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ABSTRACT

Processing-in-Memory (PIM) has shown great potential for a wide
range of data-driven applications, especially Deep Learning and AL
However, it is a challenge to facilitate the computational sophisti-
cation of a standard processor (i.e. CPU or GPU) within the limited
scope of a memory chip without contributing significant circuit
overheads. To address the challenge, we propose a programmable
LUT-based area-efficient PIM architecture capable of performing
various low-precision floating point (FP) computations using a
novel LUT-oriented operand-decomposition technique. We incorpo-
rate such compact computational units within the memory banks in
a large count to achieve impressive parallel processing capabilities,
up to 4X higher than state-of-the-art FP-capable PIM. Additionally,
we adopt a highly-optimized low-precision FP format that max-
imizes computational performance at a minimal compromise of
computational precision, especially for Deep Learning Applications.
The overall result is a 17% higher throughput and an impressive
8-20x higher compute Bandwidth/bank compared to the state-of-
the-art of in-memory acceleration.
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1 INTRODUCTION

For data-driven and highly memory-intensive applications such
as Deep Learning, the memory bandwidth limitation of traditional
computers has become a major performance bottleneck [2]. Lately,
this phenomenon has motivated a dramatic shift of interest toward
memory-centric processing architectures. Processing in Memory
(PIM) is an emerging memory-centric computing paradigm that
enables massively parallel computing at minimal data-movement
overheads by integrating computing circuitry within the memory
chip itself [7, 8, 16, 18].

Although PIM, to a certain degree, addresses the memory band-
width bottleneck problem faced by traditional high-performance
processors such as Graphical Processing Units (GPUs) and GPU
Computing Processors, it has its own challenges. Memory chips
are traditionally designed with the goal of minimizing power and
design complexity as well as maximizing memory cell density [16].
This essentially limits the level of sophistication of the computing
units that can be incorporated within the memory chip to develop a
PIM system. Nevertheless, recent commercial PIM prototypes such
as the Samsung FIMDRAM [13] and Hynix AiM [7] demonstrate
half-precision floating-point (FP) computation capability on a lim-
ited number of operations. However, such sophistication comes
with the cost of a large area overhead from the computational
units. Overall, there is a noticeable trend of PIM computing units
becoming increasingly larger in the past couple of years [8, 14, 18].

Such a large footprint of computing units inevitably comes with
several disadvantages. First, the number of computing units that
can be incorporated into a memory chip is inversely proportional
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to the footprint of individual units. For example, the UPMEM PIM,
which features large RISC-oriented computing pipelines (DPUs)
[16], can currently locate only eight units of these per chip. Second,
the larger the computing units are, the lengthier is the effective
datapath between the memory cells and the computing unit. Also,
a lengthier datapath implies a narrower data bandwidth available
to the computing units. For example, the near-bank accelerators,
with large computing units, [14, 16, 18] can only access the Bank
I/0 bandwidth. In contrast, the simplest PIMs with logic-on-bit line
processing architecture [11, 12] can expose ‘DRAM page(s)’ of data
at a time to the computing logic located within a bank.

Therefore, a significant design trade-off between the complexity
of the computing unit and the operational parallelism of a PIM
exists. Nevertheless, due to application demands, a large number
of works are gravitating towards sophistication (e.g. FP-precision
computing) at the expense of underutilized data bandwidth and
limited operational parallelism [8, 14, 18]. In this work, we aim to
diverge from this trend and propose an alternative approach that
enables us to optimize computing unit footprint without sacrificing
computational sophistication (i.e. FP-computing capability). In order
to make this possible, we adopt the following strategies:

Strategy 1: To minimize the processing footprint we introduce
a highly efficient, Look-up Table (LUT)-based computing archi-
tecture capable of performing FP-precision. While conventional
LUT-based processing architectures are prone to contributing sig-
nificant area overhead [6, 8, 10], we adopt careful architectural
and data-path designs to overcome this challenge. The proposed
architecture consists of a group of re-writable and interconnected
tiny Look-up Tables (LUT) that can be programmed to perform
multiple logic/arithmetic operations.

Strategy 2: To minimize the datapath length and widen the
effective datapath, the computing units are located within the mem-
ory banks and interfaced to the subarray bitlines. These units can
access data concurrently from neighboring memory subarrays and
collectively access a significantly higher data-bandwidth compared
to the near-bank accelerators.

Strategy 3: To optimize the FP computation overheads, we adopt
‘tiny float’, a highly optimized low-precision FP format that has
been demonstrated to achieve comparable accuracy to full-precision
FP format for Deep Learning applications at a remarkably lower
computing cost [4].

With these goals, we propose FlutPIM, a LUT-based flexible PIM
architecture featuring within-the-bank computing units that sup-
port energy-efficient, low-precision FP arithmetic operations. In this
architecture, complex FP operations (e.g. multiply-and-accumulate
or MAC) are carried out by decomposing the operands into fixed-
size sub-operands and then processing these in multiple stages of
operation across a group of tiny LUTs. By adopting highly-efficient
implementation algorithms that maximize resource utilization and
minimize sequential operational stages, we achieve impressive per-
formance gains. The proposed FlutPIM architecture achieves up
to 20x higher FP computation performance compared to a state-
of-the-art memory-centric accelerator by integrating 4x as many
compact, parallel computing units per memory bank.

2 FLUTPIM ARCHITECTURE
In this work, we propose a LUT-based PIM capable of performing
low-precision FP and fixed-point computations. An overview of
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Figure 1: An overview of the FlutPIM architecture, with
a)bank-level organization of the PEs, b) architecture of the
PE, and c) architecture of a LUT.

the architecture of the proposed FlutPIM is presented in Figure 1.
FlutPIM consists of many computing units/ processing elements
(PE) that are integrated within the memory banks and arranged in
rows of four between pairs of subarrays. We use the term ‘subarray’
to refer to a row of memory cell ‘tiles’ (i.e. 1kx1k cells) in the
horizontal direction that share the same set of global word lines,
and therefore are activated and precharged in lockstep [17]. As
shown in Figure 1(a), each quadruplet of PEs, arranged in a row,
has access to a shared buffer via a common PE bus. The buffer
reads/writes data from/to the primary sense amplifiers (PSA) of
the neighboring subarray pair via a common crossbar. Due to the
proximity of the buffer to the PSAs of the subarrays, a) the memory
access latency can be minimized [4], and b) the crossbar switch can
have a significantly wider bit-width than the bank I/0 bus, resulting
in reduced communication overhead for memory-bound tasks (e.g.
matrix-vector (GEMV) and matrix-matrix (GEMM) multiplications).

Inside each PE, the FP/ fixed-point operations are carried out by
employing a group of tiny, identical LUTs programmed to execute
various constituent logic/arithmetic operations (i.e. multiplication,
addition, bit shifting, comparison, increment/decrement, etc.) with
a view to collectively performing complex operations in multiple
clock stages. As shown in Figure 1(b), a PE contains 9 LUTs, inter-
connected by a router. Additionally, the PE contains a queue for
holding input and output data operands and an internal register
called Accumulator for holding intermediate data/ output during
computations. The router of the PE is a node-to-node interconnect
with 8-bit communication channels, implemented using a crossbar.
It can establish concurrent communications as well as multicast
data across the LUTs inside the PE.

The LUTs inside a PE are programmable and perform any logic/
arithmetic operation on a pair of 4-bit data or a single 8-bit data.
We specifically choose this size of LUT since this combination pro-
vides an optimal balance between overhead and computational
precision required for the desired application. Figure 1(c) shows
the architecture of a LUT which consists of a latch-based 8-bit
2*x2*=256-entry Function Table, indexed with a 256-1 multiplexer.
It can be reprogrammed on-the-fly via the PE bus to support dif-
ferent logic/arithmetic operations. By programming the LUTs in
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Figure 2: Step-wise execution scheme of different stages of
multiply-and-accumulate (MAC) operation with tinyfloat-
12 precision: (a) Multiplication of two operands, a and b,
(b) Normalization of the product, and (c) Addition of two
operands, a and b. The Normalization following the addition
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routing patterns among these LUTs via the router, various FP and
fixed-point operations can be implemented, discussed in section 3.
3 OPERATIONS EXECUTION DATAFLOW

The Al training and inferences applications are essentially trans-
lated into a set of large matrix and vector multiplications (i.e. GEMV
and GEMM) consisting of repeated MAC operations. This makes
MAC the most frequently appearing arithmetic operation in these
workloads. In this section, we present and discuss the implemen-
tation of the MAC operation with tinyfloat-12 precision in detail.
The proposed PE can also support 8-bit MAC as well as other oper-
ations such as max-pooling, average pooling, and ReLU activation
via reprogramming of the LUTs.

The tinyfloat-12 consists of a sign bit, a 4-bit unsigned mantissa,
and a 7-bit exponent [4]. The MAC operation is performed in four
distinct stages: multiplication, normalization of the product, accu-
mulation (i.e. recursive addition of products), and normalization of
the accumulation. To perform these operations, the LUTs are to be
programmed in a specific pattern. The LUT functionalities and the
step-wise execution scheme for the MAC operation are shown in
Figure 2 and discussed in detail below.

LUT Functionalities: The LUTs operate on a pair of 4-bit data or
a single 8-bit data and generate an 8-bit output. The 9 LUTs are
programmed to perform the following logic/arithmetic operations
in order to perform a tinyfloat-12 MAC operation. For perform-
ing multiplication, two Adder LUTs and one Multiplier LUTs are
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Table 1: Truth Table for Mantissa and Exponent Normalizer

Mantissa Normalized Mantissa Exponent Inc./Dec.
00001 1000 0111 1101
0 001x 1x00 0111 1110
0 01xx 1xx0 0111 1111
0 1xxx 1xxx 0000 0000
1 xxxx 1xxx 0000 0001

required. Both the Adder and the Multiplier LUTs operate on a
pair of 4-bit inputs and generate one 8-bit output. Normalization
of a tinyfloat number requires two Adder LUTs, alongside a) a
Mantissa Normalizer LUT that shifts the mantissa such that the
MSB is a ‘1’, and b) an Exponent Normalizer LUT that adjusts (i.e.
increments/decrements) the 7-bit exponent corresponding to the
adjustment made to the mantissa. For tinyfloat addition, two Adder
LUTs are required, along with a) a Sign Flip LUT that changes the
sign of the input value by multiplying it by -1, b) a Shift Rectifier
LUT that leverages the difference of exponents of two inputs to
generate the shift-value for the mantissa, c) a 4-bit Shifter LUT that
utilizes the output of the Shift Rectifier LUT in order to shift the
Mantissa by 0-4 bit positions, and d) an 8-bit 2’s Complement LUT.
The functionalities of the Mantissa Normalizer LUT, and the Expo-
nent Normalizer LUTs are shown in Table 1, and the functionality of
the Shift Rectifier LUT is shown in Table 2. The LUT-functionalities
are identified with unique color codes in Figure 2.
Multiplication: This step involves the multiplication of both the
mantissa and the exponents of the FP operands (A and B), as shown
in Figure 2(a). Since the LUTs only operate on 4-bit data, the 7-bit
exponents are split into a pair of 4-bit sub-operands and added with
the aid of two Adder LUTs. This addition is then adjusted for bias.
Meanwhile, the 4-bit mantissa is multiplied using a 4-bit multiplier.
The Multiplier LUT is programmed such that it does not generate
the four least-significant bits of the product and instead appends
the overflow bit to the product in order to aid the normalization
stage that follows multiplication.
Normalization: This stage involves appropriate shifting of the
mantissa such that the MSB contains a ‘1’. Therefore, the man-
tissa undergoes respectively a right-shift and a left-shift for over-
flow and underflow. This is paired with a corresponding incre-
ment/decrement of the exponent, as shown in Figure 2(b). The
Exponent Normalizer LUT determines the increment/decrement
value for the exponent, which is then added to the original exponent
value via a pair of Adder LUTs.
Accumulation: FP addition operation, shown in Figure 2(c), re-
quires the adjustment of exponents. In order to perform this, the
exponent of operand B is subtracted from the exponent of operand
A. The subtraction is carried out via multiplication by -1, followed
by addition. Next, the difference of the exponents is translated into
a shift-value by the Shift Rectifier LUT, which is utilized by the 4-bit
Shifter LUT to shift the mantissa of B. Both mantissas are then sign-
extended via a 2’s Complement LUT and added using two Adder
LUTs to generate the accumulation. Finally, the accumulation also
undergoes the Normalization stage of Figure 2(b).

The multiplication, normalization, and accumulation steps of

the tinyfloat-12 MAC operation can be performed together in 19
Table 2: Truth Table for Shift Rectifier

Cases Shift-Value Cases Shift-Value
AB>4 4(Right) || -4<AB<0 B-A (Left)
0<AB<4 A-B(Right) AB<-4 4 (Left)
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Table 3: Attributes of various FlutPIM components

Component Latency Clock Power Area
(nS) (GHz) (mW) (mm?)

LUT 0.63 1.59 0.93/0.45 (Dyn./Leak) 0.002

PE 11.34 (MAC) 1.59 13.77 0.021
PCU 0.392 1.59 0.079 0.0005

clock cycles. Alongside this, FlutPIM can also support other opera-
tions such as max-pooling and ReLU Activation Function. Further,
these operations can be also performed with 8-bit fixed-point data-
precision without any modification to the PE architecture. How-
ever, since similar implementation techniques have already been
explored in prior works [9], we only discuss the performance eval-
uation of the proposed FlutPIM architecture for 8-bit fixed point
alongside the 12-bit FP precision computations in Section 5.

4 CONTROL ARCHITECTURE

The PEs within each Bank is controlled by a Bank Controller Unit
(BCU) that performs the task of decomposing and scheduling op-
erational instructions and the pertinent data to the PEs across the
bank. Alongside, each PE is equipped with a low-level PE Controller
Unit (PCU) that decodes and executes operational instructions sent
from the BCU. The PCU consists of an instruction decoder and a
micro-coded control signal generator that coordinates the dataflow
in the I/O registers as well as implements the clock-wise data rout-
ing patterns required for performing a specific operation (e.g. the
MAC operation discussed in section 3).

5 EXPERIMENTAL RESULTS

Experiment Setup: The PEs and the PCU of FlutPIM were designed
and verified in the HDL environment. The device parameters are
reported in the 20nm technology node and are obtained from ASIC
physical synthesis performed using the Synopsys Design Compiler
tools. The synthesis was performed in compliance with memory
chip specifications, e.g. only four metal layers were utilized in the
synthesis of the PEs. Various attributes of the PIM components
obtained from the synthesis are presented in Table 3.

Hardware Configurations: The PEs of the proposed FlutPIM are
to be integrated within the banks of a memory organization which
makes it highly modular. Therefore FlutPIM can be incorporated
in various memory architectures such as the 2-D Dual Inline Mem-
ory Module as well as 3-D stacked platforms such as HMC and
HBM/HBM2. The key difference between the DIMM and the 3-D
stacked configurations is in the significantly higher global I/O bus
bandwidth for the 3-D stacked memory banks which enables faster
data relocation within bank groups. We present an overview of
the integration of the FlutPIM architecture in the HBM2 memory
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Figure 3: Performance benchmark of the proposed FlutPIM
architecture for various CNN algorithms using tinyfloat and
8-bit precisions of computations, presented in terms of a)
processing throughput (Images/s) and processing energy for
individual images (Joule) of the ImageNet dataset.
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Table 4: Specification of the HBM2-based FlutPIM

Attributes Values

# PE/Bank 4x8=32
# Subarrays/Bank w/PEs 32
Bank Capacity w/PEs (MB) 64
# Bank/Channel 32
# Channels 8
Max. Power/Die (W) 30

organization in Table 4. HBM2 consists of multiple DRAM dies
stacked vertically with a base logic die and interconnected via a
large number of high-speed TSVs [1]. Similar to Samsung’s FIM-
DRAM [18], we consider an 8Hi-stack with 4-stacks repurposed as
FlutPIM. FlutPIM is distributed across eight memory channels that
are further split into a pair of pseudo channels (pCH). Each pCH
consists of sixteen banks that are modified to include the PEs of
FlutPIM. An arrangement of 32 PEs, along with respective PCUs,
collectively occupy roughly half the bank area. Therefore, these
PEs are fitted within the bank by replacing half (i.e 32 out of 64) of
the total subarrays and the associated circuitry.

Application Benchmarking: We benchmark the performance of
the proposed FlutPIM for CNN inference application which is the
most popular and widely explored application domain for PIM de-
vices [3, 9-12, 15]. Our benchmark consists of a variety of CNN
architectures, including the feed-forward CNNs: AlexNet, VGGNets-
16,19, the Residual CNNs: ResNets-34,50, CNNs with inception lay-
ers: GoogleNet, Inception V3, and a depth-wise separable CNN:
SqueezeNet, evaluated for the widely popular ImageNet dataset.
For each network, the computation workload for the NN layers is
distributed across the PEs inside the banks. This is performed by
adopting the weight-stationary approach in which the activation
matrices are dispatched to the subarrays that also contain the corre-
sponding pre-trained weight matrices. For executing different NN
layers, the activation matrices are relocated across different banks
in the pCH via the bank-group bus.

The results of CNN performance bench-marking are presented
in Figures 3(a) and (b) which respectively demonstrate the max-
imum parallel processing throughput (Image/s) and the energy
consumption for processing each image for 12-bit tinyfloat and 8-
bit fixed-point precision computations. It can be observed that the
tiny float-precision causes only minor degradation of performance
in comparison to the 8-bit precision performance for all the CNNs.

6 COMPARATIVE EVALUATIONS

Comparison with FP-Capable Accelerators: We compare FlutPIM
with FP-supported, 3-D stacked memory-based near-bank acceler-
ators, FIMDRAM [18] and DLUX [8]. DLUX combines LUT-based
computing with CMOS logic to support FP computations for Al
Training applications while FIMDRAM processing engines con-

tain multiple (i.e. 16) FP-pipelines to support diverse application
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Figure 4: Comparison of proposed FlutPIM with several
DRAM-based PIMs for AlexNet acceleration with 8-bit preci-
sion of operations and power consumption.
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Table 5: Comparison with FIMDRAM

Attributes FIMDRAM FlutPIM
PE Area (mm?) 0.712 (0.045 /ALU) 0.021
# ALU to Bank ratio 8:1 32:1
# Bank/Channel 16 32
Bank Capacity (MB) 128 64
Operational Precision 16-bit FP 12-bit FP
Datapath-width/bank 64b 8x512b
Compute BW (TB/s) 1-1.29 11.5-26
MAC Throughput (TFlops/s) 1.23 1.44

domains. Unlike FlutPIM, the processing engines of these devices
are prohibitively large for within-the-bank integration, limiting
the datapath between the memory and the processing engine to
the width of the bank I/O bus (64-bit). In contrast, the proposed
FlutPIM architecture integrates significantly smaller PEs within the
banks in large count. For example, the FlutPIM PEs are respectively
33.9% and 19.7Xx smaller than the FIMDRAM and DLUX processing
engines respectively. Also, the FIutPIM PEs can access data directly
from the subarray PSAs within the bank via local bitlines. This sig-
nificantly cuts down the data access energy (i.e. 90%) [5] compared
to the near-bank accelerators. Moreover, it opens up a remarkably
wider aggregated datapath between the memory and the PEs, as
demonstrated in the side-by-side comparison of FlutPIM with FIM-
DRAM in Table 5. Table 5 also shows that FlutPIM fits a larger
number of PEs/bank and offers higher operational parallelism.
Comparison with Low-Precision PIMs: We compare the perfor-
mance of the proposed FlutPIM with several DIMM-based PIM
accelerators [15] such as DRISA [11], SCOPE [12], and LACC [10]
for 8-bit fixed-point precision computing performances. DRISA
and SCOPE are bitwise parallel processors with very high parallel
throughput while LACC is a LUT-based accelerator that repurposes
memory subarrays for performing multiplications. As presented in
Table 6, this comparison shows that the proposed FlutPIM is the
fastest at MAC operation, at only 11.34ns of latency, and also has the
second lowest power consumption. Therefore, this is significantly
more energy-efficient at computing than the bitwise processor PIMS
(i.e. DRISA and SCOPE) and similarly efficient as LACC. Also, unlike
LACC, FlutPIM does not re-purpose the memory subarrays for com-
puting and therefore has higher on-chip memory capacity which is
essential for executing large-scale, data-intensive applications such
as CNN.

Figure 4 presents a performance comparison of the proposed
FlutPIM with the aforementioned PIMs for the inferences of stan-
dard AlexNet on ImageNet with 8-bit precision in Figure 4 [10]. For
a fairer comparison, we consider a single DIMM DRAM chip with 32
banks for each PIM. It can be observed that both of the LUT-based
PIMs are very power efficient. Also, FlutPIM respectively offers
18.6%, 1.95%, and 1.55% higher energy-efficiency for equivalent
computing performance than DRISA, SCOPE, and LACC.

Table 6: Comparison of PE attributes of DRAM-based PIMs

Device #PEs PE Area PE Power MAC
(mm?) (W) Delay(ns)

DRISA-3T1C 32768 0.001 0.003 1768
DRISA-1T1C-NOR 16384 0.0025 0.006 2110
SCOPE-Vanilla 65536 0.0028 0.0026 56
SCOPE-H2D 65536 0.0029 0.0026 200
LACC 16384 - == 0.0003 231

FlutPIM 8192 0.021 0.014 11.34
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7 CONCLUSIONS

In this work, we present a PIM architecture that supports floating
point (FP)-precision computations within the memory chip by lever-
aging a group of flexible, tiny, programmable look-up tables (LUT).
The proposed computing units are integrated within memory banks
to minimize datapath latency and maximize data bandwidth be-
tween the computation units and the memory. We also adopt and
demonstrate the use of a highly efficient low-precision FP format
for achieving optimal computing performance. Overall, the pro-
posed PIM architecture achieves 20X higher maximum compute
bandwidth than a state-of-the-art memory-centric accelerator using

relatively 2.1x compact equivalent PEs.
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