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a set of holes above the substrate, which is placed on the 
pedestal and film grows on the substrate under the reaction 
(Fig. 1(a)) (Ding et al., 2019; Li et al., 2018). Film thick-
ness uniformity is a critical factor in evaluating the quality 
of film growth as a non-uniform film may cause non-func-
tioning die and hence reduce fabrication yields. From the 
perspective of experimental hardware design, critical com-
ponents such as the showerhead faceplate, stem, and porous 
baffle have a large impact on the final performance of depo-
sition. Specifically, the film thickness is largely dominated 
by the profile of gas flow in the chamber, which is related to 
many design parameters such as the diameter of the stem, 
the position of the porous baffle, as well as hole size and 
distribution on the showerhead faceplate. Among these 
components, the showerhead is believed to be one of the 
most dominant and fundamental parts that affect flow uni-
formity (Liao et al., 2018; Xia et al., 2014). Current show-
erhead designs with symmetrical hole patterns are likely 
to experience undesired stagnated flows along the lines of 
symmetry. On the other hand, proposed non-symmetrical 

Introduction

Semiconductor manufacturing is an indispensable part of 
contemporary technology to create essential devices and 
components closely related to people’s daily life and the 
operation of modern society. Semiconductor fabrication uti-
lizes cutting-edge techniques from multiple fields including 
thermal, control, chemistry, and material sciences. In semi-
conductor fabrication, the deposition process is a crucial 
step. A typical deposition setup includes a reaction cham-
ber, a substrate holder (pedestal), and a showerhead. Dur-
ing operation, the showerhead distributes reactant gas from 
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Abstract
In semiconductor fabrication, the deposition process generates layers of materials to realize insulating and conducting 
functionality. The uniformity of the deposited thin film layers’ thickness is crucial to create high-performance semicon-
ductor devices. Tuning fabrication process parameters (e.g., for evenly distributed gas flow on the semiconductor wafer) 
is one of the dominant factors that affect film uniformity, as evidenced by both experimental and numerical studies. Con-
ventional trial and error methods employed to change and test a range of fabrication conditions are time-consuming, and 
few studies have explored the effect of changing the geometry of hardware components, such as the showerhead. Here, we 
present a design optimization of the showerhead for flow uniformity based on numerical simulation data using machine 
learning surrogate models. Accurate machine learning models and optimization algorithms are developed and implemented 
to achieve 10% more flow uniformity compared to a benchmark traditional showerhead design. Moreover, the developed 
Bayesian optimization method saves 10-fold computational cost in reaching the optimal showerhead designs compared to 
conventional approaches. This machine learning enabled optimization platform shows promising results which could be 
implemented for other optimization problems in various manufacturing systems such as semiconductor fabrication and 
additive manufacturing.
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designs using spiral shapes lack practical demonstrations 
(Selep et al., 2019). Therefore, studies have been actively 
conducted to achieve better fabrication performance (e.g. 
film uniformity) by optimizing the manufacturing system 
(e.g. hardware design, process parameters). For example, 
researchers have applied full factorial and Taguchi orthog-
onal arrays methods to characterize and improve the low 
pressure chemical vapor deposition (LPCVD) process 
(DePinto & Wilson, 1990). A variety of factors including 
gas ratio, total gas volume, tube conditioning, and wafer 
direction were studied to obtain optimal film thickness uni-
formity and particle generation. With the aid of advanced 
computer-aided engineering (CAE) tools, researchers uti-
lized computational fluid dynamics (CFD) simulations to 
improve the evenness of thin films by optimizing the rota-
tion speed of substrates for metal-organic chemical vapor 
deposition (Li et al., 2018). Design of experiment (DOE) 
and a response surface model (RSM) are used to obtain the 
relationship between inputs (rotation speeds) and outputs 
(deposition rates). Although previous studies have actively 
adopted physical experiments, numerical simulations, and 
optimization algorithms to improve the performance of 
fabrication, challenges persist in the inaccuracy and inef-
ficiency of exploring optimal designs, especially when con-
sidering the optimization of geometries of fabrication parts. 
Therefore, efficient optimization of the manufacturing sys-
tem at a more fundamental level, identifying and compart-
mentalizing key geometries and parts, is vital to achieving 
better fabrication performance.

State-of-the-art artificial intelligence (AI) algorithms 
show great potential in utilizing large amounts of data gen-
erated during the manufacturing process to efficiently find 
solutions for optimization problems. Advances in AI tech-
niques, specifically machine learning (ML) algorithms, 
have been providing remarkable achievements and success 
in various fields including autonomous vehicles, materials 
design, additive manufacturing, and biological applications 
(Chen & Gu, 2021; Janai et al., 2020; Jin et al., 2020, 2021; 
Jumper et al., 2021; Lee et al., 2022; Silver et al., 2016; 
Yu et al., 2022). An ML-powered approach can explore 

the underlying relationships between the input informa-
tion and output objectives as learning is done on the given 
data. Moreover, ML algorithms can make accurate predic-
tions on the objective when given unseen inputs based on 
the obtained analytical relationship. Hence, ML methods 
have been used to understand the complicated relationship 
between fabrication performance and system inputs such as 
process parameters. For instance, neural networks (NNs) 
were implemented to understand the relationship between 
process parameters (e.g. the flow rate of infill gases, the 
substrate temperature, and the pressure) and final product 
quality including film thickness and refractive index of 
silicon dioxide films for plasma-enhanced chemical vapor 
deposition (PECVD) (Chen et al., 2007). The performance 
of the NN method reached satisfying performance with a 
mean absolute deviation of 10.503 Å for thickness pre-
diction and an error rate of 2.67% for the refractive index 
value. Recently, researchers have utilized recurrent neural 
networks (RNNs) to predict deposition behavior with less 
than 5% deviation from the CFD simulation results for 
plasma-enhanced atomic layer deposition (PEALD). Accu-
rate predictions from the ML algorithms only take a few 
seconds compared to a day of computing the results using 
a multiscale CFD model. Although the current methods 
have achieved great progress in terms of predicting desired 
fabrication performance and accelerating the forward phys-
ical modeling process, challenges still exist in the follow-
ing aspects. First, a gap in the literature exists regarding 
optimized hardware designs for the deposition process to 
improve fabrication performance. Although tuning process 
parameters can reach a local optimal performance, it is 
believed that smart hardware design is another major way 
to achieve better fabrication quality. Second, the choice of 
input design variables requires prior experience with physi-
cal experiments, which is usually nontrivial. Moreover, the 
importance of different design variables with respect to 
desired outputs is not clearly understood. Lastly, the train-
ing of ML algorithms takes a large number of data points, 
which requires heavy computational resources upstream to 
generate training data from numerical simulations.

Fig. 1  (a) CAD representation 
of the deposition system. (b) 
Parameterization of the shower-
head design
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In this paper, we aim to address the three challenges men-
tioned above through a case study of showerhead design 
optimization using efficient machine learning methods 
based on CFD simulations. The objective of the optimiza-
tion is to improve the gas flow uniformity of the deposition 
process, where the input design variables are showerhead 
hole pattern and size, as well as the fillet on the stem part 
of the showerhead. Machine learning regression models are 
implemented to obtain the relationship between flow uni-
formity and design variables and sensitivity analysis is con-
ducted to quantify the importance of the inputs. In addition, 
optimal showerhead designs are proposed through multiple 
optimization algorithms including genetic algorithm (GA), 
stochastic gradient descent (SGD), and Bayesian optimiza-
tion (BO). The best design reaches 10% more flow unifor-
mity compared to the baseline showerhead design at 10% 
of the computational cost of conventional optimization 
algorithms when applying BO. Our work achieves the fol-
lowing contributions: (1) Development of an ML-powered 
framework capable of optimizing hardware designs for 
semiconductor fabrication based on CFD simulation; (2) 
Implementation of an efficient optimization algorithm that 
can interact with numerical simulation and ML models 
during optimization iteration; (3) Automation of generat-
ing multiple optimal designs with high efficiency showing 
superior performance compared to baseline prototype. It is 
believed that such a framework demonstrated in our case 
study can adapt to other optimization problems in all kinds 
of manufacturing fields. The paper is organized as follows. 
‘Materials and methods’ section discusses detailed informa-
tion and methods regarding the implemented CAE process, 
ML models, optimization algorithms, and prototype fabrica-
tion. ‘Results and discussion’ section shows the ML perfor-
mance and optimization results of the developed framework 
as well as comparisons between different optimization algo-
rithms. ‘Conclusions and perspectives’ section summarizes 
the work, raises current challenges, and proposes future 
plans.

Materials and methods

This section deals with details for establishing the CAD and 
CFD models, training machine learning surrogate models, 
implementing optimization algorithms, as well as fabricat-
ing showerhead prototypes.

Parameterized CAD model and efficient CFD simulation  In 
order to realize the design parameter study in CFD simu-
lation, a CAD model for the deposition process is built 
based on a showerhead patent design developed by Lam 
Research (Chandrasekharan et al., 2019) and parameterized 

with 30 design variables including dimensions related to the 
stem part, back plate, porous baffle, and faceplate as shown 
in Fig.  1(b). Most of the design variables deal with the 
design of faceplate including the hole pattern and inlet stem 
fillet, which are considered two major factors affecting the 
flow distribution. Specifically, the faceplate is divided into 
20 evenly spaced concentric circles, from zone 1 to zone 
20. For each zone, a porosity value will be determined and 
treated as a design variable (Fig. 1(b)). The porosity of each 
zone is defined as the total area of holes over the area of the 
zone and the average porosity of the patent design is about 
0.2. Here, the upper and lower bounds of porosity are set 
to 0.4 and 0 to have sufficient exploration design space. In 
terms of the inlet stem fillet design, two positions are con-
sidered: corner of inlet flow encountering porous baffle and 
faceplate. Each design has a design space of fillet radius 
from 0 to 3 mm.

CFD simulation is conducted through Ansys Fluent soft-
ware. For the CFD simulation setup, ideal Argon gas with 
3 L/min flow is used as inlet and zero-gauge pressure is set 
as outlet conditions. The operating pressure is set to 7.5 Torr 
(1000 Pa). The temperature boundary condition for the ped-
estal and reactor wall are 400 ℃ and 75 ℃, respectively. 
Furthermore, the faceplate is viewed as a porous media with 
porosity values determined by the design. To ensure the flow 
is passing vertically across the faceplate same as the physi-
cal condition, viscous resistance value in the horizontal 
direction is set 1000 times larger than the value in the verti-
cal direction. In terms of the CFD simulation outcome, the 
plane of interest is set 1.5 mm above the pedestal with the 
same circular shape as the pedestal (radius = 200 mm). On 
the plane of interest, 50 spokes with equal included angles 
are sampled and 50 sampling points (equally separated) 
are taken on each spoke. The non-uniformity of the flow is 
indicated by the standard deviation (σ) of velocity profile 
through these 2500 sampling points. To align with industrial 
conventions, three-sigma (3σ) value is used, which is a sta-
tistical calculation showing the data within three standard 
deviations from the mean. Ranges of 3σ velocity magnitude 
and axial velocity value are calculated as outputs, which are 
treated as evaluation metrics indicating the non-uniformity 
of the flow. The 3σ values calculated based on the patent 
design are regarded as baseline results.

Surrogate models  Surrogate models are analytical mod-
els to approximate the outcome of complex physical 
models and simulations such as FEA and CFD. The main 
purpose of implementing surrogate models is to acceler-
ate the generation or prediction of the target objectives 
with high accuracy, which provides greater efficiency 
for optimization  tasks using surrogate models. Taking 
the CFD simulation in this paper as an example, it takes 
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method, and line search can be applied. For non-differen-
tiable objective functions, where the derivative cannot be 
easily calculated, population algorithms such as genetic 
algorithms (GA) provide a feasible choice. In addition to 
the conventional optimization process being fully iter-
ated based on the surrogate model, elevated optimization 
methods taking advantage of CFD simulation results dur-
ing the optimization iteration are also developed. Adopting 
this method, the interaction between the CFD simulation 
and optimization algorithms is fulfilled during the iterative 
exploration process. Specifically, a small portion of data is 
needed to build a GP regression model, which approximates 
the analytical relationships using Gaussian distribution. By 
defining a proper evaluation (acquisition) function to trade 
off exploitation and exploration, a subsequent design will 
be proposed and feedbacked into the CFD simulation to get 
ground truth performance. The corresponding result will be 
concatenated into the initial batch of data points and a new 
GP model will be fitted to find the next design. This iterative 
on-the-fly method is called Bayesian optimization (BO), 
which has achieved successful results in various optimiza-
tion applications (Gongora et al., 2020; Snoek et al., 2012).

In this paper, random search, GA, stochastic gradient 
descent (SGD), and BO methods are applied to find the opti-
mal faceplate designs that maximize flow uniformity. Here, 
random search is regarded as a baseline model and the col-
lected dataset is used to find the best result for the random 
search algorithm. For GA and SGD methods, the trained 
ML surrogate model will be utilized. The flow of GA works 
as follows: (1) Randomly generate S candidates and evalu-
ate through the ML model; (2) Rank the candidates based on 
performance, keep the top P candidates serving as parents, 
and discard the remaining S − P  candidates; (3) Generate 
P children based on a linear combination of P parents; (4) 
Randomly generate S − P − P  offspring in the new gen-
eration to keep the total generation size constant; (5) Iterate 
the previous 4 steps until convergence. The flow of SGD 
works as follows: (1) Initialize an initial design point to 
start; (2) Calculate the gradient with respect to each input 
variable; (3) Update the inputs toward the negative direction 
of the gradient; (4) Randomly generate another initial design 
point and iterate the previous 3 steps until convergence. The 
advantage of the conventional optimization methods includ-
ing GA and SGD is that they have a faster convergence rate 
compared to random search due to their exploration core 
based on either evolutionary search or gradient evaluation. 
Additionally, the BO approach has more advantages when 
the final objectives are expensive to evaluate and there is no 
access to the derivatives (e.g., CFD physics simulations) as 
the algorithm explores the design field based on the prob-
ability of interest location.

around 10 min to run the numerical simulation on a desk-
top with Intel  i5 CPU.  While a typical prediction given 
by the surrogate model only costs 1 millisecond, which is 
at least 5 orders of magnitude faster. This fast prediction 
feature is one reason numerous surrogate models have been 
developed  in  several fields for a variety of applications. 
For example, deep neural networks (DNNs) are trained to 
predict the deformation of a soft pneumatic joint by given 
pressure, force, and torque inputs with high accuracy and 
efficiency (Zhang et al., 2022). In this study, regression 
models including linear, polynomial, and Gaussian pro-
cess (GP) regression are applied considering the number 
of input design variables and complexity of the surrogate 
modeling (Galton, 1886; Quinonero-Candela & Rasmus-
sen, 2005; Stigler, 1974). The linear regression model fits 
a linear relationship between the scalar output and multiple 
input variables. Weight coefficients are assigned and multi-
plied to each input variable and the estimation is the sum of 
all products with an intercept coefficient added at the end 
to offset the results. The weight coefficients and intercept 
coefficients are derived until the difference between estima-
tion and true value is minimized. Polynomial regression is 
an elevated regression model with a non-linear relationship 
between the input variables, where the fitted relationship 
is correlated to a polynomial order of input variables such 
as the product of multiple input variables or the power of 
a single input variable. The GP regression constructs the 
relationship through a joint probability distribution over 
the input variables. The prediction of GP interpolates the 
observations through a pre-defined kernel, which controls 
the shape of the Gaussian function at specific points based 
on the similarity between actual true values and predic-
tions. The GP prediction is also probabilistic, which pro-
vides empirical confidence intervals associated with the 
predicted values. This feature enables further refitting and 
exploration in the region of interest. For ML implementa-
tion, the Python package scikit-learn is used to fit the regres-
sion models mentioned above (Pedregosa et al., 2011). The 
collected CFD data points are randomly split into two data-
sets with an 8:2 ratio corresponding to the training to test-
ing dataset ratio. The ML models are fitted on the training 
dataset and evaluated using the testing dataset.

Optimization algorithms  With the obtained surrogate mod-
els, the performance of the output metrics can be improved 
by analyzing the analytical models. Common optimization 
algorithms can be classified into two categories based on 
objective functions. For differentiable objective functions, 
where the derivative can be calculated for any given point 
in the input space (e.g. DNNs, regression models), optimi-
zation algorithms such as gradient descent (GD), Newton’s 
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weight coefficient indicates a higher influence on the objec-
tive output. From the curve, we can see the porosity value of 
the inner zones and fillet 2 have larger coefficients meaning 
more dominance with respect to the uniformity of the flow. 
Intuitively, these design variables are all major components 
in direct contact with the incoming flow and are believed to 
be the most critical in terms of design space. It is worth not-
ing that sensitivity analysis also helps determine the num-
ber of zones on the faceplate design. Initially, 10 zones (10 
porosity values) are considered to fully describe the design 
space. As sensitivity analysis concludes the importance 
of inner zones, a finer division (20 zones) is applied. For 
the inner zones, from zone 1 to zone 10, different porosity 
values are assigned to each zone; for the outer zones, from 
zone 11 to zone 20, identical porosity values are assigned 
to pairs of adjacent zones (e.g., zones 11 and 12 share the 
same porosity value, zones 13 and 14 share another porosity 
value). This division maintains the same spacing of concen-
tric circles and the assignment of porosity values sufficiently 
controls the design space as well.

Conventional optimization approach and optimized face-
plate designs  With the trained ML surrogate models, the 
analytical relationship between input design variables 
against output objective is obtained. Hence, optimal designs 
can be generated by evaluating their performance based on 
the surrogate model by applying state-of-the-art optimization 
algorithms. Here, two optimization methods GA and SGD 
are utilized to find the optimal faceplate design. To simplify 
the optimization process, fillet design is not included in this 
subsection (fillet radii are zero). Results with fillet design 
will be demonstrated with an elevated optimization method 
in the next subsection. Figure 3(a) shows the optimization 
process of GA using and as defined in the material and 
methods section. We can see a stepped downward curve for 
the performance profile indicating more uniformity (better 
results) reached by new generations. Figure 3(b) shows the 
performance profile for an iteration of SGD method achiev-
ing the optimal result. As the inputs (porosity values) keep 
decreasing during the gradient descent updates, a stop limit 
of 0.01 is set to prevent the porosity value from becoming 
too small or negative. The iteration stops when four poros-
ity values reach the stop limit considering the feasibility 
of fabricating the designed prototype. The vertical axis of 
the optimization performance curve is the normalized non-
uniformity value (3σ value) by dividing the baseline result. 
Both optimization methods find their top design reaching 
5.7% more uniformity in their best optimization iteration. 
Taking the best design obtained from GA as an example, 
the porosity distribution with zone information is shown in 
Fig. 3(c) and its schematic design is displayed using 1600 

Showerhead prototype and fabrication  The porosity of the 
faceplate is modulated through the faceplate hole patterns 
by manipulating the diameter and number of holes in indi-
vidual zones. Holes are positioned at the middle line of each 
zone, owing to the concentric circular pattern (around a cen-
ter point). Hole diameters are sized between 1 and 4 mm 
depending on the porosity level. The showerhead prototype 
is built to show the potential to fabricate samples with vari-
ous porosity distributions for conducting experiments. The 
prototype is fabricated mainly using 3D-printing and laser 
cutting. The faceplate is built using a laser cutter (ULTRA 
R9000) with casted acrylic; stem, porous baffle, and back 
plates are fabricated with polylactic acid (PLA) material 
using fused filament fabrication (FFF) 3D-printer (Ulti-
maker 3).

Results and discussion

Machine learning model implementation and sensitivity 
analysis  With the parameterized CAD model and CFD sim-
ulation, both inputs and outputs of the ML model are defined. 
The inputs have 22 variables, which are comprised of 20 
porosity values corresponding to each zone on the face-
plate plus 2 radius values for the fillet design. The outputs 
are the 3σ values calculated based on the velocity profile at 
the plane of interest. Figure 2(a) shows the velocity magni-
tude at the plane of interest for the baseline faceplate design. 
For the data collection, a batch of designs (1000 data points, 
Fig. 2(b)) are generated randomly and fed into Ansys Fluent 
software to obtain the flow uniformity performance automat-
ically. The 3σ value of the axial velocity is treated as ground 
truth and used to fit a regression model based on design input 
variables. Here, the axial velocity is determined as objective 
due to its dominant effect on the flow uniformity normal to 
the plane of interest compared to using velocity magnitude 
which includes a radial component. Both linear and polyno-
mial regression models are implemented and reach R2 values 
over 99%, which indicates a decent fit of the relationship. 
The regression model reaches its best performance (R2 = 
99.8%) when a second-order polynomial regression model 
is used (Fig. 2(c)). Here, all the predicted and ground truth 
values are normalized by the baseline value (1.0 indicates 
the baseline result). A smaller number indicates more flow 
uniformity (less velocity deviation).

Sensitivity analysis is performed to better understand 
the machine learning model, especially the importance of 
different design variables. Here, each variable’s gradient 
(weight coefficient) is obtained from the linear regression 
model and shown in Fig. 2(d). A high absolute value of the 
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not ideal when aiming to achieve a uniform flow distribu-
tion. The second and third rows show three superior designs 
for GA and SGD methods. They all share a similar porosity 
tendency at the inner zones as porous baffle is in the center 
and directly interacts with the inlet flow. For inner zones, 
a large porosity value is first assigned to zone 1 and has a 
gradually increased tendency in the direction away from the 
origin. This indicates that such porosity pattern is benefi-
cial to generate a more uniform flow distribution. Besides 
showing the results of faceplate designs, the flow profiles of 
different designs are also compared at the plane of interest. 

holes with diameters ranging from 1 to 4  mm shown in 
Fig. 4. The physical prototype is fabricated using laser cut-
ting and 3D-printing method mentioned in the material and 
methods section and the size of the assembled prototype is 
240 mm ⋅ 240 mm ⋅ 350 mm, which is a 73% scaled version 
of the original model due to the build size constraints of the 
3D-printer and laser cutter (Fig. 4). Additionally, superior 
designs and inferior designs are presented in Fig. 5(a) for 
both optimization methods. The first row shows three infe-
rior designs obtained by GA algorithm. We can see dramatic 
variations in the porosity values across the zones, which is 

Fig. 2  (a) CFD results showing velocity profile on the plane of interest. 
(b) The distribution of collected data points with horizontal axis show-
ing normalized 3σ value against the baseline. The red dashed curve 
shows a fitted normal distribution of the samples. (c) ML model pre-

dictions compared to ground truth of testing data points showing high 
accuracy. (d) Sensitivity analysis of the input design variables includ-
ing 20 porosity values and 2 fillet radius designs
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cause propagating errors in the performance of the proposed 
designs. Hence, to accelerate and improve the optimization 
process, a BO based approach is applied which saves a large 
amount of data preparation cost and computational time 
(Gongora et al., 2020; Snoek et al., 2012). Here, a small 
portion of data (50 data points in our case) is initially used 
to build a GP model. A radial basis function (RBF) kernel 
is used due to its Gaussian form and wide applicability. The 
probability of improvement (PI) function is applied as the 
acquisition function to select the next exploration point, 
which has the highest probability of superior performance. 
When the subsequent design is proposed, it is fed back into 
the CFD simulation to get the ground truth performance. 
The corresponding result is concatenated into the initial 
batch of data points and a new GP model is fitted to propose 
the next design. Figure 6(a) shows the BO learning perfor-
mance for 50 iterations and reaches 5.5% more uniformity 
when no fillet design is involved. When fillet designs are 
taken into consideration, based on the sensitivity analysis 
shown in Fig. 2(d), fillet 1 has a positive correlation with 
non-uniformity, while fillet 2 has a negative correlation 

In Fig. 5(b), axial velocity distribution along the radial dis-
tance is presented for the baseline design, an inferior design, 
and a superior design from GA. The green curve from the 
optimized faceplate design shows the best performance for 
flow uniformity. The velocity at a radial distance close to the 
origin is effectively lowered with the optimized faceplate 
design, which also leads to more flow uniformity at the full 
domain.

Bayesian optimization (BO): an elevated approach of higher 
efficiency at a lower computational cost  By using the con-
ventional optimization methods introduced in the previous 
section, a series of optimal designs are obtained showing 
remarkable improvement in flow uniformity. However, 
before the optimization step, a large training dataset is 
required (1000 data points) to fit an accurate ML surrogate 
model, which is time-consuming.

During the optimization iteration, the proposed design 
is generated solely from the ML surrogate model. The 
lack of communication between the CFD simulation and 
ML model during the optimization process can potentially 

Fig. 4  Fabricated faceplate prototype based on proposed top faceplate design from genetic algorithm

 

Fig. 3  (a, b) Optimization performance of GA and SGD method. (c) The top design obtained from GA method showing the porosity profile with 
respect to zone number
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Fig. 5  (a) Comparison of superior and inferior designs generated from GA and SGD algorithm. (b) Axial velocity profiles along the radial distance 
are presented for the baseline design (blue curve), an inferior design (yellow curve), and a superior design (green curve)
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more uniform flow for all the optimization algorithms and 
reaching an optimal of 10% increased uniformity using GA 
method. Although BO does not show the best performance 
in the fillet design case, it still reaches competitive results 
considering that it only uses a tenth of the data points com-
pared to the other algorithms. It is believed that with more 
learning data and optimization iterations, BO method can 
achieve the same or even better performance compared 
to 10% more flow uniformity. By comparing the porosity 
profile obtained with fillet design and non-fillet design, the 
porosity values of the inner zones tend to be zero (a solid 
region). The results match the sensitivity analysis as the 
inner zones have a positive correlation with non-uniformity, 
which needs to be minimized to increase uniformity. The 
fillet design, too, largely contributes to the spreading of inlet 
flow to the remote end of the showerhead, which weakens 
the effect of porous baffle and the inner zones of the face-
plate below it.

Conclusions and perspectives

In summary, a hardware optimization framework is estab-
lished through a case study of showerhead design for the 
semiconductor deposition process. ML surrogate models 

with non-uniformity. Hence, the value of fillet 1 needs to 
be minimized (set to 0 mm) and the value of fillet 2 should 
be maximized (set to 3  mm considering the design space 
limitation) (Fig. 6(b)). We conclude that adopting such an 
optimized pair of fillet designs is beneficial for flow unifor-
mity. With the determined fillet designs creating the opti-
mal flow uniformity, a top candidate design with 9.6% more 
uniformity is obtained through the BO method. The poros-
ity profile of the best candidate from all three algorithms 
(GA, SGD, and BO) are presented in Fig.  6(c) with their 
detailed flow uniformity performance shown in Table 1. The 
added fillet design leads to another boost in generating a 

Table 1  Summary of the top designs from four optimization approaches 
with and without fillet designs
Algorithms Improvement of top 

design
with faceplate

Improvement of top 
design
with faceplate + fillet

ML model 
prediction

CFD 
simulation

ML model 
prediction

CFD 
simulation

Random search / + 1.7% / + 3.6%
Genetic 
algorithm

+ 5.7% + 5.3% + 10.0% + 9.9%

Stochastic gra-
dient descent

+ 5.7% + 5.4% + 9.7% + 9.6%

Bayesian 
optimization

/ + 5.5% / + 9.6%

Fig. 6  (a) Optimization performance of BO method. (b) CAD model showing the best fillet designs with fillet 1 = 0 mm and fillet 2 = 3 mm. (c) 
Top candidate designs for three optimization methods (GA, SGD, and BO) with fillet designs
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