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We develop a fast-running smooth adaptive meshing (SAM) algorithm for dynamic 
curvilinear mesh generation, which is based on a fast solution strategy of the time-
dependent Monge-Ampère (MA) equation, det∇ψ(x, t) = G ◦ ψ(x, t). The novelty of our 
approach is a new so-called perturbation formulation of MA, which constructs the solution 
map ψ via composition of a sequence of near-identity deformations of a reference mesh. 
Then, we formulate a new version of the deformation method [21] that results in a simple, 
fast, and high-order accurate numerical scheme and a dynamic SAM algorithm that is 
of optimal complexity when applied to time-dependent mesh generation for solutions to 
hyperbolic systems such as the Euler equations of gas dynamics. We perform a series of 
challenging 2D and 3D mesh generation experiments for grids with large deformations, 
and demonstrate that SAM is able to produce smooth meshes comparable to state-of-the-
art solvers [22,18], while running approximately 200 times faster. The SAM algorithm is 
then coupled to a simple Arbitrary Lagrangian Eulerian (ALE) scheme for 2D gas dynamics. 
Specifically, we implement the C-method [64,65] and develop a new ALE interface tracking 
algorithm for contact discontinuities. We perform numerical experiments for both the 
Noh implosion problem as well as a classical Rayleigh-Taylor instability problem. Results 
confirm that low-resolution simulations using our SAM-ALE algorithm compare favorably 
with high-resolution uniform mesh runs.

 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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1. Introduction

The efficiency of smooth moving-mesh methods for numerical simulations of gas dynamics1 and related systems has 
been investigated in recent years [3,85,35,36,62,58,25,49,26]; however, to the best of our knowledge, compelling evidence 
of the gain in efficiency relative to fixed uniform-mesh simulations in multiple space dimensions has rarely been provided. 
In a recent result [49], the authors demonstrate that low-resolution adaptive simulations are roughly 2-6 times faster than 
high-resolution uniform simulations of comparable quality; most results in this area focus on novel solution methodologies 
but not on the ultimate speed-up that may be gained by the algorithms that they produce. The papers cited above focus on 
one half of the moving-mesh methodology, namely, the numerical discretization of the physical PDEs. They develop state-of-
the-art high-resolution shock-capturing techniques, but use well-established and somewhat standard meshing algorithms. 
Our point-of-view is that it is essential to simultaneously develop both numerical methods for hyperbolic systems (for 
discontinuous solutions) as well as novel meshing strategies.2

Herein, we propose a novel and fast3 Smooth Adaptive Meshing (SAM) algorithm for multi-D simulations requiring 
mesh adaptivity. We present adaptive-simulation speed-up results for two classical but extremely challenging gas dynamic 
problems: the Noh shock implosion, and the (highly unstable) Rayleigh-Taylor (RT) test. For the Noh problem, our adaptive 
simulations are free of the numerical anomalies that are present in almost all reported results, while running approximately 
6 times faster than a comparable uniform-mesh simulation. The ten-fold speed-up provided by SAM for the RT problem is, 
to the best of our knowledge, the first of its kind.4

1 Moving-mesh simulations are often referred to as adaptive simulations and we shall use this terminology herein.
2 This philosophy is in agreement with [62], in which the authors state that the main obstacle in their moving-mesh simulations is the lack of a simple, 

robust, and efficient algorithm for dynamic and smooth adaptive mesh generation, particularly in 3D geometries, and for multi-phase flows with unstable 
interfaces.

3 We will demonstrate that our SAM algorithm is the first to be able to solve classical Rayleigh-Taylor problems on coarse, but adaptive, grids faster than 
simulations on uniform grids.

4 Most attempts at using moving-mesh adaptivity to numerically simulate the RT instability result in runs that prematurely blow-up due to mesh 
tangling, meaning that those algorithms are not sufficiently stable to provide a competitive speed-up factor. Recent papers [57,4] instead focus on novel 
and sophisticated meshing techniques with the goal of simply simulating the RT instability until the final simulation time without the code crashing; 
however, these meshing algorithms are currently too expensive to provide speed-up over uniform-mesh simulations.
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1.1. Mesh refinement for multi-D gas dynamics

It is by now well-known that static uniform meshes are both inaccurate and inefficient at representing the dynamically 
evolving and interacting small-scale structures that appear in solutions to nonlinear conservation laws in multiple space 
dimensions. Adaptive mesh refinement (AMR) via h-adaptivity is the most well-developed refinement technique and is 
used in many commercial codes [70,10,29,30]. However, the dyadic refinement at the heart of AMR schemes results in an 
artificially discontinuous transition from coarse-scale to fine-scale representation of numerical solutions on AMR meshes. 
Several theoretical and numerical studies [5,78,56] have demonstrated the spurious reflection, refraction, and scattering of 
waves that propagate across discontinuously refined grids. Many problems in gas dynamics, such as strong blast waves, 
self-similar implosions, and unstable contact discontinuities are extremely sensitive to small perturbations; spurious wave 
reflections produce corrupted numerical solutions, with the anomalies persisting, or even worsening, as the AMR mesh is 
globally refined [29,76].

On the other hand, Lagrangian-type schemes are well-known to produce highly distorted or tangled meshes i.e. some 
cells in the grid are non-convex or have folded over, at which point the simulation breaks down. Arbitrary Lagrangian 
Eulerian (ALE) methods aim to mitigate the problem of mesh tangling. Indirect ALE methods are somewhat ad hoc, and 
current rezoning strategies are heuristic in nature [46,57]. In this work, we consider the direct ALE approach, in which an 
adaptive mesh is generated directly without any initial Lagrangian phase or subsequent mesh rezoning.

1.1.1. Adaptive mesh redistribution
Our SAM scheme falls under the category of r-refinement schemes, or adaptive mesh redistribution methods. In con-

trast to Lagrangian-rezone methods, a grid is generated via a user-prescribed monitor function which determines the grid 
size and orientation. High-resolution representation of numerical solutions is obtained by defining the monitor function 
appropriately, e.g., using solution derivatives. Moreover, the adaptive grids can be generated to align with the geometry of 
evolving fronts [39], and to naturally capture self-similar dynamics or scale-invariant structures [13,11].

Historically, the first r-refinement methods were based on the variational approach, examples of which include the 
equipotential [82], variable diffusion [83], cost function [6], and harmonic mapping [27] methods. The variational approach 
also currently appears to be the method of choice for use in direct ALE schemes, several of which employ the popular 
MMPDE framework [40,47]. These variational methods, however, require the accurate numerical solution of a coupled set of 
d complicated nonlinear auxiliary PDEs in Rd , for which simple, fast, and accurate algorithms are in general not available. 
For these reasons, among others, r-refinement methods have yet to become incorporated into large scale established hydro-
dynamics codes. See, for example, [41,14,22,18] and the references therein for thorough reviews of r-adaptive methods and 
their associated difficulties.

1.1.2. Prescribing the Jacobian determinant
The fundamental guiding principle for smooth adaptive mesh generation is control of the local cell volume of the adaptive 

grid. In the time-dependent multi-D setting, we assume that we have a given smooth positive target Jacobian function G(y, t)
describing the size of the cells in the moving target adaptive mesh. We then seek to construct a diffeomorphism ψ(x, t)
mapping a fixed reference mesh to the target mesh by requiring that det∇ψ(x, t) = G(ψ(x, t), t). A semi-discretization in 
time t = tk , where k is the time-index, yields a sequence of nonlinear elliptic equations of Monge-Ampère (MA) type

det ∇ψk(x) = Gk(ψk(x)) , (1)

where each Gk is again a given positive target Jacobian function.
Solutions to the MA equation are unique in 1D . For dimension d ≥ 2, however, the single scalar MA equation is insuf-

ficient to uniquely determine ψ . The question then becomes how to choose a particular solution ψ that is in some sense 
optimal. One such choice that has received a great deal of attention in recent years is the Monge-Kantorovich (MK) for-
mulation based on optimal transport, in which a map ψ is (uniquely [8,16]) constructed to minimize the L2 displacement 
||ψ(x) −x||L2 . This is attractive from a numerical perspective, since smaller grid velocities can reduce interpolation and other 
numerical errors [48].

On the other hand, the MK formulation results in a fully nonlinear second order elliptic equation, whose numerical 
solution is difficult to obtain. One approach is to consider a parabolized formulation by introducing an artificial time variable 
τ then iterating until a steady state is reached [72,9,59,81]. In this case, the Jacobian constraint is only satisfied in the 
asymptotic limit τ → ∞, and many iterations may be required to obtain a sufficiently accurate solution, particularly for 
target meshes with large deformations. An alternative, fully nonlinear approach using preconditioned Newton-Krylov solvers 
is designed in [22,18], leading to a robust, scalable algorithm that is, to the best of our knowledge, the state-of-the-art 
in the field (see also the recent papers [12,15]). However, the Newton-Krylov iterative approach is still relatively slow for 
our ultimate goal of efficient adaptive gas dynamics simulations; specifically, its implementation in our ALE scheme (to 
be described below) leads to adaptive mesh simulations with computational runtimes greater than would otherwise be

3
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obtained with a uniformly high-resolution mesh, thereby defeating the purpose of using an adaptive meshing scheme in the 
first place.

1.2. Fast smooth adaptive meshing

In contrast to the MK approach, we construct a map ψk satisfying (1) with the aim of optimizing for the efficiency of 
the resulting numerical algorithm, which we refer to as SAM. The key to our fast SAM algorithm is a new perturbation 
formulation of (1) along with a new formulation and implementation of the deformation method [21].

Specifically, the perturbation formulation constructs each map ψk+1 as the image of the map ψk acting on a near identity 
deformation δψk+1 ≈ id of a fixed reference mesh $ref . The formulation on $ref is crucial, since it enables the use of, at each 
time-step tk , the same numerical solvers for the mesh PDEs.5 This, in turn, produces a code with a simple modular structure 
so that the basic mesh redistribution procedure is developed entirely in the static setting on $ref, then “bootstrapped” to 
form a dynamic scheme. The same principle also yields an algorithm for efficiently generating smooth meshes with very 
large zoom-in factors, which allows us to obtain high-resolution representation of small-scale structures with few total 
number of mesh points.

The mesh redistribution algorithm we propose is a new version of the deformation method [50,54,51], which constructs 
a solution to the nonlinear Monge-Ampère equation via a single elliptic solve for a linear Poisson problem, along with the 
solution of a system of transport equations for a flowmap η(x, τ ) between pseudo-time τ = 0 and τ = 1. There are at least 
two advantages of this new deformation method: the first is that the algorithm can be made fully automated with no user-
prescribed parameters; the second is that costly and often complicated interpolation procedures are not required. We design 
a simple, fast, stable, and high-order accurate method using an efficient spectral solver with boundary smoothing for the 
Poisson equation, and standard RK4 time integration with high-order linear upwind differencing for the transport equations. 
A key implication of our numerical design choices is a consistency between the stability conditions for the transport problem 
in SAM and the physical time-step in an ALE gas dynamics simulation. As we shall demonstrate, this consistency results in 
a dynamic SAM algorithm with optimal complexity for hyperbolic systems.

Our SAM algorithm is approximately 200 times faster than the MK nonlinear solvers [22,18], and the computed numer-
ical solutions exhibit both higher accuracy as well as better convergence rates under global mesh refinement. We perform 
a number of challenging mesh generation experiments designed to replicate flows with high vorticity and large deforma-
tions, and demonstrate that the meshes produced with our dynamic SAM scheme are smooth and accurate. For example, 
we are able to generate smooth moving meshes that resolve around a complex 3D swirling helical-type curve at 2563

resolution with only a serial implementation on a laptop computer and without any specific and sophisticated algorithmic 
optimizations (see Section 5.5).

1.3. Application to ALE gas dynamics

To demonstrate the efficacy of our SAM scheme in practical applications, we formulate a simple coupled SAM-ALE 
method for 2D gas dynamics. Several moving-mesh methods for the 2D Euler system have been developed based on the 
MMPDE approach and finite volume (FV) and finite element (FE) methods [73,74]. A formulation on smooth tensor prod-
uct meshes enables the use of finite difference (FD) methods, which are both simpler and more efficient than FV and FE 
methods,6 and have been investigated in several recent papers [60,45,49]. In this work, we further develop the C-method 
[64,65], a simplified WENO-based solver with space-time smooth nonlinear artificial viscosity and explicit tracking of mate-
rial interfaces.

Special care is given to the so-called geometric conservation law (GCL), and we show that our nonlinear WENO reconstruc-
tion procedure respects the free-stream preservation property on adaptive meshes. The C-method dynamically tracks the 
location and geometry of evolving fronts, and is used to add both directionally isotropic and anisotropic artificial viscosity 
to shocks and contacts. Herein, we implement the C-method in the ALE context and introduce a new ALE front-tracking 
algorithm for contact discontinuities, which we subsequently use to construct suitable target Jacobian functions for SAM. 
Previous studies have mainly investigated target Jacobian functions constructed based on interpolation errors [42,39], or 
weighted combinations of solution gradient estimates [77], which sometimes fail to capture small scale vortical structures 
[73]. Our simple ALE front-tracking algorithm allows us to generate smooth adaptive meshes that capture small scale Kelvin-
Helmholtz roll-up zones in unstable RT problems. We apply our coupled SAM-ALE scheme to two challenging test problems, 
namely the Noh implosion and RT instability. For the Noh problem, we find that the 50 × 50 SAM-ALE solution is more 
accurate than the 200 × 200 uniform solution, while running approximately 6 times faster. Moreover, the SAM-ALE solution 
is completely free of spurious numerical anomalies, such as lack of symmetry, unphysical oscillations, and wall-heating. 
For the RT problem, we find that the 64 × 128 SAM-ALE solution is comparable to the 256 × 512 uniform solution, while 
running 10 times faster.

5 This is in contrast with other methods [67,32] which require finite-element solvers with costly recalculation (at each time-step of a dynamic simulation) 
of the mass and stiffness matrices, as well as complicated interpolation procedures.

6 FV schemes are 4 times more expensive than FD schemes in 2D , and 9 times more expensive in 3D [80].

4
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ψ

x1

x2

y1

y2

Tref ⊂ $ref T ⊂ $

Fig. 1. The uniform m × n mesh Tref and the adaptive m × n mesh T = ψ(Tref).

1.4. Outline

Section 2 introduces notation and definitions that will be used throughout the paper. In Section 3, we develop the basic 
SAM algorithm for static mesh generation, upon which we shall build our dynamic scheme. We show that our scheme 
is high-order accurate and benchmark the algorithm against the MK scheme. In Section 4, we consider dynamic mesh 
generation and introduce the perturbation formulation of the MA system. We then perform, in Section 5, a series of chal-
lenging mesh generation experiments to demonstrate the capabilities of the scheme. In Section 6, we formulate a simple 
coupled SAM-ALE scheme for the 2D compressible Euler system, and describe some aspects of our numerical method. In 
Section 7, we apply SAM-ALE to the Noh and RT test problems and compare the results with low-resolution and high-
resolution uniform solutions. Finally, in Section 8, we provide some brief concluding remarks. Three sections are included in 
the Appendices: the first concerns the C-method regularization for the 2D ALE-Euler system, the second describes a simple 
boundary smoothing technique, and the third provides a machine comparison test for the purposes of benchmarking our 
SAM algorithm.

2. Preliminaries

2.1. Domains, meshes, and mappings

The focus of this work is mesh adaptation on 2D rectangles and we provide the mathematical formulation and numerical 
implementation details of our mesh adaptation strategy in this setting. However, all of our meshing algorithms can be ex-
tended to 3D cuboids,7 and we show in Section 5.5 results from a mesh generation experiment modeling three-dimensional 
swirling flow.

Let $ref ⊂ R2 be a reference domain with coordinates x = (x1, x2) ∈ $ref, and given explicitly by the rectangle $ref =
(x1

min , x1
max) × (x2

min , x2
max). The outward pointing unit normal vector to the boundary ∂$ref is defined everywhere on ∂$ref, 

except at the four corners, and is denoted by ν . The domain $ref is also sometimes referred to in the literature as the logical
or computational domain, and in the context of ALE gas dynamics, the ALE domain.

We denote by $ ⊂R2 the physical or Eulerian domain, with coordinates y = (y1 , y2) ∈ $ and boundary ∂$. We assume 
that $ref and $ represent the same mathematical domain i.e. $ref = $. The purpose of using the different notations $ref and 
$ is to clearly distinguish between functions defined on each of these domains, as we shall explain in the next subsection. 
We let id : $ref → $ denote the identity map, i.e. id(x) = x.

We discretize $ref and $ with m + 1 nodes in the horizontal direction, and n + 1 nodes in the vertical direction, and
denote by Tref and T the grids (or meshes) on each of these domains. Each of these meshes contains N = m × n cells. The 
domain $ref is discretized uniformly, and we refer to Tref as the reference or uniform mesh. The physical or adaptive mesh 
T is a priori unknown and will be generated through a meshing scheme. The mesh T is not assumed to be uniform, but 
contains the same number of cells and retains the same mesh connectivity structure as the uniform mesh Tref cf. Fig. 1. The 
fixed uniform mesh spacing is denoted by (x = ((x1 , (x2).

The physical domain $ can also be discretized uniformly with a uniform mesh U . Since $ref = $, the meshes U and Tref
are identical. We stress, however, that functions defined on each of these meshes are very different.

7 In fact, our algorithms can also be applied in arbitrary complex geometry (see Fig. 19 for a preliminary result), though their numerical implementations 
are more involved.
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The mesh T will be the image of Tref under the action of a suitable map ψ : $ref → $. The map ψ is bijective, contin-
uously differentiable, and has a continuously differentiable inverse ψ−1 : $ → $ref i.e. ψ is a smooth diffeomorphism. Our 
SAM scheme solves for the map ψ by prescribing its Jacobian determinant, as we shall explain in Sections 3 and 4. Nodes 
in T on the boundary ∂$ will be allowed to move tangential to the boundary, with the exception of the four nodes at the 
corners of $, which must remain fixed.

In the dynamic setting, we consider ψ to be a time-dependent map ψ : $ref × [0, T ] → $ where, for each t ∈ [0, T ], the 
map ψ(·, t) : $ref → $ is a smooth diffeomorphism with prescribed Jacobian cf. Fig. 3.

2.2. Eulerian and ALE variables

A physical or Eulerian function (scalar, vector-valued, or tensor) is defined on $ and denoted with the upright mathe-
matical font f : $ →Rk . For a time-dependent function f : $ × [0, T ] →Rk we shall write f(y, t).

Since ψ maps $ref to $, we write y = ψ(x, t) for (x, t) ∈ $ref × [0, T ]. Given an Eulerian variable f : $ →Rk , we define 
its computational or ALE counterpart f : $ref × [0, T ] →Rk by

f (x, t) = [f ◦ ψ] (x, t) = f(ψ(x, t), t) , ∀(x, t) ∈ $ref × [0, T ] . (2)

We shall also denote the function composition in (2) by f ◦ ψ . When there is no confusion, we omit the function arguments 
and write f or f .

In the discrete setting, computational variables are defined at the nodal points of the uniform reference mesh Tref . 
Physical/Eulerian variables, on the other hand, can be defined on either the adaptive mesh T (t) or the uniform mesh U on 
$.

2.3. Derivatives and important geometric quantities

We denote spatial derivatives on $ref and $ by

∂i = ∂

∂xi
and Di = ∂

∂ yi
,

respectively. Higher order derivatives are then denoted in the standard fashion, e.g. ∂i j = ∂i∂ j . We use the notation ∇ =
(∂1 , ∂2)

T and D = (D1 , D2)
T for the gradient operators with respect to x and y coordinates, respectively. The Laplacian 

operator on $ref is ( = (∂2
1 + ∂2

2 ). The operator ( should not be confused with the discrete uniform mesh spacing (xi .
The time derivative of a function f is written as ∂t f , or sometimes with the subscript notation ft . Throughout, we shall 

use Einstein’s summation convention wherein a repeated index in the same term indicates summation over all values of 
that index. We shall also use the standard Kronecker delta symbol δi

j .
We now introduce the following important geometric quantities, all defined on $ref × [0, T ]:

A = [∇ψ]−1 (inverse of the deformation tensor) , (3a)

J = det∇ψ (Jacobian determinant) , (3b)

a = J A (cofactor matrix of the deformation tensor) . (3c)

We assume that there exists ε > 0 such that

J (x, t) ≥ ε > 0 , for every (x, t) ∈ $ref × [0, T ] .
Thus, the Jacobian determinant in 2D reads

J (x, t) = ∂1ψ
1 ∂2ψ

2 − ∂1ψ
2 ∂2ψ

1 .

For a matrix M = (M j
i ), the subscript i indexes the columns of M , while the superscript j indexes the rows.

By explicit computation, we can verify the so-called Piola identity, which states that the columns of the cofactor matrix 
are divergence-free:

∂ ja
j
i = 0 , for i = 1,2 . (4)

Given an Eulerian variable f(y, t) and its ALE counterpart f (x, t), we use the chain rule to compute

Di f(y, t) = 1
J (x, t)

a j
i (x, t) ∂ j f (x, t) = 1

J
∂ j(a

j
i f ) , (5)

6
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where we have used the Piola identity (4) in the second equality. Using (5) and the chain rule again, we have that

∂t f(y, t) = ∂t f − 1
J

a j
i ψ

i
t ∂ j f , (6)

where ψt(x, t) ≡ ∂tψ(x, t) is the mesh velocity.

2.4. Computational platform and code optimization

All of the algorithms in this work were coded in Fortran90, and all of the numerical simulations performed were run on 
a Macbook Pro laptop with an Apple M1 pro processor and 32 GB of RAM. The operating system is macOS Ventura 13.1, and 
the gfortran compiler is used. The codes for the numerical methods described in the paper are implemented in the same 
programming framework, but are not otherwise specially optimized, apart from specific calculations described in the paper. 
The same input, output, and timing routines are used in all of the codes. This consistency allows for a reliable comparison 
of the different algorithms and their associated imposed computational burdens.

3. Fast static adaptive meshing

3.1. Mathematical formulation of static mesh generation

We construct an adaptive mesh T as the image of the uniform mesh Tref under the action of a suitable smooth dif-
feomorphism ψ : $ref → $ cf. Fig. 1. Our objective is to compute the map ψ by prescribing its Jacobian determinant 
J (x) = det ∇ψ(x). Specifically, given a strictly positive target Jacobian function G : $ → R+ , the map ψ is found as a solu-
tion to the following nonlinear nonlocal Monge-Ampère (MA) equation

{
det∇ψ(x) = G ◦ ψ(x) , x ∈ $ref (a)
ψ(x) · ν = x · ν , x ∈ ∂$ref (b) (7)

with ν the unit outward normal to the boundary ∂$ref .
The function G is a user prescribed or constructed function that compresses the mesh in regions where G is small, and 

expands the mesh in regions where G is large. Note that G is a physical target Jacobian function defined on the physical 
domain $. Assuming that a map ψ satisfying (7) is found, the function G then describes the size of the cells in T . Let V
denote a cell in T , and Vref = ψ−1(V) the uniform cell in Tref mapped to V by ψ . If G is sufficiently smooth, a Taylor series 
argument shows that

|V| :=
∫

V

dy =
∫

Vref

det∇ψ(x)dx = |Vref| · G(ψ(xc)) + O(|(x|2) ,

where xc denotes the cell center of Vref. Thus, the value of G in V is a scaling factor that scales the uniform cell volume 
|Vref| = (x1(x2 to the volume |V|, up to some spatially fixed constant of order O(|(x|).

It is convenient to formulate the problem for the inverse map φ = ψ−1, which is found as a solution to
{

detDφ(y) = 1
G(y) , y ∈ $ (a)

φ(y) · ν = y · ν , y ∈ ∂$ . (b)
(8)

For a solution to exist for (7), the function G is required to satisfy the solvability condition
∫

$

1
G(y)

dy =
∫

$ref

det∇ψ(x)
G ◦ ψ(x)

dx = |$ref| = |$| . (9)

If (9) holds, then the system (7) admits an infinitude of solutions. The question then becomes how to construct a solution 
ψ that is in some sense optimal. Our primary concern in this work is the development of a fast-running algorithm that can 
be easily implemented within an ALE framework for hydrodynamics simulations. We next describe a simple and efficient 
procedure for constructing a solution to (7).

3.2. The basic mesh generation procedure

The key to our fast-running algorithm is the reduction of the nonlinear equation (7) to a simple linear Pois-
son solve and transport equation solve. Our approach is motivated, as in [50,54,31], by the deformation method of 
Dacorogna and Moser [21]. Specifically, a solution to (7) is obtained by the five step construction provided in Algorithm 1. 
We refer to this algorithm as SAM or, in the context of time-dependent meshing, static SAM.

7
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Algorithm 1 static SAM.
Step 1: Assume that the physical target Jacobian function G : $ →R+ is given and satisfies the solvability condition

∫

$

1
G(y)

dy = |$| , (10)

and let F(y) = 1/G(y). In practice, we are usually given an auxiliary target Jacobian function Ḡ : $ →R+ that does not satisfy (10), and we define 
G and F by the following normalization procedure:

F̄(y) = 1

Ḡ(y)
−→ F(y) = |$| F̄(y)∫

$ F̄(y) dy
−→ G(y) = 1

F(y)
.

Step 2: Solve the following linear Poisson equation with homogeneous Neumann boundary conditions for the potential + : $ref →R
{

(+(x) = F ◦ id(x) − 1 , x ∈ $ref (a)
∇+(x) · ν = 0 , x ∈ ∂$ref (b)

(11)

Step 3: Define the velocity w : $ref →R2 as

w(x) = ∇+(x) . (12)

Step 4: Solve the following system of transport equations for the flowmap η : $ref × [0, 1] → $

{
∂τ η + w · ∇η = 0 , x ∈ $ref and 0 < τ ≤ 1 (a)
η(x,0) = x , x ∈ $ref and τ = 0 (b)

(13)

where the transport velocity w : $ref × [0, 1] →R2 is defined as

w(x,τ ) = w(x)
τ + (1 − τ )F ◦ id(x)

. (14)

Step 5: Define ψ(x) := η(x, 1). Then ψ solves (7).

3.2.1. Validity of construction
The proof that the map ψ constructed according to Algorithm 1 satisfies (7) proceeds as follows. Define the back-to-labels 

map ξ : $ × [0, 1] → $ref by ξ(y, τ ) = η−1(y, τ ). The Eulerian transport equation for η is transformed into a Lagrangian 
advection equation for ξ :

{
∂τ ξ(y,τ ) = w ◦ ξ(y,τ ) , y ∈ $ and 0 < τ ≤ 1 (a)
ξ(y,0) = y , y ∈ $ and τ = 0 . (b)

(15)

Note that ξ |τ=1 = η−1|τ=1 = ψ−1 = φ.
Next, define the quantity

R(y,τ ) = J (y,τ ) [τ + (1 − τ )F ] ◦ ξ(y,τ ) ,

where J (y, τ ) = det Dξ(y, τ ) and F = F ◦ id. We compute

∂τ R = ∂τ J [τ + (1 − τ )F ] ◦ ξ + J [1 − F ] ◦ ξ + J (1 − τ )∂τ (F ◦ ξ) .

We recall Euler’s lemma, which states that J (y, τ ) evolves according to ∂τ J = J div w ◦ ξ . Using (11)(a) and (12), we 
calculate

div w = div w
τ + (1 − τ )F

− (1 − τ )w · ∇ F

[τ + (1 − τ )F ]2 = F − 1 − (1 − τ )w · ∇ F
τ + (1 − τ )F

,

so that

∂τ J [τ + (1 − τ )F ] ◦ ξ = J [F − 1 − (1 − τ )w · ∇ F ] ◦ ξ .

Next, we have that

∂τ (F ◦ ξ) = ∂τ ξ · ∇ F ◦ ξ = [w · ∇ F ] ◦ ξ ,

where we have used equation (15)(a).
Using the two formulae above, we find that ∂τ R = 0, so that F(y) = R(y, 0) = R(y, 1) = detDφ(y) and thus φ satisfies 

(8)(a), which is in turn equivalent to (7)(a). The condition w(x, τ ) · ν = 0 for every x ∈ ∂$ref and 0 ≤ τ ≤ 1 ensures that 
(7)(b) is satisfied. !

8
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3.2.2. Discussion
The first numerical implementation of the deformation method [50] utilized the no slip boundary conditions ψ(x) = x, 

∀x ∈ ∂$ref, rather than the no penetration boundary conditions (7)(b) which permit tangential motion of boundary nodes. 
The method of proof in the original paper of [21], which includes an analysis of the Poisson problem (11), requires the 
domain $ref to have smooth boundary ∂$ref and so is not valid for the rectangular domains we consider in this work. A 
modified method, which avoids the use of the Poisson problem (11) via a direct construction of the deformation velocity 
field, is provided in [50], but the resulting numerical implementation yields poor quality grids with high levels of distortion 
[22]. On the other hand, as we shall demonstrate in our numerical experiments, the use of the Poisson equation (11)
together with the slip boundary conditions (7)(b) produces smooth grids. Moreover, the arguments in [21] can be modified 
with the help of elliptic estimates on polygonal domains [33] to show that the procedure outlined in Algorithm 1 yields 
existence of a solution to (7).

The basic mesh generation scheme Algorithm 1 differs from other deformation methods in the literature, e.g. [54,31], in 
both its formulation and numerical implementation. Specifically, the use of the transport system (13) avoids costly inter-
polation procedures required for the solution of the Lagrangian advection equations in other deformation methods, which 
results in an order of magnitude speed-up. Moreover, our numerical algorithm produces solutions that converge with high-
order accuracy, in contrast to other methods which only yield second-order accurate solutions, at best. In the following 
subsection, we describe in detail the two main steps of Algorithm 1, namely the Poisson solve in Step 2, and the transport 
equation solve in Step 4.

3.3. Numerical implementation details

3.3.1. FFT-based elliptic solve for +
The Poisson problem (11) is solved in frequency space using the Fast Fourier Transform (FFT). The solvability condition 

(10) is enforced by the normalization procedure described in Algorithm 1 with trapezoidal integration to compute integrals. 
The RHS of (11)(a) then has zero mean, and a (non-unique) solution to (11) exists. We choose a unique solution + with 
zero mean, enforced in spectral space by zeroing out the first frequency component. The use of FFT requires the forcing G to 
be periodic; we periodize the problem by doubling the size of the domain in each direction and extending G symmetrically 
to the extended domain.8 In Step 3, the velocity w is also computed via FFT.

3.3.2. Boundary conditions and order of convergence
Solutions to the Poisson problem (11) in general have limited regularity due to the presence of corner singularities in 

the domain, unless the function G satisfies certain compatibility conditions [37]. In this work, we shall assume the stronger 
Neumann condition DG(y) · ν = 0 for y ∈ ∂$ to ensure high-order convergence of the numerical solution ψ in the limit of 
zero mesh size. If DG(y) · ν /= 0, then the symmetric extension of G is not differentiable on the boundary ∂$ and is only 
Lipschitz continuous. In this case, the potential +, velocity w , and solution ψ all converge with 2nd order accuracy, but the 
convergence rate of the Jacobian determinant J (x) and cofactor matrix a(x) is only 1.5.

On the other hand, if the function G does satisfy the Neumann condition DG(y) · ν = 0 for y ∈ ∂$, then the symmetric 
extension of G is at least twice continuously differentiable, and the quantities ψ(x), J (x), and a(x) all converge with (at 
least) 4th order accuracy. We confirm this high order convergence with a numerical example in Section 3.4.2.

For most of the problems we consider in this work, the function G does indeed satisfy the Neumann condition. However, 
even if the Neumann condition is not satisfied, the errors in the numerical solution are localized to the boundary, and the 
meshes produced are still of high accuracy and quality. Additionally, boundary smoothing techniques [2,28] can be applied 
to obtain high order convergence. We implement a simplified version of this technique in Section 3.4.3 and demonstrate 
that the quantity J (x) converges with 2nd order accuracy. The details of this boundary smoothing technique are provided 
in Appendix B.

3.3.3. Numerical solution of the transport equations
The solution η to the transport equations (13) is smooth, and we shall therefore utilize the simple 5th order linear 

upwind scheme to compute derivatives, with the upwind direction in the r-th coordinate determined based on the sign of 
wr . For instance, if w1

i, j ≥ 0, then we approximate the derivative ∂1 f of a function f by

[∂1 f ]i, j = −2 f i−3, j + 15 f i−2, j − 60 f i−1, j + 20 f i, j + 30 f i+1, j − 3 f i+2, j

60(x1 + O(|(x|5) .

For time-integration, we utilize the standard explicit RK4 scheme, which has the associated stability condition

CFLτ = (τ

( ||w1||∞
(x1 + ||w2||∞

(x2

)
≤ C . (16)

8 An alternative implementation with the discrete cosine transform can also be used.
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Table 1
Jacobian errors E2 demonstrating high order convergence of SAM solutions for the circular target Jacobian function (19).

Scheme
Cells

32 × 32 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

SAM
Error 2.85 × 10−2 5.10 × 10−3 5.96 × 10−4 3.73 × 10−5 1.87 × 10−6 9.89 × 10−8

Order – 2.5 3.1 4.0 4.3 4.2

Accordingly, the adaptive time-step (τ is chosen via

CFLτ = (τ

τ + (1−τ )
||G||∞

(
||w1||∞

(x1 + ||w2||∞
(x2

)

. (17)

Our numerical experiments have shown that CFLτ = 2 is sufficient for a stable scheme.

3.4. High-order accuracy and a benchmark computation

3.4.1. Jacobian error metric
Assessing the accuracy and convergence behavior of the numerical solutions ψ produced with SAM requires an error 

metric. Since the exact solution ψexact to the scheme described in Algorithm 1 is not known, we shall instead use the L2

Jacobian error, defined as

E2 := ||J (x) − G ◦ ψ(x)||L2 . (18)

We use bicubic interpolation to compute the composition G ◦ ψ in (18) and trapezoidal integration to compute the L2

integral norm.

3.4.2. High order convergence of solutions
To demonstrate the high order convergence of numerical solutions computed with SAM, we perform a mesh generation 

experiment on $ = [0, 1]2 for the circular target Jacobian function

Ḡ(y) = 1 − δ exp
{
−

∣∣∣σ
(
(y1 − 0.5)2 + (y2 − 0.5)2 − r2

)∣∣∣
2
}

, (19)

which forces the mesh to resolve in an annular region containing the circle of radius r centered at (0.5 , 0.5). The parameters 
δ and σ control the smallest cell-size and width of the resolving region, respectively. We choose δ = 0.75, σ = 64, and 
r = 0.2. See Fig. 5 for the meshes associated with a time-dependent version of (19).

We generate a sequence of meshes using SAM for cell resolutions N = 322 up to N = 10242. We compute the Jacobian 
errors E2 given by (18), with the Jacobian determinant J approximated using 4th order central differencing (CD4). The 
errors provided in Table 1 show that SAM solutions exhibit the expected 4th order accuracy. We note that, to the best of 
our knowledge, all other grid generation schemes are at best 2nd order accurate.

3.4.3. Benchmarking against the MK mesh generation scheme
Now, we perform a numerical experiment to benchmark SAM against the MK mesh generation scheme [22], a brief 

description of which is provided in Appendix C. The test problem [22] we consider is as follows: the domain is $ = [0, 1]2, 
and the target Jacobian function is

Ḡ(y) = 2 + cos (8πr) , (20)

where r =
√

(y1 − 0.5)2 + (y2 − 0.5)2 is the radial coordinate.
We compute a sequence of meshes for N = 162 up to N = 2562 using SAM, and calculate the L2 Jacobian errors E2. For 

the purposes of consistency with [22], we use a slightly different formula to compute E2 (see equations (46)-(52) in [22]). 
In particular, 2nd-order differencing is used to calculate the Jacobian and, as such, we expect only 2nd order convergence 
of the errors E2. Consequently, we instead use the 3rd order linear upwind scheme for the transport equation solve. The 
pseudo-time step is set according to (17) with CFLτ = 8.

The errors are listed in Table 2, along with the errors for the MK scheme obtained from [22]. The function Ḡ is radially 
symmetric, and consequently does not satisfy the Neumann condition DG · ν /= 0. As such, the resulting solutions computed 
with SAM do not display 2nd order accuracy in the limit N → ∞, though, as shown in Table 2, the order of convergence 
only degrades to approximately 1.75 for the resolutions considered.

Nonetheless, we shall additionally consider a modified version of this test problem in which the function Ḡ(y) in (20) is 
replaced by the function Ḡ∗(y), where Ḡ∗(y) is such that DḠ∗ · ν = 0 on ∂$. The function Ḡ∗ is equal to Ḡ in the interior 
of $, but is mollified with an appropriate cut-off function in a small region near the boundary ∂$ to enforce the Neumann 

10
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Table 2
Comparison of L2 Jacobian errors and convergence rates for the MK and SAM schemes applied to (20). The 
data for the MK scheme is taken from Table 1 of [22].

Scheme
Cells

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

MK
Error 9.64 × 10−2 2.80 × 10−2 5.78 × 10−3 1.46 × 10−3 3.67 × 10−4

Order – 1.78 2.28 1.99 1.99

SAM with Ḡ
Error 6.54 × 10−2 2.05 × 10−2 7.82 × 10−3 2.00 × 10−3 5.96 × 10−4

Order – 1.68 1.39 1.96 1.75

SAM with Ḡ∗ Error 2.30 × 10−2 1.44 × 10−2 5.46 × 10−3 1.25 × 10−3 3.25 × 10−4

Order – 0.68 1.40 2.12 1.94

Fig. 2. SAM algorithm with boundary smoothing for the radial sinusoidal target function (20). Figure (a) is the 32 × 32 cell mesh T ∗ produced for the 
modified target Jacobian Ḡ∗ , and Figure (b) is a comparison of the mesh T without boundary smoothing for the target Jacobian Ḡ (black solid), and the 
mesh T ∗ for Ḡ∗ (red dashed). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 3
CPU runtimes for the MK scheme vs the SAM scheme. The results for the MK scheme are taken 
from Table 1 of [22] then divided by 2.2 to account for machine difference.

Scheme
Cells

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

MK TCPU 0.045 0.182 0.591 2.227 8.636

SAM
TCPU 0.0012 0.0017 0.004 0.013 0.042
speed-up factor 47 131 160 174 190

condition (see Appendix B for further details). The mesh T ∗ produced using SAM with Ḡ∗ is shown in Fig. 2(a), and a 
comparison with the mesh T for Ḡ is shown in Fig. 2(b), from which it can be seen that the two meshes are very similar: 
they are nearly identical in the interior, with small differences near the boundary. While the solutions for Ḡ do not attain 
the full 2nd order accuracy, the solutions for Ḡ∗ do. The SAM solutions for Ḡ∗ have smaller errors than MK across all the 
resolutions considered. Moreover, the SAM solutions for Ḡ∗ display 2nd order accuracy as N increases.9 We also find that 
the L2 mesh displacement ||ψ(x) − x||L2 ≈ 0.0178 is comparable to the value of 0.0174 for MK reported in Table 1 of [22].

Next, we benchmark the computational efficiency of our SAM scheme against the MK scheme. We list in Table 3 the 
CPU runtimes for the MK scheme and the SAM scheme, where the MK runtimes are taken from Table 1 of [22]. To account 
for the different machines on which the MK and SAM schemes were run on, we divide the MK runtimes by 2.2, where 
the factor of 2.2 is determined from a machine comparison experiment, the details of which are provided in Appendix C. 
We then list the speed-up factor of the SAM scheme over the MK scheme in the final row of Table 3. We find that our 
SAM scheme is almost 200 times faster than the MK scheme at N = 2562 cell resolution. We also note that the CPU times 
reported in [22] do not include the cost of an interpolation call, which is non-negligible at high resolutions.

9 We have verified this up to N = 20482 but for brevity do not show the results here.
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4. Fast dynamic adaptive meshing

4.1. Dynamic formulation

Given a time interval t ∈ [0, T ], we seek to construct a time dependent diffeomorphism ψ : $ref × [0, T ] → $. We 
denote the time-dependent mesh on $ by T (t), which will be found as the image of Tref under the action of ψ(·, t). The 
time-dependent map ψ : $ref × [0, T ] → $ is constructed by prescribing, for each t ∈ [0, T ], its Jacobian determinant. Let 
G : $ × [0, T ] →R+ denote a given time-dependent (physical) target Jacobian function. Then ψ satisfies

{
det∇ψ(x, t) = G ◦ ψ(x, t) , (x, t) ∈ $ref × [0, T ] (a)
ψ(x, t) · ν = x · ν , (x, t) ∈ ∂$ref × [0, T ] (b) (21)

The target Jacobian function G must satisfy, for each t ∈ [0, T ], the following integral constraint to ensure that (21) has 
a solution:

∫

$

1
G(y, t)

dy =
∫

$ref

det∇ψ(x, t)
G ◦ ψ(x, t)

dx = |$| . (22)

4.1.1. Temporal discretization
We uniformly discretize the time domain [0, T ] into K intervals of length (t and set tk = k(t for k = 0, 1, . . . , K . Denote 

Gk := G(·, tk), ψk := ψ(·, tk), and Tk = T (tk). Then each ψk : $ref → $ is a diffeomorphism satisfying
{

det∇ψk(x) = Gk ◦ ψk(x) , x ∈ $ref (a)
ψk(x) · ν = x · ν , x ∈ ∂$ref (b) (23)

with each target Jacobian function Gk : $ →R+ satisfying the integral constraint
∫

$

1
Gk(y)

dy =
∫

$ref

det∇ψk(x)
Gk ◦ ψk(x)

dx = |$| . (24)

4.1.2. Algorithmic complexity
The simplest possible strategy for (23) is to compute each map ψk using static SAM. Our numerical experiments indicate 

that static SAM is highly efficient for a single mesh generation call. However, for unsteady fluids simulations which require 
dynamic meshing at every time-step, the use of static SAM can be expensive at high resolutions due to the computational 
bottleneck in the transport equation solve stage.

Specifically, suppose that the target Jacobian function has large deviation from the identity i.e. ||1/G − 1||L∞ 0 1. Then 
the associated potential + solving (11) has large gradients, and the flowmap velocity (14) will therefore be large in mag-
nitude. Consequently, many pseudo-time steps will be required in the transport equation solve to preserve stability and 
accuracy of the computed numerical solution for η(x, τ ). In particular, the stability condition (16) forces the pseudo-time 
step to decay like O

(
N−1/2), so that the overall complexity of the SAM algorithm is O

(
N3/2). For large N , this can become 

prohibitively computationally expensive. In the next section, we resolve this issue via a novel reformulation of (23).

4.2. Reformulation in terms of near-identity maps

4.2.1. The perturbation formulation
Assume that we are given the map ψk and the target Jacobian functions Gk and Gk+1, and suppose that we wish to 

compute the map ψk+1. Rather than computing the map ψk+1 directly by solving (23), we instead solve for the perturbation 
map δψk+1 : $ref → $ref defined implictly by

ψk+1(x) = ψk ◦ δψk+1(x) . (25)

That is, we suppose that the map ψk+1 can be found as the image of ψk acting on a near-identity transformation δψk+1 on 
the reference domain $ref (see Fig. 3).

By the chain rule and inverse function theorem, we find that δψk+1 satisfies
{

det∇δψk+1(x) = Pk+1 ◦ δψk+1(x) , x ∈ $ref (a)
δψk+1(x) · ν = x · ν , x ∈ ∂$ref (b) (26)

with the function Pk+1 : $ref →R+ defined as

Pk+1(x) =
(

Gk+1

Gk

)
◦ ψk(x) . (27)

12



R. Ramani and S. Shkoller Journal of Computational Physics 490 (2023) 112280

ψk

x1

x2

y1
k

y2
k

Tref ⊂ $ref Tk ⊂ $

y1
k+1

y2
k+1

Tk+1 ⊂ $

δψ1
k+1(x)

δψ2
k+1(x)

δψk+1(Tref) ⊂ $ref

ψk

δψk+1

ψk+1

Fig. 3. Schematic of the meshes, and the maps between them, for dynamic mesh generation.

The system (26) is of exactly the same form as (7), and the identical solution procedure described in Section 3.2 for static 
mesh generation can therefore be used to find the solution δψk+1. Then ψk+1 is computed according to (25). A complete 
description of the dynamic SAM scheme is provided in Algorithm 2.

Algorithm 2 dynamic SAM.
Step 1: Set t = 0. Given an initial target Jacobian function G0 : $ → R+ , compute the initial diffeomorphism ψ0 according to the static solution scheme 

from Section 3.2.
Step 2: For t = tk+1, assume that we are given the following: the map ψk and target Jacobian function Gk : $ → R+ , both from the previous time step 

t = tk , and the target Jacobian function Gk+1 : $ →R+ at the current time level.
Define Pk+1 : $ref →R+ by (27), and assume that it satisfies the solvability condition

∫

$ref

1
Pk+1(x)

dx =
∫

$ref

(
Gk

Gk+1

)
◦ ψk(x) dx = |$ref| , (28)

In general, we will be given target Jacobian functions Ḡk and Ḡk+1 such that the corresponding P̄k+1 = (Ḡk+1/Ḡk) ◦ψk does not satisfy (28). In this 
case, we define Pk+1 according to the following normalization procedure:

Q̄ k+1(x) = 1

P̄k+1(x)
−→ Q k+1(x) = |$| Q̄ k+1(x)

∫
$ref

Q̄ k+1(x) dx
−→ Pk+1(x) = 1

Q k+1(x)
.

Step 3: Solve (26) for the perturbation map δψk+1 : $ref → $ref using the solution procedure in Section 3.2.
Step 4: Define ψk+1 : $ref → $ by (25). If tk+1 = T , then stop; otherwise, set t = tk+2, and return to Step 2.

4.2.2. Discussion
The key to the efficiency of dynamic SAM is the reformulation in terms of the perturbation map δψk+1 satisfying (26). 

Specifically, while it may be that both Gk and Gk+1 have large deviation from 1 i.e. ||1/Gk − 1||L∞ 0 1 and ||1/Gk+1 −
1||L∞ 0 1, we may nonetheless have that ||1/Pk+1 − 1||L∞ 1 1. Indeed, this is the case in ALE simulations, which are 
naturally constrained by a CFL condition that limits the evolution of the numerical solution over a single time-step.

13
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More precisely, the usual stability condition for the physical time step (t in an (Eulerian) simulation forces the time step 
(t to decay like (t ∼ 1/

√
N as N → ∞, which is a constraint of exactly the same form as the condition (16) on (τ . A 

Taylor series argument shows that

1 − 1
Pk+1(x)

= (t · ∂tG(ψ(x, tk), tk)

G(ψ(x, tk), tk)
+ O((t2)

=⇒ ||1 − 1/P (·, t)||L∞ = O((t) = O(1/
√

N) , (29)

since ∂tG ∼ O(1). Since the stability condition for the pseudo-time step (τ scales according to (16), and ||w||L∞ =
O(1/

√
N) by (29), we see that (τ = O(1) i.e. the pseudo-time step (τ can be kept fixed across resolutions N , resulting 

in a dynamic SAM algorithm with optimal complexity.
We emphasize here that our perturbation formulation (26) differs from the methods considered in [67,32] in an impor-

tant way. In particular, our perturbation map δψk+1 is a near identity transformation of the uniform reference domain $ref, 
whereas the schemes in [67,32] define a perturbation map via ψk+1 = δψk+1 ◦ ψk , rather than through (25). This means 
that the ψk solutions in [67,32] are different from our ψk SAM solutions. Moreover, the equation for δψk+1 is posed on 
the deformed mesh Tk; this means that the solvers for the Poisson problem and transport equation must be appropriately 
modified at each time-step tk , requiring, for example, the costly recalculation of the stiffness and mass matrices. Conse-
quently, SAM is simpler, faster, and more accurate than the schemes in [67,32]. For instance, the scheme in [32] has order 
of accuracy 1.5, whereas our dynamic SAM solutions converge with 4th order accuracy if the data is sufficiently smooth. 
Additionally, the interpolation routine in [32] requires O(N1.5) grid searching on deformed grids, in contrast to our O(N)
SAM algorithm.

4.3. Restarted dynamic mesh generation

The perturbation formulation (26), by design, follows the time history of ψ(x, t). That is to say, the solution ψ(x, t) at 
time t = tk depends upon the solution for all t < tk . As such, numerical solutions to (26) are susceptible to increasing grid 
distortion and mesh tangling, a common ailment of Lagrangian-type methods. To mitigate this issue, we can periodically 
restart the dynamic mesh generation by computing at time t = tk the map ψk directly with static SAM, rather than with 
dynamic SAM. In this way, the greater efficiency of dynamic SAM is utilized, while grid distortion errors are controlled with 
the use of static SAM, thereby preventing mesh tangling. The restarting criterion is chosen as λk > 0λref, where λk is the 
L1 grid distortion at time step tk , λref is a “reference” grid distortion (defined in Algorithm 3), and 0 is a user prescribed 
parameter. A description of our restarted dynamic SAM scheme is provided in Algorithm 3.

Algorithm 3 restarted dynamic SAM.
Step 0: Choose the maximum grid distortion parameter 0 > 1.
Step 1: Set t = 0. Given an initial target Jacobian function G0 : $ → R+ , compute the initial diffeomorphism ψ0 according to the static solution scheme 

from Section 3.2. Let λref be the (reference) L1 grid distortion of the adaptive mesh T0, computed according to (30).
Step 2: For t = tk+1 > 0, compute the average grid distortion of the map ψk

λk :=
∥∥∥∥

1
2

Tr
(
∇ψk∇ψT

k

)∥∥∥∥
L1

. (30)

Step 3: If λk > 0λref , then compute the map ψk+1 using static SAM Algorithm 1 and recalculate λref according to (30). Otherwise, compute ψk+1 using 
dynamic SAM Algorithm 2. If tk+1 = T , then stop; otherwise, set t = tk+2, and return to Step 2.

5. Dynamic mesh generation experiments

In this section, we present and discuss the results of several dynamic mesh generation experiments conducted with the 
static, dynamic, and restarted SAM algorithms. Unless otherwise stated, all experiments are conducted on the unit square 
$ = [0, 1]2 with an equal number of cells in the horizontal and vertical directions m = n =

√
N .

5.1. Static mesh with large zoom-in factor

This static test problem demonstrates the ability of dynamic SAM to generate smooth meshes with large zoom-in factors 
which, in practical applications, can be used to track very small scale structures with only a few total number of cells. On 
the other hand, when the target function G has large gradients (as is the case for large zoom-in meshes), numerical errors 
in the Poisson solve often lead to poor quality grids containing non-convex elements [22,32].

As an example, consider the circular target Jacobian function Gδ(y) given by (19) with σ = 64, r = 0.2, and δ ∈ [0, 1). 
More generally, we have a family of target functions {Gδ(y)}0≤δ<1 parametrized by δ, with each such Gδ forcing the mesh to 
resolve around some given curve (see equation (59)). The zoom-in parameter δ determines the zoom-in factor ϒ = 1/ min J
of the adaptive mesh T , and thus the smallest scales that can be represented on T . When δ = 0 (uniform mesh) we have 

14
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Fig. 4. Test Problem 5.1 demonstrating smooth large zoom-in meshing using dynamic SAM. Shown are the 642 cell meshes with large zoom-in parameter δ
for the circular target Jacobian function (19). Figure (a) is the poor quality mesh containing non-convex elements produced with static SAM with δ = 0.97, 
and (b) is a zoom-in of (a) near the refining region. Figure (c) is the smooth large zoom-in mesh produced with dynamic SAM with δ = 0.996 and with 
smallest cell 100 times smaller than a uniform cell, and (d) is a zoom-in.

ϒ = 1. As δ increases, so does ϒ, with smaller and smaller scales captured on T . As δ → 1, ϒ → ∞ and the mapping is 
degenerate at δ = 1. From the point of view of efficiency, we would like to have ϒ large since we then require few total 
number of grid points. Moreover, for unstable RT problems that have evolving interfaces with large curvature, it is essential 
that we construct adaptive meshes with large enough ϒ such that they can capture the small-scale vortical structures of 
the flow. As such, we often want to choose δ ≈ 1, and refer to the associated meshes as “large zoom-in” meshes.

While the continuous mapping ψ is non-degenerate for all 0 ≤ δ < 1, in practice numerical errors in static SAM will 
produce folded grids if δ is sufficiently close to 1. That is, for each N , there exists a corresponding δmax such that the grids 
produced with static SAM for δ > δmax contain non-convex elements. An example of such a grid is shown for N = 642 and 
δ = 0.97 in Figs. 4(a) and 4(b). The function Gδ is such that ||1 − 1/Gδ ||L∞ ≈ 1

1−δ → ∞ as δ → 1. When δ ≈ 1, large errors 
in the numerical solution of the Poisson problem lead to grids with non-convex elements.

Dynamic SAM provides a simple method for producing smooth grids with δ ≈ 1. We define the time-dependent function

G(y, s) = (1 − s) + sGδ(y) . (31)

Then (31) linearly interpolates between 1 at s = 0 and Gδ at s = 1, and applying dynamic SAM with sufficiently many time 
steps (s yields smooth grids with no non-convex elements. As an example, we set (s = 0.05 and construct a 642 cell 
mesh using Algorithm 2 with δ = 0.996 in (19). The resulting grid, shown in Figs. 4(c) and 4(d), is smooth with ϒ ≈ 100. In 
Section 7, we consider large zoom-in meshing for the more complicated Rayleigh-Taylor test.
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Fig. 5. Test Problem 5.2: tracking a propagating circular front modeling a shock wave. Shown are the 642 cell meshes produced using dynamic SAM for the 
circular target Jacobian function (32). The top row shows the adaptive meshes T (t), while the bottom row shows the corresponding “perturbation meshes” 
δψk(Tref).

5.2. Propagating circular front

5.2.1. Problem description
Our first dynamic mesh generation experiment tracks a circular front propagating radially outwards with radial velocity 

1. The time-dependent target Jacobian function is defined as

Ḡ(y, t) = 1 − δ exp
{
−

∣∣∣σ
[
(y1 − 0.5)2 + (y2 − 0.5)2 − r(t)2

]∣∣∣
2
}

. (32)

The parameters are chosen as δ = 0.75, σ = 64, and the radius is r(t) = 0.2 + t . We generate a sequence of meshes for 
0 ≤ t ≤ 0.1.

The choice of time step (t depends upon N as

(t = 0.64

2
√

N
. (33)

This choice of scaling for (t is motivated by the CFL condition. Since the radial velocity of the propagating front is 1, we 
can estimate that the CFL number associated with (33) is 0.64.

5.2.2. Results
The 642 cell adaptive meshes T (t) for (32) are shown in the top row of Fig. 5 at various times t . The computed meshes 

Tk are smooth and are correctly resolved around the evolving circular front. The meshes δψk(Tref) are shown at the same 
times in the bottom row of Fig. 5; from these figures, it is clear that δψk(Tref) is a near-identity transformation of the 
uniform mesh Tref. For this problem, the function G is such that ||1 − 1/G(·, t)||L∞ ≈ 2.43, whereas the perturbation density 
P is such that ||1 − 1/P (·, t)||L∞ ≈ 0.3.

5.2.3. Comparison with static SAM
Next, we conduct a grid resolution study with N ranging from N = 322 to N = 5122, and compare the results of dynamic 

SAM with those of static SAM. The Jacobian errors E2 at the final time t = 0.1 are shown in Table 4. Both schemes exhibit 
4th order accuracy, as expected, but the dynamic SAM solutions have smaller errors. This is due to the higher accuracy of 
the Poisson solve in the dynamic method vs the static method.
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Table 4
Test Problem 5.2: tracking a propagating circular front. We list the L2 Jacobian errors E2 at t = 0.1, convergence rates, and total CPU 
runtimes for static and dynamic SAM. The results confirm that dynamic SAM produces high order accurate solutions and is of optimal 
complexity.

Scheme
Cells

32 × 32 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024

Static SAM
E2 4.23 × 10−2 1.15 × 10−2 1.22 × 10−3 9.29 × 10−5 4.98 × 10−6 2.65 × 10−7

Order – 1.9 3.2 3.7 4.2 4.2

TCPU (sec) 0.006 0.049 0.59 7.26 112.8 1663

Dynamic SAM

E2 4.05 × 10−2 6.66 × 10−3 6.18 × 10−4 4.00 × 10−5 2.23 × 10−6 1.33 × 10−7

Order – 2.6 3.4 3.9 4.2 4.1

TCPU (sec) 0.017 0.101 0.869 7.31 65.2 582
speed-up factor 0.33 0.48 0.68 0.99 1.73 2.86

At low resolutions, the dynamic SAM runtimes are greater than those for static SAM. This is due to the interpolation 
required in the dynamic SAM algorithm. On the other hand, static SAM is of complexity O

(
N3/2/(t

)
= O

(
N2), whereas 

dynamic SAM is of optimal complexity O (N/(t) = O
(
N3/2). For this test, dynamic SAM becomes more efficient than static 

SAM at N = 2562.

5.3. Uniformly rotating patch

5.3.1. Problem description
Our next mesh generation experiment assesses the performance of SAM for target Jacobian functions of the form

Ḡ(y, t) = 1

1 + M exp
{
−

(
σ

∣∣∣
[
(y1 − 0.5 − r cos(2πt))2 + (y2 − 0.5 − r sin(2πt))2 − R2

]∣∣∣
)2

} . (34)

Equation (34) forces the mesh to concentrate nodes within a uniformly rotating (with angular velocity ω = 2π ) circular 
patch of radius R > 0, whose center is a distance r ≥ 0 from (0.5, 0.5). The constant M ≥ 0 determines the zoom-in factor, 
and σ controls the width of the transition region from fine to coarse scale of the mesh.

5.3.2. Comparison with the schemes in [71]
The case M = 5, σ = 50, r = 0.25, and R = 0.1 in (34) corresponds to a test problem from [71]. Therein, the authors 

compare four different mesh generation methods and conclude that the so-called Parabolic Monge-Kantorovich method 
(PMKP) is the best method among the four for (34), both in terms of accuracy as well as efficiency. The PMKP method 
is similar to the MK scheme, but replaces the nonlinear Newton-Krylov solver in MK with a parabolization (in pseudo-
time τ ) and time-stepping until a steady state is reached. The solution in PMKP is only found in the asymptotic limit 
τ → ∞, whereas the SAM solution is computed at pseudo-time τ = 1. Moreover, the explicit integration of the parabolic 
PDE requires that the pseudo-time step scales like (τ ∼ 1

N to ensure 2nd order convergence. In contrast, static SAM requires 
only that (τ ∼ 1√

N
, while for dynamic SAM we can keep (τ = O(1).

We set N = 402, (t = 0.01, and generate a sequence of meshes for 0 ≤ t ≤ 1. The adaptive meshes generated with static, 
dynamic, and restarted SAM are shown in Fig. 6 at various times t . The Jacobian errors, mean grid distortion, and cumulative 
simulation runtimes are provided in Table 5. For the purposes of comparison with [71], we also provide the mesh fidelity 
measure Ê2, defined by

Ê2 :=
∣∣∣||J (·, t)/G ◦ ψ(·, t)||L2 − 1

∣∣∣ . (35)

The superior accuracy of SAM produces fidelity measures Ê2 that are an order of magnitude smaller than those produced 
with the PMKP method (see Tables 6 and 7 in [71]). Moreover, the SAM runtimes are more than two orders of magnitude 
smaller than the PMKP runtimes provided in [71] e.g. 0.179 sec vs 75 sec for static SAM vs PMKP.

Since static SAM constructs the map ψ directly from the uniform mesh, the meshes at t = 0.25, 0.5, 0.75, 1.0 are simply 
rotated versions of the initial grid. This is confirmed in Table 5, which shows that static SAM produces grids with identical 
grid quality metrics at these times. Dynamic SAM, on the other hand, necessarily tracks the history of the simulation, and 
the rotating target Jacobian produces grids with increasing levels of distortion. The Jacobian errors of dynamic SAM are 
smaller than static SAM for t = 0.25 and t = 0.5 due to the high accuracy with which the Poisson problem is solved for in 
the perturbation formulation. For t > 0.6, however, grid distortion errors outweigh the improved accuracy for the Poisson 
solve, and dynamic SAM errors become larger than static SAM errors. The restart criterion parameter in restarted SAM is 
set as 0 = 1.01. The mesh restarting controls the grid distortion errors, which in turn prevents the Jacobian errors from 
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Fig. 6. Test Problem 5.3: tracking a uniformly rotating patch with target function (34). Shown are plots of the 402 cell adaptive meshes at various times 
t . The meshes are produced using static SAM (top), dynamic SAM (middle), and restarted SAM (bottom). Restarted SAM removes the grid distortion errors 
associated with Lagrangian methods.

growing. As shown in the bottom row of Fig. 6, and confirmed in Table 5, restarted SAM grids are of comparable accuracy 
and smoothness to static SAM grids

At this low resolution, dynamic SAM is actually slower than the static algorithm. For higher resolutions, however, dy-
namic SAM is much more efficient than static SAM. To demonstrate this, we repeat the above experiment with N = 4002

cells. For brevity, we do not report the Jacobian errors or L1 distortion, since the conclusions are similar to the N = 402 case. 
The computational runtimes, however, are very different: 1414 sec for static SAM vs 184 sec for dynamic SAM, and 194 sec 
for restarted SAM. We thus see that restarted SAM combines the best aspects of static and dynamic SAM i.e. smoothness 
and efficiency, respectively.

5.4. Differential rotation with small scales

5.4.1. Problem description
This dynamic mesh generation test models a Gaussian “blob” deforming under a rotating flow in which the angular 

velocity is dependent upon the distance from the center of the blob [18]. The time-dependent target Jacobian function is 
defined as

Ḡ(y, t) = 1

1 + 4 exp
[
−r(y)2

(
cos2 θ0(y,t)

σ1
+ sin2 θ0(y,t)

σ2

)] , (36)
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Table 5
Test Problem 5.3: tracking a uniformly rotating patch. We provide the mesh fidelity measure Ê2, L2 Jacobian error 
E2, L1 distortion λ, and cumulative CPU runtime TCPU at various times t for the static, dynamic, and restarted SAM 
schemes. The mesh fidelity measures Ê2 of SAM solutions are an order of magnitude smaller than those provided 
in [71]. Additionally, static SAM is more than 400 times faster than the schemes in [71].

Scheme
Time

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1.0

Static SAM

Ê2 3.86 × 10−3 3.86 × 10−3 3.86 × 10−3 3.86 × 10−3 3.86 × 10−3

E2 3.79 × 10−2 3.79 × 10−2 3.79 × 10−2 3.79 × 10−2 3.79 × 10−2

λ 1.251 1.251 1.251 1.251 1.251

TCPU (sec) 0.003 0.048 0.091 0.134 0.179

Dynamic SAM

Ê2 3.86 × 10−3 1.13 × 10−3 1.13 × 10−3 1.49 × 10−3 6.65 × 10−3

E2 3.79 × 10−2 3.28 × 10−2 3.49 × 10−2 4.79 × 10−2 6.31 × 10−2

λ 1.251 1.328 1.544 1.877 2.311

TCPU (sec) 0.003 0.049 0.094 0.139 0.185

Restarted SAM

Ê2 3.86 × 10−3 2.85 × 10−3 1.18 × 10−3 3.86 × 10−3 2.85 × 10−3

E2 3.79 × 10−2 3.05 × 10−2 2.15 × 10−2 3.79 × 10−2 3.05 × 10−2

λ 1.251 1.252 1.259 1.251 1.252

TCPU (sec) 0.003 0.048 0.093 0.138 0.183

Fig. 7. Test Problem 5.4: tracking small scale vortical structures in flows with differential rotation using (36). Shown are zoomed in plots of the 1282 cell 
adaptive meshes at t = 90. SAM produces smooth meshes without the grid distortion errors associated with Lagrangian-type schemes.

where r(y) = |y − 0.5| is the radial coordinate, θ0(y, t) = θ(y) + ω(r)t , and θ(y) = arctan
(

y2−0.5
y1−0.5

)
. The parameters σ1 and 

σ2 control the aspect ratio of the blob, while ω(r) is the angular velocity. As in [18], we set σ1 = 0.05, σ2 = 0.001, and

ω(r) = 1.6 max [(0.5 − r)r,0] .

The function (36) describes the evolution of an initially smooth Gaussian blob Ḡ(y, 0) advected by an incompressible ve-
locity field V = (Vr , V θ ) = (0, rω(r)), where Vr and V θ are the velocity components in the r and θ directions, respectively. 
The initial blob is smooth but will develop arbitrarily small scales for t > 0 due to the radial dependence of the angular 
velocity. As in [18], we set the grid resolution at N = 1282, the time-step as (t = 1, and generate a sequence of meshes for 
0 ≤ t ≤ 90.

5.4.2. Comparison of static, dynamic, and restarted SAM
The results of static, dynamic, and restarted SAM simulations are provided in Fig. 7, which shows zoomed-in plots of the 

meshes near (0.5, 0.5) at the final time t = 90. All three schemes produce grids that are untangled, but while static SAM 
grids are smooth, the dynamic SAM grids contain more distorted elements. This is confirmed in Fig. 8, which provides plots 
of the time history of the L2 Jacobian error (18) and L1 distortion (30). As with the rotating patch problem, the distorted 
dynamic SAM grids are still more accurate than the static SAM grids, though the Jacobian errors are roughly comparable.

For restarted SAM, the restart criterion λk > 0λref, with 0 = 1.01, forces the grid to reset 2 times during the simulation. 
As shown in Fig. 8 and in the final row of Fig. 7, the restarted SAM grids are smooth and comparable to static SAM grids, 
and are almost as accurate as the dynamic SAM grids. A comparison of Fig. 8 with Figure 10 in [18] shows that static and 
restarted SAM grids are of similar quality to the MK grids.
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Fig. 8. Test Problem 5.4: tracking small scale vortical structures in flows with differential rotation using (36). Shown are (a) L2 Jacobian error E2 and (b) L1

grid distortion history of the grids produced using static, dynamic, and restarted SAM. The errors are comparable to those provided in [18], and restarted 
SAM controls the grid distortion associated with Lagrangian-type schemes.

5.5. 3D swirling flow

5.5.1. Problem description
Our final experiment is a 3D dynamic version of the test in [9]. The domain is $ = [0, 1]3, the time interval is 0 ≤ t ≤ 1, 

and the target Jacobian function is given by

Ḡ(y1, y2, y3, t) = 1

1 + 5e−36(y3− 1
2 )2

exp
(
−ω1 R(y1, y2, y3, t)

) , (37)

with

R(y1, y2, y3, t) =
(

y1 − 1
2

− ω2 cos(4π(y3 − t/4)

)2

+
(

y2 − 1
2

− ω2 sin(4π(y3 − t/4)

)2

,

and ω1 = 100 and ω2 = 0.25. As discussed in [9], the target function (37) describes a complex 3D helical surface and poses 
a major challenge for mesh generation algorithms since it leads to highly non-uniform and twisted meshes. See Fig. 9 for 
plots of the target function and (a portion of) the associated mesh at t = 1 and at N = 1283 cell resolution. In Fig. 10, 
we provide plots of ψ(P ), where P ⊂ Tref is some planar subset (lying in either the x1x2-, x2x3-, or x1x3-planes) of the 
reference mesh.

We generate a sequence of meshes starting with N = 323 resolution and doubling in each direction until N = 2563. The 
time-step (t depends on N according to the CFL scaling and is set as (t = 2

3√N
. It is straightforward to adapt the 2D

numerical scheme described in Section 3.3 to the 3D setting, and for brevity we omit the details.

5.5.2. N = 1283 simulations using static, dynamic, and restarted SAM
Plots of the time-history of the Jacobian errors E2 and L1 distortion at N = 1283 are shown in Fig. 11. For 0 ≤ t ≤ 0.5, 

dynamic SAM produces the smallest errors, due to the greater accuracy with which the Poisson and transport problems are 
solved. As expected, dynamic SAM meshes exhibit increasing grid distortion, which causes growth of the Jacobian error. The 
restart criterion in restarted SAM forces the mesh to reset two times during the simulation, which controls the growth of 
both the mesh distortion as well as the Jacobian error; for this example, 0 = 1.003.

5.5.3. Resolution study
Next, we provide in Fig. 12 plots (as a function of the resolution N) of the Jacobian error, L1 distortion, and CPU runtime 

at t = 1. Fig. 12(a) shows that restarted SAM produces grids with the smallest Jacobian errors, but the errors for the 
various schemes are comparable for all the resolutions considered; as expected, we observe 4th order convergence for all 
the schemes. Fig. 12(b) shows that the L1 distortion for both static and dynamic SAM is consistent across resolutions, 
with the grid distortion for restarted SAM bounded between the two. Finally, Fig. 12(c) shows that, while static SAM is of 
complexity O(N · N1/3/(t) = O(N5/3), both dynamic and restarted SAM are of optimal complexity O(N/(t) = O(N4/3). 
Based on this, we can estimate that, for this test, restarted SAM becomes more efficient than static SAM for N > 7353.
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Fig. 9. Test Problem 5.5: 3D swirling flow with the helical target function (37). Fig. 9(a) shows isosurfaces of the target function G and Fig. 9(b) shows a 
portion of the corresponding mesh.

6. SAM-ALE scheme for gas dynamics

We next couple our SAM scheme to a very simple FD WENO-based ALE scheme. The purpose of this section is to 
demonstrate the ability of SAM-ALE to reproduce high-resolution uniform runs using fewer cells and less total CPU time. 
The numerical method for the ALE system of equations we use is highly simplified and not meant to be representative of 
the full class of ALE solvers. Nonetheless, even for the two very difficult test problems presented in Section 7, the highly 
simplified scheme performs remarkably well.

For the notation used in this section, we refer the reader to Section 2.

6.1. The 2D ALE-Euler system

6.1.1. Equations in Eulerian coordinates
The 2D compressible Euler system in Eulerian coordinates y = (y1, y2) ∈ $ can be written in the following compact 

conservation-law form

∂tQ + DiF
i(Q) = 0, (y, t) ∈ $ × (0, T ), (38a)

Q(y,0) = Q0(y), (y, t) ∈ $ × {0}. (38b)

Here, Q is the vector of conserved variables, and F1(Q) and F2(Q) are the flux functions, defined as

Q =





ρ

ρu1

ρu2

E



 and Fi(Q) =





ρui

ρu1ui + δi
1p

ρu2ui + δi
2p

ui(E + p)




. (39)

The velocity vector is u = (u1 , u2) with horizontal component u1 and vertical component u2, ρ > 0 is the fluid density 
(assumed strictly positive), E denotes the energy, and p is the pressure defined by the ideal gas law,

p = (γ − 1)

(
E − 1

2
ρ|u|2

)
, (40)

where γ is the adiabatic constant, which we will assume takes the value γ = 1.4, unless otherwise stated.
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Fig. 10. Test Problem 5.5: 3D swirling flow with the helical target function (37). Shown are plots of the images of various planes P ⊂ Tref under the map 
ψ .

6.1.2. Equations in ALE coordinates
Let $ref be the fixed reference domain with coordinates (x1, x2), and assume that we have, for each t ≥ 0, a smooth ALE 

map ψ(·, t) : $ref → $. Denote by the regular font f the ALE counterpart to the Eulerian variable written with upright font 
f i.e. f (x, t) = f ◦ ψ(x, t). The 2D ALE-Euler system can then be written in conservation law form as

∂t Q + ∂ j F j(Q ) = 0, (x, t) ∈ $ref × (0, T ), (41a)

Q (x,0) = Q 0(x), (x, t) ∈ $ref × {0}, (41b)

where the conserved ALE variables Q and flux functions F j(Q ) are given as

Q =





J ρ

J ρu1

J ρu2

J E



 and F j(Q ) =





ρa j
i (ui − ψ i

t )

ρu1a j
i (ui − ψ i

t ) + a j
1 p

ρu2a j
i (ui − ψ i

t ) + a j
2 p

Ea j
i (ui − ψ i

t ) + pa j
i ui




. (42)

Here, a j
i denotes the components of the cofactor matrix defined by (3), and ψ i

t is the ith component of the mesh velocity. It 
is also convenient to introduce the ALE transport velocity v(x, t) with jth component v j := 1

J a j
i (ui − ψ i

t ). The 2D ALE-Euler 
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Fig. 11. Test Problem 5.5: 3D swirling flow with the helical target function (37). Shown are (a) L2 Jacobian error E2 and (b) L1 grid distortion history of the 
grids produced using static, dynamic, and restarted SAM at N = 1283. Restarted SAM controls the grid distortion associated with Lagrangian-type schemes.

Fig. 12. Test Problem 5.5: 3D swirling flow with the helical target function (37). Shown are (a) log log plots of L2 Jacobian error E2 vs (x, (b) L1 grid 
distortion vs (x, and (c) log log plots of total runtime TCPU vs N of the grids produced using static, dynamic, and restarted SAM for N = 323, . . . , 2563.

system (41) is hyperbolic in the sense that each of ∇Q F j(Q ) is diagonalizable with real eigenvalues (or wave speeds), which 
are given explicitly by

λ j,± = 1
J

(v j ± c) and λ j,0 = 1
J

v j (repeated) , (43)

with c = √
γ p/ρ the sound speed.

6.1.3. Geometric conservation law and free-stream preservation
An explicit computation shows that the Jacobian determinant J (x, t) satisfies the geometric conservation law (GCL) [75]

∂tJ − ∂ j(a
j
i ψ

i
t ) = 0 . (44)

For (41), an equivalent property to the GCL is the free-stream preservation property, which states that an initially uniform 
flow (i.e. Q0 ≡ constant) is preserved under evolution by (41a) i.e. Q ≡ constant for every t > 0. Numerical schemes that fail 
to preserve the free-stream produce unacceptably large errors that corrupt small-scale vortical structures [38,79,17,60,45].

Finite difference schemes on static uniform meshes preserve the free-stream. On dynamic adaptive meshes, however, 
this is no longer a given, and indeed many standard schemes (including WENO [43]) fail to preserve the free-stream. As 
such, we design our numerical scheme to ensure free-stream preservation by explicitly incorporating (44) into the system of 
conservation laws to be solved [38,84]. Specifically, we append to (41) the equation (44) and consider the modified system
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∂t Q̃ + ∂ j F̃ j(Q̃ ) = 0, (x, t) ∈ $ref × (0, T ), (45a)

Q̃ (x,0) = Q̃ 0(x), (x, t) ∈ $ref × {0}, (45b)

with

Q̃ =





J ρ

J ρu1

J ρu2

J E
J




and F̃ j(Q̃ ) =





J ρv j

J ρu1 v j + a j
1 p

J ρu2 v j + a j
2 p

J E v j + pa j
i ui

−a j
i ψ

i
t




. (46)

We emphasize that, while the cofactor matrix a j
i is computed directly from the map ψ according to (3), the Jacobian 

determinant J is computed (using the same numerical method used for the other equations in (45)) via (44) and not by 
the usual determinant formula J = ∂1ψ

1 ∂2ψ
2 − ∂1ψ

2 ∂2ψ
1 except at the initial time t = 0.

6.2. The C-method for 2D ALE-Euler

Next, we describe some aspects of our numerical framework for solving (45). Specifically, we adapt the C-method, intro-
duced in the Eulerian setting in [64,65], to the ALE setting. One of the key features of the C-method is space-time smooth 
tracking of shock/contact fronts and their geometries via so-called C-functions. The C-functions are space-time smoothed 
versions of localized solution gradients, and are found as the solutions to auxiliary scalar reaction-diffusion equations. These 
C-functions in turn allow us to implement both directionally isotropic (for shock stabilization) and anisotropic (for contact 
stabilization) artificial viscosity schemes. In particular, the C-method is a PDE-level modification of (45). Consequently, the 
methods developed in [64,65] can be implemented in the ALE context in a straightforward manner. For the purposes of 
brevity, we omit some of the details here and refer the reader to [65] and Appendix A.

6.2.1. WENO-type reconstruction and computation of a j
i

We discretize the uniform mesh and index the nodes by xr,s = (x1
r , x2

s ). At each xr,s we construct numerical flux functions 
F̂ 1

r+ 1
2 ,s

and F̂ 2
r,s+ 1

2
that will be used to approximate the derivatives ∂1 F̃ 1(Q̃ )|xr,s and ∂2 F̃ 2(Q̃ )|xr,s , respectively. We describe 

the procedure for F̂ 1
r+ 1

2 ,s
. For ease of notation, we drop the superscript 1 and let F̃ 1 ≡ F̃ . Decompose F̃ = F̃ v + F̃ p + F̃ E + F̃ J

with

F̃ v =





J ρv j

J ρu1 v j

J ρu2 v j

J E v j

0




, F̃ p =





0

a j
1 p

a j
2 p
0
0




, F̃ E =





0
0
0

pa j
i ui

0




, F̃ J =





0
0
0
0

−a j
i ψ

i
t




. (47)

Each component of the advection term F̃ v is approximated at the half-point xr+ 1
2 ,s as

F̂ v
r+ 1

2 ,s
= WENO

(
q,J v j

)
:= qr+ 1

2 ,s(J v j)r+ 1
2 ,s , (48)

where q denotes one of the variables q ∈
{
ρ,ρu1,ρu2, E

}
and qr+ 1

2 ,s is computed using a standard 5th order WENO recon-

struction [68] of q with upwinding based on the sign of (J v j)r+ 1
2 ,s . The velocity (J v j)r+ 1

2 ,s is computed according to the 
4th order average

(w)r+ 1
2 ,s := −wr−1,s + 7wr,s + 7wr+1,s − wr+2,s

12
. (49)

The additional advection terms F̂ E
r+ 1

2 ,s
= WENO(p, a j

i ui) and F̂ J
r+ 1

2 ,s
= WENO(1, −a j

i ψ
i
t ) can be approximated in a similar 

fashion to (48). The pressure term F̂ p
r+ 1

2 ,s
is approximated by the 4th order average (49). Finally, the total flux is given by 

the sum F̂r+ 1
2 ,s = F̂ v

r+ 1
2 ,s

+ F̂ p
r+ 1

2 ,s
+ F̂ E

r+ 1
2 ,s

+ F̂ J
r+ 1

2 ,s
. The semi-discrete scheme for (45) then reads

∂t Q̃ r,s +
F̂ 1

r+ 1
2 ,s

− F̂ 1
r− 1

2 ,s

(x1 +
F̂ 2

r,s+ 1
2

− F̂ 2
r,s− 1

2

(x2 = 0 . (50)
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For free-stream flows, we have that qr,s ≡ constant and the scheme becomes linear, due to the linear averaging (49). 
In particular, it is easy to verify that the free-stream is preserved, provided the components of the cofactor matrix a j

i are 
computed by 4th order central differencing of the map ψ as

[
∂1ψ

j
]

r,s
=

ψ
j

r−2,s − 8ψ
j

r−1,s + 8ψ
j

r+1,s − ψ
j

r+2,s

12(x1 , (51)

and similarly for 
[
∂2ψ

j
]

r,s .
To confirm this, we perform a free-stream test on the 50 × 50 time-dependent moving-mesh defined by





ψ1(x1, x2, t) = x1 + 0.4 sin

(
3πt

T

)
sin

(
3π
8 (x2 + 8)

)
(a)

ψ2(x1, x2, t) = x2 + 0.8 sin
(

3πt
T

)
sin

(
3π
8 (x1 + 8)

)
(b)

(52)

for (x1, x2) ∈ [−8 , +8]2 and 0 ≤ t ≤ T = 80. The initial data is uniform U0 ≡ 1 and we employ periodic boundary conditions. 
The magnitude of the density error at the final time t = T is ||ρ(·, T ) − 1||L∞ = 9.10 × 10−14 i.e. the scheme maintains free 
stream flows to machine precision.

For non-smooth problems with shocks or contacts, it is necessary to add an artificial viscosity term to the right-hand side 
of (45a), and the semi-discrete scheme (50) must be modified appropriately. The details of the particular form of artificial 
viscosity we use are provided in Appendix A.

Remark 1. The simplified WENO-type reconstruction procedure outlined above is similar in some respects to the WENO 
schemes based on the so-called alternative flux formulation, first introduced in [69] and explored extensively in several recent 
papers [44,45,61,19,55]. In particular, both schemes define the flux F̂r+ 1

2 ,s by first reconstructing the variables qr+ 1
2 ,s . On the 

other hand, the alternative flux formulation WENO schemes utilize characteristic decompositions and (exact or approximate) 
Riemann solvers. The resulting algorithms are more expensive but also more robust. Nonetheless, for simple problems, both 
the simplified WENO and alternative flux WENO schemes produce similar results [64,65]. For more challenging problems, 
the simplified WENO scheme produces oscillatory solutions; these oscillations can be suppressed with C-method artificial 
viscosity.

6.2.2. Explicit interface tracking
The C-method utilizes a simple method for tracking of contact discontinuities which we first describe in the Eulerian 

setting i.e. for the system (38). Let z : I × [0, T ] → $ be a parametrization of the material interface with parameter α ∈
I ⊂R, and with components z = (z1 , z2). In many simulations, the contact discontinuity is a closed or periodic curve, and 
in this case we take I = [−π , π ]. Given an initial parametrization z0 of the contact discontinuity, the interface z(α, t) is 
found as the solution to

{
∂tz(α, t) = ū ◦ z(α, t) , α ∈ I and 0 < t ≤ T (a)
z(α,0) = z0(α) , α ∈ I and t = 0 (b) (53)

Here, the velocity ū is defined as the average ū = 1
2 (u+ + u−), with u± denoting the fluid velocity on either side of the 

interface. In a numerical implementation, the average ū is approximated by bilinear interpolation of u onto z.
The ALE analog of the (Lagrangian) interface tracking algorithm described above can be derived by defining the ALE 

interface parametrization z : I × [0, T ] as the image of z under the action of the inverse ALE map ψ−1 : $ × [0, T ] → $ref
i.e.

z(α, t) = ψ−1 ◦ z(α, t) .

If the map ψ resolves mesh points around z, then the ALE interface z represents a “zoomed-in” version of z that magnifies 
small scale structures cf. Fig. 17(d).

A chain rule computation shows that z is the solution to
{

∂t z(α, t) = v̄ ◦ z(α, t) , α ∈ I and 0 < t ≤ T (a)
z(α,0) = z0(α) , α ∈ I and t = 0 (b) (54)

where v̄ = 1
2

(
v+ + v−)

. The initial interface z0 is defined by

z0(α) = ψ−1 ◦ z(α,0) . (55)

In a numerical implementation, the initial ALE interface z can be computed as the roots of ψ0(z0) = z0 using e.g. Newton’s 
method.
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Algorithm 4 coupled SAM-ALE.
Step 0: Initialization t = 0.

(a) Define the initial Eulerian data Q0 on the uniform mesh U ⊂ $ and the initial interface parametrization z0(α).
(b) Define the initial target Jacobian function G0 on U . Compute the initial ALE map ψ0 : $ref → $ and adaptive mesh T0 = ψ0(Tref) ⊂ $ using 

static SAM Algorithm 1.
(c) Define the initial ALE data Q 0. Compute the initial ALE interface z0 using Newton’s method.

Step 1: Time-stepping t = tk ≥ 0. Assume that we are given all quantities at t = tk .
(a) Define the target Jacobian function Gk+1 and compute the map ψk+1 and adaptive mesh Tk+1 according to restarted dynamic SAM Algorithm 3.
(b) Compute the cofactor matrix a j

i using (51). Define the mesh velocity ∂tψk+1 = ψk+1−ψk
(t .

(c) Compute the ALE variables Q̃ k+1 and zk+1 using the C -method and RK4 time-stepping. The mesh, cofactor matrix, and mesh velocity are kept 
fixed over the time step.

(d) Compute the interface zk+1 = ψk+1 ◦ zk+1.
(e) If tk+1 = T , then stop; else, set t = tk+1 and return to Step 1(a).

6.3. Coupled SAM-ALE algorithm

Our SAM algorithm is coupled to the ALE C-method by defining an appropriate target Jacobian function Gk . In this work, 
for simplicity, we shall assume that Gk is explicitly defined, either by some particular formula (as in the Noh test), or 
via the interface zk (for the RT test). Future work will investigate coupling of SAM-ALE by means of balanced monitoring of 
solution gradients [77]. In the case of RT instability, it is important to use the interface z to control adaptation since it allows 
high mesh concentration in KH roll up zones, in contrast to the balanced monitoring approach in which the magnitudes of 
solution gradients decrease in KH zones due to mixing [73].

The complete SAM-ALE algorithm is provided in Algorithm 4.

7. SAM-ALE simulations of gas dynamics

7.1. Noh implosion

The first test is the 2D Noh implosion: an initially cold gas is directed towards the origin with speed 1 and instanta-
neously implodes at the origin, resulting in a radially symmetric infinite strength shock propagating outwards with speed 
1/3. This is an extremely difficult test problem and almost all codes report errors in the form of wall heating, lack of sym-
metry, incorrect shock speeds, or even failure to run [53]. This is the case for both Lagrangian-type codes with artificial 
viscosity [52,7,20], as well as AMR codes such as RAGE [30]. Extensive numerical testing in [76] showed that catastrophic 
anomalies occur in AMR solutions, with the anomalies persisting, or even worsening as the grid is refined. These anomalies 
occur due to spurious wave reflections on discontinuous grids [78,29].

7.1.1. Problem description
The domain as $ = [0, 1]2, the adiabatic constant is γ = 5/3, and the initial data is





ρ0
(ρu1)0
(ρu2)0

E0



 =





1
− cos(θ)
− sin(θ)

0.5 + 10−6/(γ − 1)



χr>0 +





1
0
0

0.5 + 10−6/(γ − 1)



χr=0 , (56)

where r = |y| is the radial coordinate, θ ∈ [0, π2 ) is the polar angle, and χA is the indicator function on the set A. We 
employ reflecting boundary conditions on the left and bottom boundaries and use the exact solution to impose the boundary 
conditions at the top and right boundaries. The problem is run until the final time T = 2.

7.1.2. Uniform mesh simulations
We apply the C-method as described in [65] on 50 × 50, 100 × 100, and 200 × 200 meshes with time step (t set so that 

CFL ≈ 0.2. The C-method artificial viscosity coefficients in (65) are fixed as βu = 0.35, βE = 2.5, and µ = 0. The scatter plots 
of density vs r in Fig. 13 show that the C-method produces stable non-oscillatory solutions that maintain radial symmetry. 
Moreover, the smooth artificial viscosity almost entirely removes the wall-heating error in the higher resolution runs.

7.1.3. SAM-ALE simulations
Next, we apply SAM-ALE on a 50 × 50 dynamic adaptive mesh. For simplicity, we choose a specially designed forcing 

function G for the mesh generation, defined as

Cψ (y1, y2, t) = exp
[
−400

(
r2 − t2/9

)]
,

Ḡ(y, t) = 1

1 + κ
1−κ

Cψ (y,t)∫
$ Cψ (y,t) dy

. (57)
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Fig. 13. Uniform mesh runs for the 2D Noh problem. Shown are the density scatter plots vs radial coordinate r. The black curve in each subfigure is the 
exact solution. The shock fronts are sharp and the solutions free of the spurious asymmetry, wall-heating, oscillation, and shock-racing errors associated 
with the majority of numerical methods for this test.

Fig. 14. SAM-ALE simulations of the Noh implosion. Shown are (a) adaptive mesh T , (b) density scatter plot, and (c) comparison of uniform vs SAM-ALE 
density zoom-in at the shock. The smooth concentration and alignment of the mesh in the vicinity of the shock front allows for a sharp shock representation 
in the SAM-ALE solution, comparable to the high-resolution 200 × 200 uniform mesh solution.

This forcing function is designed, using the known analytical solution, to track the moving shock. In the future, a shock-
tracking scheme analogous to the z-type advection (53) for contract tracking will be employed to define Ḡ. The z-type 
advection can track the shock with high accuracy, and the resulting Ḡ is almost exactly the same as (57). As such, for 
simplicity we use the specially designed function (57) in this work, with the understanding that similar results can be 
obtained when z-type shock tracking is used instead. The particular normalization used to define Ḡ is motivated by the 
balanced monitoring method [77]. We set κ = 0.3 and the time-step as (t = 5 × 10−4, which yields CFL ≈ 0.2, and choose 
artificial viscosity parameters βu = 0.1, βE = 0.7, and µ = 0.

The results are shown in Fig. 14. The shock front is sharp, the wall-heating error is very small, and solution symmetry 
is well preserved. The latter is a consequence of both C-method artificial viscosity as well as grid alignment with the 
shock front. The density cross sections ρ(y1, 0, t) along the y1-axis for the various simulations are shown in Fig. 14(c), 
which clearly shows that the 50 × 50 adaptive simulation outperforms the low-res and mid-res uniform simulations, and 
is comparable to the high-res uniform simulation. The wall heating error is smallest for the adaptive simulation, and the 
sharpness of the shock fronts for the 200 × 200 uniform and 50 × 50 adaptive simulations is comparable. As shown in 
Table 6, the adaptive mesh simulation produces the solution with the smallest L2 error in the density. Moreover, the adaptive 
simulation is approximately 6 times faster than the high-res uniform simulation, and requires roughly the same amount of 
memory as the lowest-resolution uniform run.

7.2. Rayleigh-Taylor instability

Our second test problem is the classical RT instability. This test poses a huge challenge for Lagrangian and ALE methods 
due to the complex geometry of the evolving unstable interface. As such, limited RT ALE simulations are available in the 
literature (but see [85,57,24,34] for some examples). In fact, the RT problem is so challenging for ALE codes that very often 
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Table 6
Comparison of simulation statistics for the uniform and adaptive mesh C -method simu-
lations for the Noh problem. The low-res SAM-ALE simulation is more accurate than the 
high-res uniform simulation, while running 6 times faster and requiring only 18% as much 
memory.

Simulation
Simulation statistic

L2 density error CPU time (secs) Memory usage (MBs)

50 × 50 uniform 1.019 × 100 4.3 7.5
100 × 100 uniform 6.917 × 10−1 35.3 14.6
200 × 200 uniform 5.406 × 10−1 289 43.7
50 × 50 adaptive 4.897 × 10−1 45.6 7.8

Fig. 15. Uniform mesh simulations of RT instability with sharper fronts and more small scale structure in the KH zone as the resolution increases.

the goal is simply to perform a simulation that runs until the final time without excessive mesh tangling, at which point 
the simulation breaks down [57,4].

7.2.1. Problem description
We add the source term S̃(x, t) = (0, 0, −J ρg, −J ρgu2, 0, 0)T to the right-hand side of (45a). The domain is $ =

[−0.25, 0.25] × [0, 1] and we apply periodic and free-flow conditions in the y1 and y2 directions [63]. The initial data is 
u0 = 0, and

p0 =
{

5 − ρ−gy2 , if y2 < 0.5
5 − 0.5ρ−g − ρ+g(y2 − 0.5) , if y2 ≥ 0.5

, (58a)

ρ0(y1, y2) = ρ− + ρ+ − ρ−

2

[
1 + tanh

(
y2 − η0(y1)

h

)]
, (58b)

where ρ+ = 2 and ρ− = 1, η0(y1) = 0.5 − 0.01 cos(4π y1), h = 0.005, and g = 1. The problem is run until the final time 
T = 2.5.

7.2.2. Uniform mesh simulations
We compute a sequence of uniform mesh simulations for resolutions N = 64 × 128 through N = 512 × 1024 with CFL ≈

0.45. The artificial viscosity parameters are set as µ = 7.5 × 10−4 and βu = βE = 0, and we show heatmap plots of the 
density in Fig. 15. As the resolution is increased, more small-scale structure can be seen in the main KH roll up region. The 
artificial viscosity term suppresses further secondary instabilities that usually occur with other dimensionally split numerical 
methods [53,1].
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Fig. 16. 64 × 128 adaptive mesh simulations of RT with large zoom-in factor. Figure (a) is a zoom-in of the mesh computed with restarted SAM and 
δ = 0.85. The interface z is shown as the blue curve, and the non-convex elements are indicated by red crosses. Figure (b) is a zoom-in of the density with 
δ = 0.92. The non-convex elements cause spurious instabilities along the interface. Figure (c) shows the mesh computed with the large zoom-in algorithm; 
all the elements are convex and the mesh is smooth.

Table 7
Total CPU runtime for uniform and adaptive simulations of RT instability.

Runtime (sec)
Cells

64 × 128 128 × 256 256 × 512 512 × 1024 64 × 128 SAM-ALE

TCPU 2.21 × 101 1.67 × 102 1.37 × 103 1.21 × 104 1.38 × 102

7.2.3. Mesh generation with large zoom-in factor
Next, we aim to produce a 64 × 128 adaptive mesh with large zoom-in factor that resolves around the material interface 

z and define a target Jacobian function as

Gδ(y, t) = 1 − δ exp
(

−
∣∣∣σ min

α
|y − z(α, t)|

∣∣∣
2
)

, (59)

with σ = 25. For this resolution, the meshes produced with dynamic SAM contain non-convex elements for δ larger than 
approximately 0.85, as shown in Fig. 16(a). These non-convex elements arise due to a strong cusp-type flow in the region 
between the “stem” of the mushroom and the roll up region. The choice δ = 0.85 produces a mesh with smallest cell size 
only approximately 3.8 times smaller than a uniform mesh cell. Increasing the value of δ further produces a mesh with more 
non-convex elements, which in turn causes spurious errors in the computed numerical solution as shown in Fig. 16(b).

A simple technique to resolve this issue is to use the large zoom-in algorithm described in Section 5.1. Specifically, 
we use the large zoom-in algorithm (with 25 sub time steps) in combination with restarted dynamic SAM. The 64 × 128
adaptive mesh with δ = 0.97 is shown in Fig. 16(c), from which it can be seen that the mesh is smooth and all elements 
are convex. The smallest cell size in the mesh is approximately 13 times smaller than a uniform cell. The large zoom-in 
algorithm is applied only when the mesh resets, and the increase in CPU runtime is therefore negligible.

7.2.4. Comparison of adaptive and uniform simulations
We perform a 64 × 128 cell SAM-ALE simulation with zoom-in parameter δ = 0.97 and (t = 1.5625 × 10−4. Plots of the 

adaptive mesh and density heatmap are provided in Fig. 17(a) and Fig. 17(b), and we refer to Fig. 16(c) for the mesh zoom-
in. A comparison with the uniform mesh simulations in Fig. 15 shows that the 64 × 128 SAM-ALE simulation has a much 
sharper interface and exhibits more small-scale roll-up than the 64 × 128 uniform simulation, and is roughly comparable 
to the N = 256 × 512 simulation. However, some of the small-scale structure is not observed in the SAM-ALE density. 
Interestingly, this roll up is captured by the interface z, shown in Fig. 17(c). This suggests that a more robust ALE solver (e.g. 
WENO with alternative flux formulation) may produce improved results.10 The ALE interface z is shown in Fig. 17(d) and is 
clearly a zoomed-in version of z, with the small scale KH zones magnified and represented over a much larger region.

The CPU runtimes of the various simulations are provided in Table 7, from which we see that the SAM-ALE simulation 
is approximately 10 times and 88 times faster than the 256 × 512 and 512 × 1024 uniform runs, respectively. For this 
problem, the CPU time spent on mesh generation is roughly the same as the time spent on ALE calculations. Since SAM is 

10 See also [77] for a comparison of Lax-Friedrichs vs low dissipation HLLC flux reconstruction in the FV framework.
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Fig. 17. 64 × 128 SAM-ALE simulation of RT instability with δ = 0.97.

Fig. 18. Time history of the L2 and L∞ norms of the vorticity for uniform and adaptive mesh simulations of RT instability.

roughly 100-200 times faster than MK mesh generation, it is clear that an MK-ALE scheme cannot provide a speed-up over 
uniform mesh simulations. On the other hand, the use of a more robust ALE solver can only improve the relative efficiency 
of SAM-ALE, since the main computational expense will be the ALE calculations rather than mesh generation.

The time histories of the L2 and L∞ norms of the vorticity ω for the uniform and adaptive mesh simulations are shown 
in Fig. 18. These figures confirm that the 64 × 128 SAM-ALE run is comparable to the 256 × 512 uniform run. In fact, for 
t ≤ 1.75, when the mesh zoom-in factor is approximately 20 times, the 64 × 128 SAM-ALE run closely approximates the 
512 × 1024 uniform run. For t > 1.75, the mesh zoom-in factor decreases due to the stretching of the interface and the 
adaptive mesh is no longer able to capture the smallest scales that are present in the 512 × 1024 run. The decrease in the 
mesh zoom-in factor is a consequence of the fact that the number of cells in the mesh are fixed. So-called h-r adaptive 
mesh methods [23] are a way to overcome this issue; the simplicity of our algorithmic framework suggests that a dynamic 
h-r method based on SAM can be readily formulated and implemented, and this will be investigated in future work.
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Fig. 19. Unstructured mesh modeling compressible flow past an airfoil. The mesh is constructed using (a preliminary version of) unstructured SAM in the 
Firedrake framework [66].

8. Concluding remarks

In this work, we developed a new Smooth Adaptive Meshing (SAM) algorithm based on a new perturbation formulation 
and implementation of the deformation method. The resulting numerical algorithm is simple, stable, automated, high-order 
accurate, and able to generate smooth and untangled meshes resolving around complex multi-D flows. We coupled SAM 
to a simple ALE scheme for gas dynamics and presented adaptive-simulation speed-up results for the challenging Noh and 
Rayleigh-Taylor problems.

Several aspects of our SAM formulation and algorithm require further investigation and improvement. As discussed in 
Section 7.2, we are interested in developing an h-r-refinement scheme based on SAM and, more generally, a dynamic SAM 
algorithm on general unstructured meshes. The numerical implementation of unstructured SAM is obviously more delicate 
than the simple uniform-mesh scheme presented in the current paper, and will be thoroughly investigated in future work. 
Nonetheless, we provide in Fig. 19 a preliminary result showing an unstructured SAM mesh that models compressible 
flow past an airfoil. This mesh was produced11 within the finite-element based Firedrake code [66]. In the future, we will 
investigate the theoretical properties of SAM solutions on general domains, and their connections to the regularity of the 
discrete mesh T .
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Appendix A. The C -method for 2D ALE-Euler

We provide a brief review of the C-method for adding space-time smooth artificial viscosity to shocks and contacts 
[65]. The most important feature of the C-method is smooth tracking of shock/contact fronts and their geometries via 
so-called C-functions. The C-functions are space-time smoothed versions of localized solution gradients, and are found as 
the solutions to auxiliary scalar reaction-diffusion equations. Specifically, we use C to denote a smoothed shock tracking 
function, and τ to denote the vector-valued function τ = (τ 1 , τ 2). The function 5τ is a smoothed version of the tangent 
vector to an evolving contact discontinuity. These C-functions allow us to implement both directionally isotropic (for shock 
stabilization) and anisotropic (for contact stabilization) artificial viscosity schemes.

To summarize the method, it is convenient to introduce advection, artificial viscosity, and C-equation operators as fol-
lows.

A.0.1. ALE advection operator
For a scalar function Q : $ref →R, and a vector-valued function v : $ref →R2, define

A [Q ; v] := ∂k

(
Q ak

l vl
)

. (60)

A.0.2. ALE isotropic artificial viscosity operator
For a scalar function Q : $ref →R, define

D [Q ;β] := ∂k

(
β̃ρC ak

i al
i ∂l Q

)
, (61)

with

β̃ = |(x|2
max C

β .

The constant β is an isotropic artificial viscosity parameter for shock stabilization.

A.0.3. ALE anisotropic artificial viscosity operator
For a scalar function Q : $ref →R, we define

Dτ [Q ;µ] := ∂k

[
µ̃ρ τ iτ jak

i al
j ∂l Q

]
, (62)

with

µ̃ = |(x|2
α2 µ. (63)

Here, µ is the anisotropic artificial viscosity parameter for contact discontinuity stabilization and α = maxx{|τ 1| , |τ 2|}.

A.0.4. ALE C-equation operator
For a scalar function H : $ref →R and scalar forcing function Q : $ref →R, let

L [H ; Q ] := S
ε|(x| (Q − H) + κS|(x|(H . (64)

A.0.5. The complete ALE-Euler-C system
Now, we can write the full ALE-Euler-C system as

∂t(J ρ) + A [ρ ; u − ψt] = 0 , (65a)

∂t(J ρur) + A
[
ρur ; u − ψt

]
= Dτ [ur ;µ] + D[ur ;βu] − ∂ j(a

j
r p) , for r = 1,2, (65b)

∂t(J E) + A [E ; u − ψt] + A [p ; u] = D[E/ρ ;βE ] , (65c)

∂tJ − A [1 ;ψt] = 0 , (65d)

∂t C − L [C ; F ] = 0 , (65e)

∂tτ
r − L

[
τ r ; F r] = 0 , for r = 1,2. (65f)
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The forcing functions for (65e) and (65f) are defined as follows. The shock C forcing function is given by

F̂ =
| 1
J a j

i ∂ jρ|
max | 1

J a j
i ∂ jρ|

, (66)

while the components of the forcing to the contact tangent vector τ equations are defined by

F 1 = − 1
J

a j
2∂ jρ and F 2 = 1

J
a j

1∂ jρ . (67)

The initial conditions for C and τ are defined by solving the time-independent versions of (65e) and (65f).

Appendix B. Boundary smoothing for non-Neumann functions

Herein, we describe a simple boundary smoothing technique for non-Neumann functions. Let xr
mid = 1

2

(
xr

min + xr
max

)
, for 

r = 1, 2. Define smooth cutoff functions

φ1(ξ) = 1
2

[

tanh

(
ξ − (x1

min + d1)

ε

)

− tanh
(

ξ − (x1
max − d1)

ε

)]

,

φ2(η) = 1
2

[

tanh

(
η − (x2

min + d2)

ε

)

− tanh
(

η − (x2
max − d2)

ε

)]

,

where ε is a smoothing parameter, which we choose as ε = 0.02. The function φ1 is equal to 1 in the interior of the domain, 
then smoothly decreases to 0 at a distance d1 near the left and right boundaries. The function φ2 behaves similarly. We set 
dr = 0.05(xr

max − xr
min).

Given a non-Neumann function G, we first compute the derivatives D1G, D2G, and D12G. We then compute

I(1)(y1) =
y1∫

x1
mid

φ1(ξ)D1G(ξ, x2
mid)dξ ,

I(2)(y2) =
y2∫

x2
mid

φ2(η)D2G(x1
mid,η)dη ,

I(3)(y1, y2) =
y2∫

x2
mid

y1∫

x1
mid

φ1(ξ)D12G(ξ,η)dξdη ,

and define

G∗(y1, y2) := G(x1
mid, x2

mid) + I(1)(y1) + I(2)(y2) + I(3)(y1, y2) .

The function G∗ then satisfies DG∗ · ν = 0 on ∂$.

Appendix C. The MK scheme

The MK scheme solves for the unique [8,16] diffeomorphism ψ satisfying (7) that minimizes the L2 displacement 
||ψ(x) − x||L2 . The MK formulation is developed by writing ψ = x + ∇:, where : is a scalar potential. The equation gov-
erning : is found by minimizing a functional consisting of the L2 displacement and a local Lagrange multiplier, where the 
latter is used to enforce the Jacobian constraint (7). The resulting equation for : is fully nonlinear, and the MK scheme uses 
an iterative Newton-Krylov solver with multigrid preconditioning to find an approximation to the solution :, within some 
error tolerance ε .

C.1. Machine comparison

To reliably compare the runtimes of our static SAM Algorithm 1 with the MK scheme as listed in [22], we need to 
account for the different machines on which these codes were run. Therefore, we perform the following machine comparison 
experiment. In [22], the authors also report the CPU runtimes for a deformation method of Liao and Anderson [50], whose 
description is provided in the Appendix of [22]. We coded a numerical implementation of this method, which we refer to 

33



R. Ramani and S. Shkoller Journal of Computational Physics 490 (2023) 112280

Table 8
CPU runtimes for the LA scheme on the machine from [22] and the LA scheme on our machine. The data 
for the LA scheme in the top row is taken from Table 3 of [22].

Scheme
Cells

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

LA on [22] machine TCPU 0.2 0.9 3.4 13.6 55.0

LA on our machine
TCPU 0.12 0.41 1.53 6.22 24.16
speed-up factor 1.7 2.2 2.2 2.2 2.3

as LA, and ran the numerical experiments from [22] on our machine. The runtimes for LA on our machine, along with the 
LA runtimes from Table 3 of [22], are shown in Table 8. These data show that our machine runs approximately 2.2 times 
faster than the machine on which the MK simulations in [22] were performed.
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