
FlutPIM: A Look-up Table-based Processing in Memory
Architecture with Floating-point Computation Support for Deep

Learning Applications

Purab Ranjan Sutradhar
Department of Computer Engineering
Rochester Institute of Technology

Rochester, New York, USA
ps9525@rit.edu

Sathwika Bavikadi
Department of Electrical and

Computer Engineering
George Mason University
Fairfax, Virginia, USA
sbavikad@gmu.edu

Mark Indovina
Department of Electrical and
Microelectronic Engineering

Rochester Institute of Technology
Rochester, New York, USA

maieee@rit.edu

Sai Manoj Pudukotai
Dinakarrao

Department of Electrical and
Computer Engineering

George Mason University
Fairfax, Virginia, USA
spudukot@gmu.edu

Amlan Ganguly
Department of Computer Engineering
Rochester Institute of Technology

Rochester, New York, USA
axgeec@rit.edu

ABSTRACT

Processing-in-Memory (PIM) has shown great potential for a wide

range of data-driven applications, especially Deep Learning and AI.

However, it is a challenge to facilitate the computational sophisti-

cation of a standard processor (i.e. CPU or GPU) within the limited

scope of a memory chip without contributing significant circuit

overheads. To address the challenge, we propose a programmable

LUT-based area-efficient PIM architecture capable of performing

various low-precision floating point (FP) computations using a

novel LUT-oriented operand-decomposition technique. We incorpo-

rate such compact computational units within the memory banks in

a large count to achieve impressive parallel processing capabilities,

up to 4× higher than state-of-the-art FP-capable PIM. Additionally,

we adopt a highly-optimized low-precision FP format that max-

imizes computational performance at a minimal compromise of

computational precision, especially for Deep Learning Applications.

The overall result is a 17% higher throughput and an impressive

8-20× higher compute Bandwidth/bank compared to the state-of-

the-art of in-memory acceleration.

CCS CONCEPTS

• Computer systems organization → Architectures;

KEYWORDS

Processing in Memory; Floating Point; DRAM; Deep Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0125-2/23/06. . . $15.00
https://doi.org/10.1145/3583781.3590313.

ACM Reference Format:

Purab Ranjan Sutradhar, Sathwika Bavikadi, Mark Indovina, Sai Manoj

Pudukotai Dinakarrao, and Amlan Ganguly. 2023. FlutPIM: A Look-up Table-

based Processing in Memory Architecture with Floating-point Computation

Support for Deep Learning Applications. In Proceedings of the Great Lakes

Symposium on VLSI 2023 (GLSVLSI ’23), June 5–7, 2023, Knoxville, TN, USA.

ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3583781.3590313.

1 INTRODUCTION
For data-driven and highly memory-intensive applications such

as Deep Learning, the memory bandwidth limitation of traditional

computers has become a major performance bottleneck [2]. Lately,

this phenomenon has motivated a dramatic shift of interest toward

memory-centric processing architectures. Processing in Memory

(PIM) is an emerging memory-centric computing paradigm that

enables massively parallel computing at minimal data-movement

overheads by integrating computing circuitry within the memory

chip itself [7, 8, 16, 18].

Although PIM, to a certain degree, addresses the memory band-

width bottleneck problem faced by traditional high-performance

processors such as Graphical Processing Units (GPUs) and GPU

Computing Processors, it has its own challenges. Memory chips

are traditionally designed with the goal of minimizing power and

design complexity as well as maximizing memory cell density [16].

This essentially limits the level of sophistication of the computing

units that can be incorporated within the memory chip to develop a

PIM system. Nevertheless, recent commercial PIM prototypes such

as the Samsung FIMDRAM [13] and Hynix AiM [7] demonstrate

half-precision floating-point (FP) computation capability on a lim-

ited number of operations. However, such sophistication comes

with the cost of a large area overhead from the computational

units. Overall, there is a noticeable trend of PIM computing units

becoming increasingly larger in the past couple of years [8, 14, 18].

Such a large footprint of computing units inevitably comes with

several disadvantages. First, the number of computing units that

can be incorporated into a memory chip is inversely proportional

207

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583781.3590313&domain=pdf&date_stamp=2023-06-05

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA. Purab Ranjan Sutradhar, Sathwika Bavikadi, Mark Indovina, Sai Manoj Pudukotai Dinakarrao, and Amlan Ganguly

to the footprint of individual units. For example, the UPMEM PIM,

which features large RISC-oriented computing pipelines (DPUs)

[16], can currently locate only eight units of these per chip. Second,

the larger the computing units are, the lengthier is the effective

datapath between the memory cells and the computing unit. Also,

a lengthier datapath implies a narrower data bandwidth available

to the computing units. For example, the near-bank accelerators,

with large computing units, [14, 16, 18] can only access the Bank

I/O bandwidth. In contrast, the simplest PIMs with logic-on-bit line

processing architecture [11, 12] can expose ‘DRAM page(s)’ of data

at a time to the computing logic located within a bank.

Therefore, a significant design trade-off between the complexity

of the computing unit and the operational parallelism of a PIM

exists. Nevertheless, due to application demands, a large number

of works are gravitating towards sophistication (e.g. FP-precision

computing) at the expense of underutilized data bandwidth and

limited operational parallelism [8, 14, 18]. In this work, we aim to

diverge from this trend and propose an alternative approach that

enables us to optimize computing unit footprint without sacrificing

computational sophistication (i.e. FP-computing capability). In order

to make this possible, we adopt the following strategies:

Strategy 1: To minimize the processing footprint we introduce

a highly efficient, Look-up Table (LUT)-based computing archi-

tecture capable of performing FP-precision. While conventional

LUT-based processing architectures are prone to contributing sig-

nificant area overhead [6, 8, 10], we adopt careful architectural

and data-path designs to overcome this challenge. The proposed

architecture consists of a group of re-writable and interconnected

tiny Look-up Tables (LUT) that can be programmed to perform

multiple logic/arithmetic operations.

Strategy 2: To minimize the datapath length and widen the

effective datapath, the computing units are located within the mem-

ory banks and interfaced to the subarray bitlines. These units can

access data concurrently from neighboring memory subarrays and

collectively access a significantly higher data-bandwidth compared

to the near-bank accelerators.

Strategy 3: To optimize the FP computation overheads, we adopt

‘tiny float’, a highly optimized low-precision FP format that has

been demonstrated to achieve comparable accuracy to full-precision

FP format for Deep Learning applications at a remarkably lower

computing cost [4].

With these goals, we propose FlutPIM, a LUT-based flexible PIM

architecture featuring within-the-bank computing units that sup-

port energy-efficient, low-precision FP arithmetic operations. In this

architecture, complex FP operations (e.g. multiply-and-accumulate

or MAC) are carried out by decomposing the operands into fixed-

size sub-operands and then processing these in multiple stages of

operation across a group of tiny LUTs. By adopting highly-efficient

implementation algorithms that maximize resource utilization and

minimize sequential operational stages, we achieve impressive per-

formance gains. The proposed FlutPIM architecture achieves up

to 20× higher FP computation performance compared to a state-

of-the-art memory-centric accelerator by integrating 4× as many

compact, parallel computing units per memory bank.

2 FLUTPIM ARCHITECTURE
In this work, we propose a LUT-based PIM capable of performing

low-precision FP and fixed-point computations. An overview of

Bu
ffe

rPE 4

Subarray

Subarray

PSA Array

PSA Array

a) DRAM Bank

Router

LUT 1 LUT 2 LUT 9

Ac
cu

m
ul

at
or Queue

PE 3PE 2PE1

b) PE

256x8
Func. Table

256:1
8-bit

input A

input B

Router

Data Words

Fu
nc

tio
n

W
or

ds

Function Words

c) LUT

Bu
ffe

rPE 4PE 3PE 2PE1

Figure 1: An overview of the FlutPIM architecture, with

a)bank-level organization of the PEs, b) architecture of the

PE, and c) architecture of a LUT.

the architecture of the proposed FlutPIM is presented in Figure 1.

FlutPIM consists of many computing units/ processing elements

(PE) that are integrated within the memory banks and arranged in

rows of four between pairs of subarrays. We use the term ‘subarray’

to refer to a row of memory cell ‘tiles’ (i.e. 1k×1k cells) in the

horizontal direction that share the same set of global word lines,

and therefore are activated and precharged in lockstep [17]. As

shown in Figure 1(a), each quadruplet of PEs, arranged in a row,

has access to a shared buffer via a common PE bus. The buffer

reads/writes data from/to the primary sense amplifiers (PSA) of

the neighboring subarray pair via a common crossbar. Due to the

proximity of the buffer to the PSAs of the subarrays, a) the memory

access latency can be minimized [4], and b) the crossbar switch can

have a significantly wider bit-width than the bank I/0 bus, resulting

in reduced communication overhead for memory-bound tasks (e.g.

matrix-vector (GEMV) and matrix-matrix (GEMM) multiplications).

Inside each PE, the FP/ fixed-point operations are carried out by

employing a group of tiny, identical LUTs programmed to execute

various constituent logic/arithmetic operations (i.e. multiplication,

addition, bit shifting, comparison, increment/decrement, etc.) with

a view to collectively performing complex operations in multiple

clock stages. As shown in Figure 1(b), a PE contains 9 LUTs, inter-

connected by a router. Additionally, the PE contains a queue for

holding input and output data operands and an internal register

called Accumulator for holding intermediate data/ output during

computations. The router of the PE is a node-to-node interconnect

with 8-bit communication channels, implemented using a crossbar.

It can establish concurrent communications as well as multicast

data across the LUTs inside the PE.

The LUTs inside a PE are programmable and perform any logic/

arithmetic operation on a pair of 4-bit data or a single 8-bit data.

We specifically choose this size of LUT since this combination pro-

vides an optimal balance between overhead and computational

precision required for the desired application. Figure 1(c) shows

the architecture of a LUT which consists of a latch-based 8-bit

24×24=256-entry Function Table, indexed with a 256-1 multiplexer.

It can be reprogrammed on-the-fly via the PE bus to support dif-

ferent logic/arithmetic operations. By programming the LUTs in

208

FlutPIM: A Look-up Table-based Processing in Memory Architecture with Floating-point Computation

Support for Deep Learning Applications GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA.

B

A

Norm (AxB)

A x B

B

- B
ia

s

XOR

Exponent Mantissa Sign
A

(a
)

M
ul

tip
lic

at
io

n
(b

) N
or

m
al

iz
at

io
n

Exponent Mantissa Sign

A+B

(c
) M

ul
tip

lic
at

io
n

LUT Functionalities:

4-bit Adder x 2 4-bit Multiplier Mantissa Normalizer Exponent Normalizer

7-bit Sign Flip Shift Rectifier 4-bit Shifter (L/R) 2’s Complement

Figure 2: Step-wise execution scheme of different stages of

multiply-and-accumulate (MAC) operation with tinyfloat-

12 precision: (a) Multiplication of two operands, a and b,

(b) Normalization of the product, and (c) Addition of two

operands, a and b. The Normalization following the addition

has been omitted for brevity.
a PE to perform specific operations and devising step-wise data

routing patterns among these LUTs via the router, various FP and

fixed-point operations can be implemented, discussed in section 3.

3 OPERATIONS EXECUTION DATAFLOW
The AI training and inferences applications are essentially trans-

lated into a set of large matrix and vector multiplications (i.e.GEMV

and GEMM) consisting of repeated MAC operations. This makes

MAC the most frequently appearing arithmetic operation in these

workloads. In this section, we present and discuss the implemen-

tation of the MAC operation with tinyfloat-12 precision in detail.

The proposed PE can also support 8-bit MAC as well as other oper-

ations such as max-pooling, average pooling, and ReLU activation

via reprogramming of the LUTs.

The tinyfloat-12 consists of a sign bit, a 4-bit unsigned mantissa,

and a 7-bit exponent [4]. The MAC operation is performed in four

distinct stages: multiplication, normalization of the product, accu-

mulation (i.e. recursive addition of products), and normalization of

the accumulation. To perform these operations, the LUTs are to be

programmed in a specific pattern. The LUT functionalities and the

step-wise execution scheme for the MAC operation are shown in

Figure 2 and discussed in detail below.

LUT Functionalities: The LUTs operate on a pair of 4-bit data or

a single 8-bit data and generate an 8-bit output. The 9 LUTs are

programmed to perform the following logic/arithmetic operations

in order to perform a tinyfloat-12 MAC operation. For perform-

ing multiplication, two Adder LUTs and one Multiplier LUTs are

Table 1: Truth Table for Mantissa and Exponent Normalizer

Mantissa Normalized Mantissa Exponent Inc./Dec.

0 0001 1000 0111 1101

0 001x 1x00 0111 1110

0 01xx 1xx0 0111 1111

0 1xxx 1xxx 0000 0000

1 xxxx 1xxx 0000 0001

required. Both the Adder and the Multiplier LUTs operate on a

pair of 4-bit inputs and generate one 8-bit output. Normalization

of a tinyfloat number requires two Adder LUTs, alongside a) a

Mantissa Normalizer LUT that shifts the mantissa such that the

MSB is a ‘1’, and b) an Exponent Normalizer LUT that adjusts (i.e.

increments/decrements) the 7-bit exponent corresponding to the

adjustment made to the mantissa. For tinyfloat addition, two Adder

LUTs are required, along with a) a Sign Flip LUT that changes the

sign of the input value by multiplying it by ‘-1’, b) a Shift Rectifier

LUT that leverages the difference of exponents of two inputs to

generate the shift-value for the mantissa, c) a 4-bit Shifter LUT that

utilizes the output of the Shift Rectifier LUT in order to shift the

Mantissa by 0-4 bit positions, and d) an 8-bit 2’s Complement LUT.

The functionalities of the Mantissa Normalizer LUT, and the Expo-

nent Normalizer LUTs are shown in Table 1, and the functionality of

the Shift Rectifier LUT is shown in Table 2. The LUT-functionalities

are identified with unique color codes in Figure 2.

Multiplication: This step involves the multiplication of both the

mantissa and the exponents of the FP operands (A and B), as shown

in Figure 2(a). Since the LUTs only operate on 4-bit data, the 7-bit

exponents are split into a pair of 4-bit sub-operands and added with

the aid of two Adder LUTs. This addition is then adjusted for bias.

Meanwhile, the 4-bit mantissa is multiplied using a 4-bit multiplier.

The Multiplier LUT is programmed such that it does not generate

the four least-significant bits of the product and instead appends

the overflow bit to the product in order to aid the normalization

stage that follows multiplication.

Normalization: This stage involves appropriate shifting of the

mantissa such that the MSB contains a ‘1’. Therefore, the man-

tissa undergoes respectively a right-shift and a left-shift for over-

flow and underflow. This is paired with a corresponding incre-

ment/decrement of the exponent, as shown in Figure 2(b). The

Exponent Normalizer LUT determines the increment/decrement

value for the exponent, which is then added to the original exponent

value via a pair of Adder LUTs.

Accumulation: FP addition operation, shown in Figure 2(c), re-

quires the adjustment of exponents. In order to perform this, the

exponent of operand B is subtracted from the exponent of operand

A. The subtraction is carried out via multiplication by -1, followed

by addition. Next, the difference of the exponents is translated into

a shift-value by the Shift Rectifier LUT, which is utilized by the 4-bit

Shifter LUT to shift the mantissa of B. Both mantissas are then sign-

extended via a 2’s Complement LUT and added using two Adder

LUTs to generate the accumulation. Finally, the accumulation also

undergoes the Normalization stage of Figure 2(b).

The multiplication, normalization, and accumulation steps of

the tinyfloat-12 MAC operation can be performed together in 19
Table 2: Truth Table for Shift Rectifier

Cases Shift-Value Cases Shift-Value

A-B > 4 4 (Right) - 4 < A-B < 0 B-A (Left)

0 < A-B < 4 A-B (Right) A-B < - 4 4 (Left)

209

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA. Purab Ranjan Sutradhar, Sathwika Bavikadi, Mark Indovina, Sai Manoj Pudukotai Dinakarrao, and Amlan Ganguly

Table 3: Attributes of various FlutPIM components

Component Latency Clock Power Area

(nS) (GHz) (mW) (mm2)

LUT 0.63 1.59 0.93/0.45 (Dyn./Leak) 0.002

PE 11.34 (MAC) 1.59 13.77 0.021

PCU 0.392 1.59 0.079 0.0005

clock cycles. Alongside this, FlutPIM can also support other opera-

tions such as max-pooling and ReLU Activation Function. Further,

these operations can be also performed with 8-bit fixed-point data-

precision without any modification to the PE architecture. How-

ever, since similar implementation techniques have already been

explored in prior works [9], we only discuss the performance eval-

uation of the proposed FlutPIM architecture for 8-bit fixed point

alongside the 12-bit FP precision computations in Section 5.

4 CONTROL ARCHITECTURE
The PEs within each Bank is controlled by a Bank Controller Unit

(BCU) that performs the task of decomposing and scheduling op-

erational instructions and the pertinent data to the PEs across the

bank. Alongside, each PE is equipped with a low-level PE Controller

Unit (PCU) that decodes and executes operational instructions sent

from the BCU. The PCU consists of an instruction decoder and a

micro-coded control signal generator that coordinates the dataflow

in the I/O registers as well as implements the clock-wise data rout-

ing patterns required for performing a specific operation (e.g. the

MAC operation discussed in section 3).

5 EXPERIMENTAL RESULTS
Experiment Setup: The PEs and the PCU of FlutPIM were designed

and verified in the HDL environment. The device parameters are

reported in the 20nm technology node and are obtained from ASIC

physical synthesis performed using the Synopsys Design Compiler

tools. The synthesis was performed in compliance with memory

chip specifications, e.g. only four metal layers were utilized in the

synthesis of the PEs. Various attributes of the PIM components

obtained from the synthesis are presented in Table 3.

Hardware Configurations: The PEs of the proposed FlutPIM are

to be integrated within the banks of a memory organization which

makes it highly modular. Therefore FlutPIM can be incorporated

in various memory architectures such as the 2-D Dual Inline Mem-

ory Module as well as 3-D stacked platforms such as HMC and

HBM/HBM2. The key difference between the DIMM and the 3-D

stacked configurations is in the significantly higher global I/O bus

bandwidth for the 3-D stacked memory banks which enables faster

data relocation within bank groups. We present an overview of

the integration of the FlutPIM architecture in the HBM2 memory

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

Pr
oc

es
si

ng
 T

hr
ou

gh
pu

t
(Im

ag
es

/s
)

Tinyfloat 8-bit

1.00E-02

1.00E-01

1.00E+00

1.00E+01

Pr
oc

es
sin

g
En

er
gy

/ I
m

ag
e

(J) Tinyfloat 8-bit

Figure 3: Performance benchmark of the proposed FlutPIM

architecture for various CNN algorithms using tinyfloat and

8-bit precisions of computations, presented in terms of a)

processing throughput (Images/s) and processing energy for

individual images (Joule) of the ImageNet dataset.

Table 4: Specification of the HBM2-based FlutPIM

Attributes Values

PE/Bank 4×8=32

Subarrays/Bank w/PEs 32

Bank Capacity w/PEs (MB) 64

Bank/Channel 32

Channels 8

Max. Power/Die (W) 30

organization in Table 4. HBM2 consists of multiple DRAM dies

stacked vertically with a base logic die and interconnected via a

large number of high-speed TSVs [1]. Similar to Samsung’s FIM-

DRAM [18], we consider an 8Hi-stack with 4-stacks repurposed as

FlutPIM. FlutPIM is distributed across eight memory channels that

are further split into a pair of pseudo channels (pCH). Each pCH

consists of sixteen banks that are modified to include the PEs of

FlutPIM. An arrangement of 32 PEs, along with respective PCUs,

collectively occupy roughly half the bank area. Therefore, these

PEs are fitted within the bank by replacing half (i.e 32 out of 64) of

the total subarrays and the associated circuitry.

Application Benchmarking: We benchmark the performance of

the proposed FlutPIM for CNN inference application which is the

most popular and widely explored application domain for PIM de-

vices [3, 9–12, 15]. Our benchmark consists of a variety of CNN

architectures, including the feed-forward CNNs: AlexNet, VGGNets-

16,19, the Residual CNNs: ResNets-34,50, CNNs with inception lay-

ers: GoogleNet, Inception V3, and a depth-wise separable CNN:

SqueezeNet, evaluated for the widely popular ImageNet dataset.

For each network, the computation workload for the NN layers is

distributed across the PEs inside the banks. This is performed by

adopting the weight-stationary approach in which the activation

matrices are dispatched to the subarrays that also contain the corre-

sponding pre-trained weight matrices. For executing different NN

layers, the activation matrices are relocated across different banks

in the pCH via the bank-group bus.

The results of CNN performance bench-marking are presented

in Figures 3(a) and (b) which respectively demonstrate the max-

imum parallel processing throughput (Image/s) and the energy

consumption for processing each image for 12-bit tinyfloat and 8-

bit fixed-point precision computations. It can be observed that the

tiny float-precision causes only minor degradation of performance

in comparison to the 8-bit precision performance for all the CNNs.

6 COMPARATIVE EVALUATIONS

Comparisonwith FP-Capable Accelerators:We compare FlutPIM

with FP-supported, 3-D stacked memory-based near-bank acceler-

ators, FIMDRAM [18] and DLUX [8]. DLUX combines LUT-based

computing with CMOS logic to support FP computations for AI

Training applications while FIMDRAM processing engines con-

tain multiple (i.e. 16) FP-pipelines to support diverse application

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

DRISA SCOPE LACC This Work

Po
w

er
 C

on
su

m
pt

io
n

(W
)

Al
ex

N
et

Th
ro

ug
hp

ut

(Im
ag

es
/s

)

Throughput (Image/s) Power (W)

Figure 4: Comparison of proposed FlutPIM with several

DRAM-based PIMs for AlexNet acceleration with 8-bit preci-

sion of operations and power consumption.

210

FlutPIM: A Look-up Table-based Processing in Memory Architecture with Floating-point Computation

Support for Deep Learning Applications GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA.

Table 5: Comparison with FIMDRAM

Attributes FIMDRAM FlutPIM

PE Area (mm2) 0.712 (0.045 /ALU) 0.021

ALU to Bank ratio 8:1 32:1

Bank/Channel 16 32

Bank Capacity (MB) 128 64

Operational Precision 16-bit FP 12-bit FP

Datapath-width/bank 64b 8×512b

Compute BW (TB/s) 1-1.29 11.5-26

MAC Throughput (TFlops/s) 1.23 1.44

domains. Unlike FlutPIM, the processing engines of these devices

are prohibitively large for within-the-bank integration, limiting

the datapath between the memory and the processing engine to

the width of the bank I/O bus (64-bit). In contrast, the proposed

FlutPIM architecture integrates significantly smaller PEs within the

banks in large count. For example, the FlutPIM PEs are respectively

33.9× and 19.7× smaller than the FIMDRAM and DLUX processing

engines respectively. Also, the FlutPIM PEs can access data directly

from the subarray PSAs within the bank via local bitlines. This sig-

nificantly cuts down the data access energy (i.e. 90%) [5] compared

to the near-bank accelerators. Moreover, it opens up a remarkably

wider aggregated datapath between the memory and the PEs, as

demonstrated in the side-by-side comparison of FlutPIM with FIM-

DRAM in Table 5. Table 5 also shows that FlutPIM fits a larger

number of PEs/bank and offers higher operational parallelism.

Comparison with Low-Precision PIMs: We compare the perfor-

mance of the proposed FlutPIM with several DIMM-based PIM

accelerators [15] such as DRISA [11], SCOPE [12], and LACC [10]

for 8-bit fixed-point precision computing performances. DRISA

and SCOPE are bitwise parallel processors with very high parallel

throughput while LACC is a LUT-based accelerator that repurposes

memory subarrays for performing multiplications. As presented in

Table 6, this comparison shows that the proposed FlutPIM is the

fastest at MAC operation, at only 11.34ns of latency, and also has the

second lowest power consumption. Therefore, this is significantly

more energy-efficient at computing than the bitwise processor PIMS

(i.e.DRISA and SCOPE) and similarly efficient as LACC. Also, unlike

LACC, FlutPIM does not re-purpose the memory subarrays for com-

puting and therefore has higher on-chip memory capacity which is

essential for executing large-scale, data-intensive applications such

as CNN.

Figure 4 presents a performance comparison of the proposed

FlutPIM with the aforementioned PIMs for the inferences of stan-

dard AlexNet on ImageNet with 8-bit precision in Figure 4 [10]. For

a fairer comparison, we consider a single DIMMDRAM chip with 32

banks for each PIM. It can be observed that both of the LUT-based

PIMs are very power efficient. Also, FlutPIM respectively offers

18.6×, 1.95×, and 1.55× higher energy-efficiency for equivalent

computing performance than DRISA, SCOPE, and LACC.

Table 6: Comparison of PE attributes of DRAM-based PIMs

Device #PEs PE Area PE Power MAC

(mm2) (W) Delay(ns)

DRISA-3T1C 32768 0.001 0.003 1768

DRISA-1T1C-NOR 16384 0.0025 0.006 2110

SCOPE-Vanilla 65536 0.0028 0.0026 56

SCOPE-H2D 65536 0.0029 0.0026 200

LACC 16384 − − − 0.0003 231

FlutPIM 8192 0.021 0.014 11.34

7 CONCLUSIONS
In this work, we present a PIM architecture that supports floating

point (FP)-precision computations within the memory chip by lever-

aging a group of flexible, tiny, programmable look-up tables (LUT).

The proposed computing units are integrated within memory banks

to minimize datapath latency and maximize data bandwidth be-

tween the computation units and the memory. We also adopt and

demonstrate the use of a highly efficient low-precision FP format

for achieving optimal computing performance. Overall, the pro-

posed PIM architecture achieves 20× higher maximum compute

bandwidth than a state-of-the-art memory-centric accelerator using

relatively 2.1× compact equivalent PEs.
ACKNOWLEDGMENT
This work was supported in part by the US National Science Foun-

dation (NSF) CAREER Grant CNS-1553264 and NSF Grant CNS-

2228239.
REFERENCES
[1] 2021. High Bandwidth Memory (HBM)DRAM. JEDEC SOLID STATE TECHNOL-

OGY ASSOCIATION (2021).
[2] A. Nowatzyk et al. 1996. Missing the Memory Wall: The Case for Proces-

sor/Memory Integration. In 23rd Annual International Symposium on Computer
Architecture (ISCA’96). 90–90. https://doi.org/10.1109/ISCA.1996.10008

[3] A. Ramanathan et al. 2020. Look-Up Table based Energy Efficient Processing in
Cache Support for Neural Network Acceleration. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 88–101.

[4] C. Sudarshan et al. 2022. A Critical Assessment ofnbsp;DRAM-PIM Architec-
tures - Trends, Challenges andnbsp;Solutions. In Embedded Computer Systems:
Architectures, Modeling, and Simulation: 22nd International Conference, SAMOS
2022, Samos, Greece, July 3–7, 2022, Proceedings (Samos, Greece). 362–379.

[5] C. Sudarshan et al. 2022. Optimization of DRAM based PIM Architecture for
Energy-Efficient Deep Neural Network Training. In 2022 IEEE International Sym-
posium on Circuits and Systems (ISCAS). 1472–1476.

[6] J. Ferreira et al. 2021. pLUTo: In-DRAM Lookup Tables to Enable Massively Paral-
lel General-Purpose Computation. CoRR abs/2104.07699 (2021). arXiv:2104.07699

[7] M. He et al. 2020. Newton: A DRAM-maker’s Accelerator-in-Memory (AiM)
Architecture for Machine Learning. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 372–385.

[8] P. Gu et al. 2020. DLUX: a LUT-based Near-Bank Accelerator for Data Center
Deep Learning Training Workloads. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (2020), 1–1.

[9] P. Sutradhar et al. 2020. pPIM: A Programmable Processor-in-Memory Archi-
tecture With Precision-Scaling for Deep Learning. IEEE Computer Architecture
Letters 19, 2 (2020), 118–121.

[10] Q. Deng et al. 2019. LAcc: Exploiting Lookup Table-based Fast and Accurate
Vector Multiplication in DRAM-based CNN Accelerator. In 2019 56th ACM/IEEE
Design Automation Conference (DAC).

[11] S. Li et al. 2017. DRISA: A DRAM-based Reconfigurable In-Situ Accelerator.
In 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 288–301.

[12] S. Li et al. 2018. SCOPE: A Stochastic Computing Engine for DRAM-Based
In-Situ Accelerator. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 696–709.

[13] S. Lee et al. 2021. Hardware Architecture and Software Stack for PIM Based
on Commercial DRAM Technology : Industrial Product. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). 43–56.

[14] S. Lee et al. 2022. A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-
Memory supporting 1TFLOPS MAC Operation and Various Activation Functions
for Deep-Learning Applications. In 2022 IEEE International Solid- State Circuits
Conference (ISSCC), Vol. 65. 1–3.

[15] S. Shivanandamurthy et al. 2021. ATRIA: A Bit-Parallel Stochastic Arithmetic
Based Accelerator for In-DRAM CNN Processing. In 2021 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). 200–205.

[16] T. Morgan et al. 2019. Accelerating Compute By Cramming It Into DRAM
Memory. https://www.upmem.com/nextplatform-com-2019-10-03-accelerating-
compute-by-cramming-it-into-dram/

[17] Y. Kim et al. 2012. A case for exploiting subarray-level parallelism (SALP) in
DRAM. In 2012 39th Annual International Symposium on Computer Architecture
(ISCA). 368–379.

[18] Y. Kwon et al. 2021. 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on
HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level
Parallelism, for Machine Learning Applications. In 2021 IEEE International Solid-
State Circuits Conference (ISSCC), Vol. 64. 350–352.

211

