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Abstract—Reconfigurable nanotechnologies such as Silicon
Nanowire Field Effect Transistors (FETs) serve as a promising
technology that not only facilitates lower power consumption
but also supports multi-functionality through reconfigurability.
It enables reconfigurability and supports multiple functionalities
per computational unit. These features motivate us to design
a novel state-of-the-art energy-efficient hardware accelerator
for implementing memory-intensive applications including con-
volutional neural networks (CNNs) and deep neural networks
(DNNs). To accelerate the computations, we design Multiply and
Accumulate (MAC) units to perform the computations. For the
design of MACs , we employ Silicon nanowire reconfigurable
FETs (RFETs). The use of RFETs leads to nearly 70% power
reduction compared to the traditional CMOS implementation
and also reduced latency in performing the computations. Fur-
ther to optimize the overheads and improve memory efficiency,
we introduce a novel approximation technique for RFETs. The
RFET-based approximate adders lead to reduced power, area,
and delay while having a minimal impact on the accuracy of
the DNN/CNN. In addition, we carry out a detailed study of
varied combinations of architectures involving CMOS, RFETs,
accurate adders, and approximate adders to demonstrate the
benefits of the proposed RFET-based approximate acclerator. The
proposed RFET-based accelerator achieves an accuracy of 94%
on MNIST datasets with 93% and 73%reduction in the area,
power and delay metrics respectively compared to the state-of-
the-art hardware accelerator architectures.

I. INTRODUCTION

Machine learning (ML) techniques such as Deep Neu-
ral Networks (DNNs) and Convolutional Neural Networks
(CNNs) are widely adopted in numerous applications includ-
ing computer vision, text recognition, speech recognition,
and cybersecurity [1]-[3] due to their superior performance
compared to the heuristic techniques. However, DNNs and
CNNs are often encountered with a requirement to perform
a plethora of multiply-and-accumulate (MAC) operations [4].
Performing such a massive amount of MAC operations in real-
time requires voluminous resources at disposal [5].

FPGA- and ASIC-based hardware accelerators are intro-
duced to meet the computational and real-time performance
demands along with overcoming the limitations of traditional
CPU and GPU architectures [6], [7]. FPGA architecture
facilitates reconfigurability and programmability along with

This work was supported in part by the US National Science Foundation
(NSF) Grants CNS-2228239, and CNS-2213404. This research was supported
in part by the German Research Foundation (DFG), project SecuReFET
(Project Number: 439891087).

accelerating the MAC operations in the CNNs to meet per-
formance requirements. However, the energy efficiency and
overheads of the FPGAs impose challenges. On the other hand,
Traditional ASIC-based accelerators provide high performance
and energy-efficiency compared to their counterparts.

Traditional CMOS-based ASIC accelerators though have
shown superior performance compared to CPUs and GPUs,
suffer from area and reconfiguration overheads, latency, and
leakage currents. To address such challenges, emerging tran-
sistor technology devices such as FinFETs, RFETs, and Mem-
ristors are adopted in designing accelerators [7]. Further, some
of these devices such as Memristors also support storage along
with computations a.k.a in-memory computing [8].

Among multiple emerging devices, the recent research
on nanotechnologies such as silicon nanowires (SiNW) or
germanium-based nanowires-based reconfigurable field effect
transistors [9] have proven to exhibit multiple functionalities
per computational unit with minimal reconfigurability over-
heads. The SiNW RFET devices exhibit ambipolar conditions
due to inherent materials used for construction, which in
turn help to reconfigure the operating regions (i.e., p and n
regions) of the transistor. Thus, through programming the gate
terminals, the different functionalities can be obtained [9]. This
motivates us to employ SiNW-based circuits for the design
of neural network accelerators, making them reconfigurable,
energy, area and performance efficient.

In addition to architectural design choices, computational
optimization is widely explored to meet real-time demands
along with performance. Among multiple techniques, the
approximation is a computational paradigm widely explored in
DNNs and CNNs for computational complexity optimization
[7]. Several approximate computing-based hardware accelera-
tors [7] have been shown to optimize area, power, latency, and
PDP (Power Delay Product) on varied datasets.

In this work, we orchestrate the benefits of integrating
SiNW RFET (SiNW) with approximate computing for an ML
accelerator design. The novelty of this work can be outlined

in a three-fold manner as follows:
« A novel ML accelerator architecture aiming at CNN/DNN

acceleration optimizing the resource utilization by lever-
aging the reconfigurability of the transistors through
SiNW RFET that supports approximate computing
paradigm as well. To the best of our knowledge, this is
the first SINW RFET-based ML accelerator that supports



approximate computing.

e A generic approximate adder architecture following a
simple carry chain technique to aid in both computational
and architectural optimizations is introduced for ML
acceleration. Furthermore, the control over the tunable
approximation bits aids in achieving negligible accuracy
loss during the training and testing of CNN.

o An emerging RFET design flow using SINW exploiting
the reconfigurability through one of the gate terminals to
enable efficient computations per unit area.

II. RELATED WORK AND BACKGROUND
We present the basics of the SINW reconfigurable FETSs
(RFETs) and the existing works on hardware accelerators here.

A. SINW Reconfigurable FETs

The schematic of SiNW-based RFET [9] is shown in Figure
1. The RFET encompasses a Control Gate (i.e., A or CG)
which is responsible for carrying the charges, and a Program
Gate (i.e., P or PG) which controls the functionality of the
gate. Depending upon the voltage applied to the PG, the p-
type or the n-type region gets activated. If P=0 (red line),
then the p-type functionality is activated, and when P=1 (blue
line), then the n-type functionality is activated. These devices
when combined can perform multiple computations through
programming/reconfiguration with less area occupied [9]. An
essential requirement for the practical use of RFET is that both
p-type and n-type programs have to deliver the same output
current at an identical geometry exhibiting fully symmetrical
I-V characteristics as shown in Figure 1. As the SINW RFETs
are recently introduced, they have been explored only in the
design of basic logic gates and 1-bit ALU [9].

A well-functionally enhanced combinational logic gates was
designed using the RFETs [9] consumes 20% less area when
compared to the CMOS and a 1-bit ALU designed using RFET
technology occupies 30% less area and 34% less delay than the
design which is mapped to the traditional CMOS technology.
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Fig. 1. Construction of RFET and its I-V characteristics.

B. State-of-the-Art

Here, we discuss some of the most relevant CMOS and
emerging devices-based ASIC accelerators. DianNao is an
ASIC-based accelerator operating at 65nm node [10] proposed
by Chen et. al. focuses on minimal memory transfers for
efficient computation. This was later extended to PuDianNao
which can accelerate at 1.20x faster than NVIDIA K20M
GPU [7]. A further extension of the DianNao family was
ShiDianNao which targeted high performance and low power
consumption by optimizing the data movements resulting in

60x less energy compared to DianNao. On the other hand,
AXNet was proposed where approximate computing is de-
ployed on the software to predict the approximate results of the
training and testing process [11]. The approximate adders [12]
and multipliers [13] have exhibited results close to the accurate
computing methods in various CNN/DNN accelerators.

Similarly, work in Pj-AxMT]J [14] deployed on non-volatile
memory (memristive RAM (MRAM)) based approximate
adders to perform approximation for efficient magnetization
switching in magnetic tunnel junction (MTJ). In addition,
approaches such as [15], [16] introduce system-level and
circuit-level approximation by bit trimming and Memristance
scaling. Along with the two approximate approaches, the
hybrid approximate PIM in [16] supports dynamic approxi-
mation, where the operations can be modified on the fly by
the controller, and a tunable approximation of the bit-trimming
can be done dynamically.

Despite their superior performances, these ASIC-based ac-
celerators lack programmability and reconfigurability, which is
pivotal when applied to diverse applications. Reconfigurability
of the accelerator design amalgamated with approximate com-
puting can lead to improved resource utilization and superior
performance with minimal degradation in accuracy.

III. PROPOSED SINW-BASED ML ACCELERATOR
A. System Architecture

The ML accelerator proposed in this work is designed
to accelerate data-intensive applications such as CNNs and
DNNSs. Figure 2 depicts the hierarchical view of the proposed
ML accelerator design that includes the cluster of compu-
tational cores, the arrangement of cores in the cluster, and
the interconnection between the multipliers and the adders
inside the core. Each core is a Processing Element (PE)
that is capable of performing MAC operations efficiently.
The weight and the input channel information stored in the
memory establish direct communication with the cores to
enable faster computation. The channels can establish parallel
communication with each of the cores such that multiple
operations are computed in a single clock cycle. Each core’s
(intermediate) outputs are accessible during the operation and
facilitate tracing back the intermediate outputs of the cores.
Design details of the system, approximate computing, and
SiNW implementation are discussed below.

B. Design of Cores with Approximate MAC Unit

As shown in Figure 2 each cluster encompassing cores
performs MAC operations on a matrix grid. We choose
each core to operate on two 4-bit operands, 4-bit operands
meet requirements for a majority of applications [17]. Higher
precision computations can be performed by reconfiguring
the interconnections among the cores [17]. To support 3x3
convolutions and MAC operations in parallel, each core en-
compasses 9 multipliers and 8 adders as shown in Figure 2.
The input and weight channels comprise the 36-bit line which
disintegrates into nine pairs of 4-bit lines into the multipliers
performing nine 4-bit multiplication per core. These data lines
holding the intermediate product results are further routed to
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Fig. 2. Proposed Accurate and Approximate ML Accelerators Implementation

the adders which complete the MAC operations, as shown in
Figure 2. Each core can compute 3 x3 convolution in parallel,
thereby facilitating high throughput.

The accurate architecture performs the MAC operations
with accurate adders, whereas the approximate architecture
performs the with approximate adders, as discussed below.

1) Multiplier: 1t is cardinal to perform the MAC operations
in an efficient manner since CNN/DNN uses MAC opera-
tions very often. Each PE has nine multiplication units for
which the data are fed from the weight and input channels.
The multiplier core is capable of performing multiplication
operations between 4-bit operands, followed by a series of ad-
dition operations in several stages. However, the approximate
multiplier can also be deployed to perform MAC operations.
In our proposed design the PE for both accurate and approxi-
mate computing follows the traditional accurate multiplication
algorithm. Since matrix multiplication can be performed in
parallel but the addition process gets slogged back during the
accumulation phase of the operation we optimize the addition

process by sliding in the approximate adder.
2) Approximate Adder: Our proposed nine-core formation

allows a perfect mapping of one complete 4-bit multiplication
for eight different adders. Each PE unit has eight adders which
account for seventy-two adders in each cluster. The results
of the multiplier are loaded into the adder in a sequential
fashion. To optimize the computational process, the simple
carry chain truncation technique is used for the approximate
adder. Since our proposed design is being mapped with RFET,
it aids in architectural optimization as well. For the adders,
we eliminate the carry chain by equating the C;,, of a 1-bit
full adder (FA) for the given stage with one of the inputs
(i.e., A in our design) of the previous stage. The sum and
the carryout for the approximate 1-bit FA can be obtained by
S= (A)(B+C)+(B.C) and C=A respectively. This will result
in 6 correct computational results of the 8 possible cases.
Furthermore, the 1-bit FA adder can be reinstated to design a
multi-bit adder depending on the application. These bunch of
adders can be formulated to logic gates which when mapped
with RFET translate into global data lines that reconfigure the
logic gates which can perform approximation efficiently per
unit leading to optimized resource consumption. In our design
four 8-bit, two 9-bit, one 10-bit, and one 11-bit adder are used
for the flexibility to control the number of approximation bits
of the operands. This aids in achieving results not far from
the results of the traditional accurate adder.
C. Application Mapping

The proposed cluster can be programmed to perform the
different layers such as the Convolutional layer, and Fully-
connected Layers. However, the convolutional layer accounts

for the majority of the MAC operations required for the
training and inference process. The cluster architecture fol-
lows the wight stationary approach wherein the weights are
preloaded onto the on-chip memory while the input orders are
fed sequentially to obtain the outputs. Our design can process
all the convolutional processes required by the network. The
cluster can process the varied Input Feature Map (IFM) sizes
and kernel window of size nxn resulting in an Output Feature
Map (OFM). This results in efficient feature extraction.

The proposed core has a dedicated input channel and a
common weight bus that spans over the architecture support-
ing weight stationary method. The CNN/DNN architecture
mapped with a CMOS design flow operates by switching
between n and p-type regions keeping either the pull-up or
pull-down network active. This results in single function per
CMOS device. However, in the case of the RFET the logic of
the architecture is optimized by exhibiting the same symmet-
rical output at both regions of the network. The functionality
of the network can be programmed by applying a control
signal over the program terminal of the network. This helps
in deploying multiple functionalities for a single network. The
MAC units are translated to optimized networks exhibiting
multiple functions per device leading to a better performance
than CMOS.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed accelerator in terms
of power, area, delay, and accuracy for ML applications.
A. Experimental Setup

The accelerator was designed using RTL (VHDL) tech-
nique. The delay, power, and area for the proposed accelerator
are obtained from Synopsys Design Compiler using CMOS
28 nm standard cell libraries and 26 nm for RFET. The
power consumption of the cluster is that of all the cores,
on-chip memory, and the channels communicating between
the memory and the cluster. The results obtained for the
architecture are for one cluster that is designed for 3x3
convolution operation. The accelerator was tested against the
MNIST and CIFAR-10 datasets.

B. Performance Evaluation

We have also evaluated our proposed work by mapping
to different neural networks like LeNet, 3C(3 Convolu-
tional)+2P(Pooling)+2F(Fully Connected Layer) etc, as shown
in Figure 3. The accuracy of the networks for approxi-
mate resulted in a minimal decrease by 3% for the MNIST
dataset. For the CIFAR-10 convolution matrix multiplication,
the approximate adder yields approximately 4% error when
compared to the accurate matrix multiplication.

A comparative study was made among CMOS and RFET
both computing in accurate and approximate paradigms. As



shown in Figure 4 the power consumed per unit area (i.e.,
power density) by RFET is reduced by 88% and 94% when
compared with CMOS accurate and approximate designs re-
spectively. Furthermore, the proposed RFET approximation is
more efficient than RFET-accurate by 48% in terms of power
density. However, between the CMOS architectures, CMOS
approximate architecture has a mild increase in power density.
This is due to the fact that the RFET design flow optimizes the
approximate paradigm more efficiently than the CMOS design
flow. Moreover, there is a steep decrease in the power of the
CMOS approximate architecture as well.
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Fig. 4. Power Consumption of CMOS and RFET Design

We also measure the critical path delay and the Power
Delay Product (PDP) for the above four architectures as shown
in Figure 5. The critical path delay for RFET accuracy and
RFET approximate approach is increased when compared to
the CMOS flow. This is due to the fact the RFET flow operates
at 92 MHz whereas CMOS operates at 1 GHz. The factor that
limits the operating frequency of the RFET is due to the innate
low drive strength cells. However, in terms of power consumed
per unit area is significantly less than the CMOS design flow.
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Fig. 5. Critical Path Delay of CMOS and RFET Design

C. Performance Comparison

To evaluate our performance of the design we have com-
pared it with the ASIC and emerging technology accelerators.
For a fair comparison, we match the MAC operations in our
design with respect to the previous designs. We scale up
our design to 11 clusters containing 891 multipliers and 792
adders performing 1683 MAC operations. DianNao [10] and
PuDianNao [18] are ASIC-based accelerators designed using
TSMC 65 nm library operating at 0.98 GHz and 1GHz respec-
tively. The proposed CMOS approximate approach operates
at 1 GHz and RFET approximate operating at 90 MHz can
compute 1683 MAC operations which consume less power
approximately by 94% and 98% respectively.

The proposed design can handle 70% more MAC operations
than [10] and [18] consuming less power and area. However,
the adders are excess in the proposed cluster which can be used
further for deep networks or future computing with the same
resources. Moreover, the proposed RFET approximate design
consumes less power per area by 87%. While comparing with
the emerging technologies [19] and [20] which use FeFET
crossbar arrays for CNNs operating at 400 MHz and 200
MHz respectively. Both [19] and [20] are designed using 22nm
technology. RFET approximately operates at low power by
77% performing 64% increased MAC operations. There is a
huge decrease in power density by the RFET when compared
with RFET. On a whole, the proposed RFET approximate is
one of the best designs to perform similar state-of-the-heart
operations with efficient resource consumption.

TABLE I
SIMULATION RESULTS FOR CMOS AND EMERGING TECHNOLOGIES.
Dian Pu FeFET | FeFET | Proposed Proposed
Nao Dian In- Binary | CMOS | RFET
[10] Nao memory | [20] Ap- Ap-
[18] [19] Pprox. prox.
Freq. 0.98 1 0.4 0.2 1 0.09
(GHz)
# Mul. | 272 272 512 - 891 891
# 256 784 512 - 792 792
Adder
# 528 1056 1024 256 1683 1683
MAC
Power 485000 | 596000 | 500000 | 22000 27775 5526
(uW)
Power 0.160 0.169 328.94 | 846.15 | 047 0.0254
Den-
sity

V. CONCLUSION

In this paper, we present the design of a novel state-
of-the-art RFET-based CNN/DNN accelerator. The hardware
accelerator performance for the CNN/DNN with an accurate
and approximate paradigm has been presented. We also present
the advantages of approximate computing over accurate al-
gorithms both in CMOS and RFET technology. In addition,
we also prove that approximate computing is supported by
the RFETs.The proposed architecture achieves a reduction in
power (93%) and area (73%), The proposed CNN/DNN model
was tested against MNIST datasets with 97% accuracy in
accurate and 94% accuracy in approximate computing.
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