Coarse-Grained High-speed Reconfigurable
Array-based Approximate Accelerator for Deep
Learning Applications

Katherine Mercado
George Mason University
Fairfax, Virginia, USA
kmercad @gmu.edu

Abstract—Deep Neural Networks (DNNs) are widely deployed in
various cognitive applications, including computer vision, speech
recognition, and image processing. The surpassing accuracy and
performance of deep neural networks come at the cost of high
computational complexity. Therefore, software implementations
of DNNs and Convolutional Neural Networks (CNNs) are often
hindered by computational and communication bottlenecks. As a
panacea, numerous hardware accelerators have been introduced in
recent times to accelerate DNNs and CNNs. Despite effectiveness,
the existing hardware accelerators are often confronted by the
involved computational complexity and the need for special
hardware units to implement each of the DNN/CNN operations. To
address such challenges, a reconfigurable DNN/CNN accelerator
is proposed in this work. The proposed architecture comprises
nine processing elements (PEs) that can perform both convolution
and arithmetic operations through run-time reconfiguration and
with minimal overhead. To reduce the computational complexity,
we employ Mitchell’s algorithm, which is supported through
low overhead coarse-grained reconfigurability in this work. To
facilitate efficient data flow across the PEs, we pre-compute the
dataflow paths and configure the dataflow during the run-time.
The proposed design is realized on a field-programmable gate
array (FPGA) platform for evaluation. The proposed evaluation
indicates 1.26x lower resource utilization compared to the state-
of-the-art DNN/CNN accelerators and also achieves 99.43% and
82% accuracy on MNIST and CIFAR-10 datasets, respectively.

I. INTRODUCTION

Deep learning algorithms including Deep Neural Networks
(DNNs) and Convolutional Neural Networks (CNNs) have been
widely adopted in a plethora of applications in recent times.
These techniques exploit the internal correlation between the
data samples in each of the internal hidden layers to perform
the tasks such as classification or prediction with high accuracy.
As a result, deep learning techniques require deeper networks
leading to a large number of parameters requiring millions
of multiply-and-accumulate operations. Implementing ML and
other learning methodologies on traditional CPUs are facing
a formidable challenge in terms of inference latency, memory
accesses, and energy-efficiency due to a lack of temporal data
locality and logic-memory communication Graphics processing
units (GPUs) and custom-designed accelerators (ASICs) are
designed for enhanced hardware performance. However, the
performance and efficiency of such architectural paradigms are

This work was partly supported by the US National Science Foundation
(NSF) Grants CNS-2228239. The views, opinions, and/or findings of this article
are those of the author(s). They should not be interpreted as representing the
official views or policies, either expressed or implied, of the US NSF.

Sathwika Bavikadi
George Mason University
Fairfax, Virginia, USA
sbavikad @gmu.edu

Sai Manoj PD
George Mason University
Fairfax, Virginia, USA

spudukot@gmu.edu

limited due to power consumption, costs, and reconfigurability

(11, [2].

Field programmable gate array (FPGA)-based implementa-
tions are adopted recently for the deployment of numerous
applications, including DNNs and CNNs due to their pro-
grammability, reconfigurability, and flexibility. Logic density on
the state-of-the-art FPGAs allows good performance for these
intensive computations. Another major advantage is FPGA’s
support for fine-grained and bit-level operations when com-
pared to GPUs and ASICs makes this platform draw attention to
low latency applications. Numerous FPGA-based DL accelera-
tors are proposed in the literature [1], [3]-[7]. FPGA platforms
though can enable reconfigurability and programmability, still
incurs large resource utilization and latency when deployed for
DL applications. To partially address this, the existing works
have exploited the resilience of DNNs and CNNs despite uti-
lizing low-precision data. In addition, approximate computing
has been enabled to address the latency challenges [8]. In
the literature, approximate arithmetic units such as dividers
[9], adders [10], and multipliers [11] have been developed to
implement DNN and CNN operations. The majority of these ar-
chitectures are pre-configured for application-specific designs,
confining their applicability to a specific architecture [12], [13]
. Thus, the required resources and computational complexity
can be reduced. However, the challenges of reconfiguration
overheads and the computational complexity of performing
multiplication and accumulation (MAC) operations still remain
unanswered. In contrast, we exploit the reconfigurability of
the FPGA architectures, arithmetic operations behind the ap-
proximation and MAC computations to propose the coarse-
grained reconfigurable high-speed approximate accelerator for
DL applications. For this purpose, we design a 3x3 tile
structure of processing elements (PEs), reconfigurable through
programming words to perform a wide variety of operations
including add, subtract, multiply, divide, logarithm, and anti-
logarithm. Mitchell algorithm [14] is employed to reduce the
complexity of the resource-intensive multiply operations and
enhance the involved computational latency. The high-speed
reconfigurability and interconnectivity of FPGAs make the
proposed design of PEs energy-efficient and reconfigurable
with minimal overheads. The proposed architecture is also
designed to facilitate programmability, reconfigurability, and

applicability to other applications with minimal overheads.
The novel contributions of this work can be outlined in a
three-fold manner as follows:

o Mitchell algorithm-inspired reconfigurable PEs are de-
signed to perform the MAC operations for DNNs and
CNNs. The proposed design employs 8-bit operands to
further minimize the computational overheads without
impacting the performance of DNN/CNN implementation.

o A coarse-grained reconfigurable DNN/CNN accelerator on
the FPGA platform is proposed to minimize the reconfig-
uration overheads and enable adaptability to a wide range
of applications.

o A weight-stationary approach is employed for seamless
dataflow across the PE cores in the proposed architecture.
Look-up-Table(LUT) based log and antilog blocks are de-
signed to support Mitchell’s algorithm-based approximate
multipliers with low latency.

We have evaluated the proposed coarse-grained reconfig-
urable architecture on the Zynq UltraScale ZCU126 FPGA plat-
form for DNN and CNN networks. The proposed accelerator is
at least 3.24 x faster than previous work [4] with 8-bit precision
and 4.86x faster than [5], [6] with 16 and 32-bits, respectively.
Moreover, it shows improvement in both area and energy.

The rest of the paper is organized as follows. Section II
provides an overview of related work. Section III describes the
proposed architecture and the different operational modes it
supports. Section IV presents the implementation and results.
Finally, conclusions are provided in section V.

II. RELATED WORK

Deep learning techniques, including DNNs and CNNs com-
pose millions of MAC operations. These operations can be
performed in a parallel manner. As such, FPGA platforms
are one of the best-suited platforms for DL acceleration by
exploiting their inherent parallelism. Numerous works have
proposed FPGA-based accelerators for DL applications [4],
[5], [6]. The great challenge for a hardware accelerator design
is to find the best trade-off between power, performance, and
reconfigurability. Reconfigurability brings forth advantages, as
having more functionality employing fewer resources helps cost
savings. Moreover, it may extend the useful life of hardware by
updating its purpose and achieving faster development. Coarse-
grained reconfigurable architecture is based on functional units
such as PEs in a mesh-style network. This type of architecture
may perform complex operations while providing low power
consumption, less configuration, and routing overhead. The
advantage of PEs is to avoid the combination of configurable
logic blocks (CLBs) compared to pure FPGA-based hardware
accelerators, ensuring a decrease in area and routing overhead,
such as the DReAm [15] and MORA [16] architectures.

The present memory bottleneck found in FPGA-based hard-
ware accelerators is localized in data movement, which could
result in more energy consumption than the computation. One
goal of this paper is to alleviate such concerns by implementing
weight-stationary dataflow to maximize access to computation
results from the different PEs and thus, minimize energy con-
sumption. Coarse Grain Reconfigurable Architecture (CGRA)

based architectures such as MORA [16], employ pipelined com-
putational dataflow organized in two levels while eliminating
the need for a centralized routing controller. Contrary to DreAm
[15], which possesses a global unit for this purpose. Other
works also, [17], [3], exploit the hierarchical dataflow concept
for on-chip and inter-PE communication respectively, for both
convolutional data and MAC operations. Another FPGA-based
accelerator such as [18], proposed an adaptable reconfigurable
datapath that allows depending on the operand, parallel or
sequential dataflow for multiple operations.

FPGAs require a considerable amount of data reconfiguration
for their programmable routing network. This is translated into
a larger configuration time when multiple hardware configura-
tions are involved in a single architecture. In order to overcome
this, multiple-bit arithmetic processing elements, such as those
working with 8 or 16 bits, as our proposed architecture, may
be used where high efficiency is achieved for DNN/CNN
computations while reducing power and area. Arithmetic hard-
ware accelerator units are developed to carry neural network
computations such as [14], [4], [5], [6], multipliers and dividers
are the most frequent types of independent arithmetic units.
Few designs execute both operations where the lack of support
for division may generate a large overhead in the design [19],
[11]. The proposed architecture integrates the flexibility benefits
that an FPGAs platform provides, as well as characteristics
of a reconfigurable coarse-grained based processing element
architecture for multiple hardware configurations.

III. PROPOSED APPROXIMATE COMPUTING-BASED
HIGH-SPEED RECONFIGURABLE ACCELERATOR

We present the proposed high-speed reconfigurable approx-
imate computing-based hardware accelerator architecture in
Figure 1. The proposed architecture comprises nine processing
elements (PEs), termed cores. Each of the PEs is designed
to perform multiplications based on Mitchell’s algorithm [14],
discussed later in Section III-B. For the purpose of reconfig-
urability, the CGRA PEs are controlled using the codewords,
defined through control bits (4-bits in our design). Depending
on the control bits, the datapath and the PEs are configured.
The reconfiguration time is reduced through the control words
of the CGRA paradigm. Therefore, it allows the usage of
configuration memory more efficiently. The details of individual
blocks are discussed below.

A. System Architecture

The overall structure of the proposed architecture is pre-
sented in Figure 1. It comprises nine PEs arranged in a tiled
manner. In the highest level of description, this architecture
considers two operands A and B of 8-bit precision along with
a code word of 4-bits, referred to as Mode signal. The output
of this PE is 8-bits. The codewords and the corresponding
operation are represented in Table 1. In the current design,
each operand is represented in a fixed-point format using 4-bits
for the integer and 4-bits for the fractional part. The rationale
to choose the fixed-point representation is its wide adoption
for neural network applications, as it helps to reduce the logic
usage and power consumption on FPGAs platforms.

TABLE I
CODEWORDS AND OPERATIONS

Log Block | 2’s C. Block | Adder Block | Antilog Block
Add 0001
Sub 0010 0010
Mult 0100 0100 0100
Div 1000 1000 1000 1000
A8 8
=~ +C
B 8/ PE-1 — PE-2 — PE-3
Code Word 4// I I I
PE-4 — PE-5 (—| PE-6
| | I
PE-7 — PE-8 — PE-9

Fig. 1. Proposed accelerator architecture with cores in a mesh-style network.

B. Processing Element Architecture
One of the common and computationally intensive operations

in the DL applications as well as the generic application work-
loads is the multiplication operation. The complexity further in-
creases for fixed-point and floating-point data types. To address
this challenge, we design our PE focusing on multiplication
operations. However, designing only a multiplier makes the
design inefficient, as other operations such as additions and
subtractions are critical in DL and generic workloads.

Considering the reconfigurability of the underlying FPGAs,
we design the PE to support multiplications as well as other
arithmetic operations in this project. For this purpose, we design
the multiplier based on Mitchell’s algorithm [14] as described
below. As per Mitchell’s algorithm, a multiplication operation
is defined as follows:

A - B = antilog(log A + log B)
A/B = antilog(log A — log B)

where A and B are the operands.

Based on (1), we design our PE architecture, as shown in
Figure 2. Thus, the PE encompasses an adder, two’s comple-
ment, log, and antilog blocks. Depending on the codeword, the
individual units of the PE are enabled or disabled. For instance,
to perform the multiplication operation, the log, adder, and
antilog blocks will be enabled. Similarly, the codeword enables
the log, adder, two’s complement, and antilog blocks to perform
the division operation.

The proposed architecture thus is capable of performing the
add, subtract, log, antilog, multiply, and divide operations in
a seamless manner. This is facilitated through the reconfig-
urability of the underlying FPGA architecture. To perform the
reconfigurability through the codewords in a CGRA manner, we
design a finite state machine (FSM). The FSM is responsible
to decode the codewords and enable the data flow in a dynamic
manner. As shown in Table I, depending on the codeword, the

(D

A B
4 4
Code Word 2 Log
Block

Adder

y
2's Complement

Code Word —2-f le2— code Word

Block Block
Code Word -2« Antilog
Block
Register

Fig. 2. Processing element architecture showing main four arithmetic blocks
and register.

corresponding computational blocks in the PE will be enabled
or disabled. Logarithm and antilogarithm functions are complex
functions to be designed through standard CMOS designs. For
this purpose, we employ Taylor’s Series approximation and
design the hardware accordingly.

C. Taylor Series Algorithm for Log and Antilog Operations
The relationship between logarithm and antilogarithm to ob-
tain a multiplication or a division is such that, the antilogarithm
of the addition or subtraction of logarithms of A and B is the
multiplication or the division of A and B respectively (1).
The logarithm function is achieved by the approximation
of the Taylor Series for the natural logarithm. The function
log(x) is the approximation of the natural logarithm where a
is the point where the function is centered and n represents
the number of terms as shown in (2). Using 10 terms, the
computation achieves an error of 1.5%.
S S (@ —a)”
log(x) = In10 2
To compute the antilogarithm for instance, for the multiply,
the approximation between the logarithm and the exponential
functions is made in (3).

antilog = ——(A-a ——(B-a
1 na o— na

3
As observed from (2), direct implementation of logarithm
and antilogarithm operations through CMOS design is ineffi-
cient due to the involved complexity. As such, we design a
look-up-table (LUT)-based log and antilog units in this work.
As FPGAs realize the design through LUTs, the design of
logarithm and antilogarithm blocks are realized using the LUTs.
This enables faster lookup, reduced computational complexity,
and compatibility with the underlying FPGA architectures.
Though Taylor’s series and Mitchell’s algorithms lead to the
introduction of a certain amount of error in the computations,
our analysis has shown that the introduced errors can be
neglected for the considered application and datasets. However,
error-correcting techniques can be adopted to minimize the
error for other applications. This can also lead to additional
complexity and hardware overheads.

Cycle 1

Cycle 2

[

Cycle 4

LI O
LI O
LI O

B |

[1dle Core Il Terms fourth addition/Result addition
[0 Terms first addition/Result addition Terms fifth addition/Result addition

[l Terms second addition/Result addition I Ninthterm
[Terms third addition/Result addition [Next addition block

Fig. 3. Accelerator dataflow. Cycle 1: each color corresponds with one addition.
The first addition operation takes place in the top left PE. The following
additions continue right to the next PE until 4 additions. Cycle 2: each color
corresponds with one result from previous additions, which are summed right
to the next PE in pairs, shown in grey. Cycle 3: similar to the first case, the
pink color corresponds with the terms of the next addition, in this case, there
is only one addition Cycle 4: the addition of the previous result and the last
PE are summed right to the next PE, shown in grey. The PEs are configured
as shown in Table L

D. Application Mapping on the Proposed Accelerator

Convolutional layers are the building blocks for CNN, where
convolution calculations are employed for feature extraction.
An element-wise product is performed between an input tensor
and a kernel array. After this, all terms are summed to obtain
the value in that specific position of the output feature map.
The correspondent codewords for CNN computation activate
the PEs and the behavior involves further steps as seen in
Figure 3. Once the PEs have completed nine multiplications and
have passed through the registers; these values are redirected
back to the PEs to perform addition operations by utilizing and
taking advantage of the same resources. Eight values are moved
to the first four PEs, and every two terms for each addition are
designated with the same color label as illustrated in Figure 3.
The result of these four additions is again redirected to the next
PEs, activating the following two in the next cycle. In the third
cycle, the two PEs results become the two next terms for the
following addition. Finally, our last result can be summed with
the result of the ninth PE.

This illustration demonstrates that the multiply calculation
among the PEs will be executed in parallel independently of
the number of inputs involved. After that, the time computation
increases according to the number of additions that may be
performed in each clock cycle. With different operations, when
a PE is inactive, its output value is registered to be dispatched
for immediate use while the remaining modules may start
orchestrating other operations according to their codewords.

E. Applicability to Other Workloads
As aforementioned, one of the advantages of the proposed

reconfigurable architecture is its applicability to a wide range
of applications in addition to the DL acceleration. In order to

employ this architecture for non-ML applications, the afore-
mentioned application mapping needs to be reprogrammed. In
other words, by redefining the associated data flow with each of
the code words one can apply the proposed architecture to non-
ML applications. For instance, instead of convolution operation,
general matrix multiplication (GEMM) is a common operation
encountered in a plethora of applications and workloads. To
perform GEMM operation on the proposed architecture, the
operand mapping and sum dataflow have to be redefined
compared to the convolution operation. This can be performed
in a non-complex manner through the programmability of the
FPGAs. GEMM reuses the data during computation, therefore,
data movement and storage are drastically reduced, which leads
to improved architectures.

IV. RESULTS AND DISCUSSION

A. Simulation Setup

The proposed architecture with nine processing element (PE)
cores is implemented on Xilinx Zynq UltraScale ZCU126
FPGA. The PEs are described using the very high-speed
integrated circuit hardware description language (VHDL) and
simulated using Modelsim Intel software. Further, it is syn-
thesized as an IP block and verified in Xilinx Vivado 2021.1.
The evaluation is performed in terms of the FPGA resources
consumed for the deployment of the proposed architecture. The
ML performance evaluation is performed on MNIST [20] and
CIFAR-10 [21] datasets. We perform a comparison of proposed
work with other FPGA accelerators (Table II), a comparison of
individual approximate computing units (Table III), as well as
a comparison with works where programming is performed to
reconfigure the hardware for multiple functionalities (Table IV).

B. Evaluation of Processing Element

The data computation has been pipelined to reach the max-
imum possible frequency of operation. Furthermore, the scope
of the data of both logarithm and antilogarithm computations
is limited in the state machine to refine the code and reduce
cycles. Area overhead has been decreased by reducing the
precision of the data under performance constraints. Table II
summarizes the proposed architecture results. As Delay and
resources have been obtained from Vivado synthesis. Power
consumption is that of all the processing elements and their
communication network. As one can observe from Table II the
proposed approximation-based system architecture can operate
at a higher frequency with lower power and resource con-
sumption. Compared to [6], the proposed architecture employs
a slightly higher number of LUTs, but a significantly lower
number of DSPs. The main benefit in terms of resources comes
from the fact of reconfigurability and re-utilization of blocks
to perform various operations.

TABLE 11
FPGA-BASED ACCELERATOR PERFORMANCE COMPARISON
[4] [5] [6] Proposed
FPGA Startix-V Zynq Arria-10 Zynq
Frequency (Mhz) 150 100 100 486
Precision 8-16bits 16-bits 32-bits 8-bits
LUTs 161K 155K 118K 127K
DSPs 1518 824 784 196
Power (W) 21.2 9.4 9.4 8.7

C. Comparative Performance

We also compare the speed and the area of the arithmetic
units from our proposed architecture with distinct arithmetic
units as shown in Table III. Many architectures found in the
literature are focused on a specific arithmetic computation such
as addition or multiplication [10], [11], [22], [23]. Additionally,
there are some works that integrate adder and multiplier units
in a single architecture [24]. As such, for a fair comparison,
we configure the proposed architecture either as an adder,
multiplier, or divider and compare it with the corresponding
state-of-the-art works. However, it needs to be noted that
irrespective of the configured functionality, the proposed system
can be reconfigured to perform other operations, which is one
of the advantages compared to state-of-the-art works.

As can be seen from Table III, the area increases for more
complex computations such as multiplications and divisions
compared to additions. The proposed architecture shows an area
improvement in the adder, multiplier, and divider computation
when comparing to individual units [9]-[11], [22], [23], [25].
For instance, the best arithmetic unit implemented in [11] has
more significant LUTs than the proposed PE unit.

However, the proposed architecture has a wider benefit over
existing architectures with multiple heterogeneous arithmetic
blocks, as shown in Table IV. Observing a generic block for
both multiply and addition such as [24], the proposed solution
shows an improvement of 1.17x speedup in terms of speed and
1.09 x reduction in area. Similarly, for the next arithmetic block
in [24] that can perform multiply and subtraction operations
through reconfiguration, our proposed system leads to a 1.19x
speedup. Additionally, for both the configurable dynamic range
multiplier shown in [26] and the configurable-error multiplier
in [27], the proposed work is at least 2.4 faster.

In Table II, we compare our proposed architecture with previ-
ous FPGA-based accelerators of 8, 16, and 32 bits of precision.
Previous works such as [5] reduce the amount of off-chip data
transfer by the optimization of its dataflow with an increment in
BRAM usage, an improvement over the previous architecture
[6]. This is demonstrated with a better power efficiency when
compared to [4]. However, there is still power required for the
off-chip memory. Our solution optimizes power efficiency with
optimized weight-stationary datapath, which further decreases
energy consumption. The proposed architecture is 3.24 x faster
than [4] and 4.86x faster than [5], [6]. Implementation has been
optimized for power and communication, leading to lower use
of resources for both LUTs and DSPs compared to [4]-[6].

TABLE III
ARITHMETIC UNITS COMPARISON
Reference Speed (Mhz) | Area (LUT)

Adder [10] 275 557
Adder [22] 71.017 932
Proposed Adder 486 243
Multiplier [11] 19.8 6971
Multiplier [23] 142.8 63400
Proposed Multiplier 486 780
Divider [9] 38 1060
Divider [25] 67.150 2472
Proposed Divider 486 815

TABLE IV
ARITHMETIC BLOCKS COMPARISON

Reference Speed (Mhz) | Area (LUT)
Multiplier/adder [24] 415 1121
Proposed block 486 1023
Multiplier/Subtractor [24] 407 664
DRUM-4 [26] 218 53
MBM [27] 202 204
Proposed block 486 883

D. Inference Accuracy

We evaluate our proposed architecture for various state-of-
the-art deep neural networks such as LeNet, AlexNet, and
ResNet -18,-34,-50. These deep learning algorithms are im-
plemented on the proposed hardware accelerator using MNIST
(28x28x1 dimensions), and the CIFAR-10 dataset (32x32x3
dimensions). Both datasets consist of about 60,000 training and
10,000 testing images belonging to 10 classes. The goal is to
classify the given input image into the correct class.

Figure 4 shows the Top-5 accuracy comparison plots for 16-
bit floating-point (FP), 8-bit fixed-point data precision for both
datasets. It is observed that the accuracies obtained on the eval-
uated networks are very similar for 16-bit and 8-bit precision
data (inputs and weights). The Top-1 accuracy obtained for the
MNIST dataset when implemented on AlexNet is 98.89% and
99.43% for 16-bit and 8-bit precision respectively. On the other
hand, Top-1 accuracy obtained for the CIFAR-10 dataset when
implemented on AlexNet is 83.5% and 82% for 16-bit and 8-bit
precision respectively.

It is also observed that the accuracies of LeNet, AlexNet,
ResNet-18, -34, and -50 on the CIFAR-10 dataset are noticeably
lower when compared to the MNIST dataset, as shown in
Figure 4. The accuracy of the CIFAR-10 dataset, in general,
is significantly lower than MNIST dataset due to the compar-
atively higher complexity of the CIFAR-10 dataset. Although
higher accuracy with CIFAR-10 is reported in the literature, it is
with higher data precision than those adopted in this work [28].
Such high accuracy comes at the cost of additional hardware
resources and processing overheads.

The baseline accuracy of the networks with the 8-bit pre-
cision data in comparison with 6-bit precision (referred to as
approximation data) is shown in Figure 5. For the evaluation
purpose, the approximation strategy adopted is to disregard
the 2 least significant bits in the 8-bit fixed point input data
before implementing the neural networks. The accuracies for
AlexNet with 8-bit input and weights, 6-bit input and weights
of approximated data, 99.43%, 99.11% respectively on the
MNIST and 82%, 81.7% respectively on the CIFAR10 dataset,
as demonstrated in Figure 5. The performance degradation
between the 8-bit fixed point precision and to 6-bit approx-
imation strategy is around < 0.05%- < 0.35% for all the
CNNs deployed on both datasets. We have evaluated with 6-
bit precision to validate the performance impact, as we have
observed a nearly 9.4% reduction in the required resources as
compared with the 8-bit implementation reported in Table II.

V. CONCLUSION

This paper presents a novel reconfigurable accelerator archi-
tecture aimed at CNN computations. Its programmability allows

B MNIST - 16 bit EIMNIST - 8 bit ECIFAR10 - 16 bit [@ACIFAR1O - 8 bit

Iy
S
Wzzzzzzzzzzzzz7z772222

b

LeNet AlexNet ResNet 18 ResNet 34 ResNet 50

Fig. 4. Comparison of Top-5 accuracies of LeNet, AlexNet, ResNet-18, -34
and -50 on MNIST, CIFAR-10 datasets for 16-bit, 8-bit data precision.

B MNIST 8-bit O MNIST approximate B CIFAR10 8-bit B CIFAR10 approximate
100 — :

80
60
40

20

o LML

LeNet AlexNet ResNet 18 ResNet 34 ResNet 50

Fig. 5. Accuracy comparison of LeNet, AlexNet, ResNet-18, -34 and -50 on
MNIST, CIFAR-10 datasets for exact 8-bit precision data and approximate data
with 6-bit precision.

it to perform addition, subtraction, multiplication, and division
operations individually through a given mode. Its processing
elements or cores are displayed following a coarse-grained
reconfigurable architecture employing a weight-stationary ap-
proach as a datapath. Each core can perform low-precision
operations of 8 bits word-length. Performance is evaluated with
Zynq UltraScale ZCU126. Compared with different arithmetic
units aimed at CNN computations, the architecture shows
improvement in the area, 1.22x lower resource utilization
compared to the standard DNN/CNN accelerators. Further, it
shows enhanced performance being 3.24x and 4.86x faster.
Finally, it demonstrates 99.43 % and 82% accuracy on MNIST
and CIFAR-10 datasets, respectively.

REFERENCES

[1] S. Bavikadi, A. Dhavlle, A. Ganguly, A. Haridass, H. Hendy, C. Merkel,
V. J. Reddi, P. R. Sutradhar, A. Joseph, and S. M. Pudukotai Dinakarrao,
“A survey on machine learning accelerators and evolutionary hardware
platforms,” IEEE Design & Test, vol. 39, no. 3, pp. 91-116, 2022.

[2] S. Bavikadi, P. R. Sutradhar, K. N. Khasawneh, A. Ganguly, and S. M.
Pudukotai Dinakarrao, “A review of in-memory computing architectures
for machine learning applications,” in GLSVLSI, 2020.

[3] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE journal of solid-state circuits, vol. 52, no. 1, pp. 127-138,
2016.

[4] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Optimizing loop operation
and dataflow in fpga acceleration of deep convolutional neural networks,”
in ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays, 2017.

[5] Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y.-W. Tai, “Exploring heterogeneous
algorithms for accelerating deep convolutional neural networks on fpgas,”
in Annual Design Automation Conf., 2017.

[6] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn
accelerators,” in IEEE/ACM Int. Symp. on Microarchitecture (MICRO),
2016.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A survey of accelerator
architectures for deep neural networks,” Engineering, vol. 6, no. 3, pp.
264-274, 2020.

J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in IEEE European Test Symp.
(ETS), 2013.

G. Sutter and J.-P. Deschamps, “High speed fixed point dividers for
fpgas,” in Int. Conf. on Field Programmable Logic and Applications,
2009.

K. R. Gavali, N. Choudhary, S. Mishra, and S. Dubey, “A parallel
pipelined adder suitable for fpga implementation,” in Int. Conf. on Smart
City and Emerging Technology (ICSCET), 2018.

C. Hanuman and J. Kamala, “Hardware implementation of 24-bit vedic
multiplier in 32-bit floating-point divider,” in Int. Conf. on Electrical,
Electronics and System Engineering (ICEESE), 2018.

P. R. Sutradhar, S. Bavikadi, M. Connolly, S. K. Prajapati, M. A.
Indovina, S. M. Pudukotaidinakarrao, and A. Ganguly, “Look-up-table
based processing-in-memoryarchitecture with programmable precision-
scalingfor deep learning applications,” IEEE TPDS, 2021.

S. Bavikadi, P. R. Sutradhar, M. A. Indovina, A. Ganguly, and S. M. P.
Dinakarrao, “Polar: Performance-aware on-device learning capable pro-
grammable processing-in-memory architecture for low-power ml appli-
cations,” in 2022 25th Euromicro Conference on Digital System Design
(DSD), 2022, pp. 889-898.

J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IRE Trans. on Electronic Computers, no. 4, pp. 512-517,
1962.

J. Becker, T. Pionteck, C. Habermann, and M. Glesner, “Design and
implementation of a coarse-grained dynamically reconfigurable hardware
architecture,” in IEEE Workshop on VLSI, 2001.

M. Lanuzza, S. Perri, P. Corsonello, and M. Margala, “A new re-
configurable coarse-grain architecture for multimedia applications,” in
NASA/ESA Conf. on Adaptive Hardware and Systems, 2007.

M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal, “Memory-centric
accelerator design for convolutional neural networks,” in /EEE Int. Conf.
on Computer Design (ICCD), 2013.

M. Lanuzza, S. Perri, M. Margala, and P. Corsonello, “Low-cost fully
reconfigurable data-path for fpga-based multimedia processor,” in Int.
Conf. on Field Programmable Logic and Applications, 2005. 1EEE,
2005, pp. 13-18.

Z. Ebrahimi, S. Ullah, and A. Kumar, “Simdive: Approximate simd soft
multiplier-divider for fpgas with tunable accuracy,” in Great Lakes Symp.
on VLSI, 2020.

L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141-142, Nov 2012.

A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 (canadian institute
for advanced research),” 2009.

S. Ghosh, P. Bhattacharyya, and A. Dutta, “FPGA-based implementation
of a double precision ieee floating-point adder,” in Int. Conf. on Intelligent
Systems and Control (ISCO), 2013.

S. Beohar and S. Nemade, “VHDL implementation of self-timed 32-bit
floating point multiplier with carry look ahead adder,” in Int. Conf. on
Advanced Communication Control and Computing Technologies (ICAC-
CCT), 2016.

L. S. A. Hamid, K. Shehata, H. El-Ghitani, and M. ElSaid, “Design of
generic floating point multiplier and adder/subtractor units,” in Int. Conf.
on Computer Modelling and Simulation, 2010.

P. Malik, “High throughput floating-point dividers implemented in
FPGA,” in IEEE Int. Symp. on Design and Diagnostics of Electronic
Circuits & Systems, 2015.

S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: a dynamic range unbiased
multiplier for approximate applications,” in IEEE/ACM Int. Conf. on
Computer-Aided Design (ICCAD), 2015.

H. Saadat, H. Bokhari, and S. Parameswaran, “Minimally biased mul-
tipliers for approximate integer and floating-point multiplication,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, pp. 2623-2635, 2018.

K. Vasquez, Y. Venkatesha, A. Bhattacharjee, A. Moitra, and P. Panda,
“Activation Density based Mixed-Precision Quantization for Energy Effi-
cient Neural Networks,” arXiv e-prints, p. arXiv:2101.04354, Jan. 2021.

