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A B S T R A C T

Rapid digitization of physical objects enables monitoring, analysis, and maintenance of in-service products, of
which an up-to-date CAD model is not available. It provides designers with the products’ actual response to
the real-world usage, which provides a reference base for design optimization. This paper presents neural
rendering as a novel method for rapid digital model building. It learns a radiance field from RGB images to
determine the characteristics of the physical object. Textured mesh can be generated from the learned radi-
ance field for efficient 3D modeling. The effectiveness of the method is demonstrated by an engine compo-
nent.

© 2023 CIRP. Published by Elsevier Ltd. All rights reserved.
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Fig. 1. Workflow of neural rendering-based object 3D modeling.
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1. Introduction

As a product enters its service life, usage-induced degradation can
cause deviation of the product from its initial CAD model, due to the
effects of mechanical, thermal, chemical, or other environmental condi-
tions over the period of its usage. The capability of digitizing a product at
any stage during its life cycle not only enables reliable monitoring, analy-
sis, maintenance, and remaining service life prognosis of the product for
which the original CAD model no longer applies [1,2], but also provides
insight to the designers regarding the product’s response to real-world
usage [3]. Exponential growth of manufacturing data due to widespread
sensor deployment and the emergence of digital twin over the past
decade [4] have further highlighted the importance of rapid digitization
in fulfilling the promise in creating a living digital replica of the physical
product, extending its application to the entire product life cycle includ-
ing process planning and assembly [5].

Within product digitization, reconstructing a 3D model using data
obtained from contactless sensors, such as cameras, has attracted broad
research interest. In [6], Wang et al. developed a 3D reconstruction
method based on the silhouettes of object as projected onto the camera’s
image plane. The 3Dmodel is represented by a set of “pillars” that under-
went a trimming process over images from all view-angles. In [7], photo-
grammetry was investigated by Galantucci et al. for surface
reconstruction. Specifically, RGB images taken from different view-angles
are first aligned by matching image features. Point cloud is then obtained
using a pair-wise depthmap computation algorithm.

Beyond RGB imaging, 3D reconstruction based on laser or infrared
pattern has also been reported. In [8], Contri et al. investigated laser-
based 3D reconstruction where a planar laser is projected onto the
object. The intersecting line between the laser and the surface is then
captured by an RGB camera. The distorted shape of the line provides
the basis for reconstruction. In [9], Kinnell et al. developed a stereo
camera-based approach for 3D reconstruction. The idea is to project
infrared patterns onto the object to help determine its geometry.

Inspired by these prior works and built upon recent development
of deep learning, this paper investigates a new 3D modeling method
based on neural rendering [10]. The main idea is to use a neural net-
work to model the scene in the form of a radiance field where the
physical object of interest (e.g., in-service product) and its surround-
ings reside. In the radiance field, each spatial location has a density
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and a view-angle dependent RGB color. Once trained using a set of
RGB images, the neural network-modeled radiance field allows not
only to distinguish different components in the scene such as air and
physical object, but also to reconstruct the scene as viewed from
angles not observed in training. Additionally, the encoded color and
density information enable generation of textured mesh of the physi-
cal object, which can be subsequently imported into a CAD/CAE soft-
ware to contribute to multiple applications in design and analysis, as
shown in Fig. 1. The developed method also addresses some of the
limitations in prior works, such as difficulty in handling complex
geometry and requiring specialized scanning devices. The effective-
ness of the developed method is experimentally evaluated through
3D modeling of a car engine part with complex geometry.
2. Technical background

The method of neural rendering consists of two main parts: 1)
radiance field-based scene representation (e.g., physical object and
its surroundings) that allows for the generation of view-angle specific
RGB images and determine the composition of the scene, and 2) neu-
ral network-based modeling of the radiance field.

2.1. Radiance field-based representation

Different from the methods of object representation in prior works,
such as intersection of projections and matched image features, radiance
field represents a scene as a function [11]. The input to the function con-
sists of a spatial location in the scene as represented by Cartesian coordi-
nate x ¼ ðx; y; zÞ and a view-angle r, while its output includes a view-
angle dependent RGB color c and a density s at the location x.

The view-angle r in the function input allows the radiance field to
capture color variations of the scene when viewed from different angles
(e.g., caused by lighting conditions). The density s in the output allows
the radiance field to distinguish different components in the scene, such
as air and physical object, by means of quantifying the transmittance of
light when it passes through each spatial location (e.g., percentage of light
retained after traveling through each location).

Specifically, for a light that travels from its origin to a location s
along its path, the accumulated transmittance along the path follows
exponential decay [11]. As a result, the regions of air expect to have
low-density values (high transmittance, close to 1), while the regions
occupied by the physical object expect to have high-density values
(low transmittance, close to 0).
2.2. Neural rendering

To realize radiance field-based scene representation, neural ren-
dering uses a neural network such as multi-layer perceptron (MLP)
to iteratively learn the complex radiance field function based on a set
of RGB training images, to accurately predict the color and density of
the object at each spatial location in the scene [10]. The performance
of neural network training is evaluated such that images of the physi-
cal scene used for network training can be reconstructed from the
Fig. 2. Network training process for neural rendering of a physical object.
neural rendered scene, which is represented by the network-pre-
dicted radiance field.

The procedue is realized that, at each training iteration, radiance
field is first predicted by the network. Then, images are taken virtu-
ally of the neural rendered scene as represented by the predicted
radiance field. To evaluate the quality of the network prediction,
these virtual images are taken with the same camera view-angles
with which the actual training images were taken and are then com-
pared to the corresponding actual images in a pixel-wise manner.
The differences in pixel RGB color resulting from the comparison
serve as the basis to update the neural network weights for the sub-
sequent training iteration.

Virtual image-taking of the neural rendered scene follows the
imaging physics. In neural rendering, a pinhole camera model is
adopted [12]. The idea is to compute the RGB color C of an (virtual)
image pixel using the color and density information (in the radiance
field) along the ray of light that hits the pixel through the camera’s
optical center. The computation follows [11]:

C ¼
ZD

0

T sð Þs sð Þc sð Þds; T sð Þ ¼ exp
�
�
Zs

0

s sð Þds
�

ð1Þ

where cðsÞ is the RGB color at location s on the ray, D is the location
where the ray intersects the far-end of the scene, and TðsÞ is the accu-
mulated transmittance.

Eq. (1) can be viewed as a weighted sum of RGB colors cðsÞ along
the ray. The weight consists of 1) TðsÞ: transmittance over the interval
between the location s and the location of the pixel (i.e., s ¼ 0), and 2)
sðsÞ: density at location s. As a result, the RGB color of the pixel will
be dominated by the color of the spatial location on the ray that has
both a high transmittance between that location and the pixel (e.g.,
air) and a high density at that location itself (e.g., solid). In practice,
the continuous integral in Eq. (1) is approximated using the sampled
locations along the ray.

By alternating 1) prediction of radiance field (by the neural net-
work) and 2) evaluation of the quality of the prediction (using imag-
ing physics) as shown in Fig. 2, the training process iteratively
updates the weights of the neural network to minimize the difference
between the neural rendered scene and the actual scene, leading to
realistic rendering results that serve as the basis for 3D model con-
struction.

2.3. Scene contraction

In many practical settings, the physical object of interest for 3D
modeling is located in a large or even unbounded background envi-
ronment (e.g., on the shop floor or in the field). In these cases, a ray of
light travel a large or even infinite distance to intersect with the
scene boundary at the far-end, making spatial location sampling
along the ray and computation of Eq. (1) challenging. Considering
that the background in the scene is usually not of interest for 3D
modeling, the method of contraction is investigated to “warp” the
background environment into a small, finite space using the contrac-
tion equation [13]:



Fig. 4. Comparison between actual and reconstructed images.
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Eq. (2) separates the scene into two regions: 1) the spatial loca-
tions inside a sphere of radius 1 that encompasses the physical object,
and 2) the locations outside of this unit sphere (e.g., background).
When sampling along the rays for neural rendering, Eq. (2) does not
modify the locations inside the unit sphere while contracting the
entire background environment into a sphere of radius 2. As a result,
the rays of light and the far-end of the scene always intersect at the
surface of the sphere of radius 2.

3. Experimental evaluation

The performance of the developed neural rendering technique is
evaluated using a cylinder head with complex geometry from a car
engine. The cylinder head is mounted on a steel stand located at the
center of the workspace as shown in Fig. 3. Images used to train the
neural network are taken by the camera of an iPhone 12 attached to
the end-effector of a Kinova Gen2 robot, which is mounted on a
Robotnik Summit-XL (mobile) robot.

During the experiment, the movement of the Summit-XL around the
stand, as denoted by the orange-colored trajectory, allows the part to be
scanned at different longitudes. Also, change of the end-effector’s pose of
the Kinova robot allows the part to be scanned at varying latitudes. Spe-
cifically, a total of 12 different longitudes with an equal increment of 30°
around the stand and 9 different latitudes with an equal increment of 20°
from�80 to 80° are used. Both Robotnik and Kinova robots are controlled
by an open architecture robot operating system (ROS)-integrated com-
puter viaWi-Fi based command transmission.

For purpose of illustration, three camera trajectories are shown in
Fig. 3 as yellow dashed lines. In total, 108 images are taken at a reso-
lution of 3024 � 3024 to serve as training data. In Fig. 3, three train-
ing images taken from the camera locations ➀,➁, and ➂ are
illustrated at the bottom of the figure.

Neural rendering and mesh generation of the workspace are carried
out using the cloud-based software by LumaLabs [14]. Using full-resolu-
tion images for training, the total time for neural rendering and mesh
generation is around 1.5 h. This represents potentially significant time
reduction as compared to manual 3D model creation. The mesh of the
cylinder head is first extracted from the scene using a bounding box that
Fig. 3. Experiment workspace and sample training images.
encapsulates the cylinder head. The extracted mesh is pre-processed by
Recap Photo for artifacts removal and mesh conversion before being
imported into Fusion 360 to generate surface and solid models for appli-
cations such as geometrical editing and structural analysis.
4. Results discussion

4.1. Neural rendered scene

The result of neural rendering of the cylinder head and its sur-
roundings are evaluated using the images reconstructed from the
radiance field as viewed from angles that are not used during the
training process. An example is shown in Fig. 4.
It is noted that neural rendering has achieved a good level of pho-
torealism. The colors associated with different surfaces of the cylin-
der head, such as the red edge of the openings for plug installation,
have been properly shown. Furthermore, the learned radiance field
has correctly captured the geometrical relationship among different
bodies on the cylinder head, such as the set of extruded cylinders
with varying heights and sizes. This leads to rendering results that
are geometrically consistent with the actual image. Additionally, geo-
metrical consistency is maintained with respect to the surroundings
(e.g., proper occlusion of dividers).

To quantify the faithfulness of the neural rendered image com-
pared to the actual image, the structural similarity index measure
(SSIM) is evaluated [15]. SSIM compares two images by first segment-
ing each into a grid of smaller windows. For each pair of correspond-
ing windows from the two images, a composite index is computed
based on the statistics of pixels within the window. Then, composite
index is averaged over all window pairs. An SSIM of 0.694 is obtained
for the neural rendered image. In comparison, image reconstructed
using photogrammetry, which is a widely used 3D reconstruction
method that is also based on RGB images [16], has achieved an SSIM
of 0.559. This demonstrates the improvement of neural rendering in
realizing photorealistic image reconstruction.

4.2. Surface meshing and CAD modeling

The geometry of the cylinder head generated by neural rendering
is represented using triangular mesh (tri-mesh), which has also been
compared to the outcome from photogrammetry, as shown in Fig. 5.
It is noted that neural rendering performed better than photogram-
metry in capturing details in the concave geometrical regions, such
as the mounting platform in region A, opening in region B, and transi-
tion area in region C of the part. To enable editing in CAD/CAE soft-
ware, the tri-mesh is converted to quad-mesh to establish a direct
correlation between the mesh and freeform surface models, such as
T-spline [17], as shown in Fig. 6.

The geometrical editing functionality is demonstrated in Fig. 7. For
illustration purpose, the tri-mesh from neural rendering is first sim-
plified by adaptively reducing the number of faces, before converting



Fig. 5. Mesh comparison between neural rendering and photogrammetry.

Fig. 6. Conversion from tri-mesh to T-spline surface model.

Fig. 7. Examples of geometrical editing of neural-rendered cylinder head.
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into T-spline model. The selected surface regions for modification are
highlighted in blue. The surface is scaled up in the z direction by a fac-
tor 1.2, as shown in Fig. 7(a), while scaled down in the (x; y; z) direc-
tions by a factor of 0.95, as shown in Fig. 7(b). With the editing
functionality, designers will be able to directly work on top of the
neural rendered product for design improvement, without having to
build the 3D model from scratch.

To enable further functionalities such as structural analysis or
design optimization, the T-spline surface model is converted to a B-
rep solid model. The solid model can be acted upon for in-service
product performance analysis, remaining service-life estimation,
feedback to design optimization, etc.

It should be noted that neural rendering has several limitations. As
with other RGB image-based methods, it is limited in reconstructing
geometry and features that are under-illuminated, such as deep pockets
and small holes. Additionally, it cannot capture the internal part structure
as is the case with all non-penetrating scanning methods. Therefore, it is
suited for surface reconstruction only. Furthermore, realizing its full
potential for product digitization also requires the development of new
algorithms for efficient parametric surface generation from large-scale
tri-mesh to facilitate surface geometric editing.

5. Conclusions

A novel method for rapid digitization of physical objects is pre-
sented to support the analysis of in-service products where an up-to-
date CAD model is not available. The method represents the physical
object and the surroundings as a scene by means of radiance field,
which encodes the color and density information that describe its
composition. Guided by imaging physics, a neural network is trained
using RGB images to model the radiance field for object modeling
and mesh generation. Experimental evaluation using a cylinder head
from a car engine confirms the following contributions from the neu-
ral rendering-based method:

� Photorealistic and geometrically consistent 3D modeling of in-ser-
vice products even from view-angles not seen in training, without
requiring specialized scanning devices.

� Mesh/model generation suited for design applications such as geo-
metrical editing and structural analysis.

� Potentially significant time reduction as compared to manual 3D
model creation of in-service products.

Future effort will be directed to improving the performance of
neural rendering in capturing object details and conversion to
parametric models. Its utility in developing digital twins for human-
robot collaborative assembly and hybrid autonomous manufacturing
will be investigated.
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