheads due to the frequent data transfer between
memory-logic units, IMC is seen as an efficient alternative for
executing data-intensive ML applications. Despite efficiency
in terms of energy consumption, in-memory computations
including addition and multiplication operations are orders of
magnitude slower compared to the traditional CMOS-based
hardware accelerators. In addition to the large area and power
overheads of the DRAM-based in-memory accelerators, they
require significant modifications to the memory-bank architec-
tures such as activation of multiple rows, high precision timers,
and novel sense amplifiers to enable efficient IMC.

With the emergence of non-volatile memory (NVM), NVM-
based in-memory computing techniques are introduced and
adopted in academia and industry. The NVMs achieve higher
integration densities i.e., low area, offer better scalability, and
lower power consumption compared to the standard DRAM
technology. This makes NVMs an ideal candidate for the design
of hardware accelerators in this work. There exist multiple
emerging NVMs which can potentially replace their CMOS
counterparts such as ReRAM [17], Phase-Change Memory
(PCM), Spin-Transfer Torque (STT)-MRAM [18], and Spin-
Orbit Torque (SOT)-MRAM [24] technologies. Numerous IMC
hardware accelerators that support ML applications are intro-
duced in the literature [20]. However, due to the low voltage
operation, asymmetric read/write current of emerging NVMs
cause noise margin issues and are highly vulnerable to reliabil-
ity concerns, and are not a viable option for CNN acceleration.

A majority of the IMC works [11], [13]–[15] focus on
performing faster computations and do not consider the re-
configurability and networking concerns of the accelerators.
However, the functionality of these architectures is almost
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Fig. 1. Hierarchical Architecture showing the cluster arrangement and multi-functional heterogeneous core organization inside the cluster.

exclusively limited by their application, reconfigurability, over-
heads, latency, and inference of CNN/DNNs. To overcome the
aforementioned challenges, the proposed work introduces a
multi-functional LUT-based reconfigurable PIM architecture to
achieve high-speed reconfiguration for accelerating various ML
algorithms.

III. PROPOSED MULTI-FUNCTIONALITY LUT-BASED
HETEROGENEOUS DL ACCELERATOR ARCHITECTURE

Figure 1 shows the hardware architecture of the proposed
heterogeneous multi-functional LUT-based reconfigurable DL
accelerator. The reconfigurable LUTs are capable of support-
ing different precision data, and fewer LUTs are required
for reduced precision operations. Using lower precision LUT
for computational operations leverages improved latency and
energy efficiency without compromising the accuracy of CNN
algorithms. This architecture is composed of multiple clusters,
each cluster comprises nine reconfigurable heterogeneous cores
which facilitate multi-functional programmable operations on
a pair of 4-bit or a single 8-bit input data. We chose this
precision as most computer vision applications perform reliably
at this precision with minimal accuracy loss compared to higher
precision [25]. Nine of the reconfigurable heterogeneous cores
consist of special multi-functional LUTs (ALU-LUT, S-ALU-
LUT, SF-LUT), that are grouped together and interconnected
by a router to form a single cluster. Each cluster can be
programmed to perform a wide range of operations such as
multiply and accumulate, substitution, comparison, bit-wise
logic operations, hyperbolics, sigmoid, and ReLU activation
operations. Therefore, an array of these clusters can be utilized
to implement different layers of CNNs and DNNs such as
Convolutional Layers, Fully-connected Layers, Activation, and
Pooling layers for various CNN inference applications.

A. LUT Core Architecture
The primary goal of the proposed nine LUT core design

explorations in a cluster is to facilitate intrinsic computational
support to perform MAC operations, sigmoid, hyperbolic, and
ReLU operations. The LUT-based design approach for our PIM
core provides functional flexibility to configure the core’s to
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Fig. 2. Microarchitectures of Heterogenous LUT-based PIM cores (a) Mi-
croarchitecture of ALU-LUT core and SF-LUT core (b) Microarchitecture of
S-ALU-LUT core

do any arbitrary operation. The LUTs are implemented using
8-bit 256-to-1 multiplexers. For example, in order to perform
an activation operation with an 8-bit operand, the 8-bit MUX
in the PIM core is used to perform a look-up operation and
provide 8-bit output. Each LUT core can either support a single
8-bit operand or a pair of 4-bit operands in order to perform
operations. Consequently, our proposed heterogeneous multi-
functional LUT cores can perform any kind of in-memory
computations utilized to implement different layers of a neural
network for ML acceleration. Functionalities of the proposed
cluster and core design are discussed in Figure 1, referring to
corresponding color codes.

ALU-LUT core (Core 1 to 6): The blue squares in Figure
1 represent the multi-functional LUT-based PIM cores, that are
programmed to perform 4-bit AND or XOR operations on a
pair of 4-bit data input and provide 4-bit output. A multiplexer
is used to select the functionality required for the different
operations of the CNN algorithm, to either perform XOR or
AND operation on the inputs as shown in Figure 2 (a). Based
on the multiplexer input, the multi-functional core performs
either AND or XOR operation on the input data. The cluster
is accommodated with 6 of the ALU-LUT cores.

S-ALU LUT core (Core 7 and 8): The second kind of
core used in the cluster, represented in red squares in Figure
1, are the special LUT-based PIM cores. The cluster contains
two of these cores, that are programmed such that the output
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consists of two entirely different operations (XOR and AND)
on the same pair of inputs. Despite the fact that the S-ALU-
LUT core supports the same operations (XOR and AND) as
the ALU-LUT core, its functionality is entirely different. This
core is used in a special scenario when we need both XOR
and AND operations for the same input data, mainly used for
the accumulation process. This core is programmed to produce
8-bit output data for a pair of 4-bit inputs, the upper half of the
core output represents the 4 bits XOR operation of the input
data while the lower half represents the 4-bit AND operation
of the same input data as shown in Figure 2 (b). Thus, without
the need to create separate LUT cores for various purposes, this
unique S-ALU-LUT core may deliver several outputs pertaining
to different functionality concurrently.

SF LUT core (Core 9): The third kind of heterogeneous
core used in the proposed architecture is represented in the
green square in Figure 1. The cluster contains only one of
these special multi-functional LUT-based PIM cores, which
is programmed to perform 8-bit special-function activation
operations such as sigmoid, hyperbolic, and ReLU using 8-bit
LUT cores. Similar to the ALU-LUT core a multiplexer is used
to select the different activation operations to be implemented
in SF-LUT as shown in Figure 2 (a). This core is programmed
to produce 8-bit output on 8-bit input. Based on the multiplexer,
the multi-functional core performs either sigmoid, hyperbolic,
or ReLU activation operation on the input.

Each of these cores is capable of performing distinct op-
erations from each other and can provide multiple outputs
corresponding to multiple functionalities in a multiplexed man-
ner, thereby called heterogeneous multi-functional LUTs. This
provides functional flexibility for the PIM to support various
operations required for CNN acceleration. The ALU-LUT and
S-ALU-LUT cores are specifically programmed to implement
the MAC operations in the PIM. Whereas the SF-LUT core
is designed to implement special-function activation operations
such as hyperbolics and sigmoid, ReLU operations. Therefore,
with the proposed nine LUT core design explorations in the
cluster, the proposed PIM can support the computational sup-
port required for CNN acceleration.

B. Cluster Architecture
As shown in Figure 1, the cluster formed by nine LUT

cores is placed inside the memory banks in order to allow the
quickest access to the memory data and to perform the in-
memory operation with significantly lower latency. Nine cores
in the proposed PIM cluster constitute six ALU-LUT cores that
support either AND or XOR operations and two cores S-ALU-
LUT cores that can perform both AND and XOR operations for
the given input data. Whereas the SF-LUT core is programmed
to support activation operations such as hyperbolic, sigmoid and
ReLU operations.

Nine of these heterogenous muti-functional LUT cores inside
the cluster are programmed in a specific way, interconnected by
a routing mechanism in order to perform complex operations
such as MAC operations, sigmoid, hyperbolic, and ReLU
operations required for CNN acceleration. These operations can
be performed in a multi-staged pipeline by organizing a series
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Fig. 3. Overview of the dataflow for MAC operation in Muti-functional
Heterogeneous PIM architecture

of micro-operations across the nine LUT cores with the help
of a routing mechanism.

The distribution of the operands during every single stage in
the operational stage is performed with the help of the router.
The router enables parallel communication by connecting every
component of the cluster including the cores and the read/write
ports. The router is used to connect all the cores, in order to
access any core data at any point of time during the execution.
The router plays a vital role during the implementation. The
memory read/write buffer of the cluster is used to read the
data input from the memory and write outputs back into the
memory, in order to perform the required operations for CNN
acceleration.

The data communication among clusters inside the memory
chip is achieved through the routing mechanism. This makes the
proposed architecture easily distribute a particular task among
multiple clusters. At the same time, different clusters inside the
memory bank execute parallel and independent tasks in a single
instruction multiple data (SIMD) fashion.

IV. OPERATIONS SUPPORTED BY THE PROPOSED
HETEROGENEOUS MULTI-FUNCTIONAL ARCHITECTURE

The main benefit of the proposed architecture is that its LUTs
can be programmed to implement virtually any type of com-
putation. This equips it with the functional flexibility required
for implementing different operations required by various DL
applications such as linear algebraic operations, activation, and
pooling operations. Among the nine heterogeneous LUT cores,
8 (6 ALU-LUT cores, 2 S-ALU-LUT cores) of them are used
for performing MAC operations, and the remaining 1 (SF-
LUT core) is designed to implement activation operations using
the memory look-up approach. These operations are carried
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out within the cluster by executing a multi-stage pipeline of
the nine heterogeneous LUT cores, coupled together with a
routing mechanism. Since each core is capable of performing
operations on a pair of 4-bit, or a single 8-bit operand. The
MAC operations are performed on pair of 4-bit data in parallel
to obtain the output of 8-bit inputs using the ALU-LUT and
S-ALU LUT cores. Later the output of the MAC operation is
passed to the SF LUT cores to perform activation functions
such as sigmoid, hyperbolic, and ReLU operations.

In order to perform the Multiplication and Accumulation
operation on two 4-bit data operands, initially both the input
data, A and B are split into sections A3, A2, A1, A0, and B3,
B2, B1, B0 respectively. The 4-bit multiplication is performed
similarly to decimal multiplication. As demonstrated in Figure
3, a special routing mechanism is used to perform the MAC
operation in a multi-stage pipeline. Figure 3 also illustrates how
each process in the dataflow has been assigned a special tag
consisting of a letter and a number for ease of implementation
and testing. Numbers 0, 1, 2, and 3 denote various parallel
operations carried in each clock cycle, whereas letters I, J, K, L,
M, N, O, Q, R, and S denote the clock steps of LUT operations,
P0-P7 represent the MAC operation output. During the runtime,
P0-P7 of the MAC operation is accumulated using the S-ALU-
LUT core and passed to the SF-LUT core to do the activation
operation.

The MAC operation inside the cluster is implemented in
a combinational circuit manner by utilizing the LUT cores
such that the multiplication is implemented using a series of
AND logic operations performed by the ALU-LUT cores and
accumulation process by the S-ALU LUT cores as shown in
Figure 3. Utilizing the multi-functional S-ALU LUT instead
of ALU-LUT for the accumulation process improves the area,
power, and latency overheads of the proposed architecture. To
further improve core utilization, overlapping of two consecutive
accumulations in parallel for executing the MAC operation is
enabled.

For the 4-bit input A and B, partial products are obtained by
multiplying each bit of input B with the entire 4-bit of input
A operand. The first partial product is obtained by multiplying
B0 with A3, A2, A1, A0, and the second partial product is
formed by multiplying B1 with A3, A2, A1, A0 likewise for
third and forth partial products. So these partial products can
be implemented with AND operator using ALU-LUT core as
shown in Figure 3. The ALU-LUT core takes two 4-bit input
operands and performs logical AND operations using the LUTs
to provide 4-bit output. All these operations can be performed
in a single clock cycle during the execution. These partial
products are then added by using 4-bit S-ALU LUT cores
to parallelize the addition process. The first partial product is
added to the second partial product, then this result is added to
the next partial product with carry-out and it goes on till the
final partial product. Finally, it produces an 8-bit output which
indicates the MAC value of the two 4-bit input operands. A
combined multiplication and addition process can be executed
in a 9-clock cycle pipeline as shown in Figure 3.

The output of the MAC operation is passed to the multi-

functional SF-LUT core to implement activation functions. A
multiplexer is used to select the different activation operations
to be implemented in the SF-LUT. Based on the input from the
multiplexer, the multi-functional core performs either sigmoid,
hyperbolic, or ReLU activation operations on the input data.
This operation can be performed in a single clock cycle during
the execution. The router is used to enable the chain of
operations required for MAC and activation operations inside
the cluster. The key advantage of the proposed architecture is
that it enables a special routing scheme, and parallelization
process in order to efficiently utilize the cores inside the cluster.
Moreover, it can be said that the LUTs in the proposed archi-
tecture are capable of reprogramming at run-time to perform
complex computational operations to implement CNN at ultra-
low latency.

V. EVALUATION

A. Design Verification

We verified the architecture using ASIC via Verilog HDL
implementation. We evaluate the performance using different
metrics (such as operational latency, power consumption and
active area) from HDL synthesis on Synopsys Design Compiler
using 28 nm standard cell library from TSMC and are presented
in Table I. Within a cluster, a single 8-bit MAC requires
computations inside PIM cores as well as communication
across cores, which adds to the delay. Whereas, the cluster’s
power consumption is equal to the sum of each core’s as well as
the core-to-core communication. The power and delay for intra
and inter-subarray data transfers are obtained from [15] and
[26]. These metrics are used in the system-level performance
evaluation.

TABLE I
CHARACTERISTICS OF MULTI-FUNCTIONAL HETEROGENEOUS HARDWARE

ACCELERATOR AND ITS COMPONENTS IN 28 NM TECHNOLOGY NODE

Component Delay (ns) Power (mW) Active Area(µm2)
ALU-LUT Core 0.10 0.00177 8010
S-ALU-LUT Core 0.26 0.00497 13210
SF-LUT Core 0.7 0.01853 141304
Multi-functional
Heterogeneous Cluster

1.62 0.05539 199764

LUT Core [16] 0.8 2.7 4196.64
LUT Cluster (MAC Opera-
tion) [16]

6.4 8.2-11 37769.81

Intra-Subarray Communica-
tion [26]*

63.0 0.028
µJ/comm

N/A

Inter-Subarray Communica-
tion [15] for subarrays 1/7/15
hops away*

148.5/
196.5/
260.5

0.09/
0.12/ 0.17
µJ/comm

N/A

*Represented in 28nm technology node

Firstly from Table I, it is observed that due to the different
operational support provided by heterogeneous cores, they have
different delay, area, and power metrics. Since the SF-LUTs
process 8-bit data on 8-bit memory LUTs, which is different
from the ALU and S-ALU cores, the SF-LUT has the highest
delay, area, and power consumption. The ALU-LUT core is
designed to process a pair of 4-bit data on 4-bit memory LUTs
and has the least delay, area, and power consumption. However,
compared to the LUT core [16], the proposed cores have
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relatively less delay and power consumption, but the active area
is 2× greater. However, the proposed heterogeneous PIM core
can provide multiple functionalities simultaneously, whereas
multiple traditional LUT cores are required to provide multiple
functionalities. This indicates the increased area overheads can
be well justified and minimal for systems that perform complex
operations.

Nine of these cores are grouped together as discussed in
Section III-A, forming a single cluster. From the system-level
perspective, the PIM requires 256 of these PIM clusters in order
to perform computational operations for 8-bit data precision.
In order to facilitate that, we consider infusing one PIM bank
with 256 PIM clusters per DRAM chip in the entire rank of
the DRAM chips for a DIMM (dual in-line memory module)

For the cluster characteristics when implementing the 8-
bit MAC operation and activation operation on the proposed
architecture, the delay is observed to be 1.62 ns, whereas for
the LUT core [16] to perform just the MAC operation the
delay is 6.4 ns. Which is almost 4× faster implementation of
MAC operation on multi-functional cores compared to the LUT
core [16]. Therefore, it is observed that the multi-functional
architecture is highly suitable for ultra-low latency, low-power
applications such as real-time IoT devices, and edge devices.
Even though it is observed that the proposed architecture has
more area than IMC LUT-based design [16], it is still observed
to achieve a lower area in the case of edge devices.

B. Performance Evaluation

In this subsection, we perform a comparative performance
analysis of the proposed architecture in terms of throughput
and energy efficiency on LeNet, AlexNet, ResNet-18, -34, and
-50 CNN algorithms for a batch size of 64. Energy efficiency
is defined as the number of frames processed in the processor
per unit of energy (Joules). Figure 4 presents comparisons of
the throughput (in Frames per second) and energy efficiency
(in Frames per Joule) of inference on all these CNNs deployed
on the proposed multi-functional heterogeneous architecture.

Fig. 4. Comparison of Energy efficiency (Frames/Joules) and Throughput
(Frames/second) for LeNet, AlexNet, ResNet18, ResNet34, ResNet50 on the
proposed multi-functional heterogeneous architecture

Firstly, Figure 4 shows the energy efficiency of the CNN
algorithms is proportional to the depth of the network. As the
number of layers increases, more MAC, activation operations

are needed to be performed which implies more parallelization
to perform these operations. Therefore, for a higher num-
ber of layers in the CNN algorithm, the energy efficiency
achieved is high. It is observed that LeNet, AlexNet, and
ResNet 18 achieved the inference energy efficiency of 0.0011
Frames/Joule, 0.024 Frames/Joule, and 0.038 Frames/Joule
respectively.

Figure 4 also shows that the proposed architecture achieves
better performance for CNN algorithms with a comparatively
lower computational workload such as LeNet. However, for
AlexNet with 8 layers, the proposed architecture achieves
an inference throughput of 150.3 Frames/s and 50 layered
ResNet algorithm achieves an inference throughput of 45.9
Frames/s. Therefore it can be said that the proposed architec-
ture can achieve impressive performance while implementing
MAC, activation operations, for the convolutional layers in the
CNN/DNNs to process very efficiently. For instance, ResNet-
50, the largest network implemented on the proposed architec-
ture consists of 50 layers with thirty-eight billion computations
that can be processed within 10 ms on the proposed architec-
ture.

C. Inference Accuracy

We evaluate on our proposed architecture for various state-
of-the-art deep neural networks such as LeNet [27], AlexNet
[1], ResNet -18,-34,-50 [28]. These deep learning algorithms
are implemented on the proposed hardware accelerator using
MNIST [29] (28×28×1 dimensions), CIFAR-10 [30] dataset
(32 x 32 x 3 dimensions). Figure 5 shows the Top 5 accuracy
comparison plots for 16-bit floating-point (FP) and 8-bit fixed-
point data precision for both datasets. It is observed that the ac-

0

20

40

60

80

100

LeNet AlexNet ResNet 18 ResNet 34 ResNet 50Pe
rc
en

ta
ge
 o
f A

cc
ur
ac
y 
(%

)

MNIST - 16 bit MNIST - 8 bit CIFAR10 - 16 bit CIFAR10 - 8 bit

Fig. 5. Comparison of Top-5 accuracies of LeNet, AlexNet, ResNet-18, -34
and -50 on MNIST, CIFAR-10 dataset for 16-bit, 8-bit data precision

curacies obtained on the evaluated networks are very similar for
16-bit and 8-bit precision data (inputs and weights). The Top-1
accuracy obtained for the MNIST dataset when implemented on
AlexNet is 98.89% and 99.43% for 16-bit and 8-bit precision
respectively. On the other hand, the Top-1 accuracy obtained
for the CIFAR-10 dataset when implemented on AlexNet is
83.5% and 82% for 16-bit and 8-bit precision respectively. It
is also observed that the CNN accuracies for the CIFAR-10
dataset are noticeably lower when compared to the MNIST
dataset, also shown in Figure 5. The performance degradation
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is around 10%-15% for all the CNNs deployed. The accuracy
of the CIFAR10 dataset, in general, is significantly lower than
MNIST dataset due to the comparatively higher complexity
of the dataset. Although higher accuracy with CIFAR-10 is
reported in the literature, it is with higher data precision than
those adopted in this paper [25].

D. Performance Comparison with State-of-the-Art Hardware
Accelerators for CNN Implementation

Performance is evaluated by comparing the proposed ar-
chitecture with state-of-the-art PIM accelerator architectures
in terms of power consumption (Watt) and throughput
(Frames/second), as shown in Figure 6.

Fig. 6. Comparative performance analysis of proposed multi-functional hetero-
geneous architecture with respect to state-of-the-art PIM architectures in terms
of throughput (Frames/second) and power consumption (Watt)

As a proof of concept, we evaluate and implement AlexNet
[1] on the proposed architecture with the 8-bit width precision.
The PIM architectures under comparison in this section include
DRAM-based bulk bit-wise processing devices DRISA [11],
and DrAcc [13], SRAM-implemented Neural Cache [12], LUT-
based PIM implemented on the DRAM platforms such as LAcc
[14], and pPIM architecture [16].

Among the PIMs studied here, Neural Cache [12] is the slow-
est due to its limited processing capabilities and comparatively
slower bit-serial computing mechanism. On the other hand, a
relatively higher throughput is observed for DRISA [11] due
to its ability to parallelize operations across multiple banks.
Whereas DrAcc [13] implements 8-bit ternary precision infer-
ences through very minimal circuit modifications which allows
it to obtain high performance similar to that of pPIM [16]. The
benefits of adopting LUTs in order to utilize pre-calculated
results instead of performing in-memory logic operations are
convincingly demonstrated by LAcc [14], pPIM [16] which
achieve impressive inference performances.

The proposed architecture, on the other hand, utilizes the
multi-functional heterogeneous memory LUTs to perform the
CNN algorithms and is observed to have relatively higher
AlexNet throughput than LUT-based PIMs under comparison.
It is also observed to have a much higher throughput when
compared to other PIM architectures such as DRISA, Dracc,
and Neural cache as shown in Figure 6. A similar trend is
observed in for power consumption comparison, the proposed
architecture is observed to have lower power consumption
compared to the PIM architectures as shown in Figure 6. It is

also observed that the proposed architecture outperforms LAcc
and pPIM by almost 1.5× for AlexNet inference throughput.
The proposed architecture is also observed to achieve a max-
imum of 200× higher energy efficiency than LAcc and pPIM
implementation for AlexNet inference.

VI. CONCLUSION

In order to address the energy efficiency and flexibility
requirements for computer architectures, we present a novel
multi-functional heterogeneous look-up table-based reconfig-
urable PIM architecture in this work. The proposed architecture
is aimed at CNN and DNN inference applications that support
existing and emerging applications with low overheads and
high programmability. The proposed hardware accelerator’s
heterogeneous reconfigurable LUTs enable multi-functional
programming to carry out almost any arithmetic or logical
operation. As a result, it can process Convolutional, Fully-
connected, Activation, and Pooling Layers in a CNN/DNN
algorithm. Performance is evaluated by comparing the proposed
architecture with state-of-the-art PIM architectures. We have
evaluated various CNNs such as LeNet, AlexNet, and ResNet-
18,34,50 on the proposed architecture. Our experimental results
have demonstrated that when AlexNet is implemented on the
proposed architecture, it shows a maximum of 200× higher
energy efficiency and 1.5× higher throughput than a DRAM-
based LUT-based PIM architecture. Although the proposed
architecture is primarily designed for CNN acceleration, its het-
erogeneous multi-functionality, reconfiguration, and ultra-low
latency implementation make it suitable for a wider range of
application domains such as real-time IoT, edge devices, mobile
applications, automated robots, and automated computers.

VII. ACKNOWLEDGEMENTS

This work was supported in part by the US National Science
Foundation (NSF) Grant CNS-2228239. The views, opinions,
and/or findings contained in this article are those of the au-
thor(s) and should not be interpreted as representing the official
views or policies, either expressed or implied, of the US NSF.

REFERENCES

[1] M. Z. Alom et al., “The history began from alexnet: A comprehensive
survey on deep learning approaches,” arXiv, 2018.

[2] S.-L. Lu et al., “Scaling the “memory wall”: Designer track,” in 2012
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2012, pp. 271–272.

[3] S. Rafatirad et al., Machine Learning for Computer Scientists and Data
Analysts: From an Applied Perspective. Springer Nature, 2022.

[4] Y. Chen et al., “Dadiannao: A machine-learning supercomputer,” in 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture,
2014, pp. 609–622.

[5] J. Fowers et al., “A performance and energy comparison of FPGAs,
GPUs, and multicores for sliding-window applications,” in ACM/SIGDA
Int. Symp. on Field Programmable Gate Arrays, 2012.

[6] S. Bavikadi et al., “A survey on machine learning accelerators and
evolutionary hardware platforms,” IEEE Design & Test, vol. 39, no. 3,
pp. 91–116, 2022.

[7] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” CoRR, vol. abs/1704.04760, 2017. [Online]. Available:
http://arxiv.org/abs/1704.04760

[8] O. Villa et al., “Scaling the power wall: A path to exascale,” in SC
’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, Nov 2014, pp. 830–841.

Authorized licensed use limited to: George Mason University. Downloaded on September 01,2023 at 00:08:55 UTC from IEEE Xplore.  Restrictions apply. 



[9] A. Ganguly, R. Muralidhar, and V. Singh, “Towards energy efficient non-
von neumann architectures for deep learning,” in Int. Symp. on Quality
Electronic Design (ISQED), 2019.

[10] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing for
in-memory analytics frameworks,” 10 2015, pp. 113–124.

[11] S. Li et al., “Drisa: A dram-based reconfigurable in-situ accelerator,” in
2017 50th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2017, pp. 288–301.

[12] C. Eckert et al., “Neural cache: Bit-serial in-cache acceleration of
deep neural networks,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), 2018, pp. 383–396.

[13] Q. Deng et al., “Dracc: a dram based accelerator for accurate cnn in-
ference,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), 2018, pp. 1–6.

[14] Q. Deng et al., “Lacc: Exploiting lookup table-based fast and accu-
rate vector multiplication in dram-based cnn accelerator,” 2019 56th
ACM/IEEE Design Automation Conference (DAC), pp. 1–6, 2019.

[15] K. K. Chang et al., “Low-cost inter-linked subarrays (lisa): Enabling
fast inter-subarray data movement in dram,” in IEEE Int. Symp. on High
Performance Computer Arch (HPCA), March 2016, pp. 568–580.

[16] P. R. Sutradhar et al., “pPIM: A programmable processor-in-memory
architecture with precision-scaling for deep learning,” IEEE Computer
Architecture Letters, vol. 19, no. 2, pp. 118–121, 2020.

[17] L. Song et al., “Pipelayer: A pipelined reram-based accelerator for deep
learning,” in 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2017, pp. 541–552.

[18] S. Angizi et al., “Mrima: An mram-based in-memory accelerator,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 5, pp. 1123–1136, 2020.

[19] T. P. Morgan, “Accelerating compute by cramming it into dram memory,”
Oct 2019. [Online]. Available: https://www.upmem.com/nextplatform-

com-2019-10-03-accelerating-compute-by-cramming-it-into-dram/
[20] S. Bavikadi et al., “A review of in-memory computing architectures for

machine learning applications,” ser. GLSVLSI ’20, 2020.
[21] P. R. Sutradhar et al., “Look-up-table based processing-in-

memoryarchitecture with programmable precision-scalingfor deep
learning applications,” IEEE TPDS, 2021.

[22] S. Bavikadi et al., “upim: Performance-aware online learning capable
processing-in-memory,” in 2021 IEEE 3rd International Conference on
Artificial Intelligence Circuits and Systems (AICAS), 2021, pp. 1–4.

[23] S. Bavikadi et al., “Polar: Performance-aware on-device learning capable
programmable processing-in-memory architecture for low-power ml ap-
plications,” in 2022 25th Euromicro Conference on Digital System Design
(DSD), 2022, pp. 889–898.

[24] G. Yuan et al., “A sot-mram-based processing-in-memory engine for
highly compressed dnn implementation,” 2019. [Online]. Available:
https://arxiv.org/abs/1912.05416

[25] K. Vasquez et al., “Activation Density based Mixed-Precision Quan-
tization for Energy Efficient Neural Networks,” arXiv e-prints, p.
arXiv:2101.04354, Jan. 2021.

[26] V. Seshadri et al., “Rowclone: Fast and energy-efficient in-dram bulk data
copy and initialization,” in 2013 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Dec 2013, pp. 185–197.

[27] Y. Lecun et al., “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[28] K. He et al., “Deep residual learning for image recognition,” arXiv, 2015.
[29] L. Deng, “The mnist database of handwritten digit images for machine

learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, Nov 2012.

[30] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009.

Authorized licensed use limited to: George Mason University. Downloaded on September 01,2023 at 00:08:55 UTC from IEEE Xplore.  Restrictions apply. 


