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Abstract—A significant part of human activity today consists of
searching for pieces of information online, an endeavor that may
be time-consuming if the individual searching for the information
is unfamiliar with the subject matter. However, online social
networks exist where experts can aid individuals by answering
questions posed by these users. This paper describes a theoretical
framework to model the dynamic process by which requests
for information arrive in a social network of experts, who then
answer the requests after a random time interval. Results on the
requests-handling capacity of the network are provided.

Index Terms—information search, scheduling, social network,
community question answering.

I. INTRODUCTION

Social networks are an integral part of modern life, con-
necting friends and family, and also serving as fast sources
of breaking news. Researchers are exploring theoretical un-
derpinnings of online social networking platforms in terms
of activity engagement, topic interest and user experience.
Applications of crowdsourcing in online platforms has recently
become more prominent and attracted researchers to study
mechanisms to incentivize workers to complete tasks [1].
Information exchange and diffusion on online social networks
have far-reaching societal implications and researchers have
begun studying processes through which information diffu-
sion takes place, its implication for opinion formation and
measurement [2], methods for maximizing diffusion [3], and
mathematical models are being developed to understand its
effects on collective human behavior and psychology [4].

In this paper, a different type of application of social net-
works is explored. Individuals today must deal with a number
of small problems, which require each individual to search the
Internet for ideas relevant to solving each problem - an activity
that may receive mixed results depending on the expertise of
that individual. But given pervasive online connectivity, there
are potentially a large number of ‘experts’ available online that
an individual can consult, who can contribute their knowledge
to solving problems related to their expertise. Community
Question Answering (CQA) forums [5] such as Quora and
StackExchange [6] , and on a smaller scale, Piazza used
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for teaching courses, connect users to experts, and are real-life
examples of such a system. Questions posted on these social
networks are answered by experts according to their fields of
expertise and interests.

Previous work on question routing in social networks fo-
cuses on the algorithmic aspects of identifying experts who
can answer questions in the shortest amount of time based
on expertise and possible response time [7]. However, there is
currently no work that models question-answering in networks
abstractly with a view to analyze their capacity to handle
requests. By assigning specific questions, which are simply
requests for information, to individual experts or groups of
collaborating experts, questions can be answered more rapidly
and effectively, potentially increasing their capacity. To this
end, this paper envisions a large number of requests for
information being made to a given social network, but also
a large number of potential experts available to answer those
requests. Since the requests must be responded to in a timely
manner, we propose a dynamic framework, where requests
arrive stochastically, are handled by expert(s) who search for
relevant information utilizing their own knowledge, and depart
when the expert provides a response. In this initial work,
results on scheduling requests, and on the resulting capacity
for handling requests are presented for a fully connected social
network such as Quora, with arbitrary networks considered
in future work.

II. THEORETICAL FRAMEWORK

The problem setting in this paper assumes that requests for
information come into a social network stochastically. Each
request (question), is handled by an expert, who searches for
information to answer that request, augmented with her own
knowledge, and succeeds in providing information answering
that request after a random amount of time, based on the com-
plexity of the request. This requires describing a quantitative
model for information search (or complexity of the request)
and also describing a model for scheduling these requests, so
that experts can answer them.

1) Model of Information Search
Time is assumed to be discretized finely, so that it is
measured as t = 1, 2, 3, . . . time slots. Let M be a large
set of information facts. A topic x ⊂ M is a large978-1-6654-3540-6/22 © 2022 IEEE



subset of facts, e.g., ‘Windows 10 debugging’. The set
of topics X may be large but is assumed to be finite
to avoid technical clutter. An expert is a research time
function T : X → [1,∞), where T (x) is the mean
time that the expert takes to answer a request concerning
topic x; this average time is assumed to be known to
the expert, although the expert does not apriori know the
random time it will need to answer a specific request.
This time is required because the expert will typically
need to search for information relevant to the specific
request and/or think deeply about the request using her
knowledge before being able to answer it. We assume
the number of slots to answer a specific request is a
geometrically distributed random variable with values
1, 2, . . . (and mean value T (x) ≥ 1). A typical request
may be ‘Why does my Windows 10 laptop become hot
and shut down?’, which concerns the topic ‘Windows 10
debugging’. For conciseness, we sometimes call a request
concerning topic x as request x, if the context is clear.

2) Model of Dynamic Scheduling
It is assumed that there is a social network of n ex-
perts labeled 1, 2, . . . , n, represented as a directed graph
G = (V,E), where the vertices V represent experts and
the directed edges E represent coordination opportunity
between pairs of experts. By coordination, we mean that
a scheduler (described below) can assign a request in
expert i’s queue to expert j, as long as (i, j) ∈ E in
the graph. For example, if experts exclusively use a CQA
forum such as Quora, they can all coordinate with each
other, i.e. G is a complete graph (each pair of vertices
has edges in both directions.) On the other hand, if a
social network like Twitter or Facebook is used, the
graph may have a complex structure, precluding arbitrary
coordination. This paper only considers a complete graph
linking the experts, so as to elucidate the key ideas of the
framework, with arbitrary graph connectivity considered
in a future paper. See Figure 1.
We adopt a dynamic stochastic model of information
searching. At the end of each time slot t, requests in
different topics x ∈ X may arrive in the system, and so,
we need a multi-class queuing model. Here, by system,
we mean the complete graph social network that all the
experts are monitoring for requests. Denote as ax(t) ≥ 0
the number of requests in topic x arriving at the end
of time slot t, with the average number of requests
arriving being E[ax(t)] = λp(x). Here, p(x) > 0 is
a probability mass function (p.m.f.) over topics x (so,∑

x∈X p(x) = 1), which causes requests for certain topics
to appear more frequently. λ ≥ 0 is the request load in
the system, i.e., average number of requests arriving in
each slot. We assume that the variance of ax(t) is upper
bounded by caλ

2 for all x for some constant ca. The
arrival in topic x is independent of arrival of requests in
other topics, and arrivals in other time slots.
A scheduler then assigns different requests waiting in the
queues to different experts, subject to the social network

graph, allowing the experts to coordinate in handling the
requests. For the case of complete graph considered in
this paper, the scheduler can assign any request to any
expert. Expert i works on its assigned request x (equiva-
lently, called ‘researches x’) by searching for information
or thinking about the request utilizing her knowledge, and
answers it successfully in that time slot with probability
qi(x)

.
= 1

Ti(x)
≤ 1. So, qi(x) > 0, ∀x, i is the answering

rate at which expert i answers requests in topic x, and
indicates the expertise of that expert for topic x. Experts
with larger qi(x) presumably have deeper knowledge that
allows them to quickly research problems, and so, a
crude measure of expertise of an expert is the arithmetic
mean answering rate Ri

.
= 1

|X |
∑

x qi(x). We assume
that the scheduler knows the answering rates qi(x) for
different topics, but it does not apriori know the random
time needed by an expert to answer a specific request.
dx,i(t) = 0, 1 indicates failure or success of expert i in
finding the answer for a request in topic x during time slot
t, respectively. If the request is not answered, we assume
that the expert continues work on the request until it is
answered in some subsequent slot. Thus, the number of
time slots needed by the expert to work on a request
before successfully answering it is indeed a geometric
random variable with average time Ti(x). Since arrivals
occur at the end of a time slot, the topic queue lengths
update as Qx(t+ 1) = Qx(t) + ax(t)−

∑
i dx,i(t),∀x.

We will consider offline schedulers, by which we mean
schedulers that know the topic p.m.f. p(x) of the arrival
process, perhaps by estimating it using past arrival history.
To show stability, we will only consider schedulers that use
the current state, which is the set of current queue lengths
Qx(t),∀x before new requests arrive in that slot, to decide
the schedule for time slot t. Due to this, and since the arrivals
are independent in time and the research time is a geometric
distributed (i.e., memoryless) random variable, the request
answering system is a Markov chain. We say that the system
is stable if the Markov chain of queues is positive recurrent
[9]. To define instability, we allow any arbitrary scheduler that
uses past history, not necessarily only current queue lengths.
We call the system unstable if, for any choice of such a
scheduler, the sum of the queue lengths diverges with non-
zero probability, i.e.,

P ( lim
t→∞

∑
x

Qx(t) = ∞) > 0. (1)

Note that the probability in (1) is zero for a positive recurrent
Markov chain. A request load λ for which the system is
stable under some scheduling policy, is called achievable. The
supremum of achievable loads is called capacity.

All proofs are in the appendix. We will generally omit
writing the set of an index, when that set is obvious, e.g.,
writing

∑
x instead of

∑
x∈X . Similarly, we will write maxαi

instead of maxαi,i=1,2,...,n.



Fig. 1: Coordinating experts in complete graph.

III. RESULTS

Based on the theoretical framework of information search
presented in Section II, we present preliminary results on the
performance of the system.

A. Homogeneous Experts

Consider a simple setting of n homogeneous experts. i.e.,
for each expert i, assume qi(x) = q(x), ∀x ∈ X .

Lemma 1: The capacity with homogeneous experts in a

complete graph is λ∗ = n
(∑

x∈X
p(x)
q(x)

)−1

. Further, any
λ < λ∗ can be achieved using a scheduler that assigns any
idle expert an arbitrary request from the queues. In particular,
for n = 1, we get the capacity of a single expert.

From the lemma, capacity is high if the expertise of the
homogeneous experts matches closely with the population of
requests coming in, so that none of the ratios p(x)

q(x) is too large.
Specializing to n = 1, capacity λ∗ in the lemma is simply
the harmonic mean of the answering rates q(x) of that single
expert with respect to the arrival p.m.f. p(x) (the standard
harmonic mean essentially uses the uniform p.m.f.) In light of

this elementary result, we can call λ∗
i (p)

.
=
(∑

x∈X
p(x)
qi(x)

)−1

as the capacity of expert i with respect to p.m.f. p(x), which
is a refinement of the arithmetic mean Ri measure in Section
II, but now accounting for the arrival statistics.

Given the large number of topics (large X ), we may be
willing to reject requests that do not match the expertise
available to research them. Let ex(t) ≤ ax(t) be the number of
newly arriving requests on topic x that are rejected at time t.
We wish to characterize homogeneous-experts capacity under
ε−loss constraint, i.e., the maximum load that these experts
can handle while keeping queues stable but with fractional
loss bounded as below.

lim sup
T→∞

∑T
t=1

∑
x ex(t)∑T

t=1

∑
x ax(t)

≤ ε almost surely. (2)

Let |A| denote size of set A. For the next result, re-index the
topics so that q(x1) ≥ q(x2) ≥ · · · ≥ q(x|X |). Then, calculate
N,µ(xN ), with 1 ≤ N ≤ |X |, 0 < µ(xN ) ≤ 1, as the unique
solution to the following equation.

µ(xN )p(xN ) +

N−1∑
j=1

p(xj) = 1− ε. (3)

Lemma 2: With the topics re-indexed as above, if we
are willing to accept fractional loss ε < 1, the capac-
ity of homogeneous experts in a complete graph is λ∗ =

n
(
µ(xN )p(xN )

q(xN ) +
∑N−1

j=1
p(xj)
q(xj)

)−1

, with the N,µ(xN ) cal-
culated as the unique solution to (3). Further, any λ < λ∗ can
be achieved by the scheduler shown below.

Offline Lossy scheduler: The offline scheduler in Lemma
2 first calculates N,µ(xN ) before considering requests. After
that, as requests come in, in each slot t, the scheduler assigns
any idle expert one request arbitrarily from among those wait-
ing in the topic queues. Subsequently, for the ax(t) requests
for each x that come in at the end of that slot, the scheduler
inserts them into topic x queue if x ∈ {xj , j ≤ N − 1},
inserts them into the topic xN queue with probability µ(xN )
if x = xN , and drops them all if x ∈ {xj , j ≥ N + 1}.

For ε = 0, the capacity specified in Lemma 2 is the same
as in Lemma 1, because the equality (3) can only be satisfied
by N = |X |, µ(xN ) = 1 since p(x) > 0 is a p.m.f. Lemma 2
is especially useful when there is a gross mismatch between
the requests and the homogeneous experts. For example, if
q(x) = 0 iff x ∈ X0 for some set X0, the lossless capacity
is λ∗ = 0. But if we allow loss, we can get capacity of

n
(∑

x/∈X0

p(x)
q(x)

)−1

> 0, while accepting a fractional loss of
ε =

∑
x∈X0

p(x).

B. Heterogeneous Coordinating Experts

A mis-match between the topic p.m.f. and the answering
rates of the homogeneous experts in Section III-A can sig-
nificantly lower capacity. Recruiting heterogeneous experts,
which have different topics of specialization (i.e., different
functions qi(x)), may allow them to compensate for each
others’ weaknesses, and so, the capacity in the heterogeneous
coordinated experts case is of interest. But then, the scheduler
will need to send an expert requests that lie in her topics of
expertise, i.e., for which she has small average research time
Ti(x) = 1

qi(x)
.) However, these average research times may

be erroneous, since they may have been obtained as estimates
based on past answering history. So, it is also of interest to
guarantee stability when scheduling with erroneous estimates
T̂i(x) of the true Ti(x), under appropriate assumptions on the
magnitude of these errors.

Lemma 3: The capacity with heterogeneous coordinating
experts in a complete graph is at least equal to the following
lower bound.

λ∗ =

(
max
αi

∑
x∈X

min
i

(
αi

p(x)

qi(x)

))−1

where (4)

n∑
i=1

αi = 1, αi ≥ 0, ∀i = 1, . . . , n. (5)

Further, any λ < λ∗ can be achieved using an offline scheduler,
such as the one shown below. Also, for some constant γ ≤ 1,
if the offline scheduler below uses erroneous research times
T̂i(x) ≥ γTi(x),∀x, i, then any λ < γλ∗ can be achieved,
where λ∗ in (4) was also calculated using these T̂i(x).



Offline Coordinating scheduler: The scheduler is assumed
to know p(x), qi(x). It maintains separate topic queues Qx,i(t)
for each expert i. Before considering requests, the scheduler
first calculates the solution to the convex dual problem [10]
of the maximization problem over αi stated in (4). (we will
refer to this maximization problem as problem (4).) The dual
problem is the Linear program below (see Lemma 5).

µ∗ = min
µ, sx,i

µ s.t. (6)∑
x∈X

p(x)

qi(x)
sx,i ≤ µ, ∀i (7)∑

i

sx,i = 1, ∀x, sx,i ≥ 0, ∀x, i. (8)

In each time slot, the scheduler assigns a request arbitrarily to
expert i from among the requests queued up at that expert’s
queues Qx,i. Expert i is kept idle if and only if her own queues
are all empty. Then in the same slot, using the above pre-
computed sx,i (which we note is a p.m.f. over i for each x),
for each arriving request x in that slot, the scheduler selects an
expert i randomly and independently according to the p.m.f.
sx,i, and then appends that request into the topic queue Qx,i

of the selected expert i.
As opposed to homogeneous expert scheduling, in this case,

any one expert mismatched to the request p.m.f. p(x) may
not be catastrophic. In fact, the following case shows that a
diversity of experts may be preferable. Suppose there are a
large number n of experts, with each expert i having expertise
Ri =

1
|X |
∑

x qi(x) =
1

|X | . Consider a toy case where |X | = n

topics labeled x1, x2, . . . , xn and p(x) = 1
n ,∀x. If the experts

are homogeneous, i.e., qi(x) = q(x),∀i, then the capacity

in Lemma 1 is λ∗ = n
(∑

x∈X
1

nq(x)

)−1

≤ n 1
n

∑
x q(x) =

n 1
|X | = 1, by using the fact that harmonic mean is no more

than arithmetic mean. Instead, suppose we have diverse experts
with qi(x) = 1 − ε if x = xi, else ε

n−1 , where ε is a small
positive constant, each of which also has expertise Ri =

1
|X | as

in the case of homogeneous experts. Then, the capacity lower
bound using Lemma 3 (noting that the optimal αi =

1
n , ∀ i

here) is λ∗ = n(1− ε), which is more than the homogeneous
experts case. The advantage of diversity holds in general, as
shown below.

Lemma 4: Capacity lower bound λ∗ of heterogeneous
experts in Lemma 3 is bounded as follows.

(a) Coordination benefit: λ∗ ≥
∑n

i=1 λ
∗
i , where λ∗

i are
the individual expert capacities (defined in Lemma 1
by setting n = 1) when they pick requests without
coordinating with each other.

(b) Diversity benefit: λ∗ ≥ λ∗
hom, where λ∗

hom is the capacity
of the homogeneous experts calculated in Lemma 1 for
(homogeneous) experts having answering rate q(x) that
is the average answering rate of the (diverse) experts, i.e.,
q(x) = 1

n

∑n
i=1 qi(x), ∀x ∈ X .

IV. SIMULATIONS

To demonstrate the utility of our theoretical analysis, we
performed simulations using Python. We arrange a set of
|X | = 125 topics on a regular 3-dimensional grid of length 2
on each side, where closer topics are interpreted to be similar,
and assumed a uniform p(x) p.m.f. We assume n = 125
coordinating experts, with the answering rate qi(x) of each
expert i following a truncated Multivariate Normal distribu-
tion, with mean values on a regular 3-dimensional grid of
length 2 on each side, and the standard deviation β controlling
the dispersion of her expertise among the topics, normalized
so that each expertise Ri = 1

|X | , where Ri was defined in
Section II. This model is similar to that assumed by methods
that match a low dimensional vector representation of the text
of a question to a similar representation of experts to assign
the question to that expert [11]. Note that in this model the
peak answering rate is higher when experts are specialized
(small β) at the expense of narrower expertise over the topics.
Figure 2 shows how the coordinating capacity bound λ∗ in
Lemma 3 changes when the expertise dispersion β changes
for n = 27, 64, 125 experts. Note that the capacity peaks at a
certain optimal β, for which the experts are neither too broad
nor too specialized. For larger number of experts, the optimal
β is smaller, since experts are available to cover topics even
when they are specialized. In the same figure, we also show
the capacity for n = 125 uncoordinated experts (discussed
in Lemma 4(a)), as well as n = 125 homogeneous experts
(each with answering rate specified in Lemma 4(b)). In both
cases, the capacity is lower than the n = 125 heterogeneous
coordinated experts case.

Next, we run queuing simulations for |X | = 125 topics
and n = 125 heterogeneous coordinated experts modeled as
in the previous paragraph, but now with requests scheduled
dynamically by the Offline Coordinating scheduler, to observe
the effect of load λ on the queue lengths over a period of 105

slots. The topic queue length
∑n

i=1 Qx,i(t) is averaged over
time and over 5 runs, and its maximum among all topics is
plotted in Figure 3 for various loads and expertise dispersion
values β. We observe that queue lengths are small as long as
the request load λ is relatively low and increases the closer we
get to the capacity bound λ∗ specified in Lemma 3 (shown by
vertical lines), with the queues becoming unstable at or beyond
that bound. In a real system, pushing the request load beyond
capacity will result in a large number of requests remaining
unanswered, potentially causing users to abandon the social
network.

V. CONCLUSIONS

This paper set up a theoretical framework to analyze the
dynamic process by which requests for information arrive in
a social network, so that a set of experts can answer those
requests. Capacity results were obtained for offline schedulers
that assume knowledge of request arrival p.m.f. p(x), for the
case of a complete graph social network such as a CQA
forum. These results quantified the importance of matching
expertise available to the request topics, and also of the need






