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Redundancies in plant cell division contribute to the maintenance of proper division plane orientation. Here we
highlight three types of redundancy: 1) Temporal redundancy, or correction of earlier defects that results in
proper final positioning, 2) Genetic redundancy, or functional compensation by homologous genes, and 3)
Synthetic redundancy, or redundancy within or between pathways that contribute to proper division plane
orientation. Understanding the types of redundant mechanisms involved provides insight into current models of

Synthetic genetic interaction

division plane orientation and opens up new avenues for exploration.

1. Summary of current mechanisms in cell division

Cell division is a fundamental process where a cell divides into two
new daughter cells. Cell division is essential for survival in all organisms
and plays a vital role in plant growth and development. Plant cells do not
migrate and instead control the location of new cells by positioning the
division plane. Plant division plane orientation is established, main-
tained, and completed through the coordination of microtubule and
actin arrays with division site proteins. A short description of the
microtubule arrays and DNA structures observed in typical symmetric
land plant divisions is shown in Fig. 1. Symmetric cell divisions generate
the same cell type while asymmetric divisions generate new cell types.
For more on division plane determination in symmetric and asymmetric
divisions, see reviews (Buschmann and Miiller, 2019; Livanos and
Miiller, 2019; Rasmussen and Bellinger, 2018; Yi and Goshima, 2022).
For a synthesis of developmental and cell biological frameworks that
modulate division plane orientation, please see (Glanc, 2022; Facette
et al., 2019; Yi and Goshima, 2022; Herrmann and Torii, 2021; Zhang
et al., 2023).

A number of proteins and processes relevant to plant division plane
orientation occur with some level of redundancy. Similar to other sys-
tems where redundancy is present, redundancies may contribute to the
robustness of maintaining proper division plane positioning (Laruson
et al., 2020). Open questions remain about why some processes are
reinforced through redundant mechanisms and whether redundancy in
division plane orientation contributes to phenotypic plasticity. Typical
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model systems used to understand division plane positioning include the
dicot model Arabidopsis thaliana (Arabidopsis), monocots Zea mays
(maize) and Brachypodium distachyon, and non-flowering models Phys-
comitrium patens (P. patens) and Marchantia polymorpha (M. polymorpha)
although important discoveries have been found in other plants. This
review focuses on genetic and non-genetic redundancies that contribute
to proper division plane orientation.

1) The interphase cortical microtubule array: During interphase, mi-
crotubules at the cell cortex, the region just underneath the plasma
membrane, form a variety of cortical microtubule array organiza-
tions. Rapidly elongating cells form ordered arrays perpendicular to
the growth axis while isotropically expanding cells tend to form more
disordered microtubule arrays. These cortical interphase arrays
contribute to positioning cellulose synthase complexes and gener-
ating new cell wall material. Therefore, the orientation of the
interphase cortical microtubule array influences the direction of cell
elongation (Dixit and Cyr, 2004; Oda, 2015). Orientation of the
interphase cortical microtubule array often, but not always, precedes
orientation of the preprophase band (PPB), described below (Gun-
ning and Sammut, 1990).

2) The preprophase band (PPB): Increased microtubule dynamicity
precedes the formation of the PPB ring at the cell cortex during the
last part of the G2 phase in the cell cycle (Vos et al., 2004). The PPB
surrounds the nucleus (purple) and accurately predicts the future
division site and cell plate insertion site (Mineyuki, 1999;
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Pickett-Heaps and Northcote, 1966; Smertenko et al., 2017). While

the PPB is disassembling, microtubules accumulate around the nu-

clear envelope to coalesce into an acentrosomal spindle. The cortical
division zone, however, remains marked by division-site-localized
proteins (pink) even though the PPB is no longer present.

The spindle: The spindle captures and separates chromosomes

(purple) during metaphase and anaphase. Spindle formation is

reviewed in Liu and Lee (2022); Zhang and Dawe (2011). After

chromosome separation in anaphase, the spindle disassembles to
form a plant specific structure called the phragmoplast.

The phragmoplast: The phragmoplast directs the formation of the

cell plate. The cell plate transitions into the new cell wall after the

completion of cytokinesis, reviewed in Gu and Rasmussen (2022);

Lee and Liu (2019); Smertenko et al., (2018, 2017).

5) The cortical-telophase microtubule array: The cortical-telophase
microtubule array contributes to positioning the phragmoplast.
Cortical-telophase microtubules are added into the phragmoplast at
the cortex to direct phragmoplast expansion at the division site
(Bellinger et al., 2023). As the phragmoplast disassembles at the cell
plate fusion site, the cell plate fuses with the mother cell plasma
membrane to form the new cell wall.

3

-

4

—

Cell shape, size, and nuclear movement are closely intertwined with
the onset of mitosis and division plane positioning. Plant cells grow to a
certain size before they enter mitosis (Gutierrez, 2022). After asym-
metric divisions generate small cells, S phase is delayed until cells reach
a certain size (D’ Ario et al., 2021). Prior to mitosis, the nucleus moves to
the future division plane in both symmetrically and asymmetrically
dividing cells through the coordinated action of microtubule and actin
motor proteins (Facette et al., 2019; Frey et al., 2010). Proteins con-
necting the nucleus and the cytoskeleton are critical for positioning the
PPB (Arif Ashraf et al., 2022). PPB positioning defects may result from
errors in nuclear positioning but also reflect combinations of defective
cell elongation, disorganized microtubule arrays, or failures in estab-
lishing polarity prior to asymmetric division (Pietra et al., 2013; Zhang
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and Ambrose, 2022). Some mutants discussed below have defects in cell
elongation or microtubule orientation in interphase, which may influ-
ence the position of the division plane and subsequently alter organ
shape. Indeed, cell elongation prior to division typically favors a division
bisecting the long axis of the cell (Martinez et al., 2018). The relation-
ship between division plane orientation and cell shape is discussed in
more detail in (Laruelle et al., 2022; Louveaux et al., 2016; Martinez
et al., 2018; Moukhtar et al., 2019; Rasmussen and Bellinger, 2018).
Identifying mutants that only alter PPB formation or positioning (some
of which are discussed below) but do not seriously alter interphase
microtubule orientation, polarity cues, or cell shape provide excep-
tionally valuable insight e.g. Schaefer et al. (2017).

2. Temporal redundancy

Cell division positioning is buffered through temporal redundancy.
We use temporal redundancy to describe situations where alterations to
division plane orientation are corrected later by another independent
mechanism. Two examples of temporal redundancy discussed below are:
1) when defects in proper organization or positioning of mitotic struc-
tures (Fig. 2), such as the spindle, does not alter the proper localization
of the final division and 2) when protein recruitment to a specific
location earlier in the cell cycle partially abrogates the need for that
protein to be recruited later (Fig. 3).

The inner ring (clockwise starting from interphase) illustrates normal
symmetric divisions with typical land-plant mitotic structures from
interphase to cytokinesis (Pathway 1). Blue lines represent a cell-cycle
progression that leads to a ‘“correctly oriented” division. Red lines
represent defects that may lead to an aberrantly positioned new cell wall
(orange line). In Pathway 2, mispositioned PPBs result in misoriented
spindles and phragmoplasts that lead to a final misoriented division. In
Pathway 3, PPB formation does not occur which either results in wild-
type division planes (blue line) or division-plane-orientation defects
(red line). In Pathway 4, spindle rotation occurs both in mutant and non-
mutant cells, but the tilt is corrected leading to normally positioned
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Fig. 1. Overview of mitotic microtubule and DNA structures and locations important in typical land plant division plane orientation. Typical land plant
cells form five key microtubule arrays (green) during the cell cycle. The division site is marked in pink. Numbered microtubule arrays are described further in

the text.
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Fig. 2. Temporal redundancy during division plane orientation showing schematic examples of correctly oriented divisions, and when mitotic structures
deviate from the “correctly oriented” position. Microtubule structures are green, DNA is purple, and black lines indicate the cell wall.

phragmoplasts (Pathway 5) or generating tilted phragmoplasts that are
sometimes corrected later (Pathway 6). In Pathway 7, phragmoplast
guidance defects result in misoriented divisions. Finally in Pathway 8,
some misoriented phragmoplasts can be corrected as they near the
cortical division site, but before cytokinesis is completed.

Plant cells are capable of robustly maintaining proper division plane
orientation via dynamic re-positioning of mitotic structures (Fig. 2,
Pathway 1). Analysis of divisions with and without PPBs provides
insight into the stabilizing function of the PPB and its contribution to
efficient coordination of mitotic progression. Although the PPB facili-
tates efficient spindle formation, cells lacking PPBs still assemble func-
tionally and morphologically normal spindles (Fig. 2, Pathway 3). This
includes both cells with defective/missing PPBs and those that always
lack PPBs, such as the cells that will undergo meiosis (meiocytes) or
some divisions in early diverging plants e.g. in £Chan et al., 2005; Hig-
gins et al., 2016; Otegui and Staehelin, 2000; Rensing et al., 2020; and
Sakai et al., 20223. Unlike cells that have PPBs, cells that lack PPBs may
require additional time for spindle coalescence as exemplified in Ara-
bidopsis cultured cells (Chan et al., 2005). In addition, naturally
PPB-less meiotic spindles often form incorrectly, taking additional time
to realign to form a bipolar spindle in maize (Weiss et al., 2022; Zhang
and Dawe, 2011).

For cells that typically form PPBs, both spindle rotation and spindle
morphology defects can be overcome to maintain proper division planes
by corrective rotation of the phragmoplast (Fig. 2, Pathways 4 and 5, or
Pathways 4 and 6). Phragmoplast correction has been observed in bean,
maize, and onion cells where imaging experiments revealed tilted

spindles (e.g. >50% in maize epidermal cells), but normal final division
orientations (Cleary and Smith, 1998; Oud and Nanninga, 1992; Pale-
vitz, 1986). In onion guard mother cells, live cell imaging demonstrated
correction of oblique spindle and phragmoplast angles occurs as the cell
plate expands along the location previously marked by the PPB (Pale-
vitz, 1986). In addition, in tobacco, when cells with PPBs are treated
with microtubule depolymerizing drugs followed by washout, spindles
formed that are often tilted, but division positioning is typically cor-
rected prior to cytokinesis (Marcus et al., 2005).

Corrections to spindle orientation are also observed in mutants with
defects in spindle formation, morphology, and organization (Fig. 2,
Pathway 4 and 5 or Pathway 4 and 6). Mutants of the gene encoding the
microtubule severing protein KATANIN1 (KTN1) make defective PPBs
and have spindles that exhibit random rotations in Arabidopsis (Komis
et al., 2017). However, the phragmoplasts eventually return to the
former location of the PPB (Komis et al., 2017). Other mutants that
produce highly elongated, mispositioned, or multipolar spindles also
typically divide in the correct location. Examples include Arabidopsis
endosperm defective 1 (edel), which is a mutant in an AUGMIN8 homolog
(Lee et al., 2017), and mutants lacking minus end directed Kinesin 14 A
motors (atk1 and atk5) (Ambrose and Cyr, 2007; Chen et al., 2002; Hotta
et al., 2022; Marcus et al., 2003).

Other redundant mechanisms that correct spindle mispositioning or
multipolarity occur in cells lacking PPBs. In maize meiocytes, mutants in
Kinesin14A have defects in spindle assembly and form multipolar spin-
dles. However, multipolar spindles then coalesce to form bipolar spin-
dles and division proceeds normally (Higgins et al., 2016; Weiss et al.,
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2022). This suggests that spindle correction also occurs in a
PPB-independent manner. A similar redundancy is observed in
M. polymorpha suspension cells which have centrosome-like structures
called polar organizers that define the poles of the cell and promote the
formation of the PPB. In the absence of the PPB but presence of multiple
polar organizers, Marchantia suspension cells form multipolar prom-
etaphase spindles that resolve into a bipolar arrangement for normal
division progression (Buschmann et al., 2016).

Alternatively, in some divisions without PPBs, such as those
observed in P. patens, meiocytes, or mutants, spindle orientation may
play a greater role in determining division plane orientation. Here, we
propose that the PPB may provide one or more corrective mechanisms
because it recruits division site localized proteins that later adjust
phragmoplast positioning. Therefore in the absence of a PPB, defects in
spindle positioning may not be corrected later in the cell cycle. For
example, the PPB-less divisions of male meiocytes in the Arabidopsis
atkl mutant (mentioned above) have a more severe phenotype con-
sisting of chromosome segregation defects than in PPB-containing
mitotic divisions (Chen et al., 2002; Marcus et al., 2003). In addition,
P. patens gametophore initial cells lack PPBs but instead make a
microtubule structure called the gametosome, which predicts spindle
positioning (Kosetsu et al., 2017). Spindle mispositioning in the asym-
metric divisions of gametophore initials in the P. patens TPX2 mutant
results in aberrant division positioning (Kozgunova et al., 2022). Finally,
greater variation in spindle angle was also observed in an Arabidopsis
triple mutant (discussed below in the genetic redundancy section) that
rarely produced PPBs called tonneau recruiting motif (trm678). In the
trm678 mutant, spindle angle variation was correlated with variation in
cell wall angle (Schaefer et al., 2017). However, confirming if spindle
angle defects indeed lead to mispositioned final cell walls would require
timelapse imaging. Together these examples suggest that in the absence
of a PPB (e.g. in mutants such as trm678, some P. patens divisions, and,
meiocytes), the spindle may play a greater role in division plane
determination.

Spindle rotation and other defects are often compensated by phrag-
moplast guidance to the correct division plane (Pathway 8). In Arabi-
dopsis, several proteins (discussed in more detail below) are
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Fig. 3. Temporal redundancy in protein
recruitment. In the wild-type example (top),
early protein localization is reinforced by
redundant, later recruitment to the same loca-
tion. In the absence of either early or late
recruitment (second and third from top), the
protein is sufficient to maintain correct division
plane orientation. Complete loss of recruitment
results in a division plane orientation defect.
Dotted lines represent the correct division site.
Pink circles represent division site localized
proteins. Solid orange line represents the final
misoriented division.
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hypothesized to guide the phragmoplast to the correct division site by
interacting with microtubules emanating from the phragmoplast called
peripheral phragmoplast microtubules (Livanos and Miiller, 2019). In
maize, another mechanism is proposed to coordinate phragmoplast
positioning with division site localized proteins. Cortical telophase mi-
crotubules, a population of microtubules that nucleates at the cell cortex
independent from phragmoplast microtubules, were observed to
interact with the phragmoplast and likely influence phragmoplast
positioning (Bellinger et al., 2023). Interaction of these cortical telo-
phase microtubules with division site localized proteins (discussed
below) pre-orients cortical telophase microtubules at the cell cortex
ahead of phragmoplast expansion, thereby positioning the phragmoplast
(Bellinger et al., 2023). These cortical telophase microtubules have been
observed in both monocot and dicot species, suggesting that this type of
phragmoplast positioning may be conserved through the plant lineage
(Lucas, 2021; Panteris et al., 1995; Wick, 1985). Phragmoplast guidance
is also mediated by both short and long range interactions between di-
vision site localized proteins, actin filaments, and microtubules. After
centrifugation of dividing tobacco cells, long actin cables are observed
connecting the displaced phragmoplast and the division site or former
PPB location (Arima et al., 2018). Both classes of actin motor proteins,
MYOSIN VIIIs and MYOSIN XIs, promote proper phragmoplast guidance
(Abu-Abied et al., 2018; Huang et al., 2022; Nan et al., 2021; Wu and
Bezanilla, 2014). MYOSIN VIII coordinates actin filaments and micro-
tubules at the phragmoplast and the division site to move the phrag-
moplast towards the division site (Wu and Bezanilla, 2014).

A final example discusses temporal redundancy in terms of protein
localization. TANGLED1 (TAN1) is a key division site localized protein
recruited during both prophase and telophase by independent mecha-
nisms (Rasmussen et al., 2011), although only a part of the protein is
only required for full function (Mills et al., 2022). In Arabidopsis, this
fragment accumulates at the division site during telophase, and interacts
with another division site localized protein called PHRAGMOPLAST
ORIENTING KINESIN1 (POK1) (Miiller et al., 2006; Rasmussen et al.,
2011), which is described in more detail in the genetic redundancy
section. Why then is TAN recruited to the division site during prophase?
Recent data shows that when TAN1 is recruited during prophase, both
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TAN1-telophase recruitment and interaction with POK1 is less impor-
tant for in vivo function. In other words, if TAN1 is already at the di-
vision site, there may beis less need for it to be recruited again later and
for interactions thought to mediate its telophase division site localiza-
tion (Mills et al., 2022).

3. Genetic redundancy in division plane orientation

Genetic redundancy exists for some genes that are important for
division plane orientation (Fig. 4). Genetic redundancy (on the scale of
the individual rather than a population) is defined as the ability of
closely related genes (homologs) to functionally compensate for the
absence of the other (Ascencio and Del.una, 2013; Laruson et al., 2020).
Single mutants have no or subtle phenotypes, whereas two or more
mutant combinations in related genes show phenotypes with varying
severity. In contrast, mutants in non-redundant genes, genes without
homologs in the genome, often have noticeable phenotypes. Below, we
highlight some examples of genetic redundancy involved in division
plane positioning.

Genetic Redundancy

Gene 1

Related Gene 2
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- >
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Fig. 4. Genetic redundancy in division plane orientation. In processes that
involve two or more homologous genes within a family, some genes are able to
functionally compensate for mutations within other related genes. For lower
order mutants (e.g. single mutants shown here), this can result in a normally
positioned division. Higher order mutants, such as the last example of the
double mutant shown here, are required to observe division plane orientation
defects (orange line).
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3.1. Proteins important for PPB positioning

The first genes required for PPB positioning were discovered using
forward genetic screens described below. Later, protein-protein inter-
action studies identified redundant partners that promote proper PPB
positioning. As an example, we highlight the pathway that contributes to
asymmetric divisions during stomatal formation in maize. The pathway
required for PPB positioning and stomatal development in Arabidopsis
has been beautifully and recently reviewed in Chen (2022); Guo and
Dong (2022); Herrmann and Torii (2021).

The early components of the maize asymmetric subsidiary mother
cell pathway were identified using forward genetics as many of the
identified genes have non-redundant functions. Subsidiary mother cells
divide into a subsidiary cell and pavement cell and begin with the
polarized recruitment of BRICK to the subsidiary mother cell and guard
mother cell interface. BRICK1 is a highly conserved component of the
SCAR/WAVE (suppressor of cAR/WASP family/Verprolin-homologous
protein) complex important for nucleating branched actin, first char-
acterized in maize (Frank and Smith, 2002). Arabidopsis brk1 mutants
have aberrant actin organization and reduced trichome branching and
pavement cell lobing (Le et al., 2006; Djakovic et al., 2006). Similarly
maize brickl mutants with aberrant actin organization and form brick-
shaped epidermal cells that lack lobes and have defects in subsidiary cell
formation (Facette et al., 2015; Frank and Smith, 2002). BRICK1 is
required for the recruitment of two catalytically dead
leucine-rich-repeat receptor-like-kinases (LRR-RLK) PANGLOSS2
(PAN2) and PAN1 (Zhang et al., 2012; Cartwright et al., 2009).

Redundant players important for subsidiary mother cell divisions
were identified through protein-protein interactions. PAN2 is required
to recruit PAN1 to the subsidiary mother and guard cell interface, but
they do not physically interact. Instead, PAN1 and PAN2 both interact
with two members of the WEB1-PMI2-RELATED (WPR) protein family
(Nan et al.,, 2022). Founding members of the WPR family, WEAK
CHLOROPLAST MOVEMENT UNDER BLUE LIGHT 1 (WEB1) and
PLASTED MOVEMENT IMPAIRED 2 (PMI2) promote actin nucleation
during chloroplast movement (Kodama et al., 2010; Luesse et al., 2006;
Suetsugu and Wada, 2017). WPRs are a large redundant family (16 in
A. thaliana and 17 in maize) that share a coiled-coil domain which likely
mediates protein-protein interactions (Nan et al., 2023. Four maize
WPRs belonging to the WPRA and WPRB clades interact with each other,
while WPRBs interact directly with PAN2 and PAN1. These WPRs
polarly localize to the subsidiary mother cell face near the guard mother
cell. PAN1 and PAN2 accumulation and interaction with these WPRs
promote actin patch formation. Single wpra mutants have no phenotype,
but double wpral wpra2 mutants were not recovered and are therefore
likely essential for viability (Nan et al., 2023). Similarly, the two WPRB
genes are redundant: single mutants have no phenotype, while double
mutants have subsidiary cell division defects. The WPRs may act
redundantly to mediate PAN1 recruitment following polarization of
BRIK1 and PAN2 (Nan et al., 2023). Finally, PAN1 is required for the
recruitment of a class of small monomeric GTPase proteins found in
plants called Rho-related GTPases of Plants (ROPs) (Facette et al., 2015),
whose redundancy is discussed in more detail below.

3.1.1. ROPs promote cell elongation required for division plane positioning

ROPs act as molecular switches critical for coordinating polar growth
via cytoskeletal rearrangements and vesicle trafficking (Craddock et al.,
2012; Li et al., 2023; Nielsen, 2020; Ou and Yi, 2022; Yang, 2008). Like
other small GTPases, ROPs cycle between an activated GTP-bound state
and an inactive GDP-bound state mediated by guanine nucleotide ex-
change factors (GEFs) and GTPase-activating proteins (GAPs) respec-
tively. Activated ROP-GTP interacts with ROP effectors. A final class of
ROP regulators called guanine dissociation inhibitors (GDIs) inhibit ROP
activity by sequestering ROP-GDP away from the plasma membrane.
ROPs and their related proteins are often highly redundant. For
example, in moss (P. patens), there are twelve GEFs, six ROPGAPs, and
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four GDIs. Silencing entire families of ROP regulators by RNAi results in
loss of tip growth and highlights their role in cell expansion (Bascom
et al., 2019). Arabidopsis has eleven highly similar ROPs, so over-
expression or gain-of-function mutants have been used to overcome
redundancy to reveal defects in directed cell expansion in root hairs,
pollen tubes, during phloem development, and in epidermal cells
(Fowler, 2009; Yang, 2002; Fu et al., 2005; Roszak et al., 2021). Inter-
estingly, a few proteins within the ROP signaling module may also play
roles in division plane orientation. These include ROPs, ROP-GAP pro-
teins (also known as PLECKSTRIN HOMOLOGY GAPS, PHGAPs),
ROP-GEFs, and ROP effectors called ROP INTERACTING PARTNERS
(RIPs) (Hasi and Kakimoto, 2022; Rong et al., 2022; C. Zhang et al.,
2022).

Two of the nine ROPs in maize play redundant roles in polarizing
subsidiary mother cell divisions. Like Arabidopsis, maize ROPs can be
classified based on post-translational modifications into two groups
(Type-I or Type-II) which affect membrane targeting (Berken and Wit-
tinghofer, 2008; Christensen et al., 2003). Maize Type-I rop2/rop2
rop9/+ mutants have defective subsidiary mother cell divisions due to
failure to accumulate actin patches during polarization (Humphries
et al., 2011; Christensen et al., 2003). Maize ROPs are recruited by an
initial BRICK/PAN polarizing signal (discussed above) to promote actin
patch formation. After ROP recruitment, the guard mother cell and the
subsidiary mother cell expand (Facette et al., 2015).

P. patens and M. polymorpha, have fewer ROP genes than Arabidopsis
and maize. In P. patens, all four ROP genes act redundantly to regulate
polarized tip growth and individually contribute to plant size (Burkart
et al., 2015). Quadruple rop1234 mutants lose polar growth completely,
resulting in diffusely growing spherical cells that lack branches (Cheng
et al., 2020). Less severe triple ROP mutants rop134 (Cheng et al., 2020)
and rop234 (Yi and Goshima, 2020) exhibit defective placement of
asymmetric branch divisions (Cheng et al., 2020). Similar phenotypes
can be seen in cells treated with Latrunculin A, a drug that disrupts actin
filaments, suggesting that ROPs regulate actin accumulation to promote
branch initiation and then cell elongation (Yi and Goshima, 2020). Di-
vision plane orientation defects in rop234 mutants seem to be a conse-
quence of failed branch expansion and failed nuclear migration (Yi and
Goshima, 2020). The sole ROP gene in M. polymorpha is most similar to
AtROP2 (Rong et al., 2022). rop mutant thallus cells had aberrant shapes
and defects in cortical microtubule organization that likely contributed
to more random division positioning. While it is known that
M. polymorpha cells forms PPBs following the formation of polar orga-
nizers (perinuclear microtubule accumulations), whether PPBs were
misplaced in rop mutants is unknown because they were not observed in
these cells (Buschmann et al., 2016; Rong et al., 2022).

Arabidopsis PHGAPs/RENSs are another example of redundant genes
that impact division plane positioning. Mutants in Arabidopsis PHGAPs/
RENs have aberrant PPB localization, potentially due to defects in cell
elongation. PHGAPS are a class of pleckstrin homology ROP GTPase-
activating proteins (GAPs) that promote GTP hydrolysis and thus inac-
tivation of ROP (Stockle et al., 2016). The founding member, ROP
ENHANCER1 (REN1), maintains pollen-tube tip growth through its
regulation of ROP1 (Hwang et al., 2008). Two other closely related
PHGAPs, PHGAP1/REN2 and PHGAP2/REN3, interact with ROP2 and
are redundantly required for epidermal-cell lobing (Lauster et al., 2022).
PHGAPs are stabilized by BRASSINOSTEROID INSENSITIVE 2
kinase-dependent phosphorylation, accumulating in pavement-cell in-
dentations to deactivate ROP2 (C. Zhang et al., 2022). In addition to the
role of PHGAPs in polar expansion, PHGAPs are recruited to the division
site from metaphase to cytokinesis in the Arabidopsis root meristem
(Stockle et al., 2016). PHGAPs likely alter PPB positioning via their roles
in cell elongation, although some other mechanism is possible. The role
PHGAPs play at the division site remains unknown (Stockle et al., 2016).

Other ROP-related proteins in Arabidopsis that influence the direc-
tion of cell division include a class of ROP effector proteins, interactor of
constitutive active ROPs (ICRs)/ ROP interactive partners (RIPs)
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(Nagawa etal., 2010; Lavy et al., 2007), and the ROPGEFs (Roszak et al.,
2021). Arabidopsis has five RIPs that all label cortical interphase mi-
crotubules (Hasi and Kakimoto, 2022). Several double or triple mutant
combinations have no phenotype while the two quadruple mutants
rip1245 and rip1235 as well as the quintuple rip12345 mutant generate
narrower leaves due to less longitudinally-oriented PPBs leading to
fewer transversely-oriented cells (Hasi and Kakimoto, 2022). Thus far,
mutants in another class of highly redundant ROP effectors, the
ROP-interactive CRIB motif proteins (RICs), reveal functions in cell
lobing in Arabidopsis (Wu et al., 2001) but no obvious function in
P. patens (Bascom et al., 2019). Interestingly, individual overexpression
of three Arabidopsis ROPGEFs (ROPGEF2, ROPGEF3, and ROPGEF5)
activate ROPs to generate asymmetric periclinal divisions during
phloem development (Roszak et al., 2021). These ROPGEFs localize
ubiquitously on the plasma membrane but are depleted from the divi-
sion site (Roszak et al., 2021), similar to the actin depleted zone (Pan-
teris, 2008; Sano et al., 2005; Van Damme et al., 2007). This suggests
that ROP activity may be reduced at the division site.

In summary, mutants of ROPs and ROP-related proteins demonstrate
their roles in cell expansion and polar growth. Impacts on division plane
placement may be indirect through alterations in cell shape mediated by
cell expansion. However, the absence of ROPGEFs from the division site,
and accumulation of PHGAPs at the division site may reflect more direct
roles in division plane orientation.

3.1.2. IRK/PXC2

Preventing aberrant divisions is another critical role in division plane
positioning played by two partially redundant leucine-rich-repeat re-
ceptor-like kinases (LRR-RLK) in Arabidopsis. One of them is INFLO-
RESCENCE AND ROOT APICES RECEPTOR KINASE (IRK), a LRR-RLK
that polarly localizes and is essential for preventing ectopic divisions in
the endodermis and restricting stele width (Campos et al., 2020). A
closely related LRR-RLK called PXY/TDR CORRELATED2 (PXC2) also
restricts stele width. Double mutants have more frequent and aberrantly
positioned divisions, wider steles and noticeable root growth defects:
enhanced phenotypes are likely due to differences in gene expression
domains (Goff and Van Norman, 2021).

3.1.3. GRAS Transcription Factors

The Arabidopsis GRAS family transcription factor SHORT-ROOT
(SHR) together with another GRAS transcription factor, SCARECROW,
promotes periclinal divisions in the root to generate cortex and endo-
dermal cell layers (Benfey et al., 1993; Koizumi et al., 2012). Arabi-
dopsis SHR is a mobile protein moves from the stele to the endodermis
(Nakajima et al., 2001). Maize has three SHR homologs: ZmSHRI,
ZmSHR2, and ZmSHR2-h, while Setaria viridis has two SHR homologs
(Ortiz-Ramirez et al., 2021). In contrast to Arabidopsis, ZmSHRs are
expressed in the endodermis and move to the cortex (Ortiz-Ramirez
et al., 2021). While single mutants have no or slight phenotypes, maize
and S. viridis double mutants have reduced cortical layer numbers,
illustrating the redundant functions of two monocot SHR homologs in
regulating root periclinal divisions (Ortiz-Ramirez et al., 2021). In
P. patens, SHR homologs are also genetically redundant and play a role in
division plane positioning of an asymmetric division that occurs in the
phyllid (leaf) (Ishikawa et al., 2023). P. patens has two SHR homologs,
PpSHR1 and PpSHR2 (Ishikawa et al., 2023; Moody et al., 2021). Double
ppshrl ppshr2 mutants have defects in the orientation of a cell type called
the most-medial lateral cell, resulting in narrower leaves and thicker
midribs (Ishikawa et al., 2023). In most-medial lateral cells, PpSHR
functions to promote longitudinal divisions instead of dividing along the
path that minimizes surface area (Ishikawa et al., 2023).

3.2. Proteins important for PPB formation

One protein complex essential for PPB formation contains a core of
five proteins called the TONNEAU1 (TON1)/TONNEAU1 RECRUITING



A.N. Uyehara and C.G. Rasmussen

MOTIF (TRM)/ PROTEIN PHOSPHATASE TYPE 2 A (PP2A) (TTP)
complex (Spinner et al., 2013). The complex contains a PP2A phos-
phatase holoenzyme composed of three subunits described below in
more detail, a connector protein, TON1, and one or more proteins from
the TRM family. Genes encoding proteins within the complexes are often
redundant: double or triple mutants are required to see a phenotype,
which is typically altered cell elongation due to misorganized microtu-
bule arrays (except in the trm678 mutant where arrays appear normal,
although this was not quantitatively analyzed) and no PPB. When core
TTP components are removed, lethality is sometimes observed, sug-
gesting that the TTP complex plays multiple vital roles in both inter-
phase and mitotic cells. The TTP complex is targeted to specific locations
by TRMs and the B’ regulatory subunit of PP2A.

PP2A holoenzymes play important roles in plant defense, regulating
transcription factor stability, and signaling e.g. (Bheri and Pandey,
2019; Bian et al., 2020; Mathé et al., 2019), but here we focus on its role
in PPB formation. The PP2A heterotrimeric holoenzyme is composed of
a scaffolding subunit (PP2AA), a regulatory B-type subunit that controls
its localization, and a catalytic subunit (PP2AC). B-type subunits can be
broken into B, B’, and B’ families and function in substrate specificity or
PP2A complex targeting. FASS/TON2 encodes a B’’ type regulatory
subunit (Camilleri et al., 2002). In Arabidopsis, fass/ton2 mutants have
defects in cortical-microtubule organization and lack PPBs (Camilleri
et al., 2002; Kirik et al., 2012; McClinton and Sung, 1997; Torres-Ruiz
and Jiirgens, 1994). In maize, the B”’ subunit is encoded by two ho-
mologs, DISCORDIA1 (DCD1) and ALTERNATIVE DISCORDIA1 (ADD1).
Similar to Arabidopsis fass/ton2 loss-of-function mutants, maize dcdl
addl double mutants do not make PPBs and are seedling lethal. DCD1
and ADD1 localize to the division site from pre-prophase to metaphase
(Wright et al., 2009) similar to FASS/TON2 (Kirik et al., 2012). Single
addl mutants have no discernable phenotype (Wright et al., 2009).
Single dcd1 mutants have partially defective preprophase bands which
disrupt subsidiary mother cell divisions but do not affect symmetric
divisions (Wright et al., 2009). Perhaps symmetric divisions in maize
have additional redundant mechanisms to ensure proper division plane
orientation not found in asymmetric divisions.

There are five copies of the Arabidopsis PP2A phosphatase catalytic
subunit. Single pp2ac-3 or pp2ac-4 mutants do not have significant root
growth, microtubule organization, and division positioning defects until
combined into a double mutant (Ballesteros et al., 2013; Spinner et al.,
2013; Yoon et al., 2018; Yue et al., 2016). A receptor-like kinase called
ARABIDOPSIS CRINKLY4 (ACR4) phosphorylates PP2A-C3, while
PP2A-C3 dephosphorylates ACR4. This cross-regulation is implicated in
formative cell divisions within the Arabidopsis root (Yue et al., 2016).
Similarly, three PP2AA-scaffolding subunits facilitate PP2A assembly
and double or triple mutants are required to observe cells lacking PPBs
(Spinner et al., 2013; Zhou et al., 2004). Neither the scaffolding subunit
double mutants (pp2aal-a3 or pp2aal-a2) nor the catalytic subunit
double mutant pp2ac3-c4 make PPBs (Spinner et al., 2013). Enhanced
phenotypes in higher order mutants reveal redundancies in the PP2A
complex and its impact on PPB formation.

The original ton1 mutant allele is actually a double mutant disrupting
two tandemly-linked paralogs, TONla and TONIb in Arabidopsis
(Azimzadeh et al., 2008; Nacry et al., 1998; Traas et al., 1995). TON1a
and TON1b are 86% identical at the amino acid level and both contain a
serine-rich motif, a dimerization motif, and bind to the calcium-binding
protein called centrin (Azimzadeh et al., 2008). TON1 also shares do-
mains with human centrosome proteins and may be involved with
microtubule nucleation (Azimzadeh et al., 2008). The double mutant
produces a tiny plant with no PPBs and disordered microtubule arrays.
In contrast, tonla-1 single mutants have a milder phenotype consisting
of slightly slower root growth and misoriented symmetric divisions
mostly in the root epidermis (Zhang et al., 2016). Disruption of the
single gene TON1 in P. patens leads to normally shaped but agravitropic
vegetative cells and small, disorganized leafy gametophores with defects
in PPB formation and cell elongation (Spinner et al., 2010).
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A subset of highly redundant TON1 interactors, TRMs, were identi-
fied by yeast-two-hybrid screening that are required for both PPB
positioning and formation. TRMs are a superfamily of 34 proteins that
share a conserved C-terminal TON1 interacting motif. Some TRMs also
contain microtubule-binding domains and FASS/TON2 interaction do-
mains (Drevensek et al., 2012; Spinner et al., 2013). The founding TRM
genes, called LONGIFOLIA1 (LNG1) and LNG2, were identified by a
dominant mutant that overexpressed LNGI/TRM2 in Arabidopsis,
Ingl-1D (Lee et al., 2006). The Ingl-1D overexpression produces aber-
rantly elongated cells leading to long, narrow leaves. Neither Ingl nor
Ing2 loss-of-function mutants have a noticeable phenotype. However,
Ingl Ing2 double mutants have short, round leaves (Lee et al., 2006).
Progressively higher order mutant combinations generated cell elonga-
tion defects that led to shorter rounder leaves (Lee et al., 2018). Whether
these mutants have PPB positioning defects is unknown. In maize, a
naturally-occurring mutation within the LNG1/TRM2 gene ZmLNG1,
alters leaf shape and plant architecture in specific genetic backgrounds.
The mutation generates a protein that disrupts ZmLNG1 and ZmTON1
interactions but does not alter ZmLNG1 localization. ZmLNG1 over-
expression  generates long, narrow leaves and kernels.
Yeast-three-hybrid assays suggest that ZmLNG1 may act as a bridge
between TON1 and Ovate Family Proteins (OFPS, discussed below)
(Wang et al., 2023).

While several LNG/TRM genes promote cell elongation, possibly due
to modulation of interphase microtubule orientation or PPB location,
other TRM genes are critical for PPB formation itself. A subset of three
similar TRMs in Arabidopsis, TRM6, TRM7 and TRM8 (Drevensek et al.,
2012), have partially redundant roles in PPB formation (Schaefer et al.,
2017). Single and double mutants have minor phenotypes, but the triple
trm678 mutant has significantly impaired PPB formation (Schaefer et al.,
2017). Triple rm678 mutants do not have obvious growth defects but
have increased spindle angle variance. Interestingly, division site
localized proteins still accumulate, albeit less often than in wild-type
cells (Huang et al., 2022; Schaefer et al., 2017). This suggests that a
partial or defective PPB still accumulates in these mutants, and/or that
division site protein localization is not strictly contingent on PPB
formation.

Multiple TRMs interact with another class of plant-specific proteins
called Ovate Family Proteins (OFPs) that likely alter PPB positioning or
directional cell elongation, as mutants originally characterized in to-
mato produce elongated tomato fruits (Snouffer et al., 2019; van der
Knaap et al., 2014; Wu et al., 2018). OFPs contain a conserved ~70
amino acid “ovate” motif in addition to protein-protein interaction do-
mains (Liu et al., 2002). Multiple OFP family members are found across
the land plants lineage: P. patens has 11, Arabidopsis has 19, and maize
has 45 (Liu et al., 2014). Arabidopsis OFPs also interact with FAS-
S/TON2 (Zhang et al., 2020). However, the founding OFP was a
loss-of-function mutant in OVATE that produced elongated tomato fruits
(Liu et al., 2002). Additional mutations in another OFP gene called
SIOFP20 led to highly elongated fruits in the ovate mutant background
(Wu et al., 2018) indicating that redundant OFP functions can be
revealed through higher order mutant combinations. Indeed, single
loss-of-function ofp mutants often do not have any phenotype (Wang
et al., 2011).

Although OFPs and TRMs interact, they often have antagonistic ef-
fects on fruit or organ shape in diverse plant species e.g. (Colle et al.,
2017; Lazzaro et al., 2018; Snouffer et al., 2019; Wang et al., 2023; Yang
et al., 2018; Zhao et al., 2018). TRM overexpression often generates
elongated organs, while overexpression of OFPs often generates short,
round organs (Snouffer et al., 2019). Transiently co-expressing OFPs
with TRMs alters localization of one interacting partner or another
(sometimes to microtubules or the cytosol), suggesting that both in-
teractions and relative amounts are delicately balanced to generate
proper localization eventually leading to correctly shaped organs (Wu
et al., 2018).
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3.2.1. 1Q67 DOMAIN proteins

1Q67 DOMAIN proteins are a large family of plant-specific proteins
(33 in Arabidopsis) that modulate cell shape, contain calmodulin
binding motifs (IQ67) and often localize to microtubules (Liang et al.,
2018; Biirstenbinder et al., 2013; Li et al., 2021, 2020, 2022; Yang et al.,
2022; Lazzaro et al., 2018; van der Knaap et al., 2014). Similar to the
TRMs, a subset of three IQD proteins (IQD6,7 and 8) are also redun-
dantly required for PPB formation as triple igd678 mutants result in 50%
of cells without PPBs (Kumari et al., 2021). IQD8 fused to GFP rescues
the igd678 mutant and marks a broad zone that encompasses the divi-
sion site until cytokinesis and colocalizes with phragmoplast microtu-
bules (Kumari et al, 2021). IQD678 are also important for the
asymmetric divisions in the Arabidopsis embryo and likely indirectly
contribute to division plane positioning by influencing cell shape
through auxin dependent cytoskeletal changes (Vaddepalli et al., 2021).
Intriguingly, IQD8 interacts with PHGAP proteins, which are required
for PPB placement (discussed above) and recruits them to microtubules
when concurrently overexpressed in tobacco cells. IQD8 interacts with
both PHRAGMOPLAST ORIENTING KINESIN1 (POK1) and POK2 dis-
cussed in more detail below (Kumari et al., 2021). In igd678 mutants,
POK1 recruitment is delayed but eventually accumulates to wild-type
levels (95%) by cytokinesis (Kumari et al., 2021).

3.3. Proteins important for phragmoplast guidance or the maintenance of
division plane orientation

3.3.1. POK1/POK2

The homologs POK1 and POK2 encode two kinesin-12 class proteins
in A. thaliana that localize to the division site from prophase to cytoki-
nesis and together play critical roles in division plane orientation (Lipka
et al., 2014; Herrmann et al., 2018; Miiller et al., 2006). Both proteins
have an N-terminal motor domain, coiled-coil domains, and a C-termi-
nal cargo binding domain (Miiller et al., 2006). Single mutants do not
have division plane orientation defects. However, pokl pok2 double
mutants have division plane orientation defects (Miiller et al., 2006) due
to defects in phragmoplast guidance, which often inserts the cell plate at
a location different from the PPB (Lipka et al., 2014). POK1 also rescues
the double mutant, suggesting functional redundancy (Lipka et al.,
2014). However, phragmoplast expansion rates are significantly slower
in pok2 single mutants, indicating its distinct role (Herrmann et al.,
2018). POK1 and POK2 have similar N-terminal motor domains but
localize to the division site via C-terminal regions (Herrmann et al.,
2018; Lipka et al., 2014). The C-terminus mediates interaction with
another division site localized protein TANGLED]1, described in the next
section (Miiller et al., 2006). POK1 is actively recruited to the division
site during prophase but is statically maintained in metaphase (Lipka
et al., 2014). POK2 motor activity is diffusive and weakly processive
towards microtubule plus-ends (Chugh et al., 2018). POK2-YFP notice-
ably accumulates in the phragmoplast midline and the division site, in
contrast to POK1, which is primarily at the division site in wild-type cells
(Herrmann et al., 2018; Lipka et al., 2014; Mills et al., 2022). If POK1 is
not recruited to the division site when interactions with other division
site localized proteins are disrupted, it also accumulates in the phrag-
moplast midline and on the phragmoplast microtubules (Mills et al.,
2022). Perhaps in the absence of division-site recruiters and stabilizers,
plus-end directed kinesins preferentially localize to the phragmoplast
midline and the phragmoplast where microtubule plus-ends accumulate.
POK1 interacts with the RAN-GTPASE-ACTIVATING-PROTEIN1
(RAN-GAP1), a protein that localizes to the division site and is likely
required for division positioning with its redundant partner RAN-GAP2
(Xu et al., 2008). POK1 is actively maintained at the division site after
the PPB disassembles through direct or indirect interactions with two
other proteins, TANGLED1 (TAN1) and AUXIN INDUCED IN ROOT
CULTURES9 (AIR9) (Mills et al., 2022), which are discussed in more
detail in the next section.
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3.3.2. Myosin XI and Myosin VIII

POK1 and POK2 interact with other proteins including actin-binding
motor proteins called myosins that transport cargo along actin filaments
(Huang et al., 2022; Nan et al., 2021). Plants contain two myosin classes:
MYOSIN XI, which contains a similar domain structure as Myosin class V
proteins from animals and fungi, and MYOSIN VIII, which is plant spe-
cific (Nebenfiihr and Dixit, 2018). Interestingly, both MYOSIN XIs and
MYOSIN VIIIs play critical but often highly redundant roles in division
plane positioning in addition to their roles in cell elongation, nuclear
and organelle movement, and cytoplasmic streaming (Bibeau et al.,
2021; Haraguchi et al., 2018; Madison et al., 2015; Tominaga and
Nakano, 2012). In Arabidopsis, there are 13 MYOSIN XIs: 3 of them,
MYOSIN XI-K, MYOSIN XI-1 (also called MYA1) and MYOSIN XI-2, are
redundantly required for division plane positioning, particularly within
the stele (Abu-Abied et al., 2018). The myosin xi-k xi-1 xi-2 triple mutant
generates additional lateral and adventitious roots and shows both un-
polarized auxin transport efflux protein localization and lower auxin
response in roots. MYOSIN XI-K-YFP, rescues the triple myosin mutant
and; localizes to the division site during prophase, metaphase and
telophase suggesting it may play a direct role in division plane posi-
tioning (Abu-Abied et al., 2018). The triple mutant was combined with a
mutation in MYOSIN XI-I to generate a quadruple myosin mutant. Sur-
prisingly, the quadruple mutant grew similarly to wild-type plants
during the seedling stage. However, the quadruple mutant was hyper-
sensitive to the microtubule-depolymerizing drug, oryzalin. Similar to
MYOSIN XI-K-YFP, MYOSIN XI-1-YFP localized to the division site.
MYOSIN XI-1 localization was dependent on a functional PPB, showing
partially disrupted localization in the trm678 triple mutant described
above but no division site accumulation in the fass/ton2 mutant. In
addition, MYOSIN XI-K and XI-1 interact via co-immunoprecipitation
and they are found together at the division site in puncta with other
division site localized proteins including POK1, TAN1 and RAN-GAP1
(Huang et al., 2022).

In maize, a MYOSIN XI related to MYOSIN XI-I, called OPAQUE1
(01) promotes phragmoplast guidance to the division site in asymmetric
divisions and interacts with POK1 homologs and other myosins (Nan
et al., 2021). The o1 mutant has aberrant protein body accumulation in
endosperm cells which produce the opaque kernel phenotype (Wang
et al., 2012). Despite similarities in interactors, MYOSIN XIs also
perform distinct, apparently non-conserved roles. For example, Arabi-
dopsis MYOSIN XI-I is required for proper nuclear movement and nu-
clear shape (Muroyama et al., 2020; Tamura et al., 2013; Zhou et al.,
2015), but the ol mutant does not have obvious defects in nuclear
positioning or shape (Nan et al., 2021). Additionally, while several
Arabidosis MYOSIN XIs fused to fluorescence proteins localize to the
division site and the phragmoplast midline (Abu-Abied et al., 2018;
Huang et al., 2022), immunolocalization shows that maize O1 localizes
only to the phragmoplast midline (Nan et al., 2021). In P. patens, the two
MYOSIN XIs are redundantly required for polarized growth via inter-
action with a RAB monomeric GTPAse and also play roles in vesicle
clustering and trafficking (Vidali et al., 2010; Galotto et al., 2021; Orr
et al., 2020). MYOSIN XI accumulates at the growing tip prior to actin
filaments (Furt et al., 2013) and localizes to the spindle and phragmo-
plast midline but not at the division site (Sun et al., 2018). These recent
exciting breakthroughs and differences among MYOSIN XIs illuminate
the need to determine how MYOSIN XIs promote proper division plane
positioning possibly through interaction with POKs or other proteins at
the division site or the phragmoplast midline.

The plant-specific myosins, MYOSIN VIIIs, also play critical roles in
division plane positioning, although their interaction with other
division-site localized proteins is still unknown. MYOSIN VIII genes are
found in large and sometimes partially redundant families. Deleting one,
two, and up to five MYOSIN VIIIs in P. patens generates progressively
smaller plants, with the quintuple mutant most severely affected (Wu
et al., 2011). In addition, quintuple mutants have defects in division
plane positioning that can be mostly rescued by overexpression of one
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MYOSIN VIII. MYOSIN VIII localizes to the division site both in P. patens
PPB-independent divisions, and in PPB-containing tobacco cells (Wu
and Bezanilla, 2014). MYOSIN VIIIs also localize to plasmodesmata,
plasma membrane, microtubule and actin filaments (Golomb et al.,
2008; Kastner et al., 2022; Liu et al., 2001; Wu and Bezanilla, 2014). In
P. patens, division site localization requires an intact actin cytoskeleton
(Wu and Bezanilla, 2014). While mutants in a single MYOSIN VIII,
Arabidopsis thaliana myosinl (atml), have slower growth and less
dividing root cells, division plane orientation was not assessed (Olatunji
et al., 2022). It will be interesting to determine whether MYOSIN VIIIs
interact with division site localized proteins.

3.3.3. MAP65s

In addition to interacting with MYOSIN XIs, POK2 also interacts with
several members of the MICROTUBULE ASSOCIATED PROTEIN65
(MAP65) family: MAP65-1, MAP65-3 and MAP65-5 (Herrmann et al.,
2018). The founding MAP65 protein was identified through a robust
interaction with microtubules, including in vitro bundling (Chang-Jie
and Sonobe, 1993). MAP65s typically bundle parallel or antiparallel
microtubules with shallow contact angles (Hashimoto, 2015; Smertenko
et al., 2004; Tulin et al., 2012). MAP65 gene families tend to be large (9
in Arabidopsis), and have variable regions that provide specificity
within subfamilies. In addition, expression, phosphoregulation, and
localization of MAP65 proteins is variable (Hussey et al., 2002; Sasabe
and Machida, 2012; Smertenko et al., 2008).

Unlike other MAP65s, MAP65-3 and MAP65-4 exhibit mitosis-
specific expression and are together essential for cytokinesis (Li et al.,
2017; Van Damme et al., 2004). MAP65-3 plays a critical and
non-redundant role in antiparallel microtubule bundling within the
phragmoplast (Ho et al., 2011). map65-3/pleiade mutants are small and
have defects in cytokinesis (Miiller et al., 2004) that cannot be rescued
with MAP65-1 driven by the MAP65-3 promoter (Ho et al., 2012).
MAP65-3 localizes to the phragmoplast midline (Miiller et al., 2004)
and interacts with many proteins including POK2 (Herrmann et al.,
2018). Other MAP65s are also important in cytokinesis as demonstrated
through exacerbated cytokinetic defects in MAP65-3 double mutants
with MAP65-1, MAP65-2, or MAP65-43 respectively (Li et al., 2017;
Sasabe et al., 2011). Interestingly, map65-1 map65-2 double mutants do

A Synthetic Redundancy within Pathways

i. Accumulation of partial pathway mutations
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not have defects in division positioning or cytokinesis and instead
function redundantly in cell expansion (Lucas and Shaw, 2012; Sasabe
et al.,, 2011). map65-4 mutants have no noticeable phenotypes until
combined with map65-3 mutants but double mutants are not viable due
to cytokinesis failures. MAP65-4 localizes to the division site and the
phragmoplast midline, but its function at the division site is not yet
known (Li et al., 2017).

4. Synthetic redundancy

In this section we discuss another type of redundancy that is medi-
ated not by homologous genes, but by unrelated genes. The framework
for understanding synthetic genetic interactions has been described
(Zinovyev et al., 2013). Unrelated genes may contribute redundant
functions through involvement in the same pathway (Fig. 5A-i, ii) or in
different pathways (Fig. 5B). Within a singular genetic pathway, loss of
an unrelated gene may represent a “partial loss of function” (Fig. 5A).
Alternatively, unrelated genes may contribute to similar functions,
likely in genetically parallel pathways that converge on a single
phenotypic output (Fig. 5B). For both within or between pathway re-
dundancies, when one gene or the other is disrupted there is no or little
obvious phenotype, but the double mutant has a synthetic or synergistic
phenotype, described as “synthetic sick” or “synthetic lethal”. The most
comprehensive analysis of synthetic sick or synthetic lethal mutants
comes from a systematic double mutant screen in budding yeast. This
screen identified many unexpected genetic interactions between unre-
lated genes (Tong et al., 2001). Alternatively, synthetic lethality screens
have led to treatments of human cancers: poly(ADP-ribose) polymerase
(PARP) inhibitors are synthetically lethal with mutations in Breast
Cancer genel (BRCA1) or BRCA2 (Turk and Wisinski, 2018).

One type of synthetic genetic interaction is observed when two genes
from different parts of a single pathway are mutated (Fig. 5A-i). Several
examples came from a screen that generated double mutants focused on
the MITOGEN ACTIVATED PROTEIN KINASE (MAPK) pathway in
Arabidopsis. Single mutants in different parts of the MAPK pathway
have minor growth phenotypes, while the double mutants show syn-
thetic short-root phenotypes (Su and Krysan, 2016). This conserved
MAPK pathway is essential for cytokinesis, reviewed in Sasabe and

B Synthetic Redundancy between Pathways
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Fig. 5. Modular redundancy in division plane orientation inspired by (Zinovyev et al., 2013). (A) Synthetic enhancement within pathways can occur (i) through
accumulation of partial pathway mutations in genes (black and gray arrows) within the same pathway or (ii) through mutations within a complex that lead to
complex disassembly. (B) Schematic of genes (black and gray arrows) that occur in two distinct but redundant pathways that contribute to correct division plane
orientation. Loss of components in one pathway does not result in a phenotype. However, loss of both pathways results in a synthetically enhanced division plane

orientation defect. Orange lines represent final misoriented divisions.
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Machida (2012). An additional example of a synthetic genetic interac-
tion occurs in panl pan2 double mutants which have ~3X more asym-
metric division defects than single mutants (Zhang et al., 2012). PAN1
and PAN2 are two different LRR-RLK proteins that accumulate during
different times during the developmental sequence of subsidiary mother
cell division (Facette et al., 2015).

When unrelated genes contribute to a singular pathway, partial-loss-
of-function mutant alleles are enhanced by additional “within-complex™
mutant alleles (Fig. 5A-ii). Two fascinating examples took advantage of
weak alleles of fass/ton2 to screen for enhancers. A new allele of tonla
was identified as a ton2-15 enhancer (Kirik et al., 2012). TON1A protein
directly interacts with FASS/TON2 (Spinner et al., 2013), suggesting
that the “synthetic” phenotype may be caused by loss of multiple com-
ponents within a complex. Another use of a different weak fass/ton2
allele showed strong genetic enhancement when combined with pp2aal,
pp2aa2 or pp2aa3 mutants. The PP2AA proteins also interact directly
with FASS/TONZ2 in the TTP complex (Spinner et al., 2013).

Another partial-loss-of-function mutant enhanced by additional
“within complex” mutant alleles occurs during asymmetric divisions
that produce the subsidiary cells in maize (BRICK/PAN/ROP pathway
described earlier). Combining rop2 homozygous mutants with rop9
heterozygotes (rop2/rop2 rop9/+) generates a mild subsidiary cell
division-positioning defect, likely representing a partial loss of ROP
Type I function. Combining this with the panI mutant (which by itself
has ~20% defective subsidiary cells) generates plants with > 50%
defective subsidiary cells. This synthetic enhanced phenotype is
consistent with their physical interaction (Humphries et al., 2011).

A synthetic double mutant with defects in growth and division plane
orientation was recently identified through the combination of a mutant
in TANGLED1 (TAN1), which encodes a microtubule-binding protein
that localizes to the division site, together with a mutant in AUXIN
INDUCED IN ROOT CULTURES9 (AIR9), which encodes an unrelated
microtubule-binding protein that localizes to the division site in pre-
prophase and late telophase in Arabidopsis (Buschmann et al., 2015,
2006; Walker et al., 2007). The current hypothesis is that TAN1 and
AIR9 function in two separate but functionally redundant pathways
(schematically outlined in Fig. 5B) that maintain division plane orien-
tation in Arabidopsis because no interaction between them has been
identified (Mir et al., 2018). TAN1 was originally identified in maize, in
which tanl mutants are short and have defects in phragmoplast guid-
ance to the division site (Cleary and Smith, 1998; Martinez et al., 2017;
Smith et al., 1996). TANTI is found in plants either as a single gene (e.g.
Arabidopsis (Walker et al., 2007)) or is within a small family with a few
paralogs (e.g. sorghum or maize). TAN1 is plant-specific and in maize, it
encodes a protein that binds, bundles and crosslinks microtubules in
vitro (Martinez et al., 2020; Smith et al., 2001) and likely captures mi-
crotubules in vivo to position the expanding phragmoplast at the divi-
sion site (Bellinger et al., 2023). In Arabidopsis, tanl and air9 single
mutants do not have significant division plane or growth defects.
However, tanl air9 double mutants exhibit a synthetically enhanced
phenotype, consisting of short, slow-growing plants with phragmoplast
guidance defects. Unexpectedly, TAN1 and AIR9 functionally converge
on their ability to maintain POKI1 at the division site after metaphase.
While POK1 localizes to the division site in either single mutant, POK1 is
not maintained at the division site in tanl air9 double mutants after
metaphase (Mills et al., 2022). It will be interesting to determine
whether AIR9 directly interacts with POK1 similar to the direct inter-
action between TAN1 and POKI1.

The synthetic tanl air9 double mutant phenotype in Arabidopsis is
rescued by transforming it with TAN1 constructs, allowing identification
of TAN1 domains that are critical for its function in growth and division
plane positioning (Mills et al., 2022; Mills and Rasmussen, 2022; Mir
et al., 2018). The first ~130 amino acids of TAN1 (TAN1;_135) localize
to the division site primarily during telophase, are necessary and suffi-
cient for POK1 interaction, and fully rescued the tanl air9 double mutant
(Rasmussen et al., 2011). Disrupting the interaction between TAN1 and
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POK1 in the tanl air9 double mutant causes phragmoplast guidance
defects (Mills et al., 2022).

Another example of genes likely functioning in a parallel pathway
was identified in the monocot Brachypodium distachyon. BAPOLAR was
identified by its reduced RNA accumulation (D. Zhang et al., 2022) in a
mutant which fails to form subsidiary cells (Raissig et al., 2017). POLAR
is a plant-specific polarly-localized protein that accumulates during
Arabidopsis stomatal development. Unlike the Atpolar mutants that
have no phenotype (Pillitteri et al., 2011), Bdpolar mutants have
misoriented subsidiary cell divisions, which are greatly enhanced by
combination with Bdpanl mutants. Since BAPOLAR and BdPAN1
localize to opposite domains of the subsidiary mother cell, it is likely that
they are in parallel pathways, although BpPOLAR requires BAPAN1 to
localize correctly (D. Zhang et al., 2022).

5. Conclusions

Multiple types of redundancy make identifying the specific roles of
proteins implicated in division plane positioning an exciting challenge.
After protein-protein interactions identify additional components, high-
throughput methods of gene editing such as CRISPR-Cas9 may be used
to generate higher order mutants in genetically redundant pathways.
Additional insight into synthetic redundancy may be provided by
enhancer screens. Finally, detailed mechanistic studies will be required
to unravel situations with temporal redundancy.
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