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Abstract

In semiconductor fabrication, the deposition process generates layers of materials to realize insulating and conducting
functionality. The uniformity of the deposited thin film layers’ thickness is crucial to create high-performance semicon-
ductor devices. Tuning fabrication process parameters (e.g., for evenly distributed gas flow on the semiconductor wafer)
is one of the dominant factors that affect film uniformity, as evidenced by both experimental and numerical studies. Con-
ventional trial and error methods employed to change and test a range of fabrication conditions are time-consuming, and
few studies have explored the effect of changing the geometry of hardware components, such as the showerhead. Here, we
present a design optimization of the showerhead for flow uniformity based on numerical simulation data using machine
learning surrogate models. Accurate machine learning models and optimization algorithms are developed and implemented
to achieve 10% more flow uniformity compared to a benchmark traditional showerhead design. Moreover, the developed
Bayesian optimization method saves 10-fold computational cost in reaching the optimal showerhead designs compared to
conventional approaches. This machine learning enabled optimization platform shows promising results which could be
implemented for other optimization problems in various manufacturing systems such as semiconductor fabrication and
additive manufacturing.

Keywords Semiconductor deposition process - Showerhead design - Machine learning - Surrogate model - Bayesian
optimization

Introduction

Semiconductor manufacturing is an indispensable part of
contemporary technology to create essential devices and
components closely related to people’s daily life and the
operation of modern society. Semiconductor fabrication uti-
lizes cutting-edge techniques from multiple fields including
thermal, control, chemistry, and material sciences. In semi-
conductor fabrication, the deposition process is a crucial
step. A typical deposition setup includes a reaction cham-
ber, a substrate holder (pedestal), and a showerhead. Dur-
ing operation, the showerhead distributes reactant gas from
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a set of holes above the substrate, which is placed on the
pedestal and film grows on the substrate under the reaction
(Fig. 1(a)) (Ding et al., 2019; Li et al., 2018). Film thick-
ness uniformity is a critical factor in evaluating the quality
of film growth as a non-uniform film may cause non-func-
tioning die and hence reduce fabrication yields. From the
perspective of experimental hardware design, critical com-
ponents such as the showerhead faceplate, stem, and porous
baffle have a large impact on the final performance of depo-
sition. Specifically, the film thickness is largely dominated
by the profile of gas flow in the chamber, which is related to
many design parameters such as the diameter of the stem,
the position of the porous baffle, as well as hole size and
distribution on the showerhead faceplate. Among these
components, the showerhead is believed to be one of the
most dominant and fundamental parts that affect flow uni-
formity (Liao et al., 2018; Xia et al., 2014). Current show-
erhead designs with symmetrical hole patterns are likely
to experience undesired stagnated flows along the lines of
symmetry. On the other hand, proposed non-symmetrical
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Fig. 1 (a) CAD representation (a) o
of the deposition system. (b)
Parameterization of the shower-
head design

designs using spiral shapes lack practical demonstrations
(Selep et al., 2019). Therefore, studies have been actively
conducted to achieve better fabrication performance (e.g.
film uniformity) by optimizing the manufacturing system
(e.g. hardware design, process parameters). For example,
researchers have applied full factorial and Taguchi orthog-
onal arrays methods to characterize and improve the low
pressure chemical vapor deposition (LPCVD) process
(DePinto & Wilson, 1990). A variety of factors including
gas ratio, total gas volume, tube conditioning, and wafer
direction were studied to obtain optimal film thickness uni-
formity and particle generation. With the aid of advanced
computer-aided engineering (CAE) tools, researchers uti-
lized computational fluid dynamics (CFD) simulations to
improve the evenness of thin films by optimizing the rota-
tion speed of substrates for metal-organic chemical vapor
deposition (Li et al., 2018). Design of experiment (DOE)
and a response surface model (RSM) are used to obtain the
relationship between inputs (rotation speeds) and outputs
(deposition rates). Although previous studies have actively
adopted physical experiments, numerical simulations, and
optimization algorithms to improve the performance of
fabrication, challenges persist in the inaccuracy and inef-
ficiency of exploring optimal designs, especially when con-
sidering the optimization of geometries of fabrication parts.
Therefore, efficient optimization of the manufacturing sys-
tem at a more fundamental level, identifying and compart-
mentalizing key geometries and parts, is vital to achieving
better fabrication performance.

State-of-the-art artificial intelligence (Al) algorithms
show great potential in utilizing large amounts of data gen-
erated during the manufacturing process to efficiently find
solutions for optimization problems. Advances in Al tech-
niques, specifically machine learning (ML) algorithms,
have been providing remarkable achievements and success
in various fields including autonomous vehicles, materials
design, additive manufacturing, and biological applications
(Chen & Gu, 2021; Janai et al., 2020; Jin et al., 2020, 2021,
Jumper et al., 2021; Lee et al., 2022; Silver et al., 2016;
Yu et al., 2022). An ML-powered approach can explore
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the underlying relationships between the input informa-
tion and output objectives as learning is done on the given
data. Moreover, ML algorithms can make accurate predic-
tions on the objective when given unseen inputs based on
the obtained analytical relationship. Hence, ML methods
have been used to understand the complicated relationship
between fabrication performance and system inputs such as
process parameters. For instance, neural networks (NNs)
were implemented to understand the relationship between
process parameters (e.g. the flow rate of infill gases, the
substrate temperature, and the pressure) and final product
quality including film thickness and refractive index of
silicon dioxide films for plasma-enhanced chemical vapor
deposition (PECVD) (Chen et al., 2007). The performance
of the NN method reached satisfying performance with a
mean absolute deviation of 10.503 A for thickness pre-
diction and an error rate of 2.67% for the refractive index
value. Recently, researchers have utilized recurrent neural
networks (RNNs) to predict deposition behavior with less
than 5% deviation from the CFD simulation results for
plasma-enhanced atomic layer deposition (PEALD). Accu-
rate predictions from the ML algorithms only take a few
seconds compared to a day of computing the results using
a multiscale CFD model. Although the current methods
have achieved great progress in terms of predicting desired
fabrication performance and accelerating the forward phys-
ical modeling process, challenges still exist in the follow-
ing aspects. First, a gap in the literature exists regarding
optimized hardware designs for the deposition process to
improve fabrication performance. Although tuning process
parameters can reach a local optimal performance, it is
believed that smart hardware design is another major way
to achieve better fabrication quality. Second, the choice of
input design variables requires prior experience with physi-
cal experiments, which is usually nontrivial. Moreover, the
importance of different design variables with respect to
desired outputs is not clearly understood. Lastly, the train-
ing of ML algorithms takes a large number of data points,
which requires heavy computational resources upstream to
generate training data from numerical simulations.
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In this paper, we aim to address the three challenges men-
tioned above through a case study of showerhead design
optimization using efficient machine learning methods
based on CFD simulations. The objective of the optimiza-
tion is to improve the gas flow uniformity of the deposition
process, where the input design variables are showerhead
hole pattern and size, as well as the fillet on the stem part
of the showerhead. Machine learning regression models are
implemented to obtain the relationship between flow uni-
formity and design variables and sensitivity analysis is con-
ducted to quantify the importance of the inputs. In addition,
optimal showerhead designs are proposed through multiple
optimization algorithms including genetic algorithm (GA),
stochastic gradient descent (SGD), and Bayesian optimiza-
tion (BO). The best design reaches 10% more flow unifor-
mity compared to the baseline showerhead design at 10%
of the computational cost of conventional optimization
algorithms when applying BO. Our work achieves the fol-
lowing contributions: (1) Development of an ML-powered
framework capable of optimizing hardware designs for
semiconductor fabrication based on CFD simulation; (2)
Implementation of an efficient optimization algorithm that
can interact with numerical simulation and ML models
during optimization iteration; (3) Automation of generat-
ing multiple optimal designs with high efficiency showing
superior performance compared to baseline prototype. It is
believed that such a framework demonstrated in our case
study can adapt to other optimization problems in all kinds
of manufacturing fields. The paper is organized as follows.
‘Materials and methods’ section discusses detailed informa-
tion and methods regarding the implemented CAE process,
ML models, optimization algorithms, and prototype fabrica-
tion. ‘Results and discussion’ section shows the ML perfor-
mance and optimization results of the developed framework
as well as comparisons between different optimization algo-
rithms. ‘Conclusions and perspectives’ section summarizes
the work, raises current challenges, and proposes future
plans.

Materials and methods

This section deals with details for establishing the CAD and
CFD models, training machine learning surrogate models,
implementing optimization algorithms, as well as fabricat-
ing showerhead prototypes.

Parameterized CAD model and efficient CFD simulation In
order to realize the design parameter study in CFD simu-
lation, a CAD model for the deposition process is built
based on a showerhead patent design developed by Lam
Research (Chandrasekharan et al., 2019) and parameterized

with 30 design variables including dimensions related to the
stem part, back plate, porous baffle, and faceplate as shown
in Fig. 1(b). Most of the design variables deal with the
design of faceplate including the hole pattern and inlet stem
fillet, which are considered two major factors affecting the
flow distribution. Specifically, the faceplate is divided into
20 evenly spaced concentric circles, from zone 1 to zone
20. For each zone, a porosity value will be determined and
treated as a design variable (Fig. 1(b)). The porosity of each
zone is defined as the total area of holes over the area of the
zone and the average porosity of the patent design is about
0.2. Here, the upper and lower bounds of porosity are set
to 0.4 and 0 to have sufficient exploration design space. In
terms of the inlet stem fillet design, two positions are con-
sidered: corner of inlet flow encountering porous baffle and
faceplate. Each design has a design space of fillet radius
from 0 to 3 mm.

CFD simulation is conducted through Ansys Fluent soft-
ware. For the CFD simulation setup, ideal Argon gas with
3 L/min flow is used as inlet and zero-gauge pressure is set
as outlet conditions. The operating pressure is set to 7.5 Torr
(1000 Pa). The temperature boundary condition for the ped-
estal and reactor wall are 400 °C and 75 °C, respectively.
Furthermore, the faceplate is viewed as a porous media with
porosity values determined by the design. To ensure the flow
is passing vertically across the faceplate same as the physi-
cal condition, viscous resistance value in the horizontal
direction is set 1000 times larger than the value in the verti-
cal direction. In terms of the CFD simulation outcome, the
plane of interest is set 1.5 mm above the pedestal with the
same circular shape as the pedestal (radius=200 mm). On
the plane of interest, 50 spokes with equal included angles
are sampled and 50 sampling points (equally separated)
are taken on each spoke. The non-uniformity of the flow is
indicated by the standard deviation (o) of velocity profile
through these 2500 sampling points. To align with industrial
conventions, three-sigma (3c) value is used, which is a sta-
tistical calculation showing the data within three standard
deviations from the mean. Ranges of 36 velocity magnitude
and axial velocity value are calculated as outputs, which are
treated as evaluation metrics indicating the non-uniformity
of the flow. The 30 values calculated based on the patent
design are regarded as baseline results.

Surrogate models Surrogate models are analytical mod-
els to approximate the outcome of complex physical
models and simulations such as FEA and CFD. The main
purpose of implementing surrogate models is to acceler-
ate the generation or prediction of the target objectives
with high accuracy, which provides greater efficiency
for optimization tasks using surrogate models. Taking
the CFD simulation in this paper as an example, it takes
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around 10 min to run the numerical simulation on a desk-
top with Intel i5 CPU. While a typical prediction given
by the surrogate model only costs 1 millisecond, which is
at least 5 orders of magnitude faster. This fast prediction
feature is one reason numerous surrogate models have been
developed in several fields for a variety of applications.
For example, deep neural networks (DNNs) are trained to
predict the deformation of a soft pneumatic joint by given
pressure, force, and torque inputs with high accuracy and
efficiency (Zhang et al., 2022). In this study, regression
models including linear, polynomial, and Gaussian pro-
cess (GP) regression are applied considering the number
of input design variables and complexity of the surrogate
modeling (Galton, 1886; Quinonero-Candela & Rasmus-
sen, 2005; Stigler, 1974). The linear regression model fits
a linear relationship between the scalar output and multiple
input variables. Weight coefficients are assigned and multi-
plied to each input variable and the estimation is the sum of
all products with an intercept coefficient added at the end
to offset the results. The weight coefficients and intercept
coefficients are derived until the difference between estima-
tion and true value is minimized. Polynomial regression is
an elevated regression model with a non-linear relationship
between the input variables, where the fitted relationship
is correlated to a polynomial order of input variables such
as the product of multiple input variables or the power of
a single input variable. The GP regression constructs the
relationship through a joint probability distribution over
the input variables. The prediction of GP interpolates the
observations through a pre-defined kernel, which controls
the shape of the Gaussian function at specific points based
on the similarity between actual true values and predic-
tions. The GP prediction is also probabilistic, which pro-
vides empirical confidence intervals associated with the
predicted values. This feature enables further refitting and
exploration in the region of interest. For ML implementa-
tion, the Python package scikit-learn is used to fit the regres-
sion models mentioned above (Pedregosa et al., 2011). The
collected CFD data points are randomly split into two data-
sets with an 8:2 ratio corresponding to the training to test-
ing dataset ratio. The ML models are fitted on the training
dataset and evaluated using the testing dataset.

Optimization algorithms With the obtained surrogate mod-
els, the performance of the output metrics can be improved
by analyzing the analytical models. Common optimization
algorithms can be classified into two categories based on
objective functions. For differentiable objective functions,
where the derivative can be calculated for any given point
in the input space (e.g. DNNs, regression models), optimi-
zation algorithms such as gradient descent (GD), Newton’s
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method, and line search can be applied. For non-differen-
tiable objective functions, where the derivative cannot be
easily calculated, population algorithms such as genetic
algorithms (GA) provide a feasible choice. In addition to
the conventional optimization process being fully iter-
ated based on the surrogate model, elevated optimization
methods taking advantage of CFD simulation results dur-
ing the optimization iteration are also developed. Adopting
this method, the interaction between the CFD simulation
and optimization algorithms is fulfilled during the iterative
exploration process. Specifically, a small portion of data is
needed to build a GP regression model, which approximates
the analytical relationships using Gaussian distribution. By
defining a proper evaluation (acquisition) function to trade
off exploitation and exploration, a subsequent design will
be proposed and feedbacked into the CFD simulation to get
ground truth performance. The corresponding result will be
concatenated into the initial batch of data points and a new
GP model will be fitted to find the next design. This iterative
on-the-fly method is called Bayesian optimization (BO),
which has achieved successful results in various optimiza-
tion applications (Gongora et al., 2020; Snoek et al., 2012).

In this paper, random search, GA, stochastic gradient
descent (SGD), and BO methods are applied to find the opti-
mal faceplate designs that maximize flow uniformity. Here,
random search is regarded as a baseline model and the col-
lected dataset is used to find the best result for the random
search algorithm. For GA and SGD methods, the trained
ML surrogate model will be utilized. The flow of GA works
as follows: (1) Randomly generate S candidates and evalu-
ate through the ML model; (2) Rank the candidates based on
performance, keep the top P candidates serving as parents,
and discard the remaining S — P candidates; (3) Generate
P children based on a linear combination of P parents; (4)
Randomly generate S — P — P offspring in the new gen-
eration to keep the total generation size constant; (5) Iterate
the previous 4 steps until convergence. The flow of SGD
works as follows: (1) Initialize an initial design point to
start; (2) Calculate the gradient with respect to each input
variable; (3) Update the inputs toward the negative direction
of the gradient; (4) Randomly generate another initial design
point and iterate the previous 3 steps until convergence. The
advantage of the conventional optimization methods includ-
ing GA and SGD is that they have a faster convergence rate
compared to random search due to their exploration core
based on either evolutionary search or gradient evaluation.
Additionally, the BO approach has more advantages when
the final objectives are expensive to evaluate and there is no
access to the derivatives (e.g., CFD physics simulations) as
the algorithm explores the design field based on the prob-
ability of interest location.
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Showerhead prototype and fabrication The porosity of the
faceplate is modulated through the faceplate hole patterns
by manipulating the diameter and number of holes in indi-
vidual zones. Holes are positioned at the middle line of each
zone, owing to the concentric circular pattern (around a cen-
ter point). Hole diameters are sized between 1 and 4 mm
depending on the porosity level. The showerhead prototype
is built to show the potential to fabricate samples with vari-
ous porosity distributions for conducting experiments. The
prototype is fabricated mainly using 3D-printing and laser
cutting. The faceplate is built using a laser cutter (ULTRA
R9000) with casted acrylic; stem, porous baffle, and back
plates are fabricated with polylactic acid (PLA) material
using fused filament fabrication (FFF) 3D-printer (Ulti-
maker 3).

Results and discussion

Machine learning model implementation and sensitivity
analysis With the parameterized CAD model and CFD sim-
ulation, both inputs and outputs of the ML model are defined.
The inputs have 22 variables, which are comprised of 20
porosity values corresponding to each zone on the face-
plate plus 2 radius values for the fillet design. The outputs
are the 3¢ values calculated based on the velocity profile at
the plane of interest. Figure 2(a) shows the velocity magni-
tude at the plane of interest for the baseline faceplate design.
For the data collection, a batch of designs (1000 data points,
Fig. 2(b)) are generated randomly and fed into Ansys Fluent
software to obtain the flow uniformity performance automat-
ically. The 3o value of the axial velocity is treated as ground
truth and used to fit a regression model based on design input
variables. Here, the axial velocity is determined as objective
due to its dominant effect on the flow uniformity normal to
the plane of interest compared to using velocity magnitude
which includes a radial component. Both linear and polyno-
mial regression models are implemented and reach R values
over 99%, which indicates a decent fit of the relationship.
The regression model reaches its best performance (R* =
99.8%) when a second-order polynomial regression model
is used (Fig. 2(c)). Here, all the predicted and ground truth
values are normalized by the baseline value (1.0 indicates
the baseline result). A smaller number indicates more flow
uniformity (less velocity deviation).

Sensitivity analysis is performed to better understand
the machine learning model, especially the importance of
different design variables. Here, each variable’s gradient
(weight coefficient) is obtained from the linear regression
model and shown in Fig. 2(d). A high absolute value of the

weight coefficient indicates a higher influence on the objec-
tive output. From the curve, we can see the porosity value of
the inner zones and fillet 2 have larger coefficients meaning
more dominance with respect to the uniformity of the flow.
Intuitively, these design variables are all major components
in direct contact with the incoming flow and are believed to
be the most critical in terms of design space. It is worth not-
ing that sensitivity analysis also helps determine the num-
ber of zones on the faceplate design. Initially, 10 zones (10
porosity values) are considered to fully describe the design
space. As sensitivity analysis concludes the importance
of inner zones, a finer division (20 zones) is applied. For
the inner zones, from zone 1 to zone 10, different porosity
values are assigned to each zone; for the outer zones, from
zone 11 to zone 20, identical porosity values are assigned
to pairs of adjacent zones (e.g., zones 11 and 12 share the
same porosity value, zones 13 and 14 share another porosity
value). This division maintains the same spacing of concen-
tric circles and the assignment of porosity values sufficiently
controls the design space as well.

Conventional optimization approach and optimized face-
plate designs With the trained ML surrogate models, the
analytical relationship between input design variables
against output objective is obtained. Hence, optimal designs
can be generated by evaluating their performance based on
the surrogate model by applying state-of-the-art optimization
algorithms. Here, two optimization methods GA and SGD
are utilized to find the optimal faceplate design. To simplify
the optimization process, fillet design is not included in this
subsection (fillet radii are zero). Results with fillet design
will be demonstrated with an elevated optimization method
in the next subsection. Figure 3(a) shows the optimization
process of GA using and as defined in the material and
methods section. We can see a stepped downward curve for
the performance profile indicating more uniformity (better
results) reached by new generations. Figure 3(b) shows the
performance profile for an iteration of SGD method achiev-
ing the optimal result. As the inputs (porosity values) keep
decreasing during the gradient descent updates, a stop limit
of 0.01 is set to prevent the porosity value from becoming
too small or negative. The iteration stops when four poros-
ity values reach the stop limit considering the feasibility
of fabricating the designed prototype. The vertical axis of
the optimization performance curve is the normalized non-
uniformity value (3o value) by dividing the baseline result.
Both optimization methods find their top design reaching
5.7% more uniformity in their best optimization iteration.
Taking the best design obtained from GA as an example,
the porosity distribution with zone information is shown in
Fig. 3(c) and its schematic design is displayed using 1600
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Fig.2 (a) CFD results showing velocity profile on the plane of interest.
(b) The distribution of collected data points with horizontal axis show-
ing normalized 3¢ value against the baseline. The red dashed curve
shows a fitted normal distribution of the samples. (c) ML model pre-

holes with diameters ranging from 1 to 4 mm shown in
Fig. 4. The physical prototype is fabricated using laser cut-
ting and 3D-printing method mentioned in the material and
methods section and the size of the assembled prototype is
240 mm - 240 mm - 350 mm, which is a 73% scaled version
of the original model due to the build size constraints of the
3D-printer and laser cutter (Fig. 4). Additionally, superior
designs and inferior designs are presented in Fig. 5(a) for
both optimization methods. The first row shows three infe-
rior designs obtained by GA algorithm. We can see dramatic
variations in the porosity values across the zones, which is
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not ideal when aiming to achieve a uniform flow distribu-
tion. The second and third rows show three superior designs
for GA and SGD methods. They all share a similar porosity
tendency at the inner zones as porous baffle is in the center
and directly interacts with the inlet flow. For inner zones,
a large porosity value is first assigned to zone 1 and has a
gradually increased tendency in the direction away from the
origin. This indicates that such porosity pattern is benefi-
cial to generate a more uniform flow distribution. Besides
showing the results of faceplate designs, the flow profiles of
different designs are also compared at the plane of interest.



Journal of Intelligent Manufacturing

(a) (b) (€) 040
0.958 —— Genetic algorithm performance 1.000 { Stochastic gradient descent — Top design
performance
0.35 1
B 0.956 © |
2 I\;’I: 0.990 0.30
fé 0.954 ‘é
5 5 0.980 0.25
-“E 0.952 = -~ —1—
2
Z z 20.201
c c o V..
e 0.950 ) 0.970 :2_
o T
S 0948 3 015
g g 0.960
J
g 0.946 g 0.10
0.9504
0.944 0.05
0.940 0.00
0 10 20 30 40 50 0 25 75 100 125 0O 2 4 6 8 10 12 14 16 18 20

Number of iterations

Number of steps

Zone number

Fig. 3 (a, b) Optimization performance of GA and SGD method. (c) The top design obtained from GA method showing the porosity profile with

respect to zone number

GER0000G4,

20000005n
500000

060000,

s
OB
20500
. 200200
506056059,
Soeo502509
o0

TO0G:

5000000
6500000

0000000

00
%2000,

056060030¢,

HACOS
55800
AC ¢
o

00
000!
cSho

o
nC oo
O

&
50
G005 CCT
29cCe0
0°C7a0
0%0%0 T
Kot

4
o

i

c o

Cod

Optimized faceplate design

Fabricated faceplate design

3D printed
Stem parts

Assembled showerhead prototype

Fig. 4 Fabricated faceplate prototype based on proposed top faceplate design from genetic algorithm

In Fig. 5(b), axial velocity distribution along the radial dis-
tance is presented for the baseline design, an inferior design,
and a superior design from GA. The green curve from the
optimized faceplate design shows the best performance for
flow uniformity. The velocity at a radial distance close to the
origin is effectively lowered with the optimized faceplate
design, which also leads to more flow uniformity at the full
domain.

Bayesian optimization (BO): an elevated approach of higher
efficiency at a lower computational cost By using the con-
ventional optimization methods introduced in the previous
section, a series of optimal designs are obtained showing
remarkable improvement in flow uniformity. However,
before the optimization step, a large training dataset is
required (1000 data points) to fit an accurate ML surrogate
model, which is time-consuming.

During the optimization iteration, the proposed design
is generated solely from the ML surrogate model. The
lack of communication between the CFD simulation and
ML model during the optimization process can potentially

cause propagating errors in the performance of the proposed
designs. Hence, to accelerate and improve the optimization
process, a BO based approach is applied which saves a large
amount of data preparation cost and computational time
(Gongora et al., 2020; Snoek et al., 2012). Here, a small
portion of data (50 data points in our case) is initially used
to build a GP model. A radial basis function (RBF) kernel
is used due to its Gaussian form and wide applicability. The
probability of improvement (PI) function is applied as the
acquisition function to select the next exploration point,
which has the highest probability of superior performance.
When the subsequent design is proposed, it is fed back into
the CFD simulation to get the ground truth performance.
The corresponding result is concatenated into the initial
batch of data points and a new GP model is fitted to propose
the next design. Figure 6(a) shows the BO learning perfor-
mance for 50 iterations and reaches 5.5% more uniformity
when no fillet design is involved. When fillet designs are
taken into consideration, based on the sensitivity analysis
shown in Fig. 2(d), fillet 1 has a positive correlation with
non-uniformity, while fillet 2 has a negative correlation
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Fig. 6 (a) Optimization performance of BO method. (b) CAD model showing the best fillet designs with fillet 1 =0 mm and fillet 2=3 mm. (c)
Top candidate designs for three optimization methods (GA, SGD, and BO) with fillet designs

Table1 Summary ofthe top designs from four optimization approaches
with and without fillet designs

Algorithms Improvement of top Improvement of top
design design
with faceplate with faceplate +fillet
ML model CFD ML model CFD
prediction simulation prediction  simulation
Random search / +1.7% / +3.6%
Genetic +5.7% +5.3% +10.0% +9.9%
algorithm
Stochastic gra-  +5.7% +5.4% +9.7% +9.6%
dient descent
Bayesian / +5.5% / +9.6%

optimization

with non-uniformity. Hence, the value of fillet 1 needs to
be minimized (set to 0 mm) and the value of fillet 2 should
be maximized (set to 3 mm considering the design space
limitation) (Fig. 6(b)). We conclude that adopting such an
optimized pair of fillet designs is beneficial for flow unifor-
mity. With the determined fillet designs creating the opti-
mal flow uniformity, a top candidate design with 9.6% more
uniformity is obtained through the BO method. The poros-
ity profile of the best candidate from all three algorithms
(GA, SGD, and BO) are presented in Fig. 6(c) with their
detailed flow uniformity performance shown in Table 1. The
added fillet design leads to another boost in generating a

more uniform flow for all the optimization algorithms and
reaching an optimal of 10% increased uniformity using GA
method. Although BO does not show the best performance
in the fillet design case, it still reaches competitive results
considering that it only uses a tenth of the data points com-
pared to the other algorithms. It is believed that with more
learning data and optimization iterations, BO method can
achieve the same or even better performance compared
to 10% more flow uniformity. By comparing the porosity
profile obtained with fillet design and non-fillet design, the
porosity values of the inner zones tend to be zero (a solid
region). The results match the sensitivity analysis as the
inner zones have a positive correlation with non-uniformity,
which needs to be minimized to increase uniformity. The
fillet design, too, largely contributes to the spreading of inlet
flow to the remote end of the showerhead, which weakens
the effect of porous baffle and the inner zones of the face-
plate below it.

Conclusions and perspectives
In summary, a hardware optimization framework is estab-

lished through a case study of showerhead design for the
semiconductor deposition process. ML surrogate models
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are trained based on data collected from an efficient CFD
simulation model. Coefficient of determination score R2
=99.8% is reached for the best ML regression model indi-
cating a near-perfect fit of the relationship between design
variables and flow uniformity. Sensitivity analysis is also
conducted showing greater importance of decreasing the
porosity values in the inner zone and fillet designs. Con-
ventional optimization methods such as random search, GA,
and SGD approaches are conducted, and multiple optimal
showerhead designs are proposed. The top candidate design
with refined fillet radii reaches 10% more uniformity com-
pared to the baseline showerhead prototype. Additionally,
Bayesian optimization is further implemented showing a
competitive performance (9.6% more uniformity) with only
one-tenth of the data points required against conventional
methods. If the time of optimization iteration is considered
negligible compared to the data collection process, the BO
approach accelerates the exploration of optimal designs 10
times faster than the conventional optimization algorithms.
Lastly, the proposed top candidate design is fabricated using
laser cutting and 3D-printing for demonstration of manufac-
turing feasibility and potential use in future experimental
validation. An experimental setup based on the deposition
process will be built for validating the performance of show-
erhead designs in our future work. A qualitative compari-
son of the flow uniformity performance between proposed
optimal designs and baseline prototypes can be studied by
visualizing and measuring the flow velocity using anemom-
eters. Moreover, the established framework is envisioned
to be augmented to encompass multiple objective functions
(e.g., flow and thermal uniformity) and more design vari-
ables (e.g., hardware design parameters and process param-
eters) based on problem settings. Finally, prior knowledge
obtained from CFD simulations can be used as guidance
to design better acquisition functions used to propose new
designs during the BO process. A similar approach has been
validated in optimizing the toughness of 3D-printed struc-
tures using prior simulation results obtained from finite
element analysis (FEA) (Gongora et al., 2021). A faster con-
vergence rate and better performance are achieved using the
FEA-informed BO method. This method can be transferred
to our framework by involving discrepancy of simulation
ground truth and GP surrogate model prediction during the
calculation of acquisition function to explore a better sub-
sequent design. It is believed that the developed framework
can be expanded and adapted to a platform with multiple
objectives and advanced algorithms to find solutions for
different kinds of optimization problems in manufacturing
systems such as semiconductor fabrication and additive
manufacturing.

Acknowledgements This work used the Extreme Science and Engi-
neering Discovery Environment (XSEDE) Bridges system, which

@ Springer

is supported by National Science Foundation (Fund number ACI-
1548562). The authors acknowledge support from the National
Science Foundation (Fund Number: DMREF-2119276) and Lam
Research Unlock Ideas Program.

References

Chandrasekharan, R., Sangplung, S., Swaminathan, S., Pasquale, F.,
Kang, H., Lavoie, A., Augustyniak, E., Sakiyama, Y., Baldasse-
roni, C., & Varadarajan, S. (2019). Low volume showerhead with
faceplate holes for improved flow uniformity.

Chen, W. C., Lee, A. H. 1., Deng, W. J., & Liu, K. Y. (2007).
2007/05/01/). The implementation of neural network for semi-
conductor PECVD process. Expert Systems with Applications,
32(4), 1148-1153. https://doi.org/10.1016/j.eswa.2006.02.013.

Chen, C. T., & Gu, G. X. (2021). Learning hidden elasticity with deep
neural networks. Proceedings of the National Academy of Sci-
ences, 118(31).

DePinto, G., & Wilson, J. (1990). Optimization of LPCVD silicon
nitride deposition process by use of designed experiments. IEEE/
SEMI Conference on Advanced Semiconductor Manufacturing
Workshop

Ding, Y., Zhang, Y., Ren, Y. M., Orkoulas, G., & Christofides, P. D.
(2019). 2019/11/01/). Machine learning-based modeling and
operation for ALD of SiO2 thin-films using data from a multiscale
CFD simulation. Chemical Engineering Research and Design,
151, 131-145. https://doi.org/10.1016/j.cherd.2019.09.005.

Galton, F. (1886). Regression towards mediocrity in hereditary stature.
The Journal of the Anthropological Institute of Great Britain and
Ireland, 15, 246-263.

Gongora, A. E., Xu, B., Perry, W., Okoye, C., Riley, P., Reyes, K. G.,
Morgan, E. F., & Brown, K. A. (2020). A bayesian experimental
autonomous researcher for mechanical design. Science advances,
6(15), eaaz1708.

Gongora, A. E., Snapp, K. L., Whiting, E., Riley, P., Reyes, K. G.,
Morgan, E. F., & Brown, K. A. (2021). Using simulation to accel-
erate autonomous experimentation: a case study using mechanics.
Iscience, 24(4), 102262.

Janai, J., Gliney, F., Behl, A., & Geiger, A. (2020). Computer vision
for autonomous vehicles: problems, datasets and state of the art.
Foundations and Trends® in Computer Graphics and Vision,
12(1-3), 1-308.

Jin, Z., Zhang, Z., Demir, K., & Gu, G. X. (2020). Machine learning
for advanced additive manufacturing. Matter, 3(5), 1541-1556.

Jin, Z., Zhang, Z., Ott, J., & Gu, G. X. (2021). Precise localization and
semantic segmentation detection of printing conditions in fused
filament fabrication technologies using machine learning. Addi-
tive Manufacturing, 37, 101696.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger,
0., Tunyasuvunakool, K., Bates, R., Zidek, A., & Potapenko, A.
(2021). Highly accurate protein structure prediction with Alpha-
Fold. nature, 596(7873), 583-589.

Lee, S., Zhang, Z., & Gu, G. X. (2022). Generative machine learning
algorithm for lattice structures with superior mechanical proper-
ties. Materials Horizons, 9(3), 952-960.

Li, J., Fei, Z., Xu, Y., Wang, J., Fan, B., Ma, X., & Wang, G. (2018).
Study on the optimization of the deposition rate of planetary GaN-
MOCVD films based on CFD simulation and the corresponding
surface model. Royal Society Open Science, 5(2), 171757. https://
doi.org/10.1098/rs0s.171757.

Liao, C. C., Hsiau, S. S., & Chuang, T. C. (2018). 2018/01/01). Model-
ing and designing a new gas injection diffusion system for met-
alorganic chemical vapor deposition. Heat and Mass Transfer,
54(1), 115-123. https://doi.org/10.1007/s00231-017-2110-8.


http://dx.doi.org/10.1016/j.eswa.2006.02.013
http://dx.doi.org/10.1016/j.cherd.2019.09.005
http://dx.doi.org/10.1098/rsos.171757
http://dx.doi.org/10.1098/rsos.171757
http://dx.doi.org/10.1007/s00231-017-2110-8

Journal of Intelligent Manufacturing

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg,
V. (2011). Scikit-learn: machine learning in Python. The Journal
of Machine Learning Research, 12, 2825-2830.

Quinonero-Candela, J., & Rasmussen, C. E. (2005). A unifying view
of sparse approximate gaussian process regression. The Journal
of Machine Learning Research, 6, 1939—1959.

Selep, M. J., Borth, A. J., Wiltse, J. M., Slevin, D. M., & Madsen, E.
(2019). Chemical vapor deposition shower head for uniform gas
distribution.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den
Driessche, G., Schrittwieser, J., Antonoglou, 1., Panneershelvam,
V., & Lanctot, M. (2016). Mastering the game of go with deep
neural networks and tree search. nature, 529(7587), 484—489.

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian
optimization of machine learning algorithms.Advances in neural
information processing systems, 25.

Stigler, S. M. (1974). Gergonne’s 1815 paper on the design and analy-
sis of polynomial regression experiments. Historia Mathematica,
1(4), 431-439.

Xia, H., Xiang, D., & Mou, P. (2014). Simulation-Based optimization
of a Vector Showerhead System for the control of Flow Field Pro-
file in a Vertical Reactor Chamber. Advances in Mechanical Engi-
neering, 6, 525102. https://doi.org/10.1155/2014/525102.

Yu, C. H., Wu, C. Y., & Buehler, M. J. (2022). Deep learning based
design of porous graphene for enhanced mechanical resilience.
Computational Materials Science, 206, 111270.

Zhang, Z., Jin, Z., & Gu, G. X. (2022). Efficient pneumatic actuation
modeling using hybrid physics-based and data-driven framework.
Cell Reports Physical Science, 3(4), 100842.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

@ Springer


http://dx.doi.org/10.1155/2014/525102

	﻿Machine learning enabled optimization of showerhead design for semiconductor deposition process
	﻿Abstract
	﻿Introduction
	﻿﻿Materials and methods
	﻿﻿Results and discussion
	﻿﻿Conclusions and perspectives
	﻿References


