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Abstract
Various optimal gradient-based algorithms have
been developed for smooth nonconvex optimiza-
tion. However, many nonconvex machine learn-
ing problems do not belong to the class of smooth
functions and therefore the existing algorithms
are sub-optimal. Instead, these problems have
been shown to satisfy certain generalized-smooth
conditions, which have not been well understood
in the existing literature. In this paper, we propose
a notion of α-symmetric generalized-smoothness
that extends the existing notions and covers many
important functions such as high-order polyno-
mials and exponential functions. We study the
fundamental properties and establish descent lem-
mas for the functions in this class. Then, to solve
such a large class of nonconvex problems, we
design a special deterministic normalized gradi-
ent descent algorithm that achieves the optimal
iteration complexity O(ϵ−2), and also prove that
the popular SPIDER variance reduction algorithm
achieves the optimal sample complexity O(ϵ−3)
in the stochastic setting. Our results show that
solving generalized-smooth nonconvex problems
is as efficient as solving smooth nonconvex prob-
lems.

1. Introduction
In many modern machine learning applications, training
machine learning model requires solving a nonconvex opti-
mization problem with big data, for which many efficient
gradient-based optimization algorithms have been devel-
oped, e.g., gradient descent (GD) (Carmon et al., 2020),
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stochastic gradient descent (SGD) (Ghadimi and Lan, 2013)
and many advanced stochastic variance reduction algorithms
(Fang et al., 2018; Wang et al., 2019). In particular, the com-
plexities of these algorithms have been extensively studied
in nonconvex optimization. Specifically, under the standard
assumption that the objective function is L-smooth (i.e., has
Lipschitz continuous gradient), it has been shown that the
basic GD algorithm (Carmon et al., 2020) and many ad-
vanced stochastic variance reduction algorithms (Fang et al.,
2018; Cutkosky and Orabona, 2019) achieve the complexity
lower bounds of finding an approximate stationary point of
deterministic nonconvex optimization and stochastic non-
convex optimization, respectively. 1

Although the class of smooth nonconvex problems can be
effectively solved by the above provably optimal algorithms,
it does not include many important modern machine learn-
ing applications, e.g., distributionally robust optimization
(DRO) (Jin et al., 2021) and language model learning (Zhang
et al., 2019), etc. Specifically, for the problems involved in
these applications, they are not globally smooth but have
been shown to satisfy certain generalized-smooth condi-
tions, in which the smoothness parameters scale with the
gradient norm in various ways (see the formal definitions in
Section 2). To solve these generalized-smooth-type noncon-
vex problems, the existing works have developed various
gradient-based algorithms, but only with sub-optimal com-
plexity results for stochastic optimization. Therefore, we
are motivated to systematically build a comprehensive un-
derstanding of generalized-smooth functions and develop
algorithms with improved complexities.

To achieve this overarching goal, we need to address several
fundamental challenges. First, the existing generalized-
smooth conditions are proposed for specific application ex-
amples. Therefore, they define relatively restricted classes
of functions that do not cover many popular ones such as
high-order polynomials and exponential functions. Thus,
we are motivated to consider the following question.

• Q1: How to extend the existing notion of generalized-
smoothness to cover a broad range of functions used in

1Deterministic and stochastic optimization problems are for-
mulated respectively as minw f(w) and minw Eξ∼Pfξ(w).
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machine learning practice? What are the fundamental
properties of the functions in this class?

Second, for such an extended class of generalized-smooth
problems, it is expected that first-order algorithms may gen-
erally suffer from higher computation complexity (as com-
pared to solving smooth problems). On the other hand, it
is unclear how to design first-order algorithms that can effi-
ciently solve these more challenging problems. Therefore,
we aim to answer the following question.

• Q2: Can first-order algorithms solve generalized-smooth
nonconvex problems as efficiently as solving smooth non-
convex problems? In particular, what algorithms can
achieve the optimal complexities?

1.1. Our Contribution

In this paper, we provide comprehensive and affirmative
answers to the aforementioned fundamental questions. Our
contributions are summarized as follows.

• We propose a class of α-symmetric generalized-smooth
functions, denoted by L∗

sym(α), which we show strictly
contains the popular class of L-smooth functions (i.e.,
functions with Lipschitz continuous gradient), the class
of asymmetric generalized-smooth functions (Levy et al.,
2020; Jin et al., 2021) and the class of Hessian-based
generalized-smooth functions (Zhang et al., 2019) (see the
definitions in Section 2). In particular, we show that our
proposed function class L∗

sym(α) includes a wide range of
popular machine learning problems and functions used
in practice, including distributionally robust optimization
(Levy et al., 2020; Jin et al., 2021), objective function of
language models (Zhang et al., 2019), high-order polyno-
mials and exponential functions.

• We study the fundamental properties of functions in the
class L∗

sym(α) and establish new decent lemmas for func-
tions in L∗

sym(α) with different values of α (See Proposi-
tion 1). These technical tools play an important role later
in designing new gradient-based algorithms and develop-
ing their corresponding convergence analysis.

• We develop a β-normalized gradient descent (named
β-GD) algorithm for solving nonconvex problems in
L∗

sym(α), which normalizes the gradient ∇f(wt) with the
factor ∥∇f(wt)∥β in each iteration. We show that β-GD
finds an approximate stationary point E∥∇f(w)∥ ≤ ϵ
with iteration complexity O(ϵ−2) as long as α ≤ β ≤ 1,
which matches the iteration complexity lower bound for
deterministic smooth nonconvex optimization and hence
is an optimal algorithm. On the other hand, we show that
it may diverge when 0 < β < α is used.

• For nonconvex stochastic optimization, we propose a class
of expected α-symmetric generalized-smooth functions,

denoted by EL∗
sym(α), which substantially generalizes

the popular class of expected smooth functions. Inter-
estingly, we prove that the original SPIDER algorithm
still achieves the optimal sample complexity O(ϵ−3) for
solving nonconvex stochastic problems in EL∗

sym(α).

In summary, our work reveals that generalized-smooth non-
convex (stochastic) optimization is as efficient as smooth
nonconvex (stochastic) optimization, and the optimal com-
plexities can be achieved by β-GD (for deterministic case)
and SPIDER (for stochastic case), respectively.

1.2. Related Work

L-smooth Functions L: For deterministic nonconvex L-
smooth problems, it is well-known that GD achieves the
optimal iteration complexity O(ϵ−2) (Carmon et al., 2020).
For stochastic nonconvex problems f(w) := Eξ∼Pfξ(w),
SGD achieves O(ϵ−4) sample complexity (Ghadimi and
Lan, 2013) which has been proved optimal for first-order
stochastic algorithms if only the population loss f is L-
smooth (Arjevani et al., 2022). (Fang et al., 2018) proposed
the first variance reduction algorithm named SPIDER that
achieves the optimal sample complexity O(ϵ−3) under the
stronger expected smoothness assumption (see eq. (17) for
its definition). At the same time, several other variance
reduction algorithms have been developed for stochastic
nonconvex optimization that achieve the optimal sample
complexity. For example, SARAH (Nguyen et al., 2017)
and SpiderBoost (Wang et al., 2019) can be seen as unnor-
malized versions of SPIDER. STORM further improved
the practical efficiency of these algorithms by using single-
loop updates with adaptive learning rates (Cutkosky and
Orabona, 2019). (Zhou et al., 2020) proposed the SNVRG
algorithm by adjusting the SVRG variance reduction tech-
nique (Johnson and Zhang, 2013; Reddi et al., 2016) using
multiple nested reference points, which also converge to a
second-order stationary point.

Hessian-based Generalized-smooth Functions L∗
H:

(Zhang et al., 2019) extended the L-smooth function class
to a Hessian-based generalized-smooth function class L∗

H
which allows the Lipschitz constant to linearly increase
with the gradient norm (see Definition 2) and thus includes
higher-order polynomials and many language models that
are not L-smooth. For objective function on L∗

H, (Zhang
et al., 2019) also proposed clipped GD and normalized
GD which keep the optimal iteration complexity O(ϵ−2),
and proposed clipped SGD which also achieves sample
complexity O(ϵ−4). (Zhang et al., 2020) proposed a
general framework for clipped GD/SGD with momentum
acceleration and obtained the same complexities for both
deterministic and stochastic optimization. (Zhao et al.,
2021) obtained sample complexity O(ϵ−4) for normalized
SGD with both small constant stepsize and diminishing
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stepsize. A contemporary work (Reisizadeh et al., 2023)
reduced the sample complexity to O(ϵ−3) by combining
SPIDER variance reduction technique with gradient
clipping.

Asymmetric Generalized-Smooth Functions L∗
asym: Vari-

ants of clipped/normalized GD and SGD have been pro-
posed on the asymmetric generalized-smooth function class
L∗

asym, which looks like a first-order variant of L∗
H (see Defi-

nition 1). For example, (Jin et al., 2021) applied mini-batch
normalized SGD with momentum proposed by (Cutkosky
and Mehta, 2020) to distributionally robust optimization
problem which has been proved equivalent to minimizing
a function in L∗

asym (Levy et al., 2020; Jin et al., 2021),
and also obtained sample complexity O(ϵ−4). (Yang et al.,
2022) made normalized and clipped SGD differentially pri-
vate by adding Gaussian noise. (Crawshaw et al., 2022)
proposed generalized signSGD with ADAM-type normaliza-
tion and obtained sample complexity O(ϵ−4) on a smaller
coordinate-wise version of L∗

asym.

2. Existing Notions of Generalized-Smoothness
The class of L-smooth functions, which we denote as L,
includes all continuously differentiable functions with Lips-
chitz continuous gradient. Specifically, for any f ∈ L, there
exists L0 > 0 such that

∥∇f(w′)−∇f(w)∥ ≤ L0∥w′ − w∥, ∀w,w′ ∈ Rd. (1)

Many useful functions fall into this class, e.g., quadratic
functions, logistic functions, etc. Nevertheless, L is a re-
stricted function class that cannot efficiently model a broad
class of functions, including higher-order polynomials, ex-
ponential functions, etc. For example, consider the one-
dimensional polynomial function f(x) = x4 in the range
x ∈ [−10, 10]. According to (1), its smoothness parameter
L0 can be as large as 1200, leading to an ill-conditioned
problem that hinders optimization.

To address this issue and provide a better model for opti-
mization, previous works have introduced various notions
of generalized-smoothness, which cover a broader class of
functions that are used in machine learning applications.
For example, distributionally robust optimization (DRO)
is an important machine learning problem, and recently it
has been proved that DRO can be reformulated as another
problem whose objective function belongs to the follow-
ing asymmetric generalized-smooth function class (L∗

asym)
(Levy et al., 2020; Jin et al., 2021).
Definition 1 (L∗

asym function class). The asymmetric
generalized-smooth function class L∗

asym is the class of differ-
entiable functions f : Rd → R that satisfy the following con-
dition for all w,w′ ∈ Rd and some constants L0, L1 > 0.

∥∇f(w′)−∇f(w)∥≤
(
L0+L1∥∇f(w′)∥

)
∥w′−w∥. (2)

To elaborate, we name the above function class asymmet-
ric generalized-smooth as the definition in (2) takes an
asymmetric form. In particular, the smoothness parame-
ter of the functions in L∗

asym scales with the gradient norm
∥∇f(w′)∥. This implies that the nonconvex problem can
be ill-conditioned in the initial optimization stage when the
gradient is relatively large.

On the other hand, (Zhang et al., 2019) showed that high-
order polynomials and many language models belong to the
following Hessian-based generalized-smooth function class
L∗

H.

Definition 2 (L∗
H function class). The Hessian-based

generalized-smooth function class L∗
H is the class of twice-

differentiable functions f : Rd → R that satisfy the fol-
lowing condition for all w ∈ Rd and some constants
L0, L1 > 0.

∥∇2f(w)∥ ≤ L0 + L1∥∇f(w)∥. (3)

In addition to the above notions of generalized-smoothness,
many other works have developed optimization algorithms
for minimizing the class of higher-order smooth functions,
i.e., functions with Lipschitz continuous higher-order gra-
dients (Nesterov and Polyak, 2006; Carmon et al., 2020;
2021). However, the resulting algorithms usually require
either computing higher-order gradients or solving higher-
order subproblems, which are not suitable for machine learn-
ing applications with big data. In the following subsection,
we propose a so-called α-symmetric generalized-smooth
function class, which we show substantially generalizes the
existing generalized-smooth function classes and covers a
wide range of functions used in many important machine
learning applications.

3. The α-Symmetric Generalized-Smooth
Function Class

We propose the following class of α-symmetric generalized-
smooth functions L∗

sym(α), which we show later covers
the aforementioned generalized-smooth function classes
and includes many important machine learning problems.
Throughout the whole paper, we define 00 = 1.

Definition 3 (L∗
sym(α) function class). For α ∈ [0, 1], the α-

symmetric generalized-smooth function class L∗
sym(α) is the

class of differentiable functions f : Rd → R that satisfy the
following condition for all w,w′ ∈ Rd and some constants
L0, L1 > 0.

∥∇f(w′)−∇f(w)∥
≤
(
L0 + L1 max

θ∈[0,1]
∥∇f(wθ(w,w′))∥α

)
∥w′ − w∥, (4)

where wθ(w,w′) := θw′ + (1− θ)w.
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Remark: we use wθ(w,w′) to emphasize its dependence
on w,w′. Later whenever w,w′ is given, we will use the
abbreviation wθ.

It can be seen that the above function class L∗
sym(α)

covers the aforementioned function classes L (corre-
sponds to L1 = 0) and L∗

asym (with L1 > 0, α = 1
and maxθ∈[0,1] ∥∇f(wθ(w,w′))∥ being replaced with the
smaller term ∥∇f(w)∥). In particular, compared to the
asymmetric generalized-smooth function class L∗

asym, our
proposed function class L∗

sym(α) generalizes it in two as-
pects. First, L∗

sym(α) defines generalized-smoothness in a
symmetric way with regard to the points w and w′ since
it considers the maximum gradient norm over the line seg-
ment {wθ : θ ∈ [0, 1]}. As a comparison, L∗

asym defines
generalized-smoothness in an asymmetric way. Second,
L∗

sym(α) covers the functions whose smoothness parameter
can scale polynomially as maxθ∈[0,1] ∥∇f(wθ)∥α, whereas
L∗

asym only considers the special case α = 1.

Next, we show connections among all these generalized-
smooth function classes, and prove that our proposed func-
tion class L∗

sym(α) is substantially bigger than others.

Theorem 1 (Function class comparison). The generalized-
smooth function classes L∗

asym, L∗
H and L∗

sym(α) satisfy the
following properties.

1. L∗
asym ⊂ L∗

sym(1);

2. L∗
H ⊂ L∗

sym(1). Moreover, they are equivalent when
restricted to the set of twice-differentiable functions;

3. The polynomial function f(w) = |w|
2−α
1−α , w ∈ R, α ∈

(0, 1) satisfies f ∈ L∗
sym(α). However, f ̸∈ L∗

sym(α̃) for
all α̃ ∈ (0, α) and f ̸∈ L∗

asym;

4. The exponential function f(w) = ew + e−w, w ∈ R
satisfies f ∈ L∗

sym(1). However, f ̸∈ L∗
sym(α̃) for all

α̃ ∈ (0, 1) and f ̸∈ L∗
asym.

Remark: The functions in items 3 & 4 can be generalized to
high-dimensional case w ∈ Rd by using f(w) = ∥w∥

2−α
1−α

and f(w) = e∥w∥ + e−∥w∥ respectively.

To elaborate, items 1 & 2 show that a special case of our
proposed α-symmetric generalized-smooth function class
L∗

sym(1) includes the other existing generalized-smooth
function classes L∗

asym,L∗
H. In particular, when f is re-

stricted to be twice-differentiable, the class L∗
H is equivalent

to L∗
sym(1). Moreover, items 3 & 4 show that our proposed

generalized-smooth function class L∗
sym(α) includes a wide

range of ‘fast-growing’ functions, including high-order poly-
nomials and even exponential functions, which are not in-
cluded in L∗

asym. In summary, our proposed α-symmetric
generalized-smooth function class L∗

sym(α) extends the ex-
isting boundary of smooth functions in nonconvex optimiza-
tion.

Next, for the functions in L∗
sym(α), we establish various

important technical tools that are leveraged later to develop
efficient algorithms and their convergence analysis.

Proposition 1 (Technical tools). The function class L∗
sym(α)

can be equivalently defined as follows.

1. For any α ∈ (0, 1), function f belongs to L∗
sym(α) if and

only if for any w,w′ ∈ Rd,

∥∇f(w′)−∇f(w)∥ ≤ ∥w′ − w∥ (5)

·
(
K0 +K1∥∇f(w)∥α+K2∥w′ − w∥

α
1−α
)
.

where K0 := L0

(
2

α2

1−α + 1
)
, K1 := L1 · 2

α2

1−α · 3α,

K2 := L
1

1−α

1 · 2
α2

1−α · 3α(1− α)
α

1−α .

2. For α = 1, function f belongs to L∗
sym(1) if and only if

for any w,w′ ∈ Rd,

∥∇f(w′)−∇f(w)∥ ≤ ∥w′ − w∥ (6)

·
(
L0 + L1∥∇f(w)∥

)
exp

(
L1∥w′ − w∥

)
.

Consequently, the following descent lemmas hold.

3. If f ∈ L∗
sym(α) for α ∈ (0, 1), then for any w,w′ ∈ Rd,

f(w′) ≤ f(w) +∇f(w)⊤(w′ − w) +
1

2
∥w′ − w∥2

·
(
K0 +K1∥∇f(w)∥α + 2K2∥w′ − w∥

α
1−α
)
. (7)

4. If f ∈ L∗
sym(1), then for any w,w′ ∈ Rd,

f(w′) ≤ f(w) +∇f(w)⊤(w′ − w) +
1

2
∥w′ − w∥2

·
(
L0 + L1∥∇f(w)∥

)
exp

(
L1∥w′ − w∥

)
. (8)

Technical Novelty. Proving the above items 1 & 2 turns
out to be non-trivial and critical, because they directly im-
ply the items 3 & 42, which play an important role in the
convergence analysis of the algorithms proposed later in
this paper. Specifically, there are two major steps to prove
the equivalent definitions in items 1 & 2. First, we prove
another equivalent definition, i.e., f ∈ L∗

sym(α) if and only
if for any w,w ∈ Rd,

∥∇f(w′)−∇f(w)∥

≤
(
L0 + L1

∫ 1

0

∥∇f(wθ)∥αdθ
)
∥w′ − w∥. (9)

Please refer to (25) in Lemma 2 in Appendix A for the
details. To prove this, we uniformly divide the line segment

2Items 3 & 4 of Proposition 1 can be obtained by substituting
items 1 & 2 into the inequality that f(w′)−f(w)−∇f(w)⊤(w′−
w) ≤

∫ 1

0
|∇f(wθ)−∇f(w)||w′ − w|dθ
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between w and w′ into n pieces with the end points {wθ :
θ = k

n}
n
k=0. Then, we obtain the following bound.

∥∇f(w′)−∇f(w)∥≤
n−1∑
k=0

∥∇f(w(k+1)/n)−∇f(wk/n)∥

≤ ∥w′−w∥
n−1∑
k=0

1

n
max

θ∈[k/n,(k+1)/n]
h(θ),

wherewk/n andw(k+1)/n denotewθ with θ = k/n and θ =
(k + 1)/n respectively, and h(θ) := L0 + L1∥∇f(wθ)∥α.
As n → +∞, the summation in the above inequality con-
verges to the desired integral

∫ 1

0
h(θ)dθ. Second, to prove

sufficiency, i.e., (9) implies (5) & (6), we derive and solve
an ordinary differential equation (ODE) of the function
H(θ) :=

∫ θ
0
h(θ′)dθ′. This ODE is obtained by substi-

tuting w′ = wθ into the above equivalent definition (9).
Then, to prove necessity, i.e., (5) & (6) imply (9), we use
a similar dividing technique so that averaging the terms
K0 + K1∥∇f(wk/n)∥α and L0 + L1∥∇f(wk/n)∥ over
k = 0, 1, . . . , n− 1 yields the desired integral as n→ +∞,
while at the same time the other terms vanish as ∥w(k+1)/n−
wk/n∥

α
1−α →0 and exp

(
L1∥w(k+1)/n−wk/n∥

)
→1.

Next, we present some nonconvex machine learning exam-
ples that belong to the proposed function class L∗

sym(α).

Example 1: Phase Retrieval. Phase retrieval is a clas-
sic nonconvex machine learning and signal processing
problem that arises in X-ray crystallography and coherent
diffraction imaging applications (Drenth, 1994; Miao et al.,
1999). In this problem, we aim to recover the structure
of a molecular object from far-field diffraction intensity
measurements when the object is illuminated by a source
light. Mathematically, denote the underlying true object as
x ∈ Rd and suppose we take m intensity measurements,
i.e., yr = |a⊤r x|2, r = 1, 2, ...,m where ar ∈ Rd and ⊤
denotes transpose. Then, phase retrieval proposes to recover
the signal by solving the following nonconvex problem.

min
z∈Rd

f(z) :=
1

2m

m∑
r=1

(yr − |a⊤r z|2)2. (10)

The above nonconvex objective function is a high-order
polynomial in the high-dimensional space. Therefore, it
does not belong to the L-smooth function class L. In the
following result, we formally prove that the above phase re-
trieval problem can be effectively modeled by our proposed
function class L∗

sym(α).

Proposition 2. The nonconvex phase retrieval objective
function f(z) in (10) belongs to L∗

sym(
2
3 ).

Example 2: Distributionally Robust Optimization. In
many practical machine learning applications, there is usu-
ally a gap between training data distribution and test data

distribution. Therefore, it is much desired to train a model
that is robust to distribution shift. Distributionally robust op-
timization (DRO) is such a popular optimization framework
for training robust models. Specifically, DRO aims to solve
the following problem

min
x∈X

f(x) := sup
Q

{
Eξ∼Q[ℓξ(x)]− λdψ(Q,P )

}
, (11)

where the ψ-divergence term λdψ(Q,P ) (λ > 0) penal-
izes the distribution shift between the training data distribu-
tion Q and the target distribution P , and it takes the form
dψ(Q,P ) :=

∫
ψ
(
dQ
dP

)
dP . Under mild assumptions on

the nonconvex sample loss function ℓξ (e.g., smooth and
bounded variance) and the divergence function ψ, the above
DRO problem is proven to be equivalent to the following
minimization problem (Levy et al., 2020; Jin et al., 2021).

min
x∈X ,η∈R

L(x, η) := λEξ∼Pψ∗
(
ℓξ(x)− η

λ

)
+ η, (12)

where ψ∗ denotes the convex conjugate function of ψ. In
particular, the objective function L(x, η) in the above equiv-
alent form has been shown to belong to the function class
L∗

asym (Jin et al., 2021). Therefore, by item 1 of Theorem 1,
we can make the following conclusion.
Lemma 1. Regarding the equivalent form (12) of the DRO
problem (11), its objective functionL belongs to the function
class L∗

sym(1).

4. Optimal Method for Solving Nonconvex
Problems in L∗

sym(α)

In this section, we develop an efficient and optimal determin-
istic gradient-based algorithm for minimizing nonconvex
functions in L∗

sym(α) and analyze its iteration complexity.

The challenge for optimizing the functions in L∗
sym(α)

is that the generalized-smoothness parameter scales with
maxθ∈[0,1] ∥∇f(wθ)∥α. To address this issue, we need to
use a specialized gradient normalization technique, and this
motivates us to consider the β-normalized gradient descent
(β-GD) algorithm as shown in Algorithm 1. To elaborate,
β-GD simply normalizes the gradient update by the gradient
norm term ∥∇f(wt)∥β for some β ≥ 0. Such a normalized
update is closely related to some existing gradient-type al-
gorithms, including the clipped GD algorithm that uses the
normalization term max{∥∇f(wt)∥, C} and the normal-
ized GD that uses the normalization term ∥∇f(wt)∥ + C
(Zhang et al., 2019), where C > 0 is a certain constant.
We obtain the following convergence result of β-GD on
minimizing functions in L∗

sym(α).
Theorem 2 (Convergence of β-GD). Apply the β-GD
algorithm to minimize any function f ∈ L∗

sym(α) with

β ∈ [α, 1]. Choose γ = ϵβ

12(K0+K1+2K2)+1
3 if α ∈ (0, 1)

3See the definition of K0,K1,K2 in Proposition 1.
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Algorithm 1 β-Normalized GD
Input: Iteration number T , initialization w0, learning rate
γ, normalization parameter β.
for t = 0, 1, 2, . . . , T − 1 do

Update wt+1 = wt − γ ∇f(wt)
∥∇f(wt)∥β .

end
Output: wT̃ where T̃ is sampled from {0, 1, . . . , T − 1}
uniformly at random.

and γ = ϵβ

4L0+1 if α = 1 (ϵ is the target accuracy). Then,
the following convergence rate result holds.

ET̃ ∥∇f(wT̃ )∥≤
( 2

Tγ

) 1
2−β(

f(w0)−f∗
) 1

2−β +
1

2
ϵ. (13)

Consequently, to achieve ET̃ ∥∇f(wT̃ )∥ ≤ ϵ, the required
overall iteration complexity is T = 4

γϵ2−β = O(ϵ−2).

Theorem 2 shows that β-GD achieves the iteration complex-
ity O(ϵ−2) when minimizing functions in L∗

sym(α). Such
a complexity result matches the iteration complexity lower
bound for deterministic smooth nonconvex optimization and
hence is optimal. In particular, Theorem 2 shows that to min-
imize any function f ∈ L∗

sym(α), it suffices to apply β-GD
with any β ∈ [α, 1] and a proper learning rate γ = O(ϵβ).
Intuitively, with a larger α, the gradient norm of function
f in the class L∗

sym(α) increases faster as ∥w∥ → +∞, and
therefore we need to use a larger normalization parameter
β and a smaller learning rate O(ϵβ) to alleviate gradient
explosion. Interestingly, the convergence and iteration com-
plexity of β-GD remain the same as long as β ≥ α is used,
i.e., over-normalization does not affect the complexity order.
In practice, when α is unknown a priori for the function
class L∗

sym(α), one can simply use the conservative choice
β = 1 and is guaranteed to converge.

Technical Novelty. In the proof of Theorem 2, a major
challenge is that due to the β-normalization term in Al-
gorithm 1, the generalized-smoothness of functions in the
class L∗

sym(α) introduces additional higher-order terms to
the Taylor expansion upper bounds, as can be seen from
the descent lemmas shown in (7) (for α ∈ (0, 1)) and (8)
(for α = 1). In the convergence proof, these terms con-
tribute to certain fast-increasing terms that reduce the over-
all optimization progress. For example, when α ∈ (0, 1),
substituting w = wt and w′ = wt+1 into (7) yields that 4

f(wt+1)− f(wt) ≤ −γ∥∇f(wt)∥2−β

+
γ

6

(
O(γ)∥∇f(wt)∥2−2β +O(γ)∥∇f(wt)∥2+α−2β

+O(γ
1

1−α )∥∇f(wt)∥
(2−α)(1−β)

1−α

)
. (14)

4See (i) of (45) in Appendix E for the full expression of O in
eq. (14).

The above key inequality bounds the optimization progress
f(wt+1)− f(wt) using gradient norm terms with very dif-
ferent exponents. This makes it challenging to achieve the
desired level of optimization progress, as compared with the
analysis of minimizing other (generalized) smooth functions
in L, L∗

asym and L∗
H (Zhang et al., 2019; Jin et al., 2021). To

address this issue and homogenize the diverse exponents,
we develop a technical tool in Lemma 5 in Appendix A to
bridge polynomials with different exponents. With this tech-
nique, we further obtain the following optimization progress
bound

f(wt+1)− f(wt) ≤ −γ
2
∥∇f(wt)∥2−β +O(γ

2
β ), (15)

which leads to the desired result with proper telescoping.

We also obtain the following complementary result to Theo-
rem 2, which shows that β-GD may diverge in general with
under-normalization.

Theorem 3. (Divergence of β-GD) For the β-GD algorithm
with β ∈ [0, α), there always exists a convex function f ∈
L∗

sym(α) with a unique minimizer such that for any learning
rate γ > 0, β-GD diverges for all initialization ∥w0∥ > C
for some constant C > 0.

5. Expected α-Symmetric Generalized-Smooth
Functions in Stochastic Optimization

In this section, we propose a class of expected α-symmetric
generalized-smooth functions and study their properties in
stochastic optimization. Specifically, we consider the fol-
lowing nonconvex stochastic optimization problem

min
w∈Rd

f(w) := Eξ∼P[fξ(w)], (16)

where P denotes the distribution of the data sample ξ.
Throughout, we adopt the following standard assumption
on the stochastic gradients (Ghadimi and Lan, 2013; Fang
et al., 2018; Jin et al., 2021; Arjevani et al., 2022).

Assumption 1. The stochastic gradient is unbiased, i.e.,
Eξ∼P[∇fξ(w)] = ∇f(w) and satisfies the following vari-
ance bound for some Γ,Λ > 0.

Eξ∼P∥∇fξ(w)−∇f(w)∥2 ≤ Γ2∥∇f(w)∥2 + Λ2. (17)

If only the population loss f is smooth, i.e., f ∈ L, a re-
cent work has established a sample complexity lower bound
O(ϵ−4) for first-order stochastic algorithms (Arjevani et al.,
2022), which can be achieved by the standard stochastic
gradient descent (SGD) algorithm (Ghadimi and Lan, 2013)
and its clipped and normalized versions (Zhang et al., 2019).
Therefore, one should not expect an improved sample com-
plexity when optimizing the larger class of generalized-
smooth functions L∗

sym(α). To overcome this sample com-
plexity barrier, many existing works consider the subclass of

6
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expected smooth functions EL, in which there exists a con-
stant L0 > 0 such that for all w,w′ ∈ Rd, all the functions
fξ satisfy

Eξ∥∇fξ(w′)−∇fξ(w)∥2 ≤ L2
0∥w′ − w∥2. (18)

Many variance-reduced algorithms, e.g., SPIDER (Fang
et al., 2018) and STORM (Cutkosky and Orabona, 2019),
have been proved to achieve the near-optimal sample com-
plexity O(ϵ−3) for optimizing functions in EL. Therefore,
we are inspired to propose and study the following expected
α-symmetric generalized-smooth function class EL∗

sym(α).
Definition 4 (EL∗

sym(α) function class). For α ∈ [0, 1], the
expected α-symmetric generalized-smooth function class
EL∗

sym(α) is the class of differentiable stochastic functions
f = Eξ[fξ] that satisfy the following condition for all
w,w′ ∈ Rd and some constants L0, L1 > 0.

Eξ∼P∥∇fξ(w′)−∇fξ(w)∥2

≤∥w′ − w∥2Eξ∼P
(
L0+L1 max

θ∈[0,1]
∥∇fξ(wθ)∥α

)2
(19)

where wθ := θw′ + (1− θ)w.

Remark: It is clear that the function class EL∗
sym(0) is

equivalent to the function class EL. Also, a sufficient con-
dition to guarantee f ∈ EL∗

sym(α) is that fξ ∈ L∗
sym(α) for

every sample ξ.
Proposition 3. Both the aforementioned phase retrieval
problem and DRO problem belong to EL∗

sym(α) with α =
2
3 , 1 respectively.

We further develop the following technical tools associated
with the function class EL∗

sym(α), which are used later to
analyze a stochastic algorithm.
Proposition 4 (Technical tools). Under Assumption 1, the
following statements hold.

1. For any α ∈ (0, 1), function f = Eξ[fξ] belongs to
EL∗

sym(α) if and only if for any w,w′ ∈ Rd,

Eξ∥∇fξ(w′)−∇fξ(w)∥2 ≤ ∥w′ − w∥2 (20)

·
(
K0 +K1Eξ∥∇fξ(w)∥α +K2∥w′ − w∥

α
1−α
)2
,

where K0 =2
2−α
1−αL0, K1 =2

2−α
1−αL1, K2 =(5L1)

1
1−α ;

2. For α = 1, function f = Eξ[fξ] belongs to EL∗
sym(α) if

and only if for any w,w′ ∈ Rd,

Eξ∥∇fξ(w′)−∇fξ(w)∥2 ≤ 2∥w′ − w∥2 (21)

· (L2
0 + 2L2

1Eξ∥∇fξ(w)∥2) exp(12L2
1∥w′ − w∥2).

3. EL∗
sym(α) ⊂ L∗

sym(α).

Remark: Item 3 of Proposition 4 implies that we can apply
the descent lemmas (items 3 & 4 of Proposition 1) to the
population loss f = Eξ[fξ]. This is very useful later in the
convergence analysis of our proposed stochastic algorithm.

6. Optimal Method for Solving Nonconvex
Problems in EL∗

sym(α)

In this section, we explore stochastic algorithms for solving
nonconvex problems in the function class EL∗

sym(α) and see
if any algorithm can achieve the optimal sample complexity.

In the existing literature, many stochastic variance reduction
algorithms, e.g., SPIDER (Fang et al., 2018) and STORM
(Cutkosky and Orabona, 2019), have been developed and
proved to achieve the optimal sample complexity O(ϵ−3)
for minimizing the class of expected-smooth stochastic non-
convex problems (i.e., EL). However, for the extended class
EL∗

sym(α), it is unclear what is the sample complexity lower
bound and the optimal stochastic algorithm design. Inspired
by the existing literature and the structures of functions in
EL∗

sym(α), a good algorithm design must apply both vari-
ance reduction and a proper normalization to the stochastic
updates in order to combat the generalized-smoothness and
achieve an improved sample complexity. Interestingly, we
discover that the original SPIDER algorithm design already
well balances these two techniques and can be directly ap-
plied to solve problems in EL∗

sym(α). The original SPIDER
algorithm is summarized in Algorithm 2 below.

Algorithm 2 SPIDER (Fang et al., 2018)
Input: Iteration number T , epoch size q, initialization w0,
learning rate γ, batchsize |St|.
for t = 0, 1, 2, . . . , T − 1 do

Sample a minibatch of data St.
if t mod q = 0 then

Compute vt = ∇fSt
(wt)

else
Compute vt = vt−1 +∇fSt

(wt)−∇fSt
(wt−1)

end
Update wt+1 = wt − γ vt

∥vt∥ .
end
Output: wT̃ where T̃ is sampled from {0, 1, . . . , T − 1}
uniformly at random..

However, establishing the convergence of SPIDER for the
extended function class EL∗

sym(α) is fundamentally more
challenging. Intuitively, this is because the characterization
of variance of the stochastic update vt is largely affected by
the generalized-smoothness structure, and it takes a complex
form that needs to be treated carefully. Please refer to the
elaboration on technical novelty later for more details.

Surprisingly, by choosing proper hyper-parameters that are
adapted to the function class EL∗

sym(α), we are able to prove
that SPIDER achieves the optimal sample complexity as
formally stated in the following theorem.

Theorem 4 (Convergence of SPIDER). Apply the SPIDER
algorithm to minimize any function f = Eξ[fξ] ∈ EL∗

sym(α)
and assume Assumption 1 hold. Set |St| = B when

7
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t mod q = 0 and |St| = B′ otherwise, and let B ≥
Ω(max{Λ2ϵ−2,Γ2q2}), B′ ≥ Ω(max{q, q2ϵ2}). Choose
γ = ϵ

2K0+4K2+2K1(Λα+Γα+1)+1
when α ∈ (0, 1) and

γ = ϵ

5L1

√
Γ2+1+8

√
L2

0+2L2
1Λ

2
when α = 1 (ϵ is the tar-

get accuracy). Then, the following result holds for T = qK
iterations where K ∈ N+.

E∥∇f(wT̃ )∥ ≤ 16

5Tγ

(
Ef(w0)− f∗

)
+

4ϵ

5
. (22)

In particular, to achieve E∥∇f(wT̃ )∥ ≤ ϵ, we can choose
B = O(ϵ−2), B′ = q = O(ϵ−1), γ = O(ϵ) and
T = O(ϵ−2)5 so that the above conditions are satisfied.
Consequently, the overall sample complexity is O(ϵ−3).

Theorem 4 proves that SPIDER achieves an overall sample
complexity O(ϵ−3) when solving nonconvex problems in
EL∗

sym(α) for any α ∈ (0, 1]. Note that such a sample com-
plexity matches the well-known sample complexity lower
bound for the class of expected-smooth nonconvex opti-
mization problems (Fang et al., 2018), which is a subset of
EL∗

sym(α). Consequently, we can make two important ob-
servations: (i) this implies that the sample complexity lower
bound of EL∗

sym(α) is actually O(ϵ−3); and (ii) the SPI-
DER algorithm is provably optimal for solving nonconvex
problems in such an extended function class.

Technical Novelty. Compared with the original analysis of
SPIDER for minimizing expected-smooth functions (Fang
et al., 2018), our proof of the above theorem needs to ad-
dress a major challenge on bounding the expected bias error
E∥δt∥ where δt = vt −∇f(xt). To elaborate more specifi-
cally, in the original analysis of SPIDER, (Fang et al., 2018)
established the following key lemma (see their Lemma 1)
that bounds the martingale variance of the update vt.

E∥δt∥2 ≤ E∥δ0∥2 +
1

B′

t−1∑
k=0

Eξ∥∇fξ(wt+1)−∇fξ(wt)∥2.

The above inequality only depends on the variance reduction
structure of SPIDER and hence still holds in our case. How-
ever, to further bound the term Eξ∥∇fξ(wt+1)−∇fξ(wt)∥2
for functions in the class EL∗

sym(α), we need to leverage
the expected generalized-smoothness properties in (20) &
(21) and the update rule ∥wt+1 − wt∥ = γ = O(ϵ). We
then obtain that Eξ∥∇fξ(wt+1) − ∇fξ(wt)∥2 ≤ O(ϵ2) +
O(ϵ2∥∇f(wt)∥2α), and consequently, the above martingale
variance bound becomes

E∥δt∥2≤E∥δ0∥2+O(ϵ2)+
O(ϵ2)

B′

t−1∑
k=0

E∥∇f(wt)∥2α. (23)

When α > 1
2 , the term E∥∇f(wt)∥2α in (23) cannot be

upper bounded by any functional of E∥∇f(wt)∥, so taking

5See eqs. (65)-(70) in Appendix H for the full expression of
these hyperparameters.

square root of (23) cannot yield the desired bound E∥δt∥ ≤
O(ϵ)+O(ϵ)√

B′

∑t−1
k=0 E∥∇f(wt)∥ used in the original analysis

of SPIDER. To address this issue for functions in EL∗
sym(α),

we consider the more refined conditional error recursion

E
(
∥δt+1∥2

∣∣S1:t

)
≤ ∥δt∥2 +

ϵ2

B′

(
1 + ∥∇f(wt)∥2

)
, (24)

where there is no randomness in ∥∇f(wt)∥2 since we are
conditioning on the minibatches S1:t := {S1, . . . , St} (see
(58) in Appendix A). Therefore, by taking square root of
(24) followed by further taking iterated expectation, we can
obtain the desired term E∥∇f(wt)∥ in the upper bound of
E∥δt∥. After that, we iterate the resulting bound over t via
a non-trivial induction argument to complete the analysis
(see the proof of (60) in Lemma 58 in Appendix A).

7. Experiments6

7.1. Application to Nonconvex Phase Retrieval

In this section, we test our algorithms via solving the non-
convex phase retrieval problem in (10). We set the problem
dimension d = 100 and sample size m = 3000. The mea-
surement vector ar ∈ Rd and the underlying true parameter
z ∈ Rd are generated entrywise using Gaussian distribution
N (0, 0.5). The initialization z0 ∈ Rd is generated entry-
wise using Gaussian distribution N (5, 0.5). Then, we gener-
ate yi = |a⊤r z|2+ni for i = 1, ...,m, where ni ∼ N (0, 42)
is the additive Gaussian noise.

We first compare deterministic algorithms with fine-tuned
learning rate γ over 500 iterations. This includes the basic
GD with γ = 8 × 10−4, clipped GD (Zhang et al., 2019)
with γ = 0.9 and normalization term max(∥∇f(xt)∥, 100),
and our β-GD with β = 1

3 ,
2
3 , 1 and γ = 0.03, 0.1, 0.2,

respectively. Figure 1 (top left) plots the comparison result
on objective function value v.s. iteration. It can be seen that
our proposed β-GD with β = 1

3 ,
2
3 converges faster than

the existing GD, normalized GD (1-GD) and clipped GD
algorithms, which shows the advantage of using a proper
normalization parameter β.

We further compare stochastic algorithms with fine-tuned
learning rate γ and fixed batch size b = 50 over 500 iter-
ations. This includes the basic SGD with γ = 2 × 10−4,
normalized SGD with γ = 2× 10−3, normalized SGD with
momentum (Jin et al., 2021) with γ = 3 × 10−3 and mo-
mentum coefficient 10−4, clipped SGD (Zhang et al., 2019)
with γ = 0.3 and normalization term max(∥∇f(zt)∥, 103),
and SPIDER with γ = 0.01, epoch size q = 5 and batch-
sizes B = 3000, B′ = 50. We generate the initialization

6The code can be downloaded from https://github.c
om/changy12/Generalized-Smooth-Nonconvex-O
ptimization-is-As-Efficient-As-Smooth-Non
convex-Optimization
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by running 2
3 -GD with γ = 0.1 for 100 iterations from z0.

Figure 1 (top right) plots the comparison result on objective
function value v.s. sample complexity. It can be seen that
SPIDER uses slightly more samples at the beginning but
converges to a much better solution than the other SGD-type
algorithms. This demonstrates the advantage of applying
both variance reduction and proper normalization to solve
generalized-smooth nonconvex stochastic problems.

Figure 1: Experimental results (two subfigures above for
phase retrieval and two below for DRO).

7.2. Application to DRO

In this section, we test our algorithms via solving the non-
convex DRO problem in (12) on the life expectancy data7,
which collected the life expectancy (target) and its influenc-
ing factors (features) of 2413 people for regression anal-
ysis. We preprocess the data by filling the missing val-
ues with the median of the corresponding variables, cen-
sorizing and standardizing all the variables8, removing two
categorical variables (“country” and “status”), and adding
standard Gaussian noise to the target to ensure model ro-
bustness. We select the first 2000 samples {xi, yi}2000i=1

as the training samples where xi ∈ R34 and yi ∈ R
are feature and target respectively. In the DRO problem
(12), we set λ = 0.01 and select ψ∗(t) = 1

4 (t + 2)2+ − 1
which corresponds to χ2 divergence. For any sample pair
xξ, yξ, we adopt the regularized mean square loss function
ℓξ(w) =

1
2 (yξ − x⊤ξ w)

2 + 0.1
∑34
j=1 ln

(
1 + |w(j)|)

)
with

parameter w = [w(1); . . . ;w(34)] ∈ R34. We initialize
η0 = 0.1 and randomly initialize w0 ∈ R34 entrywise using
standard Gaussian distribution.

7https://www.kaggle.com/datasets/kumaraja
rshi/life-expectancy-who?resource=download

8The detailed process of filling missing values and censoriza-
tion can be seen in https://thecleverprogrammer.co
m/2021/01/06/life-expectancy-analysis-wit
h-python/

We first compare deterministic algorithms with fine-tuned
learning rate γ over 50 iterations. This includes the basic GD
with γ = 10−4, clipped GD (Zhang et al., 2019) with γ =
0.3 and normalization term max(∥∇L(xt, ηt)∥, 10), and
normalized GD (our β-GD with β = 1) with γ = 0.2, re-
spectively. Figure 1 (bottom left) plots the comparison result
on the objective function value Ψ(xt) := minη∈R L(xt, η)
(L is defined in eq. (12)) v.s. iteration. It can be seen that
normalized GD and clipped GD converge to comparable
function values and both outperform standard GD.

We further compare stochastic algorithms with fine-tuned
learning rate γ and fixed minibatch size b = 50 over 5000
iterations. This includes the basic SGD with γ = 2× 10−4,
normalized SGD with γ = 8× 10−3, normalized SGD with
momentum with γ = 8× 10−3 and momentum coefficient
10−4, clipped SGD [1] with γ = 0.05 and normalization
term max(∥∇L(xt, ηt)∥, 100), and SPIDER with γ = 4×
10−3, epoch size q = 20 and batchsizes B = 2000, B′ =
50. We generate the initialization by running normalized
GD with γ = 0.2 for 30 iterations from w0, η0. Figure
1 (bottom right) plots the comparison result on objective
function value Ψ(xt) v.s. sample complexity. It can be seen
that SPIDER takes slightly more samples at the beginning
but converges to a better solution than the other SGD-type
algorithms. This demonstrates the advantage of applying
both variance reduction and proper normalization to solve
generalized-smooth nonconvex stochastic problems.

8. Conclusion
In this work, we proposed a new class of generalized-smooth
functions that extends the existing ones. We developed both
deterministic and stochastic gradient-based algorithms for
solving problems in this class and obtained the optimal
complexities. Our results extend the existing boundary of
first-order nonconvex optimization and may inspire new
developments in this direction. In the future, it is interesting
to explore if other popular variance reduction algorithms
such as STORM and SpiderBoost can be normalized to
solve generalized-smooth nonconvex stochastic problems.
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A. Supporting Lemmas
Lemma 2. f ∈ L∗

sym(α) if and only if for any w,w ∈ Rd,

∥∇f(w′)−∇f(w)∥ ≤
(
L0 + L1

∫ 1

0

∥∇f(wθ)∥αdθ
)
∥w′ − w∥ (25)

where wθ := θw′ + (1− θ)w.

Lemma 2 provides an equivalent definition of f ∈ L∗
asym(1) which is sometimes more convenient to use than Definition 3,

for example, in the proof in Section B.2.

Proof. Eq. (25) directly implies eq. (4) (i.e., f ∈ L∗
sym(α)) since∫ 1

0

∥∇f(wθ)∥αdθ ≤ max
θ∈[0,1]

∥∇f(wθ)∥α.

Then it remains to prove eq. (25) given eq. (4). For any n ∈ N+, we have

∥∇f(w′)−∇f(w)∥

≤
n−1∑
k=0

∥∇f(w(k+1)/n)−∇f(wk/n)∥

(i)

≤
n−1∑
k=0

∥w(k+1)/n − wk/n∥
(
L0 + L1 max

θ∈[0,1]
∥∇f(wθ(k+1)/n+(1−θ)k/n)∥α

)
(ii)
= ∥w′ − w∥

n−1∑
k=0

1

n
max

θ∈[k/n,(k+1)/n]
h(θ)

where (i) uses eq. (4) with w,w′ replaced by wk/n, w(k+1)/n respectively (wk/n and w(k+1)/n denote wθ with θ = k/n
and θ = (k + 1)/n respectively) and (ii) denotes h(θ) := L0 + L1∥∇f(wθ)∥α. Since h(·) is continuous, letting n→ +∞
in the above inequality proves eq. (25) as follows.

∥∇f(w′)−∇f(w)∥ ≤ ∥w′ − w∥
∫ 1

0

h(θ)dθ =
(
L0 + L1

∫ 1

0

∥∇f(wθ)∥αdθ
)
∥w′ − w∥

Lemma 3. f ∈ EL∗
sym(α) if and only if for any w,w ∈ Rd,

Eξ∥∇fξ(w′)−∇fξ(w)∥2 ≤ ∥w′ − w∥2Eξ
∫ 1

0

(
L0 + L1∥∇fξ(wθ)∥α

)2
dθ (26)

where wθ := θw′ + (1− θ)w.

Lemma 3 provides an equivalent definition of f ∈ EL∗
asym(1) which is sometimes more convenient to use than Definition 4.

Proof. It sufficies to prove the equivalence between eqs. (26) & (19).

Eq. (26) directly implies eq. (19) since∫ 1

0

(
L0+L1∥∇fξ(wθ)∥α

)2
dθ ≤ max

θ∈[0,1]

(
L0+L1∥∇fξ(wθ)∥α

)2
=
(
L0+L1 max

θ∈[0,1]
∥∇fξ(wθ)∥α

)2
.

Then it remains to prove eq. (26) given eq. (19). For any w,w′ ∈ Rd, denote wθ := θw′+(1− θ)w. Then for any θ ∈ [0, 1]
and n ∈ N+, we have

Eξ∥∇fξ(wθ)−∇fξ(w)∥2

12
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= Eξ
∥∥∥ n−1∑
k=0

(
∇fξ(wθ(k+1)/n)−∇fξ(wθk/n)

)∥∥∥2
(i)

≤ n
n−1∑
k=0

Eξ
∥∥∇fξ(wθ(k+1)/n)−∇fξ(wθk/n)

∥∥2
(ii)

≤ n
n−1∑
k=0

∥wθ(k+1)/n − wθk/n∥2Eξ
(
L0 + L1 max

θ′∈[0,1]
∥∇fξ

(
θ′wθ(k+1)/n + (1− θ′)wθk/n

)
∥α
)2

= θ2∥w′ − w∥2Eξ
n−1∑
k=0

1

n
max
θ′∈[0,1]

(
L0 + L1∥∇fξ

(
wθ′θ(k+1)/n+(1−θ′)θk/n

)
∥α
)2

(iii)
= θ2∥w′ − w∥2Eξ

n−1∑
k=0

1

n
max

u∈[k/n,(k+1)/n]
h(u)

where (i) applies Jensen’ inequality to the convex function ∥ · ∥2, (ii) uses eq. (19), and (iii) denotes h(u) :=
(
L0 +

L1∥∇fξ(wθu)∥α
)2

. Since h is a continuous function, letting n→ +∞ in the above inequality yields that

Eξ∥∇fξ(wθ)−∇fξ(w)∥2 ≤ θ2∥w′ − w∥2Eξ
∫ 1

0

h(u)du ≤ θ2∥w′ − w∥2Eξ
∫ 1

0

(
L0 + L1∥∇fξ(wθu)∥α

)2
du. (27)

Substituting θ = 1 into the above inequality proves eq. (26).

Lemma 4. Under Assumption 1, the stochastic gradient ∇fξ(w) and true gradient ∇f(w) satisfy the following inequalities
for any τ ∈ [0, 2],

Eξ∼P∥∇fξ(w)∥τ ≤ (Γτ + 1)∥∇f(w)∥τ + Λτ . (28)

Proof. First, when τ = 2, Assumption 1 implies eq. (28) as follows.

Eξ∼P∥∇fξ(w)∥2
(i)
= Eξ∼P∥∇fξ(w)−∇f(w)∥2 + ∥∇f(w)∥2 ≤ (Γ2 + 1)∥∇f(w)∥2 + Λ2 (29)

where (i) uses f(w) = Eξfξ. Then, when τ ∈ [0, 2), we prove eq. (28) as follows.

Eξ∼P∥∇fξ(w)∥τ
(i)

≤ (Eξ∼P∥∇fξ(w)∥2)τ/2
(ii)

≤
(
(Γ2 + 1)∥∇f(w)∥2 + Λ2

)τ/2 (iii)
= (Γτ + 1)∥∇f(w)∥τ + Λτ ,

where (i) applies Jensen’s inequality to the concave function g(s) = sτ/2, (ii) uses eq. (29), and (iii) uses the inequality that
(a+ b)τ/2 ≤ aτ/2 + bτ/2 for any a, b ≥ 0 and τ/2 ∈ [0, 1].

Note that the only randomness of Algorithm 2 comes from St, so we can consider the filtration F(S1:t) := F(S1, . . . , St)
which monotonically increases with larger t. Then, it can be easily seen from Algorithm 2 that

vt, wt+1, δt+1 ∈ F(S1:t)/F(S1:(t−1)) (30)

B. Proof of Theorem 1
B.1. Proof of Item 1

On one hand, f ∈ L∗
asym means ∥∇f(w′)−∇f(w)∥ ≤

(
L0 +L1∥∇f(w′)∥

)
∥w′ −w∥ for all w,w′, which directly implies

eq. (4) with α = 1, i.e., f ∈ L∗
asym(1). On the other hand, we will prove item 4 which shows that f(w) = ew + e−w, w ∈ R

belongs to L∗
sym(1) but not L∗

asym. Therefore, L∗
asym ⊂ L∗

sym(1).

13
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B.2. Proof of Item 2

Note that if a function is not twice-differentiable, it cannot belong to L∗
H but may still belong to L∗

sym(1). For example, for
the function f(w) = w|w| whose derivative f ′(w) = 2|w| is not differentiable (so f /∈ L∗

H), we have f ∈ L ⊂ L∗
sym(1)

since |f ′(w′)− f ′(w)| ≤ 2
∣∣|w′| − |w|

∣∣ ≤ 2|w′ − w|.

Therefore, it remains to prove for twice-differentiable functions f the equivalence between eq. (31) below (definition of L∗
H)

and eq. (25) with α = 1 (equivalent definition of L∗
sym(1)).

∥∇2f(w′)∥ ≤ L0 + L1∥∇f(w)∥. (31)

Eq. (31) implies eq. (25) as proved below.

∥∇f(w′)−∇f(w)∥ =
∥∥∥ ∫ 1

0

∇2f(wθ)(w
′ − w)dθ

∥∥∥
≤
∫ 1

0

∥∇2f(wθ)∥∥w′ − w∥dθ

(i)

≤ ∥w′ − w∥
∫ 1

0

(
L0 + L1∥∇f(wθ)∥α

)
dθ

= ∥w′ − w∥
(
L0 + L1

∫ 1

0

∥∇f(wθ)∥αdθ
)
,

where (i) uses eq. (31). Finally, it remains prove eq. (31) given eq. (25).

Note that of the symmetric Hessian matrix ∇2f(w) has eigenvalue ∥∇2f(w)∥ or −∥∇2f(w)∥. Denote s as the correspond-
ing eigenvector with ∥s∥ = 1, i.e., ∇2f(w)s = ±∥∇2f(w)∥s. In eq. (25) , we adopt w′ := w + θ′s (θ′ ∈ (0, 1)), so
wθ := θw′ + (1− θ)w = θ(w + θ′s) + (1− θ)w = w + θθ′s and thus eq. (25) becomes

∥∇f(w + θ′s)−∇f(w)∥ ≤θ′
(
L0 + L1

∫ 1

0

∥∇f(w + θθ′s)∥αdθ
)

(32)

The left side of eq. (32) can be rewritten as follows.

∥∇f(w + θ′s)−∇f(w)∥ = θ′
∥∥∥ ∫ 1

0

∇2f
(
θ(w + θ′s) + (1− θ)w

)
dθ
∥∥∥

=
∥∥∥ ∫ 1

0

∇2f(w + θθ′s)θ′dθ
∥∥∥

(i)
=
∥∥∥ ∫ θ′

0

∇2f(w + us)sdu
∥∥∥, (33)

where (i) uses change of variables u = θ′θ. The right side of eq. (32) can be rewritten as follows.

θ′
(
L0 + L1

∫ 1

0

∥∇f(w + θθ′s)∥αdθ
)

(i)
= L0θ

′ + L1

∫ θ′

0

∥∇f(w + us)∥αdu, (34)

where (i) also uses change of variables u = θ′θ. Substituting eqs. (33) & (34) into eq. (32) and multiplying both sides by
1/θ′ > 0, we obtain that

∥∥∥ 1
θ′

∫ θ′

0

∇2f(w + us)sdu
∥∥∥ ≤ L0 +

L1

θ′

∫ θ′

0

∥∇f(w + us)∥αdu.

Letting θ′ → +0 in the above inequality, we obtain eq. (31) as follows.

∥∇2f(w)∥ = ∥∇2f(w)s∥ ≤ L0 + L1∥∇f(w)∥α.

14
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B.3. Proof of Item 3

The polynomial function f(w) = |w|
2−α
1−α , w ∈ R is twice-differentiable with first and second order derivatives below.

f ′(w) =
2− α

1− α
|w|

1
1−α sgn(w), f ′′(w) =

2− α

(1− α)2
|w|

α
1−α .

Therefore, for any w,w′ ∈ R, we have

|f ′(w′)− f ′(w)| ≤ |w′ − w| max
θ∈[0,1]

|f ′′(wθ)|

≤ 2− α

(1− α)2
|w′ − w| max

θ∈[0,1]
|wθ|

α
1−α · 1

=
2− α

(1− α)2
|w′ − w| max

θ∈[0,1]

∣∣∣1− α

2− α
f ′(wθ)

∣∣∣α
≤ (2− α)1−α

(1− α)2−α
|w′ − w| max

θ∈[0,1]
|f ′(wθ)|α (35)

where wθ := θw′ + (1− θ)w. This verifies eq. (4) and thus proves that f ∈ Lsym(α).

Next, we prove that f ̸∈ L∗
sym(α̃) for all α̃ ∈ (0, α). Suppose f ∈ L∗

sym(α̃), i.e., the following inequality holds for all
w,w′ ∈ Rd.

|f ′(w′)− f ′(w)| ≤ |w′ − w|
(
L0 + L1 max

θ∈[0,1]
|f ′(wθ)|α̃

)
,

where wθ := θw′ + (1 − θ)w. Substituting w′ = 0 into the above inequality, we obtain the following inequality for all
w ∈ Rd.

2− α

1− α
|w|

1
1−α ≤ |w|

(
L0 + L1

(2− α

1− α
|w|

1
1−α

)α̃)
.

As |w| → +∞, the left side of the above inequality is O(|w|
1

1−α ) whereas the right side has strictly smaller order
O(|w|

1−α+α̃
1−α ). Hence, the above inequality cannot hold for sufficiently large |w|, which means the assumption that

f ∈ L∗
sym(α̃) does not hold.

Finally, we prove that f /∈ L∗
asym. Suppose f ∈ L∗

asym, i.e., the following inequality holds for all w,w′ ∈ Rd.

|f ′(w′)− f ′(w)| ≤ |w′ − w|
(
L0 + L1|f ′(w)|

)
.

Substituting w = 0 into the above inequality, we obtain the following inequality for all w′ ∈ Rd.

2− α

1− α
|w′|

1
1−α ≤ L0|w′|,

which implies that |w′| ≤
(L0(1−α)

2−α
) 1−α

α < +∞. Hence, the above inequality cannot for all sufficiently large |w′|, which
means the assumption that f ∈ L∗

asym does not hold.

B.4. Proof of Item 4

The exponential function f(w) = ew + e−w, w ∈ R is twice-differentiable with first and second order derivatives below.

f ′(w) = ew − e−w = sgn(w)
(
e|w| − e−|w|), f ′′(w) = ew + e−w = e|w| + e−|w|.

When |w| ≤ 1, |f ′′(w)| ≤ e+ e−1 < 4; When |w| > 1, |f ′(w)|+4 = e|w|+ e−|w|− 2e−|w|+4 > |f ′′(w)| − 2e−1+4 >
|f ′′(w)|. Combining the two cases yields that |f ′′(w)| < |f ′(w)| + 4, which implies that f ∈ L∗

sym. Since f is twice-
differentiable, we have f ∈ L∗

sym(1) based on item 2 of Theorem 1.
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Next, we prove that f ̸∈ L∗
sym(α̃) for all α̃ ∈ (0, 1). Suppose f ∈ L∗

sym(α̃), i.e., the following inequality holds for all
w,w′ ∈ Rd.

|f ′(w′)− f ′(w)| ≤ |w′ − w|
(
L0 + L1 max

θ∈[0,1]
|f ′(wθ)|α̃

)
,

where wθ := θw′ + (1− θ)w. Substituting w′ = 0 into the above inequality, we obtain the following inequality.

e|w| − e−|w| ≤ |w|
(
L0 + L1(e

|w| − e−|w|)α̃
)
, ∀w ∈ Rd,

which implies that

(e|w| − e−|w|)1−α̃

|w|
≤ L0 + L1(e

|w| − e−|w|)α̃

(e|w| − e−|w|)α̃
, ∀w ∈ Rd/{0}.

As |w| → +∞, the left side of the above inequality goes to +∞ while the right sides converges to L1 < +∞. Hence, the
above inequality cannot hold for sufficiently large |w|, which means the assumption that f ∈ L∗

sym(α̃) does not hold.

Finally, we prove that f /∈ L∗
asym. Suppose f ∈ L∗

asym, i.e., the following inequality holds for all w,w′ ∈ Rd.

|f ′(w′)− f ′(w)| ≤ |w′ − w|
(
L0 + L1|f ′(w)|

)
.

Substituting w = 0 into the above inequality and rearranging it, we obtain the following inequality for all w′ ∈ Rd/{0}.

e|w
′| − e−|w′|

|w′|
≤ L0,

As |w| → +∞, the left side of the above inequality goes to +∞, so the above inequality cannot for all sufficiently large
|w′|, which means the assumption that f ∈ L∗

asym does not hold.

C. Proof of Proposition 1
C.1. Proof of Item 1

First, we prove eq. (5) for f ∈ L∗
sym(α) with α ∈ (0, 1). Note that eq. (25) holds for all w,w′ ∈ Rd. Hence, for

any θ′ ∈ [0, 1], we can replace w′ with wθ′ := θ′w′ + (1 − θ′)w in eq. (25), so wθ becomes θ′wθ + (1 − θ)w =
θ′θw′ + (1− θ′θ)w = wθ′θ. Therefore, eq. (25) becomes

∥∇f(wθ′)−∇f(w)∥ ≤
(
L0 + L1

∫ 1

0

∥∇f(wθ′θ)∥αdθ
)
∥wθ′ − w∥

=
(
L0θ

′ + L1

∫ 1

0

∥∇f(wθ′θ)∥αθ′dθ
)
∥w′ − w∥

(i)
= H(θ′)∥w′ − w∥ (36)

where (i) denotes H(θ′) := L0θ
′ + L1

∫ 1

0
∥∇f(wθ′θ)∥αθ′dθ = L0θ

′ + L1

∫ θ′
0

∥∇f(wu)∥αdu. Then its derivative H ′(θ)
can be bounded as follows,

H ′(θ′) = L0 + L1∥∇f(wθ′)∥α

≤ L0 + L1∥∇f(wθ′)−∇f(w)∥α + L1∥∇f(w)∥α

(i)

≤ L0 + L1∥w′ − w∥αH(θ′)α + L1∥∇f(w)∥α (37)

(ii)

≤ 3L1

(1
3
∥w′ − w∥H(θ′) +

1

3
∥∇f(w)∥+ L

1
α
0

3L
1
α
1

)α
.
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where (i) uses eq. (36) and (ii) applies Jensen’s inequality to the concave function g(x) = xα. Rearranging the above
inequality yields that

31−αL1(1− α)∥w′ − w∥ ≥ (1− α)∥w′ − w∥
(
∥w′ − w∥H(θ′) + ∥∇f(w)∥+ L

1
α
0

L
1
α
1

)−α
H ′(θ′)

=
d

dθ′

(
∥w′ − w∥H(θ′) + ∥∇f(w)∥+ L

1
α
0

L
1
α
1

)1−α
.

Integrating the above inequality over θ′ ∈ [0, θ] yields that

(
∥w′ − w∥H(θ) + ∥∇f(w)∥+ L

1
α
0

L
1
α
1

)1−α
≤ 31−αL1(1− α)∥w′ − w∥θ +

(
∥w′ − w∥H(0) + ∥∇f(w)∥+ L

1
α
0

L
1
α
1

)1−α
(i)

≤ 2α
(
3
(
L1(1− α)∥w′ − w∥θ

) 1
1−α + ∥∇f(w)∥+ L

1
α
0

L
1
α
1

)1−α
where (i) uses H(0) = 0 and applies Jensen’s inequality to the concave function g(x) = x1−α. Therefore,

∥w′ − w∥H(θ) ≤ 2
α

1−α

(
3
(
L1(1− α)∥w′ − w∥θ

) 1
1−α + ∥∇f(w)∥+ L

1
α
0

L
1
α
1

)
− ∥∇f(w)∥ − L

1
α
0

L
1
α
1

.

Substituting the above inequality into eq. (36), we obtain that

∥∇f(wθ)∥ ≤ ∥∇f(w)∥+ ∥∇f(wθ)−∇f(w)∥
≤ ∥∇f(w)∥+ ∥w′ − w∥H(θ)

≤ 2
α

1−α

(
3
(
L1(1− α)∥w′ − w∥θ

) 1
1−α + ∥∇f(w)∥+ L

1
α
0

L
1
α
1

)
.

Then, substituting the above inequality into eq. (4), we obtain that

∥∇f(w′)−∇f(w)∥
≤
(
L0 + L1 max

θ∈[0,1]
∥∇f(wθ)∥α

)
∥w′ − w∥

≤
(
L0 + L1 · 2

α2

1−α

(
3
(
L1(1− α)∥w′ − w∥

) 1
1−α + ∥∇f(w)∥+ L

1
α
0

L
1
α
1

)α)
∥w′ − w∥

(i)

≤
(
L0 + L1 · 2

α2

1−α

(
3α
(
L1(1− α)∥w′ − w∥

) α
1−α + ∥∇f(w)∥α +

L0

L1

))
∥w′ − w∥

= ∥w′ − w∥
(
K0 +K1∥∇f(w)∥α+K2∥w′ − w∥

α
1−α
)

where (i) uses the inequality that (a + b + c)α ≤ aα + bα + cα for any a, b, c ≥ 0 and α ∈ [0, 1], and (ii) denotes that

K0 := L0

(
2

α2

1−α + 1
)
, K1 := L1 · 2

α2

1−α · 3α, K2 := L
1

1−α

1 · 2
α2

1−α · 3α(1− α)
α

1−α .

Next, we prove f ∈ L∗
sym(α) given eq. (5). For any w,w′ ∈ Rd and n ∈ N+, we have

∥∇f(w′)−∇f(w)∥
(i)

≤
n−1∑
k=0

∥∇f(w(k+1)/n)−∇f(wk/n)∥

17
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(ii)

≤
n−1∑
k=0

∥w(k+1)/n − wk/n∥
(
K0 +K1∥∇f(wk/n)∥α+K2∥w(k+1)/n − wk/n∥

α
1−α
)

(iii)
= ∥w′ − w∥

n−1∑
k=0

( 1
n
h
(k
n

)
+

1

n
· K2

n
α

1−α
∥w′ − w∥

α
1−α

)
= ∥w′ − w∥

( K2

n
α

1−α
∥w′ − w∥

α
1−α +

n−1∑
k=0

1

n
h
(k
n

))
,

where (i) denotes wθ := θw′ + (1 − θ)w, (ii) uses eq. (5) with w,w′ replaced by wk/n, w(k+1)/n respectively and (iii)
denotes h(θ) := K0 +K1∥∇f(wθ)∥α. Since h(·) is continuous, letting n→ +∞ in the above inequality proves eq. (25)
as follows, which implies f ∈ L∗

sym(α) by Lemma 2.

∥∇f(w′)−∇f(w)∥ ≤ ∥w′ − w∥
∫ 1

0

h(θ)dθ =
(
L0 + L1

∫ 1

0

∥∇f(wθ)∥αdθ
)
∥w′ − w∥

C.2. Proof of Item 2

Note that eq. (37) holds for any function f ∈ L∗
sym(α) with α ∈ [0, 1]. Substituting α = 1 into eq. (37), we obtain that

H ′(θ) ≤ L0 + L1∥w′ − w∥H(θ) + L1∥∇f(w)∥,

where H(θ′) := L0θ
′ + L1

∫ θ′
0

∥∇f(wu)∥du. Rearranging the above inequality yields that

L1∥w′ − w∥ ≥ L1∥w′ − w∥H ′(θ′)

L0 + L1∥w′ − w∥H(θ′) + L1∥∇f(w)∥
=

d

dθ′
ln
(
L0 + L1∥w′ − w∥H(θ′) + L1∥∇f(w)∥

)
.

Integrating the above inequality over θ′ ∈ [0, θ] yields that (note that H(0) = 0)

ln
(
L0 + L1∥w′ − w∥H(θ) + L1∥∇f(w)∥

)
≤ ln

(
L0 + L1∥∇f(w)∥

)
+ L1∥w′ − w∥,

which implies that

L1∥w′ − w∥H(θ) ≤
(
L0 + L1∥∇f(w)∥

)
exp

(
L1∥w′ − w∥

)
− L0 − L1∥∇f(w)∥.

Substituting the above inequality and α = 1 into eq. (36), we obtain that

∥∇f(wθ)∥ ≤ ∥∇f(w)∥+ ∥∇f(wθ)−∇f(w)∥
≤ ∥∇f(w)∥+ ∥w′ − w∥H(θ)

≤ ∥∇f(w)∥+ 1

L1

((
L0 + L1∥∇f(w)∥

)
exp

(
L1∥w′ − w∥

)
− L0 − L1∥∇f(w)∥

)
=
(L0

L1
+ ∥∇f(w)∥

)
exp

(
L1∥w′ − w∥

)
− L0

L1

Then, substituting the above inequality and α = 1 into eq. (4), we prove eq. (6) as follows.

∥∇f(w′)−∇f(w)∥
≤
(
L0 + L1 max

θ∈[0,1]
∥∇f(wθ)∥

)
∥w′ − w∥

≤
(
L0 + L1∥∇f(w)∥

)
exp

(
L1∥w′ − w∥

)
∥w′ − w∥

Next, we prove f ∈ L∗
sym(α) given eq. (6). For any w,w′ ∈ Rd and n ∈ N+, we have

∥∇f(w′)−∇f(w)∥
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(i)

≤
n−1∑
k=0

∥∇f(w(k+1)/n)−∇f(wk/n)∥

(ii)

≤
n−1∑
k=0

∥w(k+1)/n − wk/n∥
(
L0 + L1∥∇f(wk/n)∥

)
exp

(
L1∥w(k+1)/n − wk/n∥

)
(iii)
= ∥w′ − w∥

n−1∑
k=0

1

n
h
(k
n

)
exp

(L1

n
∥w′ − w∥

)
= ∥w′ − w∥

n−1∑
k=0

1

n
h
(k
n

)
+ ∥w′ − w∥

n−1∑
k=0

1

n
h
(k
n

)[
exp

(L1

n
∥w′ − w∥

)
− 1
]

≤ ∥w′ − w∥
n−1∑
k=0

1

n
h
(k
n

)
+ ∥w′ − w∥ max

θ∈[0,1]
h(θ)

[
exp

(L1

n
∥w′ − w∥

)
− 1
]

where (i) denotes wθ := θw′ + (1 − θ)w, (ii) uses eq. (6) with w,w′ replaced by wk/n, w(k+1)/n respectively and (iii)
denotes h(θ) := L0 + L1∥∇f(wθ)∥. Since h(·) is continuous, letting n → +∞ in the above inequality proves eq. (25)
with α = 1 as follows, which implies f ∈ L∗

sym(1) by Lemma 2.

∥∇f(w′)−∇f(w)∥ ≤ ∥w′ − w∥
∫ 1

0

h(θ)dθ =
(
L0 + L1

∫ 1

0

∥∇f(wθ)∥dθ
)
∥w′ − w∥

C.3. Proof of Item 3

Since f ∈ L∗
sym(α) for α ∈ (0, 1), eq. (5) holds based on item 1 of Proposition 1. Hence, for any w,w′ ∈ Rd, we prove eq.

(7) as follows.

f(w′)− f(w)−∇f(w)⊤(w′ − w)

=

∫ 1

0

(
∇f(wθ)−∇f(w)

)⊤
(w′ − w)dθ

≤
∫ 1

0

∥∇f(wθ)−∇f(w)∥∥w′ − w∥dθ

(i)

≤
∫ 1

0

∥wθ − w∥
(
K0 +K1∥∇f(w)∥α+K2∥wθ − w∥

α
1−α
)
∥w′ − w∥dθ

=

∫ 1

0

θ∥w′ − w∥2
(
K0 +K1∥∇f(w)∥α+K2θ

α
1−α ∥w′ − w∥

α
1−α
)
dθ

=
1

2
∥w′ − w∥2

(
K0 +K1∥∇f(w)∥α

)
+K2∥w′ − w∥

2−α
1−α

∫ 1

0

θ
1

1−α dθ

≤ 1

2
∥w′ − w∥2

(
K0 +K1∥∇f(w)∥α + 2K2∥w′ − w∥

α
1−α
)
,

where (i) uses eq. (5) with w′ replaced by wθ := θw′ + (1− θ)w.

C.4. Proof of Item 4

Since f ∈ L∗
sym(α) for α ∈ (0, 1), eq. (6) holds based on item 2 of Proposition 1. Hence, for any w,w′ ∈ Rd, we prove eq.

(7) as follows.

f(w′)− f(w)−∇f(w)⊤(w′ − w)

=

∫ 1

0

(
∇f(wθ)−∇f(w)

)⊤
(w′ − w)dθ

≤
∫ 1

0

∥∇f(wθ)−∇f(w)∥∥w′ − w∥dθ
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(i)

≤
∫ 1

0

∥wθ − w∥
(
L0 + L1∥∇f(w)∥

)
exp

(
L1∥wθ − w∥

)
∥w′ − w∥dθ

≤
∫ 1

0

θ∥w′ − w∥2
(
L0 + L1∥∇f(w)∥

)
exp

(
L1∥w′ − w∥

)
dθ

=
1

2
∥w′ − w∥2

(
L0 + L1∥∇f(w)∥

)
exp

(
L1∥w′ − w∥

)
,

where (i) uses eq. (6) with w′ replaced by wθ := θw′ + (1− θ)w.

D. Proof of Proposition 2 and Proposition 3
D.1. Proof for Phase Retrieval Problem

The objective function (10) of phase retrieval problem can be rewritten in the stochastic form f(z) = Eξfξ(z) where ξ is
obtained from {1, 2, . . . ,m} uniformly at random and

fξ(z) :=
1

2
(yξ − |a⊤ξ z|2)2.

To prove that f ∈ L∗
sym(

2
3 ) and f ∈ EL∗

sym(
2
3 ) respectively required by Proposition 2 and Proposition 3, it suffices to prove

that fξ ∈ L∗
sym(

2
3 ) for every sample ξ.

For any z ∈ Rd and sample ξ, the gradient ∇fξ(z) = 1
2 (|a

⊤
ξ z|2 − yξ)(aξa

⊤
ξ )z satisfies

∥∇fξ(z)∥
2
3 =

1

2
2
3

∥∥(|a⊤ξ z|2 − yξ)(aξa
⊤
ξ )z
∥∥ 2

3

≥ 1

2

∣∣|a⊤ξ z|3 − yξ|a⊤ξ z|
∣∣ 23 ∥aξ∥ 2

3

(ii)

≥ 1

2

(
|a⊤ξ z|2 − |yξ||a⊤ξ z|

2
3

)∣∣∥aξ∥ 2
3

(iii)

≥ 1

3

(
|a⊤ξ z|2 − |yξ|

3
2

)∣∣∥aξ∥ 2
3 (38)

where (i) applies Jensen’s inequality, (ii) uses the inequality that |a − b| 23 ≥ |a| 23 − |b| 23 for any a, b ∈ R, (iii) uses
|yξ|a

2
3 ≤ 1

3a
2 + 2

3 |yξ|
3
2 for any a ≥ 0 based on Young’s inequality.

For any z, z′ ∈ Rd, we obtain the following inequality which proves that fξ ∈ L∗
sym(

2
3 ) as desired.

∥∇fξ(z′)−∇fξ(z)∥

=
1

2

∥∥(|a⊤ξ z′|2 − yξ)(aξa
⊤
ξ )z

′ − (|a⊤ξ z|2 − yξ)(aξa
⊤
ξ )z
∥∥

≤ 1

4

∥∥(|a⊤ξ z′|2 + |a⊤ξ z|2 − 2yξ)(aξa
⊤
ξ )(z

′ − z) + (|a⊤ξ z′|2 − |a⊤ξ z|2)(aξa⊤ξ )(z′ + z)
∥∥

(i)

≤ 1

4
∥aξ∥2

(
|a⊤ξ z′|2 + |a⊤ξ z|2 + 2|yξ|

)
∥z′ − z∥+ 1

4
∥aξ∥2(|a⊤ξ z′|+ |a⊤ξ z|)2∥z′ − z∥

(ii)

≤ 1

4
∥z′ − z∥∥aξ∥2

(
3|a⊤ξ z′|2 + 3|a⊤ξ z|2 + 2|yξ|

)
≤ 1

4
∥z′ − z∥∥aξ∥

4
3 ∥aξ∥

2
3

(
3|a⊤ξ z′|2 + 3|a⊤ξ z|2 − 3|yξ| − 3|yξ|+ 8|yξ|

)
(iii)

≤ ∥z′ − z∥
(9
4
a

4
3
max∥∇fξ(z′)∥

2
3 +

9

4
a

4
3
max∥∇fξ(z)∥

2
3 + 2ymaxa

2
max

)
≤ ∥z′ − z∥

(9
4
a

4
3
max max

θ∈[0,1]

∥∥∇fξ(θz′ + (1− θ)z
)∥∥ 2

3 + 2ymaxa
2
max

)
(39)
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where (i) uses trianagular inequality, ∥aξa⊤ξ ∥ = ∥aξ∥2, |yξ| ≤ 1 and the following inequality, (ii) uses (|a⊤ξ z′|+ |a⊤ξ z|)2 ≤
2|a⊤ξ z′|2 + 2|a⊤ξ z|2, (iii) uses eq. (38) and denotes that ymax := max1≤r≤m |yr| and that amax := max1≤r≤m ∥ar∥.∣∣|a⊤ξ z′|2−|a⊤ξ z|2

∣∣=(|a⊤ξ z′|+|a⊤ξ z|)(|a⊤ξ z′|−|a⊤ξ z|)≤(|a⊤ξ z′|+|a⊤ξ z|)∥a⊤ξ (z′ − z)∥≤∥a⊤ξ ∥(|a⊤ξ z′|+|a⊤ξ z|)∥z′−z∥.

D.2. Proof for DRO Problem

We adopt the following assumptions from (Jin et al., 2021):

• ℓξ is G-Lipschitz continuous and L-smooth.

• E
(
ℓξ(x)− ℓ(x)

)2 ≤ σ2 where ℓ(x) := Eℓξ(x)

• ψ is a non-negative convex function with ψ(1) = 0 and ψ(t) = +∞ for all t < 0, and ψ∗ is M -smooth.

Then we rewrite the objective function (12) as L(x, η) = ELξ(x, η) where

Lξ(x, η) := λψ∗
(
ℓξ(x)− η

λ

)
+ η. (40)

The gradient ∇Lξ =
[
∇xLξ;

∂
∂ηLξ

]
can be computed as follows.

To prove that L ∈ EL∗
sym(1) required by Proposition 3, it suffices to prove that Lξ ∈ L∗

sym(1) for every sample ξ.

∇xLξ(x, η) = ψ∗′
(ℓξ(x)− η

λ

)
∇ℓξ(x), (41)

∂

∂η
Lξ(x, η) = 1− ψ∗′

(ℓξ(x)− η

λ

)
. (42)

Hence, for any (x′, η′), (x, η) ∈ Rd × R, ∇Lξ(x′, η′)−∇Lξ(x, η) = A+B where

A =
[
ψ∗′
(ℓξ(x)− η

λ

)(
∇ℓξ(x′)−∇ℓξ(x)

)
; 0
]

B =
[
ψ∗′
(ℓξ(x′)− η′

λ

)
−ψ∗′

(ℓξ(x)− η

λ

)][
∇ℓξ(x′);−1

]
.

Therefore, we can prove that Lξ ∈ L∗
sym(1) as follows.∥∥∇Lξ(x′, η′)−∇Lξ(x, η)
∥∥

≤ ∥A∥+ ∥B∥

≤
∣∣∣ψ∗′

(ℓξ(x)− η

λ

)∣∣∣∥∥∇ℓξ(x′)−∇ℓξ(x)
∥∥+ ∣∣∣ψ∗′

(ℓξ(x′)− η′

λ

)
−ψ∗′

(ℓξ(x)− η

λ

)∣∣∣√∥∇ℓξ(x′)∥2 + 1

(i)

≤
∣∣∣1− ∂

∂η
Lξ(x, η)

∣∣∣L∥x′ − x∥+ M

λ

∣∣ℓξ(x′)− η′ −
(
ℓξ(x)− η

)∣∣√G2 + 1

(ii)

≤
(
L+ L

∣∣∣ ∂
∂η
Lξ(x, η)

∣∣∣)∥x′ − x∥+ M

λ

√
G2 + 1

[
G∥x′ − x∥+ |η′ − η|

]
(iii)

≤
(
L+

2M(G+ 1)2

λ
+ L∥∇Lξ(x, η)∥

)
∥(x′ − x, η′ − η)∥ (43)

where (i) uses eq. (42), and the above assumptions that ℓξ is G-Lipschitz, L-smooth and that ψ∗ is M -smooth, (ii)
uses the above assumptions that ℓξ is G-Lipschitz, and (iii) uses ∥x′ − x∥ + ∥η′ − η∥ ≤

√
2∥(x′ − x, η′ − η)∥ and∣∣∣ ∂∂ηLξ(x, η)∣∣∣ ≤ ∥∇Lξ(x, η)∥.
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E. Proof of Theorem 2
We will first prove the following lemma which will be used in the proof of Theorem 2.

Lemma 5. For any x ≥ 0, C ∈ [0, 1], ∆ > 0 and 0 ≤ ω ≤ ω′ such that ∆ ≥ ω′ − ω, the following inequality holds

Cxω ≤ xω
′
+ C

ω′
∆ (44)

Proof of Lemma 5. We consider three cases: ω = 0, ω′ = ω > 0 and ω′ > ω > 0.

(Case I) When ω = 0, ∆ ≥ ω′ and ∆ > 0 imply that ω
′

∆ ∈ [0, 1], so Cxω = C ≤ C
ω′
∆ , which implies eq. (44).

(Case II) When ω′ = ω > 0, Cxω ≤ xω = xω
′
, which implies eq. (44).

(Case III) When ω′ > ω > 0, by applying Young’s inequality with p = ω′

ω > 1 and q = ω′

ω′−ω > 1 which satisfy 1
p +

1
q = 1,

we prove eq. (44) as follows.

Cxω ≤ xpω

p
+
Cq

q
≤ xω

′
+ C

ω′
ω′−ω ≤ xω

′
+ C

ω′
∆ .

Now we will prove Theorem 2. We omit the well-known case of β = α = 0 where GD is applied to L-smooth function
f ∈ L. Hence, we focus on the case of β > 0. We first bound f(wt+1)− f(wt) in two cases: α ∈ (0, 1) and α = 1.

(Case I) When α ∈ (0, 1), eq. (7) holds for f ∈ L∗
sym(α). Hence, we have

f(wt+1)− f(wt)

≤ ∇f(wt)⊤(wt+1 − wt) +
1

2

(
K0 +K1∥∇f(wt)∥α

)
∥wt+1 − wt∥2 +K2∥wt+1 − wt∥

2−α
1−α

(i)
= −γ∥∇f(wt)∥2−β +

γ

6

(
3K0γ · ∥∇f(wt)∥2−2β + 3K1γ · ∥∇f(wt)∥2+α−2β + 6K2γ

1
1−α · ∥∇f(wt)∥

(2−α)(1−β)
1−α

)
(ii)

≤ −γ∥∇f(wt)∥2−β +
γ

6

(
3∥∇f(wt)∥2−β + (3K0γ)

2
β−1 + (3K1γ)

2
β−1 + (6K2γ)

2
β−1

)
(iii)

≤ −γ
2
∥∇f(wt)∥2−β + γ

2
β (3K0 + 3K1 + 6K2)

2
β−1

(iv)

≤ −γ
2
∥∇f(wt)∥2−β +

γ

4
ϵ2−β

where (i) uses the update rule wt+1 = wt − γ ∇f(wt)
∥∇f(wt)∥β of Algorithm 1 (β-GD), (ii) uses γ

1
1−α ≤ 1 and applies Lemma

5 three times respectively with x = ∥∇f(wt)∥, C = 3K0γ, 3K1γ, 6K2γ (C ∈ [0, 1] since γ = ϵβ

12(K0+K1+2K2)+1 and

ϵ ∈ (0, 1)), ∆ = β, ω = 2−2β, 2+α−2β, (2−α)(1−β)1−α , ω′ = 2−β, (iii) uses the inequality that aτ+bτ+cτ ≤ (a+b+c)τ

for τ = 2
β − 1 > 1 and any a, b, c ≥ 0, and (iv) uses γ = ϵβ

12(K0+K1+2K2)+1 .

(Case II) When α = 1, we have β = 1 and eq. (8) holds for f ∈ L∗
sym(1). Hence, we have

f(wt+1)− f(wt)

≤ ∇f(wt)⊤(wt+1 − wt) +
1

2
∥wt+1 − wt∥2

(
L0 + L1∥∇f(wt)∥

)
exp

(
L1∥wt+1 − wt∥

)
(i)
= −γ∥∇f(wt)∥+

γ2

2

(
L0 + L1∥∇f(wt)∥

)
exp(L1γ)

(ii)

≤ −γ
2
∥∇f(wt)∥+ L0γ

2

(iii)

≤ −γ
2
∥∇f(wt)∥2−β +

γ

4
ϵ (45)
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where (i) uses the update rule wt+1 = wt − γ ∇f(wt)
∥∇f(wt)∥ of Algorithm 1 (β-GD with β = 1) and (ii) and (iii) use

γ = ϵ
4L0+1 ≤ 1

2L1
. Note that eq. (45) holds in both cases. Therefore, by telescoping eq. (45) and rearranging it, we obtain

that

ET̃ ∥∇f(wT̃ )∥
2−β =

1

T

T∑
t=1

∥∇f(wt)∥2−β

≤ 2

Tγ

(
f(w0)− f∗

)
+

1

2
ϵ2−β ,

where (i) uses γ = ϵβ

12(K0+K1+2K2)+1 and f(wT ) ≥ f∗ := minw∈Rd f(w). By applying Lyapunov inequality, the above
inequality implies convergence rate (13) as follows.

ET̃ ∥∇f(wT̃ )∥ ≤
(
ET̃ ∥∇f(wT̃ )∥

2−β) 1
2−β

≤
( 2

Tγ

(
f(w0)− f∗

)
+

1

2
ϵ2−β

) 1
2−β

,

(i)

≤
( 2

Tγ

) 1
2−β (

f(w0)− f∗
) 1

2−β +
(1
2

) 1
2−β

ϵ

≤
( 2

Tγ

) 1
2−β (

f(w0)− f∗
) 1

2−β +
1

2
ϵ

where (i) uses (a+ b)τ ≤ aτ + bτ for τ = 1
2−β ∈ [0, 1] and any a, b ≥ 0.

Then, substituting T = 4
γ into the above convergence rate, we obtain that ET̃ ∥∇f(wT̃ )∥ ≤ ϵ.

F. Proof of Theorem 3
We consider the following two cases.

(Case I) When α ∈ (0, 1), consider the convex function f(w) := |w|
2−α
1−α with unique minimizer w = 0 and derivative

f ′(w) = 2−α
1−α |w|

1
1−α sgn(w). Based on item 3 of Proposition 1, f ∈ L∗

sym(α). Applying β-GD to this function yields that

wt+1 = wt −
γf ′(wt)

|f ′(wt)|β
= wt − γ

(2− α

1− α

)1−β
|wt|

1−β
1−α sgn(wt).

Note that 0 ≤ β < α < 1. Hence, if |wt| > C with constant C :=
(

3(1−α)
γ(2−α)

) 1−α
α−β

> 0, we have γ 2−α
1−α |wt|

1−β
1−α > 3|wt|

and thus |wt+1| > 2|wt|. Therefore, if |w0| > C, by induction we obtain that |wt| > 2tC for any t, and thus |f ′(wt)| >
2

t
1−αC

1
1−α , f(wt) > 2

t(2−α)
1−α C

2−α
1−α , which means β-GD diverges.

(Case II) When α = 1, consider the convex function f(w) := ew + e−w with unique minimizer w = 0 and derivative
f ′(w) := ew − e−w = (e|w| − e−|w|)sgn(w). Based on item 4 of Proposition 1, f ∈ L∗

sym(1). Applying β-GD to this
function yields that

wt+1 = wt −
ηf ′(wt)

|f ′(wt)|β
= wt − η

(
e|wt| − e−|wt|

)1−β
sgn(wt). (46)

Since β < α = 1, |wt|−1
(
e|wt| − e−|wt|

)1−β → +∞ as |wt| → +∞. Hence, there exists a constant C > 1 such that(
e|wt| − e−|wt|

)1−β
> 3|wt| for |wt| > C. Therefore, |wt+1| > 2|wt|. Therefore, if |w0| > C, by induction we obtain that

|wt| > 2tC for any t, and thus f(wt) > |f ′(wt)| = e|wt| − e−|wt| ≥ 1
2e

|wt| > 1
2 exp(2

tC), which means β-GD diverges.
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G. Proof of Proposition 4
G.1. Proof of Item 1

First, we will prove eq. (20) given f ∈ EL∗
sym(α). Note that eq. (27) holds for f ∈ EL∗

sym(α), i.e.,

Eξ∥∇fξ(wθ)−∇fξ(w)∥2 ≤ θ2∥w′ − w∥2Eξ
∫ 1

0

(
L0 + L1∥∇fξ(wθu)∥α

)2
du

(i)
= θ∥w′ − w∥2Eξ

∫ θ

0

(
L0 + L1∥∇fξ(wu′)∥α

)2
du′

(ii)

≤ G(θ)∥w′ − w∥2 (47)

where (i) uses change of variables u′ = θu and (ii) denotes G(θ) := Eξ
∫ θ
0

(
L0 + L1∥∇fξ(wu′)∥α

)2
du′ and uses θ ≤ 1.

Then

G′(θ) = Eξ
(
L0 + L1∥∇fξ(wθ)∥α

)2
(i)

≤ 2L2
0 + 2L2

1Eξ∥∇fξ(wθ)∥2α

(ii)

≤ 2L2
0 + 4L2

1Eξ∥∇fξ(w)∥2α + 4L2
1Eξ∥∇fξ(wθ)−∇fξ(w)∥2α

(iii)

≤ 2L2
0 + 4L2

1Eξ∥∇fξ(w)∥2α + 4L2
1

(
Eξ∥∇fξ(wθ)−∇fξ(w)∥2

)α
(iv)

≤ 2L2
0 + 4L2

1Eξ∥∇fξ(w)∥2α + 4L2
1G(θ)

α∥w′ − w∥2α

(v)

≤ 3
(
A+BG(θ)

)α
, (48)

where (i) use the inequality that (a + b)2 ≤ 2a2 + 2b2 for any a, b ≥ 0, (ii) uses the inequality that ∥v′ + v∥2α ≤
2∥v′∥2α + 2∥v∥2α for any v, v′ ∈ Rd and α ∈ [0, 1], (iii) uses Jensen’s inequality that E(Xα) ≤ (EX)α where X =
∥∇fξ(wθ) − ∇fξ(w)∥2, (iv) uses eq. (47), and (v) uses Jensen’s inequality that aα + bα + cα ≤ 3(a + b + c)α for
any a, b, c ≥ 0 and denotes that A := (2L2

0)
1
α + (4L2

1Eξ∥∇fξ(w)∥2α)
1
α , B := (4L2

1)
1
α ∥w′ − w∥2. When α ∈ (0, 1),

rearranging the above inequality yields that

3B(1− α) ≥ B(1− α)G′(θ)(
A+BG(θ)

)α =
d

dθ

(
A+BG(θ)

)1−α
Integrating the above inequality over θ ∈ [0, 1] yields that(

A+BG(1)
)1−α ≤ 3B(1− α) +

(
A+BG(0)

)1−α ≤ 3B +A1−α ≤ 2
(
(3B)

1
1−α +A

)1−α
.

where (i) applies Jensen’s inequality to the concave function x1−α. Rearranging the above inequality yields that

BG(1) ≤ 2
1

1−α
(
(3B)

1
1−α +A

)
−A

≤ 6
1

1−αB
1

1−α +A(2
1

1−α )

≤ 6
1

1−α (4L2
1)

1
α(1−α) ∥w′ − w∥

2
1−α + 2

1
1−α (2L2

0)
1
α + 2

1
1−α (4L2

1Eξ∥∇fξ(w)∥2α)
1
α .

Substituting the above inequality into eq. (47), we obtain that

Eξ∥∇fξ(wθ)−∇fξ(w)∥2 ≤ G(θ)∥w′ − w∥2

≤ (4L2
1)

− 1
αBG(1)

≤ (24L2
1)

1
1−α ∥w′ − w∥

2
1−α + 2

1
1−α

( L2
0

2L2
1

) 1
α

+ 2
1

1−α (Eξ∥∇fξ(w)∥2α)
1
α (49)

Therefore,

E∥∇fξ(wθ)∥2α
(i)

≤ 2E∥∇fξ(wθ)−∇fξ(w)∥2α + 2E∥∇fξ(w)∥2α
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(ii)

≤ 2
(
E∥∇fξ(wθ)−∇fξ(w)∥2

)α
+ 2E∥∇fξ(w)∥2α

(iii)

≤ 2(24L2
1)

α
1−α ∥w′ − w∥

2α
1−α + 2

α
1−αL2

0L
−2
1 +

(
2

1
1−α + 2

)
Eξ∥∇fξ(w)∥2α (50)

where (i) uses the inequality that ∥v′ + v∥2α ≤ 2∥v′∥2α + 2∥v∥2α for any v, v′ ∈ Rd and α ∈ (0, 1), (ii) uses Jensen’s
inequality that E(Xα) ≤ (EX)α where X = ∥∇fξ(wθ) − ∇fξ(w)∥2, and (iii) uses eq. (49) and the inequality that
(a+ b+ c)α ≤ aα + bα + cα for any a, b, c ≥ 0 and α ∈ [0, 1]. Note that (26) holds for f ∈ EL∗

sym, so we have

Eξ∥∇fξ(w′)−∇fξ(w)∥2

≤ ∥w′ − w∥2Eξ
∫ 1

0

(
L0 + L1∥∇fξ(wθ)∥α

)2
dθ

≤ 2∥w′ − w∥2
∫ 1

0

L2
0 + L2

1Eξ∥∇fξ(wθ)∥2αdθ

(i)

≤ ∥w′ − w∥2Eξ
(
K

2

0 +K
2

1∥∇fξ(w)∥2α +K
2

2∥w′ − w∥
2α

1−α
)

(ii)

≤ ∥w′ − w∥2Eξ
(
K0 +K1∥∇fξ(w)∥α +K2∥w′ − w∥

α
1−α
)2

where (i) uses eq. (50) and denotes that K
2

0 := 2
4−2α
1−α L2

0 ≥ 2L2
0(2

1
1−α + 1), K

2

1 := 2
4−2α
1−α L2

1 ≥ 2L2
1(2

1
1−α + 2),

K
2

2 := (25L2
1)

1
1−α ≥ 4L2

1(24L
2
1)

α
1−α , and (ii) uses the inequality that a2 + b2 + c2 ≤ (a+ b+ c)2 for any a, b, c ≥ 0. This

proves eq. (20).

Then, it remains to prove that f ∈ EL∗
sym(α) given eq. (20). Then for any w,w′ ∈ Rd and n ∈ N+, we have

Eξ∥∇fξ(w′)−∇fξ(w)∥2

= Eξ
∥∥∥ n−1∑
k=0

(
∇fξ(w(k+1)/n)−∇fξ(wk/n)

)∥∥∥2
(i)

≤ n
n−1∑
k=0

Eξ
∥∥∇fξ(w(k+1)/n)−∇fξ(wk/n)

∥∥2
(ii)

≤ n
n−1∑
k=0

∥w(k+1)/n − wk/n∥2Eξ
(
K0 +K1∥∇fξ(wk/n)∥α +K2∥w(k+1)/n − wk/n∥

α
1−α
)2

= ∥w′ − w∥2Eξ
n−1∑
k=0

1

n

(
K0 +K1∥∇fξ(wk/n)∥α +K2n

− α
1−α ∥w′ − w∥

α
1−α
)2
,

where (i) applies Jensen’ inequality to the convex function ∥ · ∥2 and (ii) uses eq. (20). For any ϵ > 0, there exists n0 > 0
such that K2n

− α
1−α ∥w′ −w∥

α
1−α < ϵ for any n ≥ n0. Therefore, taking limit superior of both sides of the above inequality,

we obtain that

Eξ∥∇fξ(w′)−∇fξ(w)∥2

≤ ∥w′ − w∥2 lim sup
n→+∞

Eξ
n−1∑
k=0

1

n

(
K0 +K1∥∇fξ(wk/n)∥α +K2n

− α
1−α ∥w′ − w∥

α
1−α
)2

(i)

≤ ∥w′ − w∥2Eξ lim sup
n→+∞

n−1∑
k=0

1

n

(
K0 + ϵ+K1∥∇fξ(wk/n)∥α

)2
= ∥w′ − w∥2Eξ

∫ 1

0

(
K0 + ϵ+K1∥∇fξ(wθ)∥α

)2
dθ

where (i) uses Fatou’s lemma. Letting ϵ→ +0 in the above inequality, we obtain the following inequality, which proves that
f ∈ EL∗

sym(α) based on Lemma 3

Eξ∥∇fξ(w′)−∇fξ(w)∥2 ≤ ∥w′ − w∥2Eξ
∫ 1

0

(
K0 +K1∥∇fξ(wθ)∥α

)2
dθ (51)
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G.2. Proof of Item 2

First, we will prove eq. (21) given f ∈ EL∗
sym(1). Note that eq. (48) holds for any f ∈ EL∗

sym(α) with α ∈ [0, 1].
Substituting α = 1 into eq. (48), i.e.,

G′(θ) ≤ 3A+ 3BG(θ)

where G(θ) := Eξ
∫ θ
0

(
L0 + L1∥∇fξ(wu)∥

)2
du, wu := uw′ + (1 − u)w, A := 2L2

0 + 4L2
1Eξ∥∇fξ(w)∥2 and B :=

4L2
1∥w′ − w∥2. Rearranging the above inequality yields that

3B ≥ BG′(θ)

A+BG(θ)
=

d

dθ
ln
(
A+BG(θ)

)
.

Integrating the above inequality over θ ∈ [0, 1], we obtain that

ln
(
A+BG(1)

)
≤ ln

(
A+BG(0)

)
+ 3B = lnA+ 3B.

Hence, we have BG(θ) ≤ BG(1) ≤ A(e3B − 1). Substituting this inequality into eq. (47), we obtain that

Eξ∥∇fξ(wθ)−∇fξ(w)∥2 ≤ G(θ)∥w′ − w∥2

≤ A

4L2
1

(e3B − 1)

≤
( L2

0

2L2
1

+ Eξ∥∇fξ(w)∥2
)(

exp(12L2
1∥w′ − w∥2)− 1

)
. (52)

Therefore,

E∥∇fξ(wθ)∥2
(i)

≤ 2E∥∇fξ(wθ)−∇fξ(w)∥2 + 2E∥∇fξ(w)∥2

(ii)

≤
(L2

0

L2
1

+ 2Eξ∥∇fξ(w)∥2
)(

exp(12L2
1∥w′ − w∥2)− 1

)
+ 2E∥∇fξ(w)∥2 (53)

where (i) uses the inequality that ∥v′ + v∥2 ≤ 2∥v′∥2 +2∥v∥2 for any v, v′ ∈ Rd and (ii) uses eq. (52). Note that (26) holds
for f ∈ EL∗

sym(1). Hence, we prove eq. (21) as follows.

Eξ∥∇fξ(w′)−∇fξ(w)∥2

≤ ∥w′ − w∥2Eξ
∫ 1

0

(
L0 + L1∥∇fξ(wθ)∥

)2
dθ

≤ 2∥w′ − w∥2
∫ 1

0

L2
0 + L2

1Eξ∥∇fξ(wθ)∥2dθ

(i)

≤ 2∥w′ − w∥2
(
L2
0 + (L2

0 + 2L2
1Eξ∥∇fξ(w)∥2)

(
exp(12L2

1∥w′ − w∥2)− 1
)
+ 2L2

1E∥∇fξ(w)∥2
)

= 2∥w′ − w∥2(L2
0 + 2L2

1Eξ∥∇fξ(w)∥2) exp(12L2
1∥w′ − w∥2),

where (i) uses eq. (53). This proves eq. (21).

Finally, it remains to prove that f ∈ EL∗
sym(α) given eq. (21). Then for any w,w′ ∈ Rd and n ∈ N+, we have

Eξ∥∇fξ(w′)−∇fξ(w)∥2

= Eξ
∥∥∥ n−1∑
k=0

(
∇fξ(w(k+1)/n)−∇fξ(wk/n)

)∥∥∥2
(i)

≤ n
n−1∑
k=0

Eξ
∥∥∇fξ(w(k+1)/n)−∇fξ(wk/n)

∥∥2
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(ii)

≤ 2n
n−1∑
k=0

∥w(k+1)/n − wk/n∥2(L2
0 + 2L2

1Eξ∥∇fξ(wk/n)∥2) exp(12L2
1∥w(k+1)/n − wk/n∥2)

= ∥w′ − w∥2
n−1∑
k=0

1

n
(L2

0 + 2L2
1Eξ∥∇fξ(wk/n)∥2) exp(12n−2L2

1∥w′ − w∥2),

where (i) applies Jensen’ inequality to the convex function ∥ · ∥2 and (ii) uses eq. (21). For any ϵ > 0, there exists n0 > 0
such that exp(12n−2L2

1∥w′ −w∥2) < 1+ ϵ for any n ≥ n0. Therefore, letting n→ +∞ in the above inequality, we obtain
that

Eξ∥∇fξ(w′)−∇fξ(w)∥2

≤ (1 + ϵ)∥w′ − w∥2 lim sup
n→+∞

n−1∑
k=0

1

n
(L2

0 + 2L2
1Eξ∥∇fξ(wk/n)∥2)

= (1 + ϵ)∥w′ − w∥2
∫ 1

0

(L2
0 + 2L2

1Eξ∥∇fξ(wθ)∥2)dθ,

where (i) uses Fatou’s lemma. Letting ϵ→ +0 in the above inequality, we obtain the following inequality, which proves that
f ∈ EL∗

sym(1) based on Lemma 3

Eξ∥∇fξ(w′)−∇fξ(w)∥2 ≤ ∥w′ − w∥2Eξ
∫ 1

0

(L2
0 + 2L2

1Eξ∥∇fξ(wθ)∥2)dθ. (54)

G.3. Proof of Item 3

For any f ∈ EL∗
sym(α), we will prove that f ∈ L∗

sym(α) in two cases: α ∈ (0, 1) and α = 1.

(Case I) When α ∈ (0, 1), eq. (20) holds, so we have

∥∇f(w′)−∇f(w)∥ =
∥∥Eξ(∇fξ(w′)−∇fξ(w)

)∥∥
≤
√

Eξ∥∇fξ(w′)−∇fξ(w)∥2

≤ ∥w′ − w∥
(
K0 +K1Eξ∥∇fξ(w)∥α +K2∥w′ − w∥

α
1−α
)

(i)

≤ ∥w′ − w∥
(
K0 +K1Λ

α +K1(Γ
α + 1)∥∇f(w)∥α +K2∥w′ − w∥

α
1−α
)
,

where (i) uses Lemma 4. The above inequality implies that f ∈ L∗
sym(α) based on item 1 of Proposition 1.

(Case II) When α = 1, eq. (21) holds, so we have

∥∇f(w′)−∇f(w)∥ =
∥∥Eξ(∇fξ(w′)−∇fξ(w)

)∥∥
≤
√
Eξ∥∇fξ(w′)−∇fξ(w)∥2

≤ ∥w′ − w∥
√
2L2

0 + 4L2
1Eξ∥∇fξ(w)∥2 exp(6L2

1∥w′ − w∥2)
(i)

≤ ∥w′ − w∥
√

2L2
0 + 4L2

1Λ
2 + 4L2

1(Γ
2 + 1)∥∇f(w)∥2 exp(6L2

1∥w′ − w∥2)
(ii)

≤ ∥w′ − w∥
(
2L0 + 2L1Λ + 2L1(Γ + 1)∥∇f(w)∥

)
exp(6L2

1∥w′ − w∥2)

where (i) uses Lemma 4, (ii) uses the inequality that
√
a+ b ≤

√
a+

√
b for any a, b ≥ 0. The above inequality implies

that f ∈ L∗
sym(α) based on item 2 of Proposition 1.

H. Proof of Theorem 4
We will first prove the following lemmas which will be used in the proof of Theorem 4.
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Lemma 6. Apply SPIDER algorithm (Algorithm 2) to f ∈ L∗
sym(α) with stepsize γ ≤ ϵ

2K0+2K2+2K1(Λα+Γα+1)+1
(when

α ∈ (0, 1)) or γ ≤ ϵ

3L1

√
Γ2+1+3

√
L2

0+2L2
1Λ

2
(when α = 1) (ϵ ∈ (0, 1) is the target accuracy). Then we have,

Eξ∼P
(
∥∇fξ(wt+1)−∇fξ(wt)∥2

∣∣S1:t

)
≤ ϵ2

(
1 + ∥∇f(wt)∥2

)
, (55)

where ξ ∼ P is independent from the minibatches S1:t.

Proof of Lemma 6. Given S1:t, wt, wt+1 are non-random based on eq. (30). Hence, eq. (20) or (21) holds respectively
when α ∈ (0, 1) or α = 1.

If α ∈ (0, 1), eq. (55) can be proved as follows

Eξ∼P
(
∥∇fξ(wt+1)−∇fξ(wt)∥2

∣∣S1:t

)
(i)

≤ ∥wt+1 − wt∥2
(
K0 +K1Eξ

(
∥∇fξ(wt)∥α

∣∣S1:t

)
+K2∥wt+1 − wt∥

α
1−α
)2

(ii)

≤ γ2
(
K0 +K1Λ

α +K1(Γ
α + 1)∥∇f(wt)∥α +K2

)2
(iii)

≤ 2γ2(K0 +K2 +K1Λ
α)2 + 2γ2K

2

1(Γ
α + 1)2 · ∥∇f(wt)∥2α

≤ 2γ2(K0 +K2 +K1Λ
α)2 + 2γ2K

2

1(Γ
α + 1)2

(
∥∇f(wt)∥2 + 1

)
(iv)

≤ ϵ2
(
1 + ∥∇f(wt)∥2

)
,

where (i) uses eq. (20), (ii) uses eq. (28) and ∥wt+1 − wt∥ = γ ≤ 1 based on Algorithm 2, (iii) uses the inequality that

(a+b)2 ≤ 2a2+2b2 for any a, b ≥ 0, (iv) uses γ ≤ ϵ
2K0+2K2+2K1(Λα+Γα+1)

≤ ϵ
2

(
(K0+K2+K1Λ

α)2+K
2

1(Γ
α+1)2

)− 1
2 .

If α = 1, eq. (55) can be proved as follows

Eξ∼P
(
∥∇fξ(wt+1)−∇fξ(wt)∥2

∣∣S1:t

)
(i)

≤ 2∥wt+1 − wt∥2 · (L2
0 + 2L2

1Eξ∥∇fξ(wt)∥2) exp(12L2
1∥wt+1 − wt∥2)

(ii)
= 2γ2 exp(12L2

1γ
2)
(
L2
0 + 2L2

1Λ
2 + 2L2

1(Γ
2 + 1)∥∇f(wt)∥2

)
(iii)

≤ ϵ2
(
1 + ∥∇f(wt)∥2

)
,

where (i) uses eq. (21), (ii) uses eq. (28) and ∥wt+1 − wt∥ = γ ≤ 1 based on Algorithm 2, (iii) uses γ ≤
ϵ

3L1

√
Γ2+1+3

√
L2

0+2L2
1Λ

2
≤ min

(
1

3L1
, ϵ

3L1

√
Γ2+1+3

√
L2

0+2L2
1Λ

2

)
.

Lemma 7. Apply SPIDER algorithm (Algorithm 2) to f ∈ L∗
sym(α) with stepsize γ given by Lemma 6 batchsize |St| = B

when t mod q = 0 and |St| = B′ otherwise. Then the approximation error δt := vt−∇f(wt) has the following properties
conditional on minibatches S1:t := {S1, . . . , St}.

E
(
δt+1

∣∣S1:t

)
= δt; ∀(t+ 1) mod q ̸= 0 (56)

E
(
∥δt+1∥2

∣∣wt+1

)
≤ 1

B

(
Γ2∥∇f(wt+1)∥2 + Λ2

)
; ∀(t+ 1) mod q = 0 (57)

E
(
∥δt+1∥2

∣∣S1:t

)
≤ ∥δt∥2 +

ϵ2

B′

(
1 + ∥∇f(wt)∥2

)
(58)

Therefore, for any k ∈ N and s = 0, 1, . . . , q − 1, we have

E∥δqk+s∥ ≤ Λ√
B

+ ϵ

√
q

B′ +
( ϵ√

B′
+

Γ√
B

) q−1∑
u=0

E∥∇f(wqk+u)∥. (59)

Proof of Lemma 7. We will first prove eq. (57) when (t+1) mod q = 0 and then prove eqs. (56) & (58) when (t+1) mod q ̸=
0.
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If (t+ 1) mod q = 0, then vt+1 = ∇fSt+1
(wt+1) based on Algorithm 2. Hence, eq. (57) can be proved as follows.

E
(
∥δt+1∥2

∣∣S1:t

)
=E
(
∥∇fSt+1

(wt+1)−∇f(wt+1)∥2
∣∣S1:t

)
=

1

|St|
Eξ∼P

(
∥∇fξ(wt+1)−∇f(wt+1)∥2

∣∣S1:t

)
(i)

≤ 1

B

(
Γ2∥∇f(wt+1)∥2 + Λ2

)
,

where (i) uses Assumption 1.

If (t+1) mod q ̸= 0, then vt+1 = vt+∇fSt+1
(wt+1)−∇fSt+1

(wt) based on Algorithm 2. Hence, eq. (56) can be proved
as follows.

E
(
δt+1

∣∣S1:t

)
= E

(
vt+1 −∇f(wt+1)

∣∣S1:t

)
= E

(
vt +∇fSt+1

(wt+1)−∇fSt+1
(wt)−∇f(wt+1)

∣∣S1:t

)
(i)
= vt −∇f(wt) = δt,

where (i) uses eq. (30). Then eq. (58) can be proved as follows.

E
(
∥δt+1∥2

∣∣S1:t

)
(i)
= ∥δt∥2 + E

(
∥δt+1 − δt∥2

∣∣S1:t

)
= ∥δt∥2 + E

(
∥vt+1 − vt −∇f(wt+1) +∇f(wt)∥2

∣∣S1:t

)
= ∥δt∥2 + E

(
∥∇fSt+1(wt+1)−∇fSt+1(wt)−∇f(wt+1) +∇f(wt)∥2

∣∣S1:t

)
(ii)
= ∥δt∥2 +

1

|St+1|
Eξ∼P

(
∥∇fξ(wt+1)−∇fξ(wt)−∇f(wt+1) +∇f(wt)∥2

∣∣S1:t

)
(iii)

≤ ∥δt∥2 +
1

|St+1|
Eξ∼P

(
∥∇fξ(wt+1)−∇fξ(wt)∥2

∣∣S1:t

)
(iv)

≤ ∥δt∥2 +
ϵ2

B′

(
1 + ∥∇f(wt)∥2

)
,

where (i) uses eq. (56), (ii) uses eq. (30) which implies that conditional on S1:t, St+1 obtained from i.i.d. sampling is the
only source of randomness in ∇fξ(wt+1) − ∇fξ(wt) − ∇f(wt+1) + ∇f(wt), both (ii) and (iii) use E

(
∥∇fξ(wt+1) −

∇fξ(wt)−∇f(wt+1) +∇f(wt)∥2
∣∣S1:t

)
= 0, and (iv) uses Lemma 6 and |St+1| = B′ (since t+ 1 mod q ̸= 0).

Next, to prove eq. (59), we will first prove the following relation for any s, s′, k ∈ N such that s′ ≤ s ≤ q − 1.

E∥δqk+s∥ ≤ E
√
∥δqk+s′∥2 +

ϵ2(s− s′)

B′ +
ϵ√
B′

s−1∑
u=s′

E∥∇f(wqk+u)∥. (60)

We prove eq. (60) via backward induction on s′ = s, s − 1, . . . , 1, 0. Note that eq. (60) holds trivially for s′ = s. Then,
assume that eq. (60) holds for a certain value of s′ ∈ [1, s] and we prove eq. (60) for s′ − 1 as follows.

E∥δqk+s∥ −
ϵ√
B′

s−1∑
u=s′

E∥∇f(wqk+u)∥

(i)

≤ EE

(√
∥δqk+s′∥2 +

ϵ2(s− s′)

B′

∣∣∣∣∣S1:qk+s′−1

)
(ii)

≤ E

√√√√E

(
∥δqk+s′∥2 +

ϵ2(s− s′)

B′

∣∣∣∣∣S1:qk+s′−1

)
(iii)

≤ E
√
∥δqk+s′−1∥2 +

ϵ2

B′

(
1 + ∥∇f(wqk+s′−1)∥2

)
+
ϵ2(s− s′)

B′
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(iv)

≤ E
√
∥δqk+s′−1∥2 +

ϵ2(s− s′ + 1)

B′ +
ϵ√
B′

E∥∇f(wqk+s′−1)∥,

where (i) uses eq. (60) for s′, (ii) applies Jensen’s inequality to the concave function
√
·, (iii) uses eq. (58), and (iv) uses the

inequality that
√
a+ b ≤

√
a+

√
b for any a, b ≥ 0. Substituting s′ = 0 into eq. (60), we prove eq. (59) as follows.

E∥δqk+s∥ ≤ E
√
∥δqk∥2 +

sϵ2

B′ +
ϵ√
B′

s−1∑
u=0

E∥∇f(wqk+u)∥

(i)

≤
√
E∥δqk∥2 + ϵ

√
q

B′ +
ϵ√
B′

s−1∑
u=0

E∥∇f(wqk+u)∥

(ii)

≤ 1√
B

(
Γ∥∇f(wqk)∥+ Λ

)
+ ϵ

√
q

B′ +
ϵ√
B′

s−1∑
u=0

E∥∇f(wqk+u)∥

≤ Λ√
B

+ ϵ

√
q

B′ +
( ϵ√

B′
+

Γ√
B

) q−1∑
u=0

E∥∇f(wqk+u)∥,

where (i) uses the inequality that
√
a+ b ≤

√
a+

√
b for any a, b ≥ 0 and then applies Lyapunov inequality, and (ii) uses

eq. (57) and then uses
√
a+ b ≤

√
a+

√
b for any a, b ≥ 0.

Lemma 8. Apply SPIDER algorithm (Algorithm 2) to f ∈ L∗
sym(α) with batchsize |St| = B when t mod q = 0 and

|St| = B′ otherwise, and stepsize stepsize γ ≤ ϵ
2(K0+K1+2K2)+1

(when α ∈ (0, 1)) or γ ≤ ϵ
5L1+8L0

(when α = 1)
(ϵ ∈ (0, 1) is the target accuracy). Then the decrease of the function f has the following bound.

f(wt+1)− f(wt) ≤
γϵ

8
− γ

2
∥vt∥ −

3γ

8
∥∇f(wt)∥+

3γ

2
∥vt −∇f(wt)∥. (61)

Proof of Lemma 8. We consider two cases: α ∈ (0, 1) and α = 1.

(Case I) When α ∈ (0, 1), eq. (7) holds for f ∈ L∗
sym(α). Hence,

f(wt+1)− f(wt)

≤ ∇f(wt)⊤(wt+1 − wt) +
1

2
∥wt+1 − wt∥2

(
K0 +K1∥∇f(wt)∥α + 2K2∥wt+1 − wt∥

α
1−α
)

= − γ

∥vt∥
∇f(wt)⊤vt +

γ2

2

(
K0 +K1∥∇f(wt)∥α + 2K2γ

α
1−α
)

(i)

≤ −
γ
(
vt −∇f(wt)

)⊤
vt + γ∥vt∥2

∥vt∥
+
γ2

2
(K0 +K1 + 2K2) +

K1γ
2

2
∥∇f(wt)∥

(ii)

≤ γ∥vt −∇f(wt)∥ −
γ

2
∥vt∥ −

γ

2

(
∥∇f(wt)∥ − ∥vt −∇f(wt)∥

)
+
γϵ

8
+
γϵ

8
∥∇f(wt)∥

(iii)

≤ γϵ

8
− γ

2
∥vt∥ −

3γ

8
∥∇f(wt)∥+

3γ

2
∥vt −∇f(wt)∥, (62)

where (i) uses ∥∇f(wt)∥α ≤ ∥∇f(wt)∥2 +1 and γ ≤ 1, (ii) uses Cauchy-Schwartz inequality, ∥vt∥ ≥ ∥∇f(wt)∥− ∥vt−
∇f(wt)∥ and γ ≤ ϵ

2(K0+K1+2K2)
, (iii) uses ϵ ≤ 1.

(Case II) When α = 1, we have β = 1 and eq. (8) holds for f ∈ L∗
sym(1). Hence,

f(wt+1)− f(wt)

≤ ∇f(wt)⊤(wt+1 − wt) +
1

2
∥wt+1 − wt∥2

(
L0 + L1∥∇f(wt)∥

)
exp

(
L1∥wt+1 − wt∥

)
≤ − γ

∥vt∥
∇f(wt)⊤vt +

1

2
γ2
(
L0 + L1∥∇f(wt)∥

)
exp(L1γ)
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(i)

≤ −
γ
(
vt −∇f(wt)

)⊤
vt + γ∥vt∥2

∥vt∥
+ L0γ

2 +
γ

8
∥∇f(wt)∥

(ii)

≤ γ∥vt −∇f(wt)∥ −
γ

2
∥vt∥ −

γ

2

(
∥∇f(wt)∥ − ∥vt −∇f(wt)∥

)
+
γϵ

8
+
γ

8
∥∇f(wt)∥

≤ γϵ

8
− γ

2
∥vt∥ −

3γ

8
∥∇f(wt)∥+

3γ

2
∥vt −∇f(wt)∥, (63)

where (i) uses γ ≤ 1
5L1

, (ii) uses Cauchy-Schwartz inequality, ∥vt∥ ≥ ∥∇f(wt)∥ − ∥vt −∇f(wt)∥ and γ ≤ ϵ
8L0

.

Now we will prove Theorem 4. First, it can be easily verified that the choice of stepsize γ and batchsize |St| satisfies the
requirements of Lemmas 7 & 8. Therefore, eq. (61) in Lemma 8 holds. Taking expectation of eq. (61) and telescoping over
t = 0, 1, . . . , T − 1 where T = qK, we obtain that

Ef(wT )− Ef(w0)

≤ Tγϵ

8
− γ

2

qK−1∑
t=0

E∥vt∥ −
3γ

8

qK−1∑
t=0

E∥∇f(wt)∥+
3γ

2

qK−1∑
t=0

E∥vt −∇f(wt)∥

≤ Tγϵ

8
− γ

2

K−1∑
k=0

q−1∑
s=0

E∥vqk+s∥ −
3γ

8

K−1∑
k=0

q−1∑
s=0

E∥∇f(wqk+s)∥+
3γ

2

K−1∑
k=0

q−1∑
s=0

E∥δqk+s∥

(i)

≤ Tγϵ

8
− γ

2

K−1∑
k=0

q−1∑
s=0

E∥vqk+s∥ −
3γ

8

K−1∑
k=0

q−1∑
s=0

E∥∇f(wqk+s)∥

+
3qγ

2

K−1∑
k=0

(
Λ√
B

+ ϵ

√
q

B′ +
( ϵ√

B′
+

Γ√
B

) q−1∑
u=0

E∥∇f(wqk+u)∥

)
(ii)

≤ Tγϵ

4
− 5γ

16

K−1∑
k=0

q−1∑
s=0

E∥∇f(wqk+s)∥, (64)

where (i) uses eq. (59) and (ii) uses the following condition satisfied by the hyperparamter choices B ≥
max(576Λ2ϵ−2, 2304Γ2q2), B′ ≥ max(576q, 2304q2ϵ2).

Λ√
B

+ ϵ

√
q

B′ ≤
ϵ

12
,

ϵ√
B′

+
Γ√
B

≤ 1

24q

By rearranging eq. (64) and using f(wT ) ≥ f∗ = minw∈Rd f(w), we can prove eq. (22) as follows

E∥∇f(wT̃ )∥ =
1

T

T−1∑
t=0

∥∇f(wt)∥ ≤ 16

5Tγ

(
Ef(w0)− f∗

)
+

4ϵ

5

It can be easily verified that the following hyperparameter choices satisfy the condition thatB ≥ max(576Λ2ϵ−2, 2304Γ2q2)
and that B′ ≥ max(576q, 2304q2ϵ2) since ϵ ∈ (0, 1).

q = ϵ−1 = O(ϵ−1) (65)

B = max(576Λ2, 2304Γ2)ϵ−2 = O(ϵ−2) (66)

B′ = 2304ϵ−1 = O(ϵ−1) (67)

γ =
ϵ

2K0 + 4K2 + 2K1(Λα + Γα + 1) + 1
= O(ϵ); if α ∈ (0, 1) (68)

γ =
ϵ

5L1

√
Γ2 + 1 + 8

√
L2
0 + 2L2

1Λ
2
= O(ϵ); if α = 1 (69)

K =
16ϵ

5Tγ

(
Ef(w0)− f∗

)
= O(ϵ−1) (70)
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T = qK =
16

5Tγ

(
Ef(w0)− f∗

)
= O(ϵ−2) (71)

Substituting the choice of T given by eq. (71) into eq. (61), we obtain that E∥∇f(wT̃ )∥ ≤ ϵ.

Under the above hyperparameter choices, the sample complexity is

qK−1∑
t=0

|St| = K
(
(q − 1)B′ +B

)
= O(ϵ−3).
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