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We derive interface models for three-dimensional Rayleigh–Taylor instability (RTI),
making use of a novel asymptotic expansion in the non-locality of the fluid flow. These
interface models are derived for the purpose of studying universal features associated with
RTI such as the Froude number in single-mode RTI, the predicted quadratic growth of
the interface amplitude under multi-mode random perturbations, the optimal (viscous)
mixing rates induced by the RTI and the self-similarity of horizontally averaged density
profiles and the remarkable stabilization of the mixing layer growth rate which arises for
the three-fluid two-interface heavy–light–heavy configuration, in which the addition of
a third fluid bulk slows the growth of the mixing layer to a linear rate. Our interface
models can capture the formation of small-scale structures induced by severe interface
roll-up, reproduce experimental data in a number of different regimes and study the
effects of multiple interface interactions even as the interface separation distance becomes
exceedingly small. Compared with traditional numerical schemes used to study such
phenomena, our models provide a computational speed-up of at least two orders of
magnitude.

Key words: interfacial flows (free surface), mixing, vortex flows

1. Introduction
Rayleigh–Taylor instability (RTI) occurs when the interface between two fluids of different
density is subjected to a normal pressure gradient. When a fluid undergoes RTI, vorticity
is deposited on the material interface separating the two fluids. This interface vorticity
then initiates the Kelvin–Helmholtz instability (KHI), which causes the interface to
roll-up into extremely complex shapes. The RTI is fundamental to a wide variety of
complex physical processes, and is often coupled to the effects of electromagnetism,
gravity, reaction chemistry or combustion, as well as the effects of shock waves and
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Richtmyer–Meshkov instability. For a comprehensive review of the state of the art in the
theory, computation and application of RTI, see the two-part review of Zhou (2017a,b).

Our objective is the analysis and quantification of certain universal aspects of RTI by a
novel derivation and implementation of reduced-order interface models. Specifically, we
wish to make use of the dimensional reduction afforded by irrotational, incompressible
and inviscid fluids, coupled to an asymptotic expansion in the non-locality of the flow to
derive accurate models of complex interface motion, which allow for roll-up, small-scale
structure formation, multiple interface interaction and stratification and viscous mixing
via ensemble averaging of large sets of randomly initialized inviscid RTI runs. There
are certain universal features associated with the RT instability that have been discovered
experimentally, derived analytically by turbulence closure models, or established via direct
numerical simulation (DNS) which are fundamental to our understanding of turbulence.
We are particularly interested in the universality of (a) the Froude number for bubble
growth under a single-mode RT instability which, in turn, implies that the asymptotic
bubble velocity depends only bubble size; (b) the theoretically and experimentally
predicted quadratic growth rate of the interface amplitude under random multi-mode
perturbations; (c) the optimal (viscous) mixing rates induced by the RT instability, and the
self-similar evolution of horizontally averaged density profiles; (d) the persistent formation
of small-scale features due to multiple fluid interface interactions; and finally (e) the
remarkable self-similar stabilization of the mixing layer growth rate which arises for the
three-fluid two-interface heavy–light–heavy configuration, in which the addition of a third
fluid bulk slows the growth of the mixing layer to a linear rate (as opposed to the standard
quadratic growth rate for two fluid RTI).

Historically, early studies of RTI focused on the development of single-mode
perturbations of a flat interface, and studied questions concerning the nonlinear growth
of these perturbations and their long-time behaviour (Wilkinson & Jacobs 2007). For
instance, the asymptotic bubble/spike velocity of single-mode RTI appears to be a
universal feature of bubbly flows, depending only on the size of the bubble, although
there is some evidence of ‘re-acceleration’ of bubbles at very late times (Ramaprabhu
et al. 2006). For many engineering and physics applications, the quantification of the
growth of the mixing layer and the rate of fluid mixing in RTI-driven turbulence is of
fundamental importance (Sharp 1984). For example, the growth of the mixing layer in
turbulent RTI has been an area of intense study for decades, starting with Read (1984).
The growth of the interface amplitude is the natural quantity to measure in a variety
of experimental settings, exhibiting a universal quadratic growth rate at long times due
to nonlinear mode interactions, as well as a self-similar scaling of the density profile
(Boffetta, De Lillo & Musacchio 2010). However, interesting questions remain about the
dependence of the non-dimensional growth-rate parameter upon the spectrum of the initial
perturbation (Ristorcelli & Clark 2004), so that a correct prediction of this growth rate is
essential to the study of RTI. In practical terms, this predicted amplitude growth rate is
a measure of the growth of the mixing layer in the case that fluids have viscosity. It is
of paramount interest to understand how fast multiple fluids mix under the action the RT
interface instability. This rate can be quantified by the so-called ‘mix norms’ which are
defined in Lin, Thiffeault & Doering (2011). Therein, it was shown that for passive scalar
transport by a specially constructed (shear-type) transport velocity, optimal mixing occurs
in the sense of exponentially fast convergence to the scalar average. While no theorems as
yet exist for the case of mixing by the Navier–Stokes equations (or any other fluid equations
for that matter), there is also very little numerical evidence of optimal mixing under RTI.
The development of our reduced-order interface models is intended for the study of these
fundamental behaviours.
959 A10-2
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Interface models for 3-D Rayleigh–Taylor instability

Well-known reduced-order models which have been used to study the interface growth
rate under RTI are the Haan and Goncharov models, which approximate single-mode
and multi-mode initial perturbations, respectively (Haan 1989; Goncharov 2002). All the
aforementioned models assume that the interface remains a graph; as such, these models
have limited accuracy and predictive capabilities beyond the linear stage of the interface
motion (see Rollin & Andrews 2013).

Herein, we shall derive interface models for the RTI by a suitable approximation of
the multi-phase irrotational and incompressible Euler equations. Specifically, with the
aim of preserving the geometric complexity of RTI, we do not use traditional asymptotic
assumptions of smallness in either amplitude or slopes. Instead, we use an asymptotic
expansion of the interaction potential between interfacial particle positions to derive
reduced-order approximations of the Euler equations, with a general parametrization
which allows for interface turnover and roll-up. This process results in three interface
models for Rayleigh–Taylor problems which we shall refer to as z-models. These
three z-models are non-local evolution equations for the interface parametrization z =
(z1, z2, z3) and the vortex sheet density on the interface µ = (µ1, µ2). The velocity is
then obtained by Laplacian inversion via an approximation of the Birkhoff–Rott singular
integral kernel. Our z-models are presented in what we term low-order, medium-order and
high-order variants, corresponding to the amount of non-locality each model retains from
the original Euler system. We note that our initial derivation of the z-models are for a
two-phase flow with one material interface, but we shall also provide a generalization to
the case of n fluid interfaces with n ≥ 1.

After deriving the z-models using our asymptotic method in non-locality, we present a
simple numerical discretization, which runs two orders of magnitude faster than traditional
numerical methods for the Euler equations, and use it to study universality in RTI.
We begin with single-mode RTI and compute the evolution of the bubble and spike
Froude numbers, dimensionless quantities measuring the ratio of inertial to gravitational
effects on RT bubble and spike motion. Then we reproduce results from the classical
‘rocket rig’ experiments of Read (1984) and Youngs (1984), on the growth rate of
turbulent RT mixing layers, and compare against the more recent models for mixing
layer development of Ristorcelli & Clark (2004) and Cabot & Cook (2006). Due to
the speed of our model, we are able to quickly compute ensemble-averaged quantities
such as the density field, and we show that this closely matches the self-similar density
distribution computed from a so-called Prandtl closure model. In addition, using the
standard mixing norms introduced in Mathew, Mezić & Petzold (2005), we demonstrate
that the ensemble-averaged density field (associated with many simulations initiated
with randomly perturbed data) reproduces optimal mixing rates for a passive scalar, a
property which has only been proven for specially chosen (shear-type) transport velocities
(Thiffeault 2012). Finally, as we noted above, we generalize our z-model to allow for
multiple fluid interfaces and use this to corroborate experimental evidence from Jacobs
& Dalziel (2005) on the self-similarity of the species fraction profile in three-phase fluid
problems, which in turn shows that the presence of multiple fluid layers has an important
effect on the long-time growth of the mixing layer.

1.1. Outline
In § 2, we motivate and derive a class of interface models using a new type of
asymptotic expansion in non-locality. In § 2.1, we formulate the two-phase irrotational
and incompressible Euler equations as a system of singular integral equations for the fluid
interface parameterization and the vorticity measure on the interface. In § 2.2, we outline
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the difficulty of numerically simulating the boundary integral formulation of the Euler
equations, and explain the need for simplified models for interface evolution in RTI. In
§ 2.3, we compute the leading-order terms in an asymptotic expansion of the Birkhoff–Rott
kernel, and derive the so-called lower-order z-model, which is a fast modal model for
interface evolution in RTI which allows for interface turnover. In § 2.4, we introduce the
medium- and higher-order z-models, which are modifications of the lower-order z-model
which include increasing amounts of non-locality from the original Euler system. Finally,
in § 2.5, we perform some basic analysis indicating that the modifications we have made
in formulating the z-models are appropriate for the regime under consideration.

In § 3, we describe a numerical discretization of the z-models, and validate our
models against a variety of classical Rayleigh–Taylor test problems. In § 3.1, we
describe our numerical method, and demonstrate its large-scale convergence properties
in § 3.2. We validate our model against experiments initialized with both single-mode
initial data (§ 3.3) as well as random multi-mode initial data (§ 3.4). In § 3.5, we
compute ensemble-averaged quantities from many z-model runs using data with random
fluctuations, and demonstrate that we are able to model viscous mixing layers with optimal
mixing rates. In § 3.5, we use a so-called Prandtl closure model to produce a self-similar
solution for the density profile, and show that it compares well with results from our
z-model. In § 3.6, we use our z-model to study stratified flows containing unstable density
interfaces, and demonstrate self-similarity in the ensemble-averaged species fraction
profile.

2. Interface models
When the fluids are inviscid, incompressible and irrotational in their respective bulks, the
three-dimensional (3-D) Euler equations can be written as boundary integral equations
involving only the interface position and the vortex sheet density on the interface. In
three dimensions, these non-local integral equations were first derived and simulated
by Baker, Meiron & Orszag (1984), following the earlier derivation by Birkhoff (1962)
and Rott (1956) for vortex sheets in 2-D flows. We consider two immiscible, inviscid,
incompressible, irrotational fluids occupying two open volumes Ω+(t) and Ω−(t) in R3,
separated by a time-dependent material interface Γ (t), where t denotes time. The evolution
of the fluid is restricted to a time interval 0 ≤ t ≤ T , and is modelled by the incompressible
and irrotational Euler equations, which can be written as

ρ±(∂tu± + u± · ∇u±) + ∇p± = −gρ±e3,
∂tρ

± + u± · ∇ρ± = 0,

}
in Ω±(t), 0 < t ≤ T, (2.1)

with the constraints that

div u± = 0 and curl u± = 0, in Ω±(t), 0 ≤ t ≤ T. (2.2)

The initial interface Γ (0) is specified and hence so too are the initial domainsΩ±(0), and
initial conditions for velocity and density are given:

u±(x, 0) = ◦u±
(x), ρ±(x, 0) = ◦

ρ
±
(x) in Ω±(0). (2.3)

Here, u± denotes the velocity and p± denotes the pressure in Ω±(t), while g represents
the gravitational acceleration and the unit vector e3 = (0, 0, 1). We assume constant initial
density functions ρ± inΩ±(0), which implies that ρ± remain constant functions inΩ±(t).
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Interface models for 3-D Rayleigh–Taylor instability

Our focus is on flows in which Γ (t) denotes a vortex sheet, and hence we supplement the
Euler equations with the following jump conditions on Γ (t):

[[p]] = 0
[[u · n]] = 0

}
, for 0 ≤ t ≤ T, (2.4a)

where n denotes the unit normal to Γ (t), and [[ f ]] = f + − f − on Γ (t). In this manuscript
we restrict our attention to flows where surface tension is negligible, but in general the
condition [[p]] = 0 is replaced by the Young–Laplace law [[p]] = 4σH, where σ is the
coefficient of surface tension and H is the mean curvature of the interface Γ (t). We assume
that ρ+ /= ρ− so that

[[ρ]] /= 0, on Γ (t), for 0 ≤ t ≤ T. (2.4b)

Because of (2.4a) and (2.4b), even if ◦u+ = ◦u− on Γ (0), the tangential component of
velocity becomes discontinuous across Γ (t) and we have that

[[u · τα]] /= 0, on Γ (t), for 0 < t ≤ T, α = 1, 2. (2.4c)
Here, τ 1 and τ 2 are the unit tangent vectors to Γ (t), chosen such that (τ 1, τ 2, n) form a
right-handed orthonormal basis. To complete the description of the dynamics, the motion
of the interface Γ (t) is governed by the normal component of the fluid velocity. Letting
V(Γ (t)) denote the normal speed of the interface,

V(Γ (t)) = u · n. (2.5)
Let (x1, x2, x3) denote the standard Euclidean coordinates on R3, and let (s1, s2) denote

coordinates on R2, used to parameterize Γ (t). Specifically, the time-dependent interface
Γ (t) is parametrized by a smooth function z : R2 × [0, T] → R3 and

Γ (t) = {z(s1, s2, t) : (s1, s2) ∈ R2, t ∈ [0, T]}, z = (z1, z2, z3). (2.6)
We use Latin indices for coordinates in Euclidean space, and Greek indices for coordinates
on Γ (t), and we will apply Einstein’s summation convention without further comment.
Euclidean space is endowed with the standard diagonal metric δij, and the induced metric
on Γ (t) is given by

h = hαβdsα ⊗ dsβ , hαβ = ∂αz · ∂βz. (2.7a,b)
We set

|h| = det h,
√

h =
√

det h. (2.8a,b)
With respect to the parameterization (2.6), the time-dependent unit normal is given by

n = ∂1z × ∂2z√
h

. (2.9)

As noted above, we assume that the vorticity vanishes in the open setsΩ+(t) andΩ−(t),
but on the material interface Γ (t), the tangential component of velocity experiences a
jump discontinuity, resulting in a vorticity measure ω(s, t) concentrated on the interface.
The velocity in Ω+(t) ∪Ω−(t) is computed from this vorticity measure using the
Birkhoff–Rott integral

u(x, t) = 1
4π

¨
R2

ω(s, t) × x − z(s, t)
|x − z(s, t)|3

ds, (2.10)

where
ω = ωα∂αz, (2.11)

and ωα , α = 1, 2 denote the components of the vorticity measure with respect to the
basis ∂αz. To be more precise, ω(s, t) = ω(s1, s2, t) denotes the the vortex sheet density
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and is often referred to as the amplitude of vorticity or simply the vorticity measure on
Γ (t). When evaluated on Γ (t) (or equivalently, along the parameterization z(s, t)), the
Birkhoff–Rott integral exists in the principal value sense, and gives the average velocity

ū = 1
2 (u+ + u−) ◦ z, (2.12)

where the ‘◦’ denotes composition. In particular, by choosing the Lagrangian
parameterization z(s, t) such that ∂tz(s, t) = 1

2(u+ + u−)(z(s, t), t) with z(s, 0) = s1e1 +
s2e2, we have that

∂tz(s, t) = ū(s, t) := 1
4π

¨
R2

ω(s′, t) × z(s, t) − z(s′, t)
|z(s, t) − z(s′, t)|3

ds′, (2.13)

where s′ is a dummy variable for integration. Let us remark that, according to (2.5), it
is only the normal component of u that determines the shape of Γ (t), and there exists
an infinite-dimensional tangential reparameterization symmetry of the interface which
does not change its shape. This means that a different parameterization z(s, t) such that
∂tz · n(z, t) = ū(z, t) · n(z, t) but ∂tz · τα(z, t) /= ū(z, t) · τα(z, t) would provide the same
shape for Γ (t), but would alter the distribution of particles along the interface. For our
purposes, the Lagrangian parameterization (2.13) is a convenient choice, as the resulting
evolution equation (2.32b) takes a particularly simple form.

We may write the vorticity measure ω on Γ (t) in terms of the velocity jump

w = (u+ − u−) ◦ z (2.14)

in the form
ω = (w · ∂2z)∂1z − (w · ∂1z)∂2z, (2.15)

so that w · ∂2z = ω · ∂1z and w · ∂1z = −ω · ∂2z. Some of the difficulty of vortex methods
stem from the computation of the Birkhoff–Rott velocity; specifically, a straightforward
numerical quadrature results in chaotic motion of the interface (Krasny 1986b). Let us
describe our method of evaluation. Equation (2.13) may be rewritten as

ū(s, t) =
¨

R2
ω(s′, t) × ∇G(z(s, t) − z(s′, t)) ds′, (2.16)

where G(x) = (4π|x|)−1 is the fundamental solution of the Laplacian in R3. Note that
(2.10) is defined everywhere in the bulkΩ+(t) ∪Ω−(t) and has arguments (x1, x2, x3, t) ∈
R3 × [0, T], while (2.13) is well defined on the interface Γ (t) and has arguments
(s1, s2, t) ∈ R2 × [0, t]. To avoid the singularity in the integral (2.16), we replace G by
a regularized function

Gε(x) = 1

4π
√
ε2 + |x|2

, (2.17)

where ε > 0 and Gε converges weakly to G as ε → 0. This results in the regularized
Birkhoff–Rott velocity

ūε(s, t) = 1
4π

¨
R2

ω(s′, t) × z(s, t) − z(s′, t)
(ε2 + |z(s, t) − z(s′, t)|2)3/2 ds′. (2.18)

This particular regularization was chosen for algebraic simplicity and falls under the
well-known umbrella of vortex blob methods (see, for example, Krasny 1986a).
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Interface models for 3-D Rayleigh–Taylor instability

These are methods where the standard Green’s function, satisfying+G = δ, is replaced
with a regularized Green’s function satisfying

+Gε(x) = ψε(x) := 1
ε3ψ

(x
ε

)
, (2.19)

whereψ is a smooth, non-negative function with most of its mass near zero and
´

R3 ψ = 1.
This kind of regularization has the effect of replacing a singular vorticity distribution
ω(x) = ω0δ(x − x0) with a smooth ‘vortex blob’ of finite size ω(x) = ω0ψ

ε(x − x0). For
our choice of regularization,

ψ(x) = 3
4π

1
(1 + |x|2)5/2 . (2.20)

With this regularization employed, we may evaluate ūε with any standard 2-D quadrature
method. This allows us to obtain arbitrarily high-order spatial discretizations.

The regularization applied here represents averaging over a length of size ε, and has
the effect of replacing an infinitely thin vortex sheet with a vortex sheet of finite width
proportional to ε. In particular, discontinuous quantities like the density ρ are replaced by
ρ ∗ ψε , and the interface Γ (t) represents the contour of volume fraction 1/2, which has the
effect of damping instability in the interface position at scales smaller than ε. In the event
of a mixing transition to a space-filling vorticity field, the interface still makes sense as the
contour of volume fraction 1/2. In the high Reynolds number limit, the instability takes
place simultaneously at all scales down to the molecular, and is self-similar in the sense
that the instability appears the same at every scale. Thus, by setting our regularization
parameter ε, we allow the vorticity to be space filling at scales ∝ ε, which smears out the
instability at length scales λ. ε while maintaining an accurate picture at scales λ/ ε.
For example, to simulate RTI in cloud formation as viewed from many kilometres away,
one might set ε ∼ 1 km and achieve accurate results, despite the fact that the instability is
taking place at all scales simultaneously.

2.1. The irrotational and incompressible Euler equations
Thanks to the irrotationality of the two fluids, we may write the velocities u± in Ω±(t) in
terms of velocity potentials, u± = ∇ϕ±, where ϕ± are governed by Bernoulli’s law

∂tϕ
+ + 1

2 |u+|2 + gx3 = − p+

ρ+ , in Ω+(t),

∂tϕ
− + 1

2 |u−|2 + gx3 = − p−

ρ− , in Ω−(t),




 (2.21)

and where (we recall that) p± denotes the pressure functions, ρ± denotes the density
functions and g denotes the gravitational acceleration. We assume that the two fluids
have infinite extent, so that Ω+(t) ∪ Γ (t) ∪Ω−(t) = R3. The jump conditions on Γ (t)
associated with (2.21) are given by (2.4).

To determine how the potential jump ϕ+ − ϕ− varies along Γ (t), we compose (2.21)
with the parameterization z and apply the chain rule

∂t((ϕ
+ − ϕ−) ◦ z) = (∇ϕ+◦z − ∇ϕ−◦z) · ∂tz + ∂t(ϕ

+ − ϕ−) ◦ z

= w · ū + ∂t(ϕ
+ − ϕ−) ◦ z, (2.22)

∂t((ϕ
+ + ϕ−) ◦ z) = (∇ϕ+◦z + ∇ϕ−◦z) · ∂tz + ∂t(ϕ

+ + ϕ−) ◦ z

= 2|ū|2 + ∂t(ϕ
+ + ϕ−) ◦ z. (2.23)
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Here, w = u+ − u− is the velocity jump on Γ (t). Note that ū, defined by (2.16), and w are
well defined on Γ (t), and are thus functions of (s1, s2) and t. We introduce the Atwood
number

A = ρ+ − ρ−

ρ+ + ρ− . (2.24)

By using (2.4a), we write
(

p+

ρ+ − p−

ρ−

)
+ A

(
p+

ρ+ + p−

ρ−

)
= (A + 1)

p+

ρ+ + (A − 1)
p−

ρ− = 2
p+ − p−

ρ+ + ρ− = 0.

(2.25)
Using (2.21)–(2.25) and the identity

|u±|2 =
∣∣∣ū ± 1

2 w
∣∣∣ = |ū|2 ± ū · w + 1

4 |w|2, (2.26)

we find that, along Γ (t),
(

p+

ρ+ − p−

ρ−

)
◦ z = (∂t(ϕ

+ − ϕ−) + 1
2(|u+|2 − |u−|2)) ◦ z = ∂t((ϕ

+ − ϕ−) ◦ z),

(2.27a)
(

p+

ρ+ + p−

ρ−

)
◦ z = (∂t(ϕ

+ + ϕ−) + 1
2(|u+|2 + |u−|2)) ◦ z + 2gz3

= ∂t((ϕ
+ − ϕ−) ◦ z) − |ū|2 + 1

4 |w|2 + 2gz3. (2.27b)

Substitution of (2.27) into (2.25) results in

∂t((ϕ
+ − ϕ−) ◦ z) + A∂t((ϕ

+ + ϕ−) ◦ z) + A(−|ū|2 + 1
4 |w|2 + 2gz3) = 0. (2.28)

It is convenient to introduce a ‘rotated’ version of the vorticity components

µα = w · ∂αz. (α = 1, 2). (2.29)

Differentiating (2.28) with respect to sα then yields

∂t(µα + 2Aū · ∂αz) = A∂α(|ū|2 − 1
4 hαβµαµβ − 2gz3), (2.30)

where hαβ is the (α,β) component of the inverse of the induced metric on Γ (t)

hαβhβγ = δαγ . (2.31)

The coupled systems of (2.13) and (2.30) are written as

∂tz = ū, (2.32a)

∂t(µα + 2Aū · ∂αz) = A∂α(|ū|2 − 1
4 hβγµβµγ − 2gz3), (2.32b)

and are an equivalent form of the 3-D irrotational and incompressible Euler equations
(2.1), giving the interface position z = (z1, z2, z3) and the components of velocity jump
µ = (µ1, µ2) (or equivalently, the vorticity measure). This results in a form of the Euler
equations which have three independent variables instead of the usual four. The system
(2.32) is supplemented with the initial conditions z(s, 0) = ◦z(s) and µα(s, 0) = ◦

µα(s).
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Interface models for 3-D Rayleigh–Taylor instability

2.2. The need for approximation
The numerical solution of the singular integral form of the Euler equations (2.32) is
difficult because of the time-derivative term ∂t(2Aū · ∂αz) in (2.32b). Expanding this term
using (2.32a) shows that

∂t(2Aū · ∂αz) = A
2π

¨
R

(µ2(s)∂1ū(s) − µ1(s)∂2ū(s)) × z − z(s)
|z − z(s)|3

+ (∂tµ2(s)∂1z(s) − ∂tµ1(s)∂2z(s)) × z − z(s)
|z − z(s)|3

− (µ2(s)∂1z(s) − µ1(s)∂2z(s)) × (z − z(s))
3(ū − ū(s)) · (z − z(s))

|z − z(s)|5
ds, (2.33)

where we have not written the time dependence in the integrand. Hence, we see
that (2.32) takes the form of a system of nonlinear and non-local integral equations
for the time derivatives ∂t(z1, z2, z2, µ1, µ2). In addition to the difficulty of solving
(2.32) caused by the term ∂t(2Aū · ∂αz), yet another challenge stems from fact that the
Birkhoff–Rott integral can be time consuming to evaluate: a naive implementation takes
O(N2) operations for an N-point discretization of Γ (t), although this can be improved
greatly by the use of fast multipole methods. We are not aware of any successful attempts
to directly simulate the singular integral form of the Euler equations (2.32), despite
numerous simulations of these equations in two space dimensions and with axisymmetry.
The models which we derive in the following sections make the appropriate reductions of
the full incompressible and irrotational Euler equations so as to retain high accuracy in
the interface position while avoiding the considerable numerical challenges that we have
explained above.

In two dimensions, Granero-Belinchón & Shkoller (2017) remedied the computational
difficulty of the Birkhoff–Rott velocity by introducing an approximate velocity which can
be computed as a Hilbert transform, requiring only O(N log N) evaluations

ũ = Hω
2|∂1z|

n, Ĥf (k) = −i sgn(k)f̂ (k). (2.34a,b)

The system (2.34a,b) is the approximation which results from taking a limit of ‘small
non-locality’ (explained in detail in the sequel), which is accurate when the interface is
not too curved; in particular, it was shown in Granero-Belinchón & Shkoller (2017) that

max
s∈R

|ū(s, t) − ũ(s, t)| ≤ 2
π

√
3K

ˆ
Γ (t)

ω(s, t)2√h ds, (2.35)

where K is the maximum curvature of the interface. Inserting the approximate velocity
(2.34a,b) into the 2-D version of (2.32) provides a simple set of evolution equations for z
and ω, called the 2-D lower-order z-model. It was subsequently verified in Canfield et al.
(2020) that the lower-order z-model agrees well with experimental data of Rayleigh–Taylor
problems, forming a sort of ‘envelope’ for the interface roll-up.

2.3. The 3-D lower-order z-model
The aim of this section is to introduce a 3-D generalization of the 2-D lower-order z-model
of Granero-Belinchón & Shkoller (2017), as well as two more accurate models (with
greater non-locality), which we shall refer to as the ‘medium-order’ and ‘higher-order’
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z-models. While already useful for 2-D simulations (in respect to the speed-up over
traditional Euler solvers), the need for such a simplification is even greater for 3-D
simulations.

For the remainder of this section, we omit writing the explicit dependence on time t. The
derivation begins with the observation that the dominant contribution to the Birkhoff–Rott
velocity ū(s) in (2.10) arises from the singular integrand in a small neighbourhood of s.
Expanding z(s′) in a small neighbourhood of s yields

z(s′) = z(s) + ∂αz(s)(s′α − sα) + 1
2∂αβz(s)(s′α − sα)(s′β − sβ) + O(|s − s′|3), (2.36)

and the expansion of ω(s′) about ω(s) is given by

ω(s′) = µ2(s′)∂1z(s′) − µ1(s′)∂2z(s′)

= µ2(s′)∂1z(s) − µ1(s′)∂2z(s)

+ µ2(s′)∂1αz(s)(s′α − sα) − µ1(s′)∂2αz(s)(s′α − sα) + O(|s − s′|2). (2.37)

The first-order expansion in (2.36) is useful in regions where the interface curvature is
small, which is a valid assumption prior to interface roll-up or near bubble and spike tips.
See § 2.5 for precise estimates of the error between the approximate and exact velocities,
and compare figures 1 and 2 to see the effect of this low-curvature assumption. In order
to expand |z(s) − z(s′)|−1 about the singular point s = s′, we expand z(s) − z(s′) about
s = s′, factor the linear term of this expansion, and use the series expansion for 1/(1 − ξ)
about ξ = 0; in particular, we have that

1
|z(s) − z(s′)|3

= 1
|∂αz(s)(s′α − sα)|3

( |z(s) − z(s′)|
|∂αz(s)(s′ − s)|

)−3

= 1
|∂αz(s)(s′α − sα)|3

(
1 + 1

2
∂αβz(s)(s′α − sα)(s′β − sβ)

|∂αz(s)(s′α − sα)|
+ · · ·

)−3

= 1
|∂αz(s)(s′α − sα)|3

(
1 − 3

2
∂αβz(s)(s′α − sα)(s′β − sβ)

|∂αz(s)(s′α − sα)|
+ · · ·

)
.

(2.38)

The expansions (2.36)–(2.38), together with a somewhat tedious computation, show
that the Birkhoff–Rott integrand ω(s′) × (z(s) − z(s′))/|z(s) − z(s′)|3 has the following
expansion about s = s′:

(sα − s′α)

(hαβ(s)(sα − s′α)(sβ − s′β))3/2 (µα(s′) + (sβ − s′β)(µα(s′)∂β
√

h − 1
2∂αβz · ∂γ z)hγ δ(s)µδ(s′)))n

+ (sα − s′α)(sβ − s′β)

(hαβ(s)(sα − s′α)(sβ − s′β))3/2 (µα(s′)
√

h∂βn − 1
2 (µ2(s′)∂1z − µ1(s′)∂2z) × n(∂αβz · n))

− 3
2

µα(s′)(sα − s′α)(sβ − s′β)(sγ − s′γ )(sδ − s′δ)(∂αβz · ∂γ z)∂δz
(hαβ(s)(sα − s′α)(sβ − s′β))5/2 n + O(1). (2.39)

Isolating the dominant contribution, we thus have that

ω(s′) × z(s) − z(s′)

|z(s) − z(s′)|3
= µ1(s′)(s1 − s′1) + µ2(s′)(s2 − s′2)

(hαβ(s)(s′α − sα)(s′β − sβ))3/2

√
h(s)n(s) + O(|s − s′|−1).

(2.40)
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Interface models for 3-D Rayleigh–Taylor instability
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–1.0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0 –1.0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0

Figure 1. Evolution of the lower-order z-model, starting from a Gaussian perturbation of a flat interface, run
on a 192 × 192 mesh in 18 s.

We can then integrate the leading-order term in (2.40) and obtain an approximate (average)
velocity along the interface; however, the resulting velocity field is difficult to write in
terms of simple Fourier multipliers (which is our objective), and therefore maintains the
computational expense of the original Birkhoff–Rott velocity. In order to derive a velocity
field which takes advantage of the computational efficiency of Fourier multipliers, we
must assume that the metric h is isotropic, by which we mean that the components hαβ of
the metric satisfy

h11 = h22, h12 = h21 = 0, (2.41a,b)

in which case

√
h(s)µα(s′)(sα − s′α)

(hαβ(s′)(s′α − sα)(s′β − sβ))3/2
n(s) = µα(s′)(sα − s′α)

|h(s)|
n(s). (2.42)

Replacing the original integrand in the Birkhoff–Rott integral (2.13) with the first-order
term (2.42) in its expansion results in an approximate velocity ũ, computable in terms of
Riesz transforms Rα:

ũ = Rαµα
2|h|

n, Rαf (s) = 1
2π

¨
R2

(sα − s′α)f (s′)

|s − s′|3
ds′, α = 1, 2. (2.43)

Riesz transforms are Fourier multipliers: R̂αf (k) = −ikα f̂ (k)/|k|, where f̂ (k) denotes the
Fourier transform of f (x). These operators are the multi-dimensional generalization of the
Hilbert transform used in the definition of the lower-order 2-D z-model (2.34a,b).

The first term of the Laurent series for ω(s′) × (z(s) − z(s′))/|z(s) − z(s′)|3 is given
by (2.40) with an error which is O(|s − s′|−1) as s′ → s. The O(|s − s′|−1) term in this
expansion is what remains in (2.39), and upon integration in s′, produces a leading-order
estimate for the error or remainder R between the lower-order velocity ũ and the full
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Figure 2. Evolution of the higher-order z-model, starting from a Gaussian perturbation of a flat interface, run
on a 192 × 192 mesh in 420 s. Note that the lower-order z-model (figure 1) traces a sort of ‘envelope’ for the
higher-order z-model.

Birkhoff–Rott velocity ū. Utilizing our isotropy assumption shows that

R =
∂β(

√
hn)RβRαµα
|h|3/2 − 1

2
hγ δ(∂αβz · ∂γ z)RβRαµδ

|h|3/2 n

− 1
2

(n · ∂αβz)((∂1z × n)RαRβµ2 − (∂2z × n)RαRβµ1)

|h|3/2

− 3
2

(RαRβRγRδµα)(∂βz · ∂γ δz)
|h|5/2 n. (2.44)

Using the fact that the Riesz transforms have unit norm as bounded operators on L2,
Hölder’s inequality shows that

(¨
R2
R(s)2 ds

)1/2
≤ C

(¨
R2

|µ(s)|2h ds
)1/2 2∑

α,β=1

sup
s∈T2

|∂αβz|
1 + |h|

, (2.45)

where |µ|2h = hαβµαµβ is the magnitude of µ with respect to the metric h on Γ (t). In
more concise notation,

‖R‖L2 ≤ ‖µ‖L2

∥∥∥∥
D2z

|h|3/2

∥∥∥∥
L∞

. (2.46)

Since the mean curvature vector on Γ (t) is defined as

κ(s, t)n = hαβ√
h
∂αβz · (∂1z × ∂2z), (2.47)

the bound (2.46) becomes small when the mean curvature is very small, as ‖µ‖L2 remains
bounded under this scenario.
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Interface models for 3-D Rayleigh–Taylor instability

Inserting ũ into the Euler equations (2.30) in place of the Birkhoff–Rott velocity gets
rid of the problematic time-derivative term (ū · ∂αz)t, as ũ is normal to Γ (t), and so
ũ · ∂αz = 0. This yields the following system of equations:

∂tz = ũ, 0 < t ≤ T, (2.48a)

∂tµα = A∂α(|ũ|2 − 1
4 hβγµβµγ − 2gz3), 0 < t ≤ T, (2.48b)

z(s, 0) = ◦z(s), µα(s, 0) = ◦
µα(s), (2.48c)

where ◦z(s) and ◦
µα(s) denote the initial conditions for the interface parameterization and

vorticity, respectively. We refer to (2.48) as the lower-order z-model. It is an extremely
efficient model, which tracks the interface accurately until about the time of turnover,
after which it forms a sort of ‘envelope’ for the roll-up in the near-symmetric regime
(see figure 1). This envelope behaviour accurately captures the large-scale behaviour
of RTI for interfaces with small curvature and small anisotropy, although our medium-
and higher-order z-models (which are introduced below) are better suited for capturing
the small-scale structure of roll-up. In particular, the lower-order z-model suppresses
interactions between interface points which are close in space but distant in interface
variables, i.e. where |z(s) − z(s′)| . |s − s′|. This occurs precisely when the interface
folds over or rolls up, which is why the model produces poorer results after interface
turnover. At a point of high curvature, where the interface folds over itself, the full
Birkhoff–Rott velocity correctly gives a large velocity and causes the interface to roll-up
further, whereas the lower-order velocity remains small.

We note that a convenient feature of the lower-order z-model (2.48) is that the velocity ũ
is given by a Fourier multiplier. As such, the numerical implementation of (2.48) can take
advantage of the fast Fourier transform which is both fast and easy to implement, and is one
of advantages of this model in comparison with the higher-order models to be introduced
next. The computational speed of the lower-order z-model creates an efficient and effective
tool for determining large-scale features of RTI structures, such as interface growth rates
and bubble and spike positions. On average, the lower-order z-model runs approximately
15 000 times faster than standard numerical schemes for 3-D hydrodynamics (J. Reisner,
private communication 2020).

2.4. The 3-D medium-order and higher-order z-models
The isotropy assumption made in the derivation of the lower-order z-model is too
restrictive for a large class of initial data. As such, we turn our attention to the
medium-order z-model (2.49) and higher-order z-model (2.50). The medium-order
z-model is obtained by replacing the localized velocity (2.43) with the regularized
Birkhoff–Rott velocity (2.18) only in the z-evolution equation in (2.48a) while keeping
the vorticity equation (2.48b) unchanged:

∂tz = ūε, 0 < t ≤ T, (2.49a)

∂tµα = A∂α(|ũ|2 − 1
4 hαβµαµβ − 2gz3), 0 < t ≤ T, (2.49b)

z(s, 0) = ◦z(s), µα(s, 0) = ◦
µα(s). (2.49c)
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For the higher-order z-model, we replace the localized velocity with the regularized
Birkhoff–Rott velocity in both equations of (2.48) to obtain

∂tz = ūε 0 < t ≤ T, (2.50a)

∂tµα = A∂α(|ūε |2 − 1
4 hαβµαµβ − 2gz3), 0 < t ≤ T, (2.50b)

z(s, 0) = ◦z(s), µα(s, 0) = ◦
µα(s). (2.50c)

The medium- and higher-order z-models are able to capture the fine-scale structures of
RTI, including the Kelvin–Helmholtz roll-up regions (see figure 2), but are more costly
to simulate numerically than the lower-order z-model. Nevertheless, the medium- and
higher-order z-models run 600 times faster than standard numerical methods for 3-D gas
dynamics codes (J. Reisner, private communication 2020).

The evolution equations for the higher-order z-model differ from the integral form of
the Euler equations by only one term. In particular, a comparison of the right-hand sides
of (2.32b) with (2.50b) shows that the higher-order z-model does not have the problematic
nonlinear and non-local time-derivative term 2A∂t(ū · ∂αz). As we will explain in § 2.5,
the reason that the higher-order z-model maintains accuracy is that this time-derivative
term tends to be small. We note that for the numerical simulations we consider in this
work, results from the medium-order z-model and the higher-order z-model are essentially
indistinguishable (compare the first and second rows in figure 10), but the higher-order
z-model is more numerically stable. For this reason, we have chosen not to report results
from the medium-order z-model (with the exception of the second row in figure 10).

An important feature of RTI is the differing behaviour of ‘bubbles’ of light fluid rising
into the heavy fluid and ‘spikes’ of heavy fluid falling into the light fluid. Our model
accurately captures this differing behaviour with the spikes being thinner and slightly
longer than the bubbles. Figure 3 shows the evolution of the initial conditions

z1 = s1, z2 = s2, z3 = ±0.05e−9|s|2, µ1 = µ2 = 0, (2.51a–d)

at two, three, and four characteristic times.

2.5. Dynamics of vorticity
The relationship between the components of vorticity ωα and the interface roll-up is quite
straightforward. Each ‘roll’ of the interface corresponds to a sequence of successively
stronger concentric ‘ridges’ in the magnitude of vorticity, and the vector field (ω1,ω2)
circulates around these ridges. Figure 4 shows a simulation of the higher-order z-model
(2.50) in which a single ring of vorticity (top row, pre-turnover) splits into two rings of
vorticity, the inner ring stronger than the outer (bottom row, post-turnover). Figure 5 shows
the corresponding magnitude of vorticity for the interfaces in figure 4. These spikes in the
vorticity are essential to the roll-up of the interface Γ (t), but they are also a source of
numerical instability. To mitigate this instability, we introduce a smooth, vorticity-scaled,
nonlinear artificial viscosity, outlined in § 3.1.

The lower-order z-model fails to roll-up because only one sufficiently strong ring of
vorticity can form during the entire evolution. A secondary (weaker) ring of vorticity may
form inside the first, but its amplitude is too small to initiate secondary turnover. This weak
secondary vorticity produced by the lower-order z-model is shown in figure 6.

We can now provide a heuristic argument as to why the problematic time-derivative
term 2A∂t(ū · ∂αz) on the right-hand side of (2.32b) does not significantly alter the true
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Interface models for 3-D Rayleigh–Taylor instability

2.0(a) (b) (c)

(d ) (e) ( f )

t/τ = 2 t/τ = 3 t/τ = 4

t/τ = 2 t/τ = 3 t/τ = 4

1.5

1.0

0.5

0

–0.5

0.5

0

–0.5

–1.0

–1.5

–2.0

0.5

0

–0.5

–1.0

–1.5

–2.0

0.5

0

–0.5

–1.0

–1.5

–2.0

2.0

1.5

1.0

0.5

0

–0.5

2.0

1.5

1.0

0.5

0

–0.5
–1.0 –0.5 0 0.5

z/λ

z/λ

1.0 –1.0 –0.5 0 0.5 1.0 –1.0 –0.5 0 0.5 1.0

–1.0 –0.5 0 0.5
x/λ

1.0 –1.0 –0.5 0 0.5
x/λ

1.0 –1.0 –0.5 0 0.5
x/λ

1.0

Figure 3. Cross-sections of the 3-D higher-order z-model, run on a 64 × 64 grid, with Atwood number 0.7
and a runtime of 50 s.
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Figure 4. Non-dimensionalized components of vorticity for the higher-order z-model, compared with the full
interface. Colour on the interface indicates magnitude of vorticity (red is higher, blue is lower).
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Figure 5. Heatmap of the non-dimensionalized magnitude of vorticity for the two interfaces shown in
figure 4.
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Figure 6. Non-dimensionalized components of vorticity for the lower-order z-model, compared with the full
interface. Colour on the interface indicates magnitude of vorticity (red is higher, blue is lower).

dynamics, and thus allows for the higher-order z-model evolution to accurately simulate
solutions of the Euler equations. Integrating (2.32b), we have that

µα(s, t) = ◦
µα(s) + A

ˆ t

0
∂α(|ū|2 − 1

4 hβγµβµγ − 2gz3) dt′

+ 2A(ūε(s, 0) · ∂α ◦z(s) − ū(s, t) · ∂αz(s, t)). (2.52)

From (2.40) and the definition of ū given in (2.16), we see that, for α = 1, 2,

ū · ∂αz =
¨

R2

(sν − s′ν)(sβ − s′β)

|s − s′|3

(
µν(s′)

√
h∂βn − 1

2

(
µ2(s′)∂1z

−µ1(s′)∂1z
)

× n(∂νβz · n)

)
· ∂αz ds′

= −
¨

R2

(sν − s′ν)(sβ − s′β)

|s − s′|3

(
µν(s′)hδν∂δz

+1
2
(µ2(s′)∂1z − µ1(s′)∂1z) × n

)
· ∂αz (∂νβz · n) ds′, (2.53)

where we have used the identity

∂βn = −hδν(∂νβz · n)∂δz, (2.54)
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Interface models for 3-D Rayleigh–Taylor instability

and the fact that
|s − s′|3 = (hνβ(s)(sν − s′ν)(sβ − s′β))3/2. (2.55)

Since the inner product of the first-order term in (2.40) with ∂αz vanishes,

(sν − s′ν)

|s − s′|3
µν(s′)

√
h(s)n(s) · ∂αz = 0, (2.56)

the second-order correction is thus given by

(sν − s′ν)

|s − s′|3
(sβ − s′β)(µν(s′)hδν∂δz + 1

2 (µ2(s′)∂1z − µ1(s′)∂1z) × n) · ∂αz (∂νβz · n).

(2.57)

Now, either the curvature of Γ (t) is small in which case ∂νβz · n is small and hence ū ·
∂αz is small, or the curvature is large, in which case the vorticity measure forms highly
concentrated peaks (as seen in figure 4), in which the support of the peaks, which is a
good approximation for |sβ − s′β |, is very small. Hence, we see from (2.57) that either
small curvature or strongly concentrated vorticity peaks produces small tangential velocity
components.

3. Numerical simulation and validation against experiments
In this section we describe the numerical method for solving the z-models, simulate a
variety of classical test problems in the RTI, and validate our higher-order z-model to
against experimental data of single-mode and random multi-mode RTI.

3.1. Numerical approximation of the z-model
The boundary integral formulation of the Euler equations, relying on a parametrization
of the material interface, has several attractive features for simulating RTI. It is naturally
adaptive, concentrating grid points near regions of physical interest, it avoids the numerical
diffusion of grid-based methods and it involves fewer independent variables. However,
these benefits come at a significant computational cost, due to the nonlinear and non-local
form of the time derivatives in this formulation. The use of standard time-stepping
algorithms for evolution equations in which the time derivatives are linear and isolated
cannot be used. Rather, simulating such equations requires either the solution of a
nonlinear Fredholm integral equation of the second kind for the time derivatives, or the use
of an iterative predictor–corrector method to evolve forward in time. Additionally, because
the non-local expression requires O(N2) operation to evaluate (where N is the number of
interface points), such predictor–corrector methods extremely expensive. The higher-order
z-model has nearly all the aforementioned benefits of the full Euler equations in boundary
integral form, and can be solved numerically with straightforward finite differencing in
space and Runge–Kutta integration in time, with only a small cost in accuracy (see § 2.5).

Geometric complexity is an essential feature of RTI, especially in three space
dimensions, so accurately simulating such behaviour requires maintaining a sharp
discontinuity in density across the interface, while at the same time faithfully representing
the interface geometry at a subgrid scale. The rectangular cells of Eulerian differencing
schemes are ill suited to the highly curved geometry of RTI problems, and often introduce
spurious KHI spirals which obscure the form of the primary instability. Indeed, a look
at the bewildering variety of behaviours observed in the excellent comparative study
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of Liska & Wendroff (2003) demonstrates that high-order methods such as weighted
essentially non-oscillatory methods (WENO) and piecewise parabolic method (PPM),
set on structured Cartesian meshes, can be susceptible to spurious small-scale KHI.
Nonetheless, for problems which must take into account many physical effects, such as
compressibility, thermodynamics, combustion or electromagnetism, methods such as these
provide the best available numerical methods. See Zhou et al. (2021) §§ 5 and 6 for a recent
overview of numerical approaches to RTI. Methods such as marker-and-cell (Daly 1967)
and volume-of-fluid (Hirt & Nichols 1981) use either marker particles or a marker function
in addition to an Eulerian grid to track the interface. Similarly, front-tracking methods,
which use a triangular mesh that advects with the fluid velocity, have shown considerable
success (Unverdi & Tryggvason 1992; Glimm et al. 1998).

We now describe our numerical method for the z-models. All computations are set on
a uniform spatial grid {(iδ, jδ) : i, j = −n, . . . , n − 1, n}, and the dynamical variables are
stored as matrices of values on this grid, e.g.

zij(t) = z(iδ, jδ, t), i, j = −n, . . . , n − 1, n. (3.1)

Spatial derivatives are computed using fourth-order centred-difference operators (D1, D2).
These are used to compute the discretized form of the normal vector N = (D1z) × (D2z)
and the metric determinant |h| = |N |2.

For the lower-order z-model, we compute ũ via the fast Fourier transform

ũjk = F−1
(

il(Fµ1)lm + im(Fµ2)lm

(l2 + m2)1/2

)

jk

N jk

|h|3/2
jk

. (3.2)

This still leaves (Fũ)00 undefined, so we set it to zero. To mitigate the large spikes in
vorticity discussed in § 2.5, we introduce a nonlinear artificial viscosity operator ν∇ ·
(c∇/ sup c) on the right-hand side of the vorticity equations, where

c = (1 − νδ2+)−1|ω|, (3.3)

where δ is the grid size and ν > 0 denotes the artificial viscosity parameter. The
function c is a smoothed version of the magnitude of vorticity |ω|, which provides a
smooth localization for the addition of nonlinear artificial viscosity, motivated by the
nonlinear (space–time smooth) artificial viscosity method introduced in Reisner, Serencsa
& Shkoller (2013) and utilized in Ramani, Reisner & Shkoller (2019a,b) but employing an
elliptic solver at each time step rather than the solution of a parabolic reaction–diffusion
equation. This yields the following set of ODEs for the discretized lower-order z-model:

dzjk

dt
= ũjk, (3.4)

dµjk

dt
= A

[(
D1

D2

) (
|ũ|2 − 1

4 hαβµαµβ − 2gz3
)]

jk
+ ν

[ 2∑

α=1

Dα

(
cDαµ
sup c

)]

jk

, (3.5)

which are solved using a total variation decreasing third-order Runge–Kutta method in
time. For a generic system of ODEs dx/dt = f (x, t), the three-step Runge–Kutta method
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Interface models for 3-D Rayleigh–Taylor instability

we use to advance the solution from xn = x(t) to xn+1 = x(t ++t) is given by

k1 = xn ++tf (xn, t), (3.6)

k2 = 3
4

xn + 1
4

k1 + +t
4

f (k1, t), (3.7)

xn+1 = 1
3

xn + 2
3

k2 + 2+t
3

f (k2, t + 1
2+t). (3.8)

For both the medium- and higher-order z-models, we compute the Birkhoff–Rott
velocity ū using a Simpson’s rule quadrature, which has the form

ūεij = 1
4π

∑

k

∑

l

Mklωkl ×
zij − zkl

(ε2 + |zij − zkl|2)3/2 , ωkl = (µ2,kl(D1z)kl − µ1,kl(D2z)kl),

(3.9a,b)

for some matrix of weights M = (Mij). The discretized medium-order z-model is given by

dzjk

dt
= ūεjk, (3.10)

dµjk

dt
= A

[(
D1

D2

) (
|ũ|2 − 1

4
hαβµαµβ − 2gz3

)]

jk
+ ν

[ 2∑

α=1

Dα

(
cDαµ
sup c

)]

jk

, (3.11)

and the discretized higher-order z-model is

dzjk

dt
= ūεjk, (3.12)

dµjk

dt
= A

[(
D1

D2

)
(|ūε |2 − 1

4 hαβµαµβ − 2gz3)

]

jk
+ ν

[ 2∑

α=1

Dα

(
cDαµ
sup c

)]

jk

. (3.13)

The time required for the computation of the Birkhoff–Rott velocity ū can be drastically
shortened with the use of the fast multipole method. Evaluating ūεjk for all j and k
requires O(N2) operations, where N = (2n + 1)2 is the total number of grid points in
the simulation. In contrast, the fast multipole method evaluates in O(N) operations, given
a fixed relative accuracy goal. As shown in figure 7, we have verified this performance
for interface grid resolutions up to size N = 1024 × 1024 using the open-source package
fmm3d (https://github.com/flatironinstitute/FMM3D).

3.2. Convergence of the z-model
We note that existence of solutions to the incompressible Euler equations with general
vortex sheet initial data is not known, and for certain types of vortex sheet data for
which weak solutions can be constructed, such solutions are not unique (see, for example,
Székelyhidi 2011). As such different regularizations of the Euler equations will lead to
sequences of approximate solutions which, such that if these sequences converge, they
may not all converge to the same solution. Sequences of approximate Euler solutions,
obtained by using a regularized Birkhoff–Rott velocity, have been shown to converge to
(possibly non-unique) solutions of the Euler equations in, for example, Beale & Majda
(1982) and Liu & Xin (1995, 2001). In particular, numerical simulations suggest that the
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Figure 7. Measured computation times for the Birkhoff–Rott velocity.
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Figure 8. Convergence of roll-up radius and spiral centres for the 3-D higher-order z-model, as the mesh is
refined.

limiting weak solution depends upon the choice of the velocity regularization (see Baker
& Pham 2006; Lopes-Filho et al. 2006; Ramani & Shkoller 2020).

On the other hand, as was shown in Ramani & Shkoller (2020, figures 8–10), the 2-D
z-model exhibits convergence of large-scale averaged quantities such as the spiral roll-up
centre, the roll-up radius, the location of the bubble and spike tips and the bubble and spike
amplitudes. It is likely that such convergence of large-scale features is independent of the
numerical approximation employed, and in this section we show that the 3-D higher-order
z-model converges in this large-scale sense, in the limit as the desingularization and mesh
spacing are taken to zero simultaneously.

Figure 8 demonstrates this large-scale convergence for the 3-D higher-order z-model,
using the initial data (2.51a–d). As can be seen, there is convergence of the roll-up
radius and the location of the spiral centres on a sequence of n × n meshes with n =
32, 64, 128, 256, and with regularization parameter ε proportional to the mesh size.
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Figure 9. Single-mode initial data with two wavelengths along each side of the tank, run using the
higher-order z-model on a 192 × 192 grid, with Atwood number 0.15 and a computation time of 380 s.

3.3. Single-mode initial data
Sinusoidal perturbations of a flat interface were the first to be studied in the context of RTI,
and much of the analytical and experimental study of RTI has focused on understanding
the evolution of single-mode initial data beyond the linear regime (see, for instance,
Emmons, Chang & Watson 1960; Cole & Tankin 1973; Baker et al. 1984; Goncharov
2002). Of course, in most application scenarios, the interface is perturbed with many
different frequencies, but to understand the single-mode problem is the first step towards
understanding the more general problem.

For our first test, we use our higher-order z-model to simulate Wilkinson/Jacobs’
isopropyl alcohol/water experiment (A = 0.15). We initialize our z-model with initial
conditions of the form

z1 = s1, z2 = s2, z3 = a0 cos(πks1/λ) cos(πks2/λ), µ1 = µ2 = 0, (3.14a–d)

where −λ ≤ s1, s2 ≤ λ and k is a positive integer. We may regard λ as a characteristic
length for this problem, and the corresponding characteristic time scale is given by τ =
(λ/Ag)1/2. This type of initial data was studied experimentally by Wilkinson and Jacobs,
who used planar laser-induced fluorescence to visualize a diagonal cross-section of the
fluid as it evolved, showing the double roll-up which distinguishes 3-D RTI from 2-D RTI
(Wilkinson & Jacobs 2007). Results for the case k = 2 are shown in figure 9.

Starting from a single-mode perturbation of a flat interface, 3-D RTI forms a periodic
pattern of bubbles and spikes in such a way that two vortices form on the side of
each bubble or spike. In two dimensions, single-mode RTI produces a stationary row of
counter-rotating vortices, which manifests as a single row of roll-up regions. However, in
3-D, single-mode RTI produces two grids of counter-rotating vortex rings, which move
apart from each other at roughly constant speed. Upon taking a cross-section along the
diagonal of the tank, we obtain the double-spiral pattern seen here. See Chapman & Jacobs
(2006) figures 8 and 16 for a helpful illustration of single vs double roll-up regions.

Using the parameters from their experiments and matching the wavelength of the initial
data as best we could, we were able to achieve remarkably good agreement between our
higher- and medium-order z-models and their experimental data – see figure 10. As shown
in figure 11, the lower-order z-model matches the experiments quite well at early times.

959 A10-21

2�
�9

��
  

.8
3�8

:1
 �

��
��

��
 �0

�
��

��
��


	
�


 �
�3�

2/
.�

87
�37

/�
�"

��
��

�:
3.

1/
��

73
!/

:�
3�"

�

:/

��

https://doi.org/10.1017/jfm.2023.98


G. Pandya and S. Shkoller
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z/λ
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(a) (b)

(c) (d )

Figure 10. (a,b) Higher-order z-model. (c,d) Medium-order z-model. Both were run on 160 × 160 meshes,
with Atwood number 0.15 and a runtime of 270 s. Experimental photographs from Wilkinson & Jacobs (2007).
Copyright 2007, AIP Publishing. Reproduced with permission.

(Diagonal distance)/λ

Diagonal cross-section, t/τ = 0.83 Diagonal cross-section, t/τ = 1.04

z/λ

(Diagonal distance)/λ

(b)(a)

Figure 11. Lower-order z-model, run on a 130 × 130 grid, with Atwood number 0.15 and a runtime of 9 s.
Experimental photographs from Wilkinson & Jacobs (2007). Copyright 2007, AIP Publishing. Reproduced
with permission.

At later times, however, the lower-order z-model cannot capture the full extent of the
roll-up, as discussed in § 2.5.

The amplitude of 3-D single-mode RTI initially follows the exponential growth rate
a ∼ cosh(

√
Agkt) predicted by the linear theory, before slowing to approximately constant

velocity. The single-mode model of Goncharov (2002) predicts asymptotic bubble and
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Figure 12. Plot of bubble and spike Froude numbers against normalized amplitude for our single-mode RTI
simulations. Horizontal line shows asymptotic prediction Fr ∼ π−1/2. Compare with figures 15 and 16 in
Wilkinson & Jacobs (2007).

spike velocities of

Ub =

√
2Ag

(1 + A)k
, Us =

√
2Ag

(1 − A)k
, (3.15a,b)

respectively, where k is the wavenumber of the initial perturbation. However, an
asymptotically constant velocity has been called into question by numerical calculations
of Ramaprabhu et al. (2006). Nonetheless, the single-mode experiments of Wilkinson
& Jacobs (2007) show a period of linear growth in amplitude near Goncharov’s
predicted value, before accelerating once again. In figure 12 we have plotted the Froude
number (non-dimensional bubble velocity) for the bubbles and spikes in our single-mode
experiments,

Frb = ȧb√
πUb

, Frs = ȧs√
πUs

, (3.16a,b)

against the normalized bubble and spike amplitudes ab and as. Although our simulations
do not run for as long as the Wilkinson and Jacobs experiments, the Froude numbers are
in agreement with the experimental results for the simulated range of amplitudes, showing
an increase to slightly above the predicted asymptotic value Fr ∼ π−1/2 (compare our
figure 12 with figures 15–17 in Wilkinson & Jacobs 2007).

3.4. The 3-D rocket rig experiment
The growth rate of the mixing layer between two fluids subjected to random multi-mode
perturbations has been the subject of significant interest and study, and it forms a useful
benchmark for our z-models. Starting with a small perturbation of amplitude h0 of a flat
interface, theory predicts that the amplitude h(t) of the resulting mixing layer has the form

h − h0

λ
= α

( t
τ

)2
, (3.17)

where α is a universal growth-rate constant. The growth rate of the interface
was tested experimentally by Read (1984) and Youngs (1989), and numerically by
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Youngs (1984, 1989). Their experimental set-up consists of a 150 × 150 mm2 tank on a
vertical sled, accelerated downward using rocket motors, which gives this experimental
set-up the nickname ‘rocket rig’. Read’s results suggest that α is between 0.06 and 0.07,
although individual experiments have given values as low as 0.058 and as high as 0.077.
To test the higher-order z-model in this scenario, we simulate Read’s experiment using
sodium iodide (NaI) solution (ρ+ = 1.9 g cm−3) and pentane (ρ− = 0.63 g cm−3), which
results in an Atwood number A ≈ 0.5. More recently, Ristorcelli & Clark (2004) and Cook,
Cabot & Miller (2004) independently discovered a new governing equation for the mixing
layer amplitude:

ḣ2 = C0Agh. (3.18)

At large times, the solution to this ODE grows like h ∼ 1
4 C0t2, so that C0 = 4α. However,

it was found by Cabot & Cook (2006) that the ratio ḣ2/4Agh approaches α only at very
long times (around t = 6-7τ , more than double the runtime of the experiments of Read
and Youngs). The numerical experiments of Cabot & Cook (2006) ran until t = 30τ , or
more than eleven times the runtime of Read’s experiments, and found that α stabilized
at a value of approximately 0.025. Our numerical experiments were run only for the
length of Read’s experiments, but the time series plot of ḣ2/4Agh from our experiments
matched that of Cabot & Cook for the length of our experiments. In this article we have
simulated the rocket rig using parameter values from Read’s NaI/pentane experiment.
Two main strategies are possible to initialize the rocket rig for numerical simulations,
representing two distinct regimes of instability. The first strategy, case A, is to initialize
the instability with a random combination of short-wavelength perturbations, and allow
larger-scale disturbances to develop from the nonlinear interaction of the short-wavelength
perturbations. The second strategy, case B, is for long-wavelength perturbations to be
present in the initial condition, causing the mixing layer to grow more rapidly at early
times. See Youngs (2013) for a more detailed discussion and comparison of the different
initialization strategies for the rocket rig. In case A, we initialize our model with a random
perturbation of a flat interface, of the form

z1 = s1, z2 = s2, z3 = A0Re
n∑

j1=−n

n∑

j2=−n

aj1,j2 exp(i(j1s1 + j2s2)), (3.19a–c)

where the complex coefficients aj = aj1,j2 are drawn from a standard normal distribution
when |j| > n/2 and zero otherwise, and A0 is chosen so that (

˜
|z3(s, 0)|2ds)1/2 = 0.05.

In case B, we instead draw the coefficients aj from a normal distribution with variance
σ 2(j) ∝ |j|−3.

Figure 13 shows results from 100 simulations of the higher-order z-model, using
high-frequency initial perturbations (case A, panel a) or the ‘enhanced mixing’
nonuniform variance (case B, panel b). Both the experiment and the simulation were run
for 67.4 ms, or 2.7τ . The case A runs show excellent agreement with the value α = 0.06
suggested by Read’s experiments. The computation time was 100 s/run, using 100 × 100
meshes. The lower-order model does reasonably well also, but the rate of interface growth
slows after approximately two characteristic times, because the lower-order z-model is
not able to fully capture interface roll-up. This is shown in figure 14. All models achieve
growth rates around the range found in Read’s experiments (0.058 ≤ α ≤ 0.077). We note
that, although our simulations do not run long enough to see the stabilization of growth
rate ḣ2/4Agh ∼ α, they qualitatively match the plot of ḣ2/4Agh shown in Cabot & Cook
up to the runtime of our simulation, showing an increase up to a peak of approximately 0.1
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Rocket Rig: Higher-Order z-Model
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Figure 13. Comparison of higher-order z-model with theoretical growth rate, case A (a) and case B (b). The
markers show the amplitude growth of the interface, averaged over 100 randomly initialized runs, and the grey
bands show one and two standard deviations.

0.25 0.50 0.75 1.00

Rocket Rig: Lower-Order z-Model

1.25 1.50 1.75 2.000

0.06

0.12

0.18

0.24

0.30

(h – h0)/λ

h/λ

t/τ

0.06(t/τ)2

Figure 14. Comparison of lower-order z-model with theoretical growth rate, initialized in case B.

followed by steady decrease (compare figure 15 to Cabot & Cook 2006, figure 4). To our
knowledge, these are the first interface models which can accurately reproduce the growth
rate of disordered RT mixing layers.

3.5. Fluid mixing in the rocket rig experiment
In addition to measuring the growth rate of the mixing layer, the speed of our high-order
z-model simulations makes it feasible to compute ensemble averages of density for
randomized initial data as shown in figure 16 for the case of an ensemble of 100 runs.
When computing ensembles using the invariant (Gibbs) measure associated with the
Euler equations, it is known (Albeverio & Cruzeiro 1990) that ensemble averaging of
runs with data using (Gaussian) random frequency fluctuations of the interface produce
viscous effects (whose size is inversely proportional to the frequency of perturbation).
Such viscous effects can be computed from a uniform ensemble (for the purpose of
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Figure 15. Plot of the time-dependent growth rate ḣ2/4Agh, averaged over 100 rocket rig runs.
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Figure 16. Ensemble-averaged density for the 100 runs of the rocket rig analysed above, showing a
cross-section at y = 0.

numerical simulations, it is much easier to compute the uniform ensemble than the
ensemble averaging using the invariant measure, but the viscous effects are extremely
similar) of runs, and our results for such ensembles (see figure 16) is in good agreement
with traditional simulations of RTI using the Navier–Stokes equations.

The horizontally averaged density as a function of the vertical coordinate and time,
which we will denote ρ̄(z, t), is a useful measurement of the large-scale phenomenology
of Rayleigh–Taylor turbulence. While it is expensive to compute this function using DNS,
Boffetta et al. (2010) showed that the solution to a simple parabolic model equation
for ρ̄ using the so-called Prandtl closure model closely matches results from DNS. Our
objective is to demonstrate that the ensemble-averaged density field computed from 100
z-model runs reproduces results obtained from the Prandtl closure model, and thus also
reproduces results from DNS. In particular, we shall demonstrate that the z-model, even
at low resolution, captures the statistical qualities of turbulent mixing quite accurately and
reproduces the remarkable self-similarity of the horizontally averaged density.

Averaging the density transport equation ∂tρ + ∂x(ρu) + ∂y(ρv) + ∂z(ρw) = 0 over the
horizontal (x and y) coordinates results in the equation ∂tρ̄ + ∂zρw = 0, where ρ̄ is the
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horizontally averaged density field given by

ρ̄(z, t) =
 

R2
ρ(x, y, z, t) dx dy, (3.20)

and ρw is the horizontally averaged vertical mass flux. To close the equation for ρ̄,
the Prandtl closure model assumes that ρw = κ∂zρ̄, where κ is known as the ‘eddy
diffusivity’. This eddy diffusivity has units of length2/time, so it is natural to take κ ∝ hḣ,
where h is a characteristic length and ḣ is a characteristic velocity for the turbulent flow.
In our case, h ∝ Agt2 is the characteristic mixing layer height in the rocket rig, so that

κ ∝ (Ag)2t3. (3.21)

Letting β2 denote the dimensionless constant of proportionality, the following evolution
equation for ρ̄ is obtained (Boffetta et al. 2010):

∂tρ̄ = (βAg)2t3∂2
z ρ̄ . (3.22)

This equation has the similarity variable ξ = z/(Agt2), which results in a self-similar
solution of the form ρ̄(z, t) = P(ξ) for the density field in the rocket rig experiment given
by

P(ξ) = ρ− + ρ+ − ρ−

2

(
1 + erf

(
ξ

β

))
. (3.23)

Note that as t → 0+, P(ξ) approaches the step-function initial density

ρ̄(z, 0) =
{
ρ+, z > 0,

ρ−, z ≤ 0.
(3.24)

As noted above, Boffetta et al. (2010) have shown that the self-similar solution P(ξ)
to (3.22) is an accurate approximation to the density field ρ̄(z, t) computed from fully
resolved DNS.

In order to determine if the z-model can capture the self-similar solution of the Prandtl
closure model, we shall use the ensemble-averaged density field ρ computed from 100
z-model simulations, and then calculate the horizontally averaged density field ρ̄(z, t).
We note that the mass associated with the horizontally averaged density field, given by´ 0.5λ
−0.5λ ρ̄(z, t) dz, is approximately conserved; in particular, on the full time interval 0 ≤ t ≤

2.5τ of the numerical experiment, we have verified that mass deviates from its initial value
by less than 1 %. A series of time snapshots ρ̄(·, t) is plotted in figure 17 at various times
between t = 1.3τ and t = 2.5τ , at intervals+t = 0.2τ . To compare against the self-similar
solution P(ξ) in (3.23), we have plotted the curves ρ̄(z, t) = ρ̄(Agt2ξ, t) (for various values
of t) as a function of ξ in figure 18. Here, β is chosen to be the ‘best-fit’ value for the data,
which we found to be approximately β = 0.017. As can be seen in figure 18, the z-model
horizontally averaged density profiles ρ̄(z, t) enjoy the self-similar profile of the solution
P(ξ) produced by the Prandtl closure model, and are thereby compare well with fully
resolved DNS.

We next demonstrate that the ensemble averaging of the z-model density field
reproduces optimal mixing rates. As explained in Lin et al. (2011) and Thiffeault (2012),
the mixing of a passive scalar (in our case the density ρ), advected by a velocity field u,
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3.0

z
Figure 17. Horizontally averaged density field ρ̄(z, t) for the rocket rig experiment, computed from the
ensemble-averaged z-model density, plotted at times between t = 1.3τ and t = 2.5τ , with time intervals

+t = 0.2τ .
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ξ = z / (Agt2)

 P(ξ)

Figure 18. The same density profiles as in figure 17, plotted as a function of the similarity variable
ξ = z/(Agt2) and compared against the theoretical solution P(ξ).

can be measured quantitatively using the homogeneous Sobolev norms

‖ρ‖Ḣs =
(ˆ

R3
|k|2s|ρ̂(k)|2 dk

)1/2
, (3.25)

with s < 0. Of particular interest are the so-called mixing norms corresponding to the
exponents s = −1 and s = −1/2. A fluid becomes molecularly mixed when the varying
density field ρ(x, y, z, t) converges to its spatial average 〈ρ〉 =

ffl
R3 ρ(x, y, z, t) dx dy dz.

Lin et al. (2011) showed that ρ(·, t) can converge at most exponentially fast to its average
in one of these mixing norms, and showed that optimal mixing is achieved if the density
is advected by one of a few simple, explicit ‘stirring’ velocity fields u(x, t). However, it
is unknown whether optimal mixing is achieved for more general velocity fields, such as
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Mixing norms for rocket rig
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Figure 19. Mixing norms of the ensemble-averaged density shown in figure 16, plotted on a log scale.

those satisfying the Euler or Navier–Stokes equations. That is, optimal mixing occurs if

‖ρ(·, t) − 〈ρ〉‖Ḣs ∼ e−rt, s = −1 or s = −1
2 (3.26)

for some constant r > 0 as time t → ∞ (see Thiffeault 2012). By computing the Ḣ−1/2

and Ḣ−1 norms of the ensemble-averaged rocket rig density in a small strip around the
plane z = 0, we find that the Sobolev norms decay exponentially (figure 19). In other
words, the ensemble average of z-model simulations with randomly perturbed initial data
is consistent with optimal mixing of the two fluids. While a single z-model simulation
approximates the motion a fluid interface separating two inviscid fluids, the ensemble
average of many simulations successfully models viscous mixing at the length scales of the
random fluctuations of the data. A more in-depth study of mixing rates in Rayleigh–Taylor
problems, and in particular whether they achieve optimal mixing, is an objective of our
future studies.

3.6. Fluid mixing in complex stratifications
In multiphase fluid problem, in which the interface exhibits significant roll-up and
small-scale structure formation, the interface can ‘squeeze’ a fluid into a very thin
configuration, as the distance between portions of the fluid interface becomes smaller
and smaller. The resulting small distance between portions of the interface creates
(super-exponential) growth of the density gradient and ensures that traditional numerical
schemes, based upon a multi-dimensional discretization of the fluid domains, can
become prohibitively expensive due to severe small-scale resolution requirements. Such
small-scale formation occurs in many situations when significant KHI is allowed to
develop, or when the fluid becomes turbulent. Our interface z-model is designed
specifically for this small-scale scenario, in which the use of conventional numerics would
not be feasible.

Unstable stratified flows with more than two fluid layers provide an interesting example
of such small-scale structure formation. We shall consider the problem of two fluid
interfaces separating three fluids, and our initial data are chosen as

u0(x, y, z) = 0, ρ0(x, y, z) =






ρ3, z > h2(x, y),
ρ2, h1(x, y) ≤ z ≤ h2(x, y),
ρ1, z < h1(x, y),

(3.27)
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where ρ1 < ρ2 < ρ3 denote the initial densities of the three fluids, and h1 and h2 are given
functions which represent the initial position of the two fluid interfaces. Our z-model
is easily generalized to simulate such problems by introducing two interfaces Γi(t),
parametrized by zi(s, t) and carrying vortex sheet densities µi(s, t), i = 1, 2. Following
our derivation of the standard z-model, we obtain that, for i = 1, 2,

∂tzi(s, t) = ūi(s, t) := 1
4π

2∑

j=1

¨
R2

µj2(s′, t)∂1zj(s′, t) − µj1(s′, t)∂2zj(s′, t)
|zi(s, t) − zj(s′, t)|3

ds′, (3.28)

∂tµi(s, t) = A∇s(|ūi(s, t)|2 − 1
4 gjk

i (s, t)µij(s, t)µik(s, t) − 2gz3
i (s, t)). (3.29)

When the two fluid interfaces roll-up inside one another and the separation distance
becomes exceedingly small, the density gradient grows exceedingly large, and traditional
numerical schemes based on multi-dimensional grids require enormous resolution to
accurately capture the small-scale features of the interface and maintain stability. On
the other hand, a small interface separation distance does not impair the numerical
stability of our interface model, and a two-interface interaction is used to demonstrate
stability under small-scale formation. We consider a 2-D unstably stratified three-fluid flow
with densities ρ1 = 1.8, ρ2 = 3, ρ3 = 5, and with the two interfaces given a sinusoidal
perturbation of wavelength λ and amplitude 0.01λ, separated by a distance 0.05λ. As
shown in figure 20, the unstable stratification accelerates the development of RTI, resulting
in strong Kelvin–Helmholtz roll-up with the distance between the two interfaces becoming
very small.

We next use our multiple-interface z-model to study the problem of fluid entrainment.
Of interest are the experiments of Jacobs & Dalziel (2005), who studied fluid mixing in the
case where a layer of light fluid (density ρ−) is initially sandwiched between two layers of
heavy fluid (density ρ+). For short times, this results in standard RTI in the top interface
and stability in the bottom interface; at long times, the turbulent flow in the mixing layer
becomes strong enough to disturb the lower interface and entrain some of the heavy fluid in
the bottom layer. One of the hypotheses tested by Jacobs and Dalziel is that the horizontally
averaged species fraction of light fluid, given by

f (z, t) =
ˆ

R2

ρ+ − ρ(x, y, z, t)
ρ+ − ρ− dx dy, (3.30)

exhibits an asymptotically self-similar distribution at large times, analogous to the
self-similarity of the density field shown in figure 18. (Note that the species fraction differs
from the density by an affine transformation. We simply choose to model the species
fraction in this section to match the experimental results of Jacobs & Dalziel (2005).)
However, unlike for the standard rocket rig, the simple Prandtl closure model will not
suffice, erroneously predicting vertically symmetric growth in the concentration profile.
Instead, one finds that

f (z, t)
fmax(t)

= F(ζ ), ζ = z − zc(t)
w1/2(t)

, (3.31a,b)

where zc(t) is the centroid of the distribution f (z, t), w1/2(t) is the width-at-half-height of
f (z, t) and fmax(t) = max f (·, t). Moreover, it was shown by dimensional arguments and
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Figure 20. Simulation of an unstably stratified flow with densities ρ1 = 1.8, ρ2 = 3, ρ3 = 5, with a
sinusoidal initial perturbation of the lower interface. (a) The full domain. (b) Zoomed-in view of the KHI.

verified experimentally by Jacobs & Dalziel (2005) that

fmax ∼ 1
t
, w1/2 ∼ t, (3.32a,b)

as t → ∞. We use our multi-interface z-model to compute the concentration curves f (z, t).
In particular, we compute the ensemble-averaged density field from 25 z-model runs, and
compute the horizontally averaged species fraction using the formula (3.30). A selection
of the resulting species fraction curves f (z, t), as well as their rescaled counterparts, are
shown in figure 21. As can be seen in figure 22, solutions of the z-model verify the
long-time growth prediction for the functions w1/2(t) and 1/fmax(t) given by Jacobs and
Dalziel. As seen in figure 22, our computation of the functions w1/2(t) and 1/fmax(t) indeed
demonstrate long-time linear growth. Thus the presence of a layer of heavy fluid below an
unstably stratified density field serves to stabilize the resulting RTI, resulting in linear
rather than quadratic growth of the mixing layer.

4. Conclusions
We have derived and tested our interface z-model for RTI where the material interface
is represented by a parametrized surface in three dimensions, and the velocity is
reconstructed using a boundary integral method, by assuming potential flow in the fluid
bulk. Using our models, we have studied several classical problems in RTI, including
single-mode and random multi-mode initial data. We have demonstrated that ensemble
averages of inviscid RTI with random multi-mode initial data reproduce the self-similar
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Figure 21. (a) Mean species fraction f (·, t), plotted at various times. (b) Mean species fraction, plotted in
rescaled coordinates to highlight self-similarity of concentration profiles.

vertical density distribution predicted by a simple Prandtl closure model, and achieve the
theoretically optimal exponential mixing rate for passive scalar fields. Additionally, the
derivation of our one-interface model has been generalized to allow for multiple fluid
interfaces, thus permitting the study of unstably stratified fluid flow. We have demonstrated
self-similarity of the species fraction profile for a heavy–light–heavy initial distribution of
densities, and corroborated the similarity exponents measured experimentally by Jacobs &
Dalziel (2005). These three-phase fluid problems provide a significant numerical challenge
for conventional numerical methods, as the distance between the two interfaces becomes
extremely small and the gradient of density becomes extremely large, which our model is
able to simulate stably. The idea of dimension reduction via the Birkhoff–Rott integral is
now classical, but after more than six decades of simulation efforts, few competitive results
exist for 3-D dynamics. We have been able to identify the appropriate modifications for
the evolution of the amplitude of vorticity which allow our interface model to avoid severe
numerical difficulties and retain high accuracy of the location of vorticity spikes that initial
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Figure 22. Time evolution of the width-at-half-height w1/2(t) (a) and the reciprocal of the maximum
concentration 1/fmax(t) (b), showing linear growth after t/τ = 3.

interface roll-up. We have demonstrated the efficacy of these models for single-mode
initial data and random multi-mode initial data when compared against experimental data,
which shows that two-phase potential flow is sufficiently rich to capture the complexity
of 3-D RTI. This makes our model a stable and accurate alternative to the challenging
simulations of the full two-phase irrotational and incompressible Euler equations. In the
future, we hope to extend this model to include topological transitions in the interface, so
we can test the efficacy of our model in late-stage RTI and turbulent mixing, and perform
a more detailed study of optimal mixing rates in RTI-driven turbulence.
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