Epidemics 41 (2022) 100642

Contents lists available at ScienceDirect

Epidemics

ELSEVIER

journal homepage: www.elsevier.com/locate/epidemics

Check for

Insight into Delta variant dominated second wave of COVID-19 in Nepal | e

Khagendra Adhikari®, Ramesh Gautam ”, Anjana Pokharel °, Meghnath Dhimal de,
Kedar Nath Uprety ', Naveen K. Vaidya &

& Amrit Campus, Tribhuvan University, Kathmandu, Nepal

Y Ratna Rajya Laxmi Campus, Tribhuvan University, Kathmandu, Nepal

¢ Padma Kanya Multiple Campus, Tribhuvan University, Kathmandu, Nepal

d Nepal Health Research Council, Kathmandu, Nepal

¢ Global Institute for Interdisciplinary Studies, Lalitpur, Nepal

f Central Department of Mathematics, Tribhuvan University, Kathmandu, Nepal

& Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA
h Computational Science Research Center, San Diego State University, San Diego, CA, USA

! Viral Information Institute, San Diego State University, San Diego, CA, USA

ARTICLE INFO ABSTRACT

Keywords: Objective: To study the spreading nature of Delta variant (B.1.617.2) dominated COVID-19 in Nepal to help the
Delta variant policymakers assess and manage health care facilities and vaccination programs.

COVID-19 Methods: Deterministic mathematical models in the form of systems of ordinary differential equations were
Nepa} L developed to describe the COVID-19 transmission in the high- and the low-risk regions of Nepal. The models
Hospitalization . . . o . . . . .
Vaccination were validated using the multiple data sets containing daily new cases in the whole country, the high-risk region,

the low-risk region, and cases needing medical care, ICU, and ventilator.

Results: We found the reproduction number of R, = 4.2 at the beginning of the second wave, larger than the
first wave (~1.8 estimated previously), indicating that the transmissibility of Delta variant is higher than the
wild-type circulated during the first wave. Model predicts that ~5% of the COVID-19 cases were reported in
Nepal, estimating the seroprevalence of ~63.9% as of July 2021, consistent with the survey conducted by the
Government of Nepal. The seroprevalence was expected to reach 94.46% by April 2022, among which ~46%
would have both infection and vaccination. The expected cases from September 2021 to April 2022 is 111,300,
among which 11,890 people might need medical care, 3590 need ICU, and 953 need ventilators. The COVID-19
cases and medical care needs could be significantly reduced with proper implementation of vaccination and
social distancing.

Conclusions: The data-driven mathematical models are useful to assess control programs in resource-limited
countries. The appropriate combination of vaccination and social distancing are necessary to keep the
pandemic under-control and manage the medical care facilities in Nepal.

1. Introduction

The COVID-19 pandemic caused by the novel coronavirus (SARS-
CoV-2) continues with multiple waves worldwide. The pandemic has
already generated more than 587 million cases and 6.43 million deaths
worldwide as of August 6, 2022 (Worldometer, 2022). Among the
several waves of COVID-19 caused by the different variants of the virus,
the Delta variant (B.1.617.2) was the dominating strain during the
second wave (June 2021 to December 2021 (GISAID, 2022)) until it was
suppressed by new Omicron variant. The World Health Organization

(WHO) classified the Delta variant as a global concern on May 10, 2021,
when it had already spread to more than 30 countries (Nebehay and
Farge, 2021). Notably, the Delta variant circulating during the second
wave was more infectious (Bolze et al., 2021b; Callaway, 2021; Camp-
bell and Archer, 2021; Jassat et al., 2021; WHO, 2021b) than the wild
type, and caused the highest number of cases and deaths compared to
other waves in Nepal (MoHP, 2021).

The crisis of Delta variant COVID-19 surge was catastrophic in Nepal,
significantly ruining the fragile health care system after the second week
of March 2021 (Weissenbach, 2021). With the country’s population of
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only 30 million, infections during the second wave soared to over 9000
new cases per day recorded in the first week of May 2020 (MoHP, 2021;
Poudel, 2021). As of September 1, 2021, the total COVID-19 related
death in Nepal is 10,770, among which more than 7770 were during the
second wave (MoHP, 2021). In May 2021, the whole-genome
sequencing tests of 35 swab samples confirmed 34 of them as Delta
variants (97%) (Poudel, 2021). Note that Alpha variant (B1.1.7) and
K417N (AY.1.), a sub-lineage of B.1.617.2, have also been identified in
Nepal (MoHP, 2020Db).

In response to the second wave of COVID-19, the Government of
Nepal implemented the lockdown on April 29, 2021, beginning from
Kathmandu, the capital city, and later extending to all parts of the
country (ALJAZEERA, 2021). Despite the lockdown for about four
months and implemented vaccination, the transmission of the disease
was still significantly high (2052 new cases and 20 deaths on September
1, 2021 (MoHP, 2021)). The potential devastation of this pandemic is
highly unpredictable, primarily due to significant asymptomatic and
undiagnosed cases (Baggett et al., 2020; Li et al., 2020; MoHP, 2020a;
Reis et al., 2020). Moreover, the transmission dynamics of the second
wave of COVID-19 was quite different from the first wave because of the
availability of COVID-19 vaccination, improved treatment strategies,
and a higher infectivity of the Delta variant (Hafeez et al., 2021; Ito
etal., 2021). During the second wave, a higher reproduction number has
been reported (EPH, 2021; WHO, 2021b), and also infected individuals
experienced more severe infection resulting in a higher rate of hospi-
talization (Bager et al., 2021; Funk et al., 2021; Gupta et al., 2021;
Sheikh et al., 2021). Different vaccines are found to have varying effects
in the community across different regions of the world depending on the
variants (Abu-Raddad et al., 2021; Bernal et al., 2021). Therefore, it is
critical to gain insight into the unique transmission pattern and potential
burden of COVID-19 in Nepal to design policies for the proper man-
agement of health care facilities and vaccination.

In this study, we implemented a data-driven modeling approach to
study the COVID-19 transmission dynamics focused on two separate
regions (high-risk and low-risk). Considering two different regions is
essential in the context of Nepal because of the Nepal-India open border
and largely populated cities in some regions, making them higher than
others. Especially all the districts of the Terai region connected to India
and populated cities such as Kathmandu, Surkhet, Pokhara, Lalitpur,
Bhaktapur, and Chitwan are taken as a high-risk region. We validated
our model by fitting it to the multiple real-time data sets containing new
recorded cases from the high- and low-risk regions as well as the hos-
pitalized, Intensive Care Unit (ICU), and Ventilator cases, and estimating
key parameters of the model in a realistic range. We estimated the
effective reproduction number and predicted the hospital beds, ICU, and
Ventilators that would be needed in Nepal until April 2022. Moreover,
we extended our model to explore how various vaccination programs
would reduce the epidemic burden in Nepal.

2. Methods
2.1. Data

The data used in this study is obtained from the Ministry of Health
and Population, Government of Nepal (MoHP, 2021). We used the data
from 14 March to 15 September 2021 to fit the model. The six different
data sets, the daily new cases of the whole country, the high-risk and
low-risk regions, and number of patients in medical care, ICU, and
ventilators were used in our model fitting and simulation.

2.2. Transmission dynamics model

In our transmission dynamics model based on the SEIR framework,
we incorporated the medical care, ICU, and Ventilator compartments for
both high- and low-risk regions to study the second wave of COVID-19 in
Nepal. Schematic diagram and short description of the model are
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provided in Fig. 1, and the detailed description along with model
equations is provided in the GitHub public repository (Adhikari, 2021).

2.3. Parameter estimation and model fitting to data

Since the new cases began to increase from March 14, 2021, we took
March 14, 2021, as the initial time (t = 0) to initiate the second wave.
The total population of Nepal in the census year 2011 was 26,494,504,
and it is projected to be 29,996,478 at the end of 2020 (CBS, 2011).
About 3.5 million Nepalese live in India as migrant workers (Kuwar,
2015; Prasain, 2021), so we did not include this population in our study.
Using 14.4% [95% CI: 11.8-17.0] seroprevalence found in the October
2020 (MoHP, 2020a), our previous model (Adhikari et al., 2021)
allowed us to estimate the seroprevalence on March 14, 2021, to be
24%. We deducted both seroprevalence and migrant population from
the total population and took the initial susceptible population of 19.29
million for this study. Out of these susceptible populations, high and
low-risk regions constitute 65% and 35%, respectively (CBS, 2011). The
baseline values of all state variables are provided in the GitHub public
repository (Adhikari, 2021).

The lockdown in Kathmandu valley was started on March 29, 2021,
and gradually extended to almost all parts of the country (ALJAZEERA,
2021). To model this scenario, we defined the transmission rate f,(t)
and f5(t) as follows:

_J Bu if <47,
ﬂz(’)—{ﬁH (1= cp)exp(—ru(t — 47)) + ¢ ), if t>47,}

i ={f B s . }
: B (I —cp)exp(—r (t —4T7)) +¢p), if t>47,

where 8 and §; represent the transmission rates before lockdown on the
high-risk region and the low-risk region, respectively. Following the
lockdown (at day 47), the transmission rates of high-risk and low-risk
regions decay at the rates ry  and ry, respectively. We further esti-
mate the different values of ry  and r;, for different time periods ac-
cording to the different levels of lockdown. We took c;,= 0.3 assuming
up to 70% reduction on contacts during the prolonged lockdown period
(Coburn et al., 2009). Note that the transmission of diseases by the
recorded infectious remains the same regardless of the lockdown
situation.

Since the inter-region mobility is quite different during the lockdown
period from the pre-lockdown period, we considered two different
mobility rates, y(t) = y;, and y,, for the period of pre-lockdown and
lockdown, respectively. The remaining parameters were estimated from
data fitting by using the least square method. The details of data fitting
are explained in the GitHub public repository (Adhikari, 2021).

2.4. Calculation of the reproduction number

The reproduction number (R,) is an average number of secondary
infections generated by a single infectious individual (You et al., 2020),
which captures the increasing (R, > 1) and decreasing (R;<1) trend of
the infection. We calculated the reproduction number by using our
dynamical system model and also using the Maximum Likelihood
Method (MLM) from the daily reported incidence using the EpiStem
package of R-program (Thompson et al., 2019) (see the GitHub public
repository (Adhikari, 2021) for the reproduction number formulation).

2.5. Modeling vaccination program

We assumed the vaccination for individuals in all compartments,
except the recorded infectious, medical care, ICU, and ventilator com-
partments, because the individuals were not vaccinated while they are
infected or in medical care. To incorporate the vaccination program into
the model, we further divide each vaccination-eligible compartment
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Fig. 1. Compartmental diagram of the Model. The red box denotes the high-risk region and blue the low-risk region. Here we divided the population into sixteen
distinct compartments: Sy, S;, (susceptible), Ey, Ei (exposed), Iry, Ig; (recorded infectious), Inm, Ini, (non-recorded infectious), My, M; (Medical care), Icy, Icr
(ICU), Vi, Vi, (Ventilator) and Ry, Ry, (recovered), where the suffixes H and L are used to indicate the high- and low-risk regions, respectively. Ay and A;, represent the
recruitment rates due to birth and  A(t) is the rate of entry of the immigrants from abroad to the high-risk region. Among the immigrants, a portion ¢ is tested by
the antigen, and the rest (1 — ¢) entered the community without the antigen test. The p portion of immigrants with a positive test enter Izy class and the remaining
with a negative test enters Sy class. The immigrants without antigen test are entered to Sy and Iyy with the same portion 1 —p and p, respectively. There is no
recruitment from immigration in the low-risk region as it does not have a border with India. y  is the mobility rate between two regions. The transmission rate from
the recorded infectious classes are ; for both regions, and that from non-recorded infectious classes in high- and low-risk regions are 8, and f;, respectively. The
incubation period is represented by L. 4 is the rate of being recorded, among which a portion » enter My and My, and a portion (1-w) enter Igy, and Ig;, respectively.
From My and M, classes, the severe patients enter high medical care at the rate v among them (1-y) portion enter Iy, Icr, and y portion enter Vi, and V;, at the rate
v. The recovery rate of Iy, Inw, Irr, and Iy classes is 7 and that of (My, My), (e, Icr), and  (Vg, Vi) are am, ac, and a,,  respectively. The natural death rate of
all the classes is p and the disease-induced death rate for recorded and non-recorded infectious individuals are k and k’, respectively, and that of individuals in

medical care, ICU, and ventilator are
public repository (Adhikari, 2021).

into vaccinated and unvaccinated sub-compartments and transfer in-
dividuals from unvaccinated to vaccinated compartment upon receiving
vaccinations. We assumed that the vaccinated individuals are less sus-
ceptible to infection, less vulnerable for medical care, and immune
during the study period. The extended model diagram with the vacci-
nation program is presented in the GitHub public repository (Adhikari,
2021).

3. Results

3.1. Pattern of the second wave of COVID-19 in Nepal and model
validation

We used the extended model to fit the data and future predictions.
The model was fitted to the multiple data sets consisting altogether 1116
data points simultaneously (186 data points of each of the daily recorded
new cases in the whole country, the high-risk region, and the low-risk
region, and cases in medical care, ICU, and ventilator) (Fig. 2). The
large number of 6 different kinds of data points allowed us to estimate
the unique parameters. In the beginning, the vaccination level in Nepal
was negligible, but from middle of July 2021, the vaccination rate was
significantly increased. So, we also incorporated the realistic

ki, ko and ks, respectively. A detailed description of the model and system of differential equations are provided in the GitHub

vaccination program in our basic model fitting. The model is in excellent
agreement with each data set, asserting the validation of our model.

The second wave increased rapidly until the 1st week of May 2021,
hitting the highest new cases of 9070 on May 6, 2021. The imple-
mentation of lockdown reduces the new cases in both the high- and low-
risk regions, but the effect observed in the low-risk region was one
month delayed compared to the high-risk region. After the relaxation in
lockdown in some places of the high- and low-risk regions, the COVID-
19 cases resurged from mid-July of 2021, forcing these places to impose
the second lockdown (For example, Jhapa district imposed the second
lockdown from the last week of July 2021 and then relaxed from the
second week of August 2021 (The Himalayan, 2021)). As revealed in
Fig. 2, during the first peak of the second wave, the hospital beds, ICUs,
and ventilators needed were below the capacity allocated by the gov-
ernment. The estimated parameters are given in Table 1.

3.2. Forecasting of the second wave of COVID-19 in Nepal

The long-term prediction of the disease dynamics using the dynam-
ical system model is widely accepted. There are many mathematical
models (Chowdhury et al., 2020; Goscé et al., 2020; Hachtel et al., 2022;
Putra et al., 2020; Shankar et al., 2021; Tuite et al., 2020), which have
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Fig. 2. Model Fitting to Multiple Data Sets. Daily reported cases of the whole country Nepal (a), the high-risk region (b), and the low-risk region (c), and cases in
medical care (d), ICU (e), and ventilator (f). Solid lines represent the model prediction, and the circles represent the data. We take different decay rates ry and r;, of
transmission to address the different level of lockdown in different parts as follows: r; = 0 (0 < t 47, Pre lockdown time), 0.082 (47 < t 95, Lockdown to all regions),
—0.05 (95 < t 193 186, Partial relockdown in some parts), and r, = 0 (0 < t < 47, Pre lockdown time), 0.033 (47 < t < 105, Lockdown starts and extend to other
parts), —0.038 (105 < t < 135, Relaxation of lockdown), 0.038 (135 < t < 185 Partial relockdown in some places).

been used to predict the long-term behavior of pandemic in different
places of the world. Here, we used our extended model to predict the
long-term trend of the epidemic from 16 September 2021 to the end of
April 2022 with the scenario of gradual relaxation of lockdown to reach
the pre-lockdown phase. We would like to mention our long-term pre-
diction includes short-term predictions as in some previous studies
(Dahal et al., 2021; THME, 2021). We also used our model to evaluate the
various vaccination programs that the Nepal Government could imple-
ment. The trend of the epidemic with the level of vaccination imple-
mented by the government (Fig. 3) shows a steady decrease to an almost
extinct level with no cases of hospitalization at the end of April 2022.
However, we note that our prediction was for the scenario in which no
novel strain of SARS-CoV-2 would dominate the transmission. As per
model estimations, 111,300 new cases would be reported, with 11,890
people needing medical care, 3590 needing ICU, and 950 needing
ventilators, from September 16, 2021, to April 30, 2022.

3.3. Estimation of reproduction number in Nepal

We first estimated the reproduction number (R,) from the data using
the Maximum Likelihood Method (MLM). As mentioned earlier, the
April 14 was the starting date of the second wave of COVID-19 in Nepal.
Taking the 7 day-window for the calculation of R; (see method section),
we estimated the reproduction number from 21 April 2021-15
September 2021 (the last data considered). We observed that before the
lockdown, R, reached up to 2 in both the high- and low-risk regions as
well as in the whole country (around the 3rd week of April), indicating
that the significant community transmission of the disease had already

occurred before the lockdown.

While R; estimated from the data provides valuable information
regarding the disease trend, it lacks the asymptomatic cases, which may
be the dominating spreader of the disease. To overcome this limitation,
we also estimated the time-dependent reproduction number (R;) by
using our model. As expected, the model predicted a higher value of the
reproduction number of 4.2 due to the asymptomatic cases. R; decreases
rapidly after the implementation of the lockdown (Fig. 4). Around the
1st week of June, it fell below 1 and again raised following the partial
relaxation of lockdown. This trend of R, well-describes the trends of new
cases in both high-and low-risk regions.

Under the complete national-level lockdown, it took one month
longer in the low-risk region to bring R, below 1 compared to the high-
risk region. Our model also allowed us to predict a long-term R; up until
30 April 2022. According to our model prediction, R, remained less than
the threshold value 1, indicating the decreasing trends of new cases in
both regions (Fig. 4) throughout the pandemic until April 2022.

3.4. Estimates of seroprevalence

The antibody of COVID-19 forms in the body due to the viral infec-
tion and/or vaccination. Estimating the seroprevalence is practically
essential for COVID-19, mainly because of a large portion of unreported
infected individuals. We assumed that recovered and/or vaccinated
people remain immune during the simulation period. We estimated
63.9% seroprevalence (Fig. 5) as of the end of July. We also used our
model to predict the expected seroprevalence during the pandemic until
April 2022 (Fig. 5). As predicted by our model, the seroprevalence
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Table 1

Parameters of the model.
Symbol Description Value References
N transmission rate of 0.005 Data fitting

recorded infectious people
of high and low risk region

Pu transmission rate of non- 0.525
recorded infectious people
of high region

AL transmission rate of non- 0.235
recorded infectious people
of low-risk region

Data fitting

Data fitting

(4 detection rate 0.05 Data fitting
¢ border screening rate 0.1 Data fitting
P positivity rate of migrant 0.1 (MoHP,
workers at border 2021)
k disease induced death rateof ~ 0.0002 Data fitting
reported non- hospitalized
infected
K disease induced death rate of ~ 0.00002 Data fitting

non-reported non-

hospitalized infected

disease induced death rate in

medical care, ICU, and

ventilator

715 72 mobility rate between high
and low risk regions before
and after lockdown

® proportion of infected who
need medical care

T rate of admission on ICU 0.1
from medical care

v rate of admission on high 0.05
medical care (ventilator and
ICU)

v proportion of infected who 0.21

need ventilator

recovery rate from medical

care, ICU, and ventilator

ki,ka, ks 0.001,0.041,0.071  Data fitting

0.015, 0.0001 Data fitting

0.1125 Data fitting
Data fitting

Data fitting

Data fitting

U, ey Qy 0.092,0.1,0.0625 Data fitting

n recovery rate of infectious 0.0588 (WHO,

without medical care 2021a)

8 incubation period 0.1923 (Linton
et al., 2020)

reached ~89% in December 2021 and ~95% in April 2022.

Moreover, our model allows us to identify whether the seropreva-
lence achieved is due to vaccination, actual infection, or both. Among
the ~89% seroprevalence achieved by December 31, 2021, ~7% are
from vaccination, ~52% are from infection, and ~30% are from both
vaccination and infection. Similarly, ~7%, ~42%, and ~46% are ex-
pected contributions from vaccination, infection, and both, respectively,
towards the total seroprevalence of ~95% by April 30, 2022.

3.5. Role of vaccination in the mitigation of COVID-19 in Nepal

Here, we considered different vaccination scenarios under the com-
plete relaxation of non-pharmaceutical interventions and used the
model to predict the outcome of the pandemic under these vaccination
programs. Based on the literature, we modeled the effectiveness of
vaccination using a 50% reduction in infection and a 90% reduction in
hospitalization for vaccinated people. While we used this level of
effectiveness for demonstration purposes, the simulations with other
values produce a similar qualitative behavior with a slight quantitative
difference.

The Government of Nepal had set the target to vaccinate 71.6% of
the people from the eligible age groups (MoHP, 2021). Therefore, we
focus on vaccination programs targeting 71.6% of the eligible popula-
tion by a specific timeframe. The vaccination rate (¢), in our model with

the target to cover 71.6% eligible population by vaccination timeframe,
—ln(l—%o

T, can be calculated using ¢ :% (Pantha et al., 2021a). For
varying vaccination timeframes from October 31, 2021, to April 30,
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2022, and the varying level of lockdown from 0% to 80%, we simulated
our model to predict maximum daily cases, the total cases, the total
deaths, the total medical cares, the total ICUs, and the total ventilators,
during the pandemic until April 2022 (Fig. 6).

With the level of vaccination implemented and complete relaxation
of the lockdown, the peak value of new cases is 2232 per day. However,
the peak could be reduced to ~ 1726, 1966, 2070 and 2134 per day,
respectively, when the vaccination timeframe is set to the end of October
2021, December 2021, February 2022, and April 2022. Our model
simulations show that the total number of cases by the end of April 2022
could be reduced from 154,000 to 62,000, 94,000, 119,000, and
132,000 by setting the vaccination timeframe at the end of October
2021, December 2021, February 2022, and April 2022, respectively.
With these vaccination programs, i.e., the time frame of the end of
October 2021, December 2021, February 2022, and April 2022, the
number of recorded deaths could be reduced from 1509 to 686, 1017,
1196, and 1316, respectively. Similarly, these vaccination timeframes
could reduce the total medical patients from 16,610 to 5885, 9965,
12,150, and 14,080, respectively. In this case, the total ICU patients
could be reduced from 4941 to 1964, 3147, 3790, and 4220, respec-
tively, and ventilator patients could be reduced from 1305 to 522, 836,
1007, and 1122, respectively (Fig. 6).

4. Discussion

The timely characterization of the COVID-19 wave is essential for
policy intervention to overcome the devastating impacts of the
pandemic. Here, we developed a data-driven mathematical model to
describe Nepal’s unique delta variant-dominated second wave of
COVID-19. Using multiple data sets simultaneously and considering two
distinct high- and low-risk regions are unique features with more prac-
tical applications in our model. Our results provide a great insight into
some relevant scenarios of COVID-19 in Nepal and predict the impact of
potential vaccination programs on mitigating the burden of the
pandemic, helping policymakers design proper health care facilities and
vaccination strategies.

We identified the distinct pattern of the Delta wave in high- and low-
risk regions regarding its magnitude and time period. As expected, most
of the cases (>80%) were recorded in high-risk region and it peaked
about one month earlier than low-risk region. Such spatial disparity on
the pandemic trend was also found in the previous study (Pantha et al.,
2021b), which performed the province-wise analysis of the first wave of
COVID-19 in Nepal. The increasing trend of the epidemics remained for
the period of April-May 2021 in high-risk region and for the period of
May-June 2021 in low-risk region.

The delta variant was the dominant variant during the second wave
of COVID-19 in Nepal. As per our model estimates, the reproduction
number of R; = 4.2 at the beginning of the Delta variant dominated
second wave is higher than the first wave (~1.8) (Adhikari et al., 2021),
indicating a significantly higher virus transmission during the second
wave than the first wave. The maximum likelihood method gives a
relatively low effective reproduction number (~2) at the peak time of
epidemic that is similar to the other study (Dahal et al., 2021). The
higher transmissibility of the Delta variant observed in our study is
supported by the previous studies in different parts of the world
(Campbell and Archer, 2021; Funk et al., 2021; Saito et al., 2021; Bolze
et al., 2022; Li et al., 2021) and higher reproduction numbers in many
other reports and studies (Campbell and Archer, 2021; Ito et al., 2021;
WHO, 2021b). While the national implementation of lockdown caused
the reproduction number to decrease to below the threshold value 1, the
effect seen in the low-risk region was about a month delayed compared
to the high-risk region. Such inter-regional disparity highlights that
regional level policy, and thus regional level modeling, is needed for
more effective control of the local-level outbreak. The inter-region
discrepancy overserved in our estimated R; is consistent with the
inter-provincial disparity identified in Pantha et al. (Pantha et al.,
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Fig. 3. Long term Prediction of the Model. Prediction of daily reported cases of the whole country Nepal (a), the high-risk region (b), and the low-risk region (c),
and cases in medical care (d), ICU (e), and ventilator (f), predicted by the model until April 30, 2022.

2021b) during the first wave of COVID-19 in Nepal.

The potential transmission from the undiagnosed cases is one of the
most contributing factors to the uncertainty of the COVID-19 pandemic,
causing extreme difficulty for its control. Estimating this critical trans-
mission rate from undiagnosed cases requires a large-scale seropreva-
lence survey, which is often limited by resources in developing countries
like Nepal. We implemented our data-driven dynamical system-based
model to estimate this transmission rate. We found a significantly high
transmission rate from undiagnosed cases (~95%), consistent with the
seroprevalence survey of the Government of Nepal (MoHP). Our model
predicts ~63% seroprevalence in Nepal at the end of July 2021,
consistent with the result (~68.6%) from the Nepal Government’s sur-
vey (MoHP). With the level of vaccination implemented, the model
predicts that ~95% of people were immune to the circulating strains of
COVID-19 by the end of April 2022. Among these immune people, about
46% had experienced both vaccination and actual infection.

For developing countries like Nepal, timely assessment of expected
burden is critical to avoid an overwhelming situation in hospitals and
medical facilities. Our simulation results identified the duration of
hospitalization of the COVID-19 patients in Nepal (7 days in normal
medical care, 7.2 days in ICU, and 7.5 days in ventilators) shorter than
that noted in other studies (Ben, 2021; Li et al., 2020; Twohig et al.,
2022; Gupta et al., 2021). As in many other studies (Saito et al., 2021;
Twohig etal., 2022; Verity et al., 2020; Jassat et al., 2021), Nepal faced a
significant increase in the hospitalization burden due to the
delta-variant compared to the wild-type. Based on our model analysis,
we found the hospitalization of ~11.25% of recorded cases in Nepal,
similar to the rates identified in other countries (~9.2%—25%) (Bager
etal., 2021; Gupta et al., 2021). Among the hospitalized patients, ~35%
of them needed extensive medical care, such as ICU and ventilator.
According to the report on May 2020 (MoHP, 2020b), Nepal had 26,930

hospital beds, 1595 ICU beds, and 840 ventilators, including the gov-
ernment and private sectors. The Government of Nepal planned to
allocate one-third of these facilities for COVID-19 patients. Later, the
Government of Nepal extended its capacity to 10,116 hospital beds,
1648 ICUs, and 1088 ventilators for COVID-19 patients (MoHP, 2021).
Interestingly, these data show that the predicted total hospitalization
burden remains below the total capacity of Nepal even though the
country is expected to have limited medical resources and prevention
programs. However, we note that during the peak time (last of May
2021), many national and international media (Ben, 2021; Bhandari and
Hannah Peterse, 2021; Prasain, 2021; ReliefWeb, 2021) covered the
news about a shortage of hospital beds, ICU, ventilators, and oxygen
cylinders. This discrepancy may be attributed to mismanagement of the
hospital infrastructure and/or underreporting of patients. We also note
that the low hospital rate may partially be attributable to the hospital-
ization of only complicated cases or scarcity of the hospital beds at the
time of peak (Ben, 2021; Prasain, 2021; ReliefWeb, 2021).

The significant impact of the vaccination, including against the new
variants, has been reported (Abu-Raddad et al., 2021; Bernal et al.,
2021). Both vaccination programs and the relaxation of lockdown were
ongoing in Nepal after the September 2021. We implemented our model
to predict the potential epidemic trends and medical care needed (hos-
pital bed, ICU, ventilator) for various coverage rates of vaccination
programs and levels of lockdown during the pandemic until April 2022
(Fig. 6). Our model predictions of 111,300 cases, 11,890 hospitaliza-
tions, 3590 ICUs, and 950 ventilators by the end of April 2022 is also
compatible with the prediction of IHME model (IHME, 2021). The re-
sults on vaccination and lockdown provide information on suitable
strategies for Nepal to manage medical care and the pandemic burden.

We acknowledge some limitations of our study. Daily new cases may
be affected by the number of tests and the positivity rate, which were not
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Fig. 5. Estimation of seroprevalence. The predicted seroprevalence achieved
due to actual infection only, vaccination only, and both. The first bar represents
the survey data by the Government of Nepal.

considered into our model. The inherent complexities of an unfolding
epidemic, human behavior, implementation timing, and governmental
policy change may have some impact on our predictions. We ignored the
spatial heterogeneity in the dynamics within each region, the high- and

low-risk regions. Furthermore, the inhomogeneity of the age structures
of the study population was ignored. These questions can be addressed
by heterogeneous and/or age-structured models, but more granular data
is required. We considered high- and low-risk districts based on in-
terconnections with India, a highly affected country by Delta variant,
population density, and mobility pattern. The lack of data and infor-
mation might have caused some uncertainty in categorizing districts
into high- or low-risk regions. For example, our model classified the
Makawanpur district, which is connected to high-risk districts (Chitwan,
Lalitpur, and three Tarai districts), as low-risk due to its low density, low
mobility pattern (a hilly district), and low infected cases. Moreover,
because of the lockdown implemented during the second wave, there
was less mobility across the districts, making Makawanpur a low-risk
district despite its high-risk neighboring districts. Our long-term pre-
dictions were under the assumption that a novel strain would not appear
for the study period. Therefore, the results need to be interpreted when
the viral evolution and emergence of more severe strains are absent.

In summary, our data-driven model reveals some essential and
insightful facts regarding the Delta-dominated second wave of COVID-
19 in Nepal. In-depth exploration of the potential discrepancy be-
tween the actual epidemic burden and the recorded data suggests the
policymakers revisit the gaps between the plan and practice of man-
agement of the pandemic. Estimated seroprevalence, new COVID-19
cases, and the hospitalization burdens under vaccination can provide
helpful information for designing plans to control the pandemic in
Nepal.
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