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Abstract

Some of the most energetic pulsars exhibit rotation-modulated γ-ray emission in the 0.1–100 GeV band. The
luminosity of this emission is typically 0.1%–10% of the pulsar spin-down power (γ-ray efficiency), implying that
a significant fraction of the available electromagnetic energy is dissipated in the magnetosphere and reradiated as
high-energy photons. To investigate this phenomenon we model a pulsar magnetosphere using 3D particle-in-cell
simulations with strong synchrotron cooling. We particularly focus on the dynamics of the equatorial current sheet
where magnetic reconnection and energy dissipation take place. Our simulations demonstrate that a fraction of the
spin-down power dissipated in the magnetospheric current sheet is controlled by the rate of magnetic reconnection
at microphysical plasma scales and only depends on the pulsar inclination angle. We demonstrate that the
maximum energy and the distribution function of accelerated pairs is controlled by the available magnetic energy
per particle near the current sheet, the magnetization parameter. The shape and the extent of the plasma distribution
is imprinted in the observed synchrotron emission, in particular, in the peak and the cutoff of the observed
spectrum. We study how the strength of synchrotron cooling affects the observed variety of spectral shapes. Our
conclusions naturally explain why pulsars with higher spin-down power have wider spectral shapes and, as a result,
lower γ-ray efficiency.

Unified Astronomy Thesaurus concepts: Plasma physics (2089); Plasma astrophysics (1261); High energy
astrophysics (739); Pulsars (1306); Gamma-rays (637); Radiative processes (2055)

Supporting material: animation

1. Introduction

In γ-ray pulsars a significant fraction of the spin-down power
(between 0.1% and 10%) is converted into high-energy photons
(Abdo et al. 2013). This suggests that somewhere in the
magnetosphere the Poynting flux radiated by the rotating star is
efficiently dissipated and converted into the energy of pairs
populating the magnetosphere and, ultimately, to γ-rays. The
equatorial current sheet beyond the light cylinder, where
magnetic reconnection takes place, is a likely candidate where
this energy extraction can take place. The emergence of the
current sheet in plasma-filled magnetospheres of neutron stars
was predicted in the force-free (FF) formulation (Contopoulos
et al. 1999; Gruzinov 2005; Timokhin 2006), while kinetic
plasma simulations permitted them to be modeled self-
consistently, capturing the process of magnetic reconnection
(Chen & Beloborodov 2014; Philippov & Spitkovsky 2014;
Belyaev 2015; Cerutti et al. 2015; Kalapotharakos et al. 2018;
Cerutti et al. 2020). Two-dimensional simulations of axisym-
metric magnetospheres were able to achieve significant
separation of scales between the macroscopic extent of the
current layer and the microscopic plasma-kinetic scale.
However, the dynamics of a 2D reconnecting current sheet
may be different from that in three dimensions. Current layers
in three dimensions are prone to kinetic instabilities, such as the
kink instability, which may disrupt the layer, interfering with

the magnetic reconnection and tearing instability, and poten-
tially leading to the suppression of dissipation rate (Guo et al.
2021; Werner & Uzdensky 2021; Zhang et al. 2021). Neutron
stars that have magnetic axes misaligned with respect to their
rotation axes have intrinsically nonaxisymmetric magneto-
spheres and, as a result, more complex structures of current
layers, which can only be studied in three dimensions.
In global 3D simulations, large-scale separation is numeri-

cally challenging and expensive, and yet critically necessary to
resolve the hierarchical chain of plasmoids that occur in the
magnetic reconnection and mediate the particle acceleration
process. As a result, while previous 3D simulations properly
capture the general structure of the magnetosphere, the
complex dynamics of the current layer is still largely
unexplored due to the rather limited scale separation in prior
works. In this work we make an attempt to properly capture the
microphysics of the current sheet in 3D particle-in-cell (PIC)

simulations by extending the separation of macro-to-micro-
scales to 100. We achieve this by employing a hybrid
approach for particle pushing in our simulations, where the
motion of particles in highly magnetized regions is reduced to
that of their guiding centers, while in the accelerating regions,
the full motion is recovered (Bacchini et al. 2020). This
approach also enables us to include a strong self-consistent
synchrotron radiation-reaction force acting on the subsect of
particles for which gyration is resolved.
The goal of the present work is to quantify the amount of

magnetic energy dissipation, determine which plasma para-
meters control the average and the maximum energy that
particles gain during the acceleration process, and what role the
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strong synchrotron cooling, present in most of the energetic
pulsars, plays. We begin in Section 2 with a brief introduction
to the 3D structure of the magnetosphere, and the numerical
setup we employ. We then describe the energy dissipation
process in the reconnecting current layer and demonstrate that
the rate of this process controls the overall dissipation rate in
the magnetosphere (Section 3). In Section 4 we study the
particle acceleration and high-energy radiation in the regimes
of dynamically strong and weak synchrotron cooling. Section 5
summarizes our main findings, putting them in the context of
Fermi observations. In particular, we show how the interplay of
radiative losses and particle acceleration in magnetic reconnec-
tion explains the observed diversity of γ-ray spectra.

2. Plasma-filled Pulsar Magnetospheres

Pair cascade near the neutron star surface has long been
thought to populate the neutron star magnetospheres with pair
plasma (Sturrock 1971; Ruderman & Sutherland 1975). When
the magnetosphere has enough plasma supply, ne ρGJ/|e|, its
structure relaxes to the FF solution, where the electric field
component parallel to the magnetic field vanishes everywhere,
E · B= 0. Charge density necessary to sustain FF solution is
called the Goldreich–Julian (GJ) density, ρGJ=Ω · B/(2πc)
(Goldreich & Julian 1969). For the most energetic pulsars, pair-
producing cascade is highly efficient and can populate the
magnetosphere with pair multiplicities up to ne|e|/ρGJ∼ 104

(Timokhin & Harding 2015, 2019). In this work we only
consider neutron star magnetospheres with the abundant pair
plasma supply, where deviations from the FF solution are at the
scale of the local plasma skin depth, de.

2.1. Numerical Setup

We employ radiative PIC algorithm implemented in the
Tristan-MP v2 code designed by Hakobyan & Spitkovsky
(2020) to simulate the 3D dynamics of the entire magneto-
sphere. Synchrotron radiation drag force is included in the
equations of motion for particles in the Landau–Lifshitz form.
The magnitude of the force is artificially enhanced with respect
to the Lorentz force, so the most energetic particles lose a
substantial amount of energy on the gyration timescales. A
similar approach for modeling synchrotron drag has been used
in previous works (e.g., Cerutti et al. 2016).

Our simulations start with an empty Cartesian domain of the
size R5 LC

3( )~ , where RLC= c/Ω is the light cylinder of the
magnetosphere, and Ω is the spin frequency of the neutron star.
The star itself is modeled as a perfectly conducting rotating
sphere in the center of the domain (similar to Philippov et al.
2015). A dipolar magnetic field is imposed as a boundary
condition near the surface of the sphere, as well as the initial
condition in the whole domain. The angle between the
magnetic axis and the rotation axis is further denoted by χ.
Near outer boundaries, all of the electromagnetic field
components are damped to zero, and the particles are allowed
to leave. Particle distribution is sampled on average by ∼10
macroparticles per grid cell (PPCs), with fewer PPCs farther
from the star.6 To mitigate the numerical artifacts from finite
PPCs, we employ digital filtering of the deposited currents with
a stencil of size 2. We also tested the setup with a lower-

resolution simulation and 10 times more PPCs, arriving at the
same results.
To fill the magnetosphere with plasma we mimic the pair-

production process near the surface of the star by injecting pair
plasma in a small spherical shell of size Δr at a rate
proportional to the local GJ density: Δn(θ, f)/Δt= finj|ρGJ(θ,
f)/e|(c/Δr). The dimensionless parameter finj controls the
injection multiplicity. The exact value of this number is
unimportant, as long as enough plasma is injected to establish
the FF solution (we typically set finj= 1). We also give a
marginal initial velocity to the newly injected particles along
the local magnetic field lines (typically a Lorentz factor
of γ≈ 2).7

To be able to resolve the plasma skin depth, de, everywhere
except for the surface of the star, we greatly reduce the scale
separation compared to realistic pulsars. The radius of the star
is resolved by 75Δx (we will denote Δx as the size of the grid
cell), while the size of the light cylinder is RLC∼ 440Δx (or ∼6
times the radius of the star). The strength of the magnetic field
at the surface, B*, which also rescales the Goldreich–Julian
density, is chosen in such a way that d xfewe

LC ~ D , where

de
LC is the plasma skin depth near the light cylinder. The scale

separation between macroscopic and microscopic (plasma-
kinetic) length scales is, thus, at most ∼200 in our highest-
resolution simulation (see almost 8 orders of magnitude scale
separation in realistic pulsars). Large separation of scales
ensures that the growth of microscopic plasma instabilities that
develop at kinetic timescales (inverse plasma frequency, pe

1w- ) is
much faster than the dynamical timescale characterized by the
rotation period, P. Localized 2D simulations (see, e.g., Werner
et al. 2016) show that at scale separation 100, kinetic
instabilities establish an asymptotic regime, which justifies our
choice of R d 200eLC

LC
pe
LCw~ W ~ . The choice of these

parameters yields the total size of the simulation domain
(2200Δx)3.
In regions where the magnetic field is strong (close to the

surface of the star), we significantly underresolve particle
gyration timescale (ωBΔt/γ? 1, where ωB= |e|B/mec, and
γ≈ few). To avoid associated numerical errors, we employ a
coupled guiding-center/Boris algorithm for solving particle
equations of motion (Bacchini et al. 2020). This approach
allows us to ignore gyrations of most of the particles in the bulk
of the magnetosphere where the gyration is underresolved,
reducing their motion to that of their guiding centers. At the
same time, switching to conventional Boris pusher in regions
where E/B> 0.95 allows us to recover the full equation of
motion for high-energy particles in regions with vanishing
magnetic field (i.e., current sheets).8 By ignoring the
synchrotron drag force for particles in the guiding center
regime, we can also avoid having numerical errors in the strong
cooling regime, when the synchrotron cooling algorithm
heavily relies on the resolution of gyration orbit.

6
This number varies from around ∼1000 in the small region near the surface

of the star to a few-to-ten in the bulk of the magnetosphere, and ∼100 in the
current layer.

7
It is important to mention that our technique of providing the magnetosphere

with fresh plasma is different from the more self-consistent methods used in
previous works (Chen & Beloborodov 2014; Philippov et al. 2015). To
simplify the simulation as well as to reduce the number of input parameters, we
do not model the full pair-production process. However, as was demonstrated
in earlier works (Belyaev 2015; Cerutti et al. 2015), the structure of the outer
magnetosphere is unaffected by the pair injection prescription near the
polar cap.
8

More details on how the coupled particle pusher algorithm works can be
found in Appendix B.
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Overall, the three dimensionless parameters that we fix
independently in our simulations are:

1. R d 100 200eLC
LC –~ : the ratio of the size of the light

cylinder and the plasma skin depth at a corresponding GJ
plasma density. We refer to this as the scale separation of
our simulation;

2. R*/Δx≈ 75: the number of simulation cells per stellar
radius, which we call the resolution of our simula-
tion; and

3. RLC/R*≈ 6: the size of the light cylinder, w.r.t. the size
of the star.

In addition we also have the obliquity angle, χ, which we vary
from 0°–90°, and the cooling strength, which we detail below.

2.2. Steady-state Numerical Solution

In all of our simulations, after a brief transient lasting for
about one rotation period of the star, P, a steady-state structure
is established that closely resembles the FF solution. The
snapshot of the steady-state for the neutron star with an
inclination angle χ= 30° is outlined show in Figure 1. Plasma
close to the surface corotates with the neutron star, flowing
along almost poloidal magnetic field lines that start and end at
the surface of the star. This corotation extends up to RLC= c/Ω
from the rotation axis (Ω being the rotation frequency of the
neutron star), the light cylinder. Outside the light cylinder,
plasma can no longer corotate with the star, and pairs slide
along spiral magnetic field lines beyond the RLC, moving
almost radially outward. While in the inner magnetosphere
(inside the light cylinder), the magnetic field is almost purely
poloidal, in the outer magnetosphere it has a toroidal
components.

The rotation of the magnetosphere imposes a poloidal
electric field in the wind zone, Eθ∼ Bf. As a result, the pulsar
radiates electromagnetic energy in the form of a radial Poynting
flux: S E B rc E B4( ) ˆp = ´ = q f . This flux, integrated over a
sphere that encloses the light cylinder, is the spin-down energy

of the neutron star, often denoted as E , which for an aligned
rotator reads:

⎜ ⎟⎛
⎝

⎞
⎠

S aE L d

B R

P

R

R
2 , 1

r R
0

2 3

LC

3

LC
∯ ·

( )



p

º =

=

=

* * *

where B* is the magnetic field strength near the stellar surface

at the equator.
Opposing field lines from the northern and southern

hemispheres of the neutron star are divided in the outer
magnetosphere by a current sheet. The structure of the
equatorial current sheet is more visible in the simulation with
no obliquity, shown in Figures 2(a), (b) (hereafter we refer to
this simulation as R75_ang0, since χ= 0°, and R*= 75Δx).9

Cartesian coordinates are normalized to the RLC, and (0, 0, 0) is
the middle of the box, where the center of the neutron star is.
Figure 2(a) shows the slice of the simulation in the x= 0 plane,
while Figure 2(b) shows the slice in the z= 0 plane (in this
simulation, χ= 0°). Color indicates the plasma number density
compensated by the cylindrical radius squared, nr ;xy

2 its value is
normalized by the corresponding GJ density at the surface of
the star times the radius of the star squared, n RGJ

2*
*
.

From Figure 2 it is evident that the total plasma density close
to the current sheet is few to ten times larger than the local GJ
density, which means the magnetosphere has enough plasma to
screen the accelerating electric field almost everywhere. If the
parallel electric field were screened everywhere, magnetic
energy dissipation in the magnetosphere would not be possible,
and the integral in Equation (1) would be constant with r,

S aL r d const
r

∯( ) ·º = , yielding no γ-ray emission.

The accelerating electric field can survive in microscopic
subregions of the equatorial current sheet. The characteristic
scale of these regions does not exceed a few-to-tens of plasma
skin depths, de= c/ωpe, where ωpe is the plasma frequency for

Figure 1. Poloidal slice of the 3D plasma density normalized to n R rGJ
2 2*
*

from a simulation of an inclined rotator with χ = 30° (here nGJ* is the GJ density near the
pole of the star). The surface of the neutron star and its rotation axis are shown in blue. Magnetic field lines traced from the surface of the star, as well as the direction
of the magnetic moment, are shown in green. The light cylinder, RLC, shown with white dashed lines, separates the inner magnetosphere from the outer magnetosphere
and the wind. The current sheet originating near the Y-point and spreading into the outer magnetosphere is clearly visible.

9
Simulations with the same basic parameters and other obliquity angles are,

correspondingly, R75_ang20, R75_ang60, and R75_ang90.
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relativistic electron-positron pairs in the current sheet. For the
Crab pulsar, this parameter close to the light cylinder is of the
order of a few centimeters. The light cylinder, on the other
hand, is almost 8 orders of magnitude larger (for the Crab, it is
∼1500 km). To properly model the dynamics of these
subregions, first-principles PIC simulations are necessary.

3. Dissipation of Spin-down Energy

The structure of the magnetosphere in PIC, as was
demonstrated in the previous section, is very similar to that
in FF. This should come as no surprise, since in our simulations
E∥ is perfectly screened with abundant plasma, and magnetized
particles follow field lines everywhere except for the equatorial
current sheet where the magnetic field vanishes. The key
difference from FF solutions is the dynamics of the current
sheet. In ideal FF, the energy dissipation in the current sheet is
due to the finite resolution of the grid, and is thus numerical in
its nature. PIC algorithm, on the other hand, enables us to
“resolve” this dissipation on plasma-kinetic scales, by captur-
ing the reconnection of magnetic field lines from first
principles.

3.1. Kinetic Instabilities in the Current Sheet

The equatorial current sheet highlighted in Figure 2 is not
laminar even in the aligned case, χ= 0°. Rather, it is prone to
kinetic instabilities that develop on microscopic timescales
comparable to pe

1 1w W- - . Drift-kink instability displaces the
current sheet in the z-direction, which results in the undulation
of the sheet at a certain saturated amplitude (shown in the
poloidal slice of Figure 2(b); also see Philippov &
Spitkovsky 2014; Cerutti et al. 2015). The wavevector of this

perturbation is perpendicular to the local magnetic field and is
parallel to the local current.
More importantly, the current sheet also experiences tearing

instability due to relativistic reconnection of magnetic field
lines from the upstream (see, e.g., Cerutti & Philippov 2017;
Philippov & Spitkovsky 2018; Cerutti et al. 2020). As a result
of this process, magnetic islands (“plasmoids”) are formed
containing hot plasma energized in the reconnection process.
In-between the plasmoids, there are magnetic nulls—regions
where the magnetic field lines tear, and energy dissipation
happens, the “x-points.”
Figure 3(c) shows a 3D rendering of the plasma density as

well as two slices of the same quantity: one along the magnetic
field lines (Figure 3(a) indicated with a red surface in panel
3(c)), and the other one—perpendicular to field lines, along the
direction of the current (Figure 3(b) indicated with a blue
surface). In Figure 3(b) one can see the undulation of the
current sheet due to drift-kink instability. The reconnection of
magnetic field lines and tearing instability, on the other hand,
are better visible in Figure 3(a); overdense regions in the sheet
are the plasmoids, which, in 3D, look like tubes elongated
almost radially (Figure 3(c)).
The dynamics of the reconnecting current sheet in

Figure 3(a) is very similar to a 2D Harris sheet, except for
the fact that the upstream plasma moves along the magnetic
field lines with bulk Lorentz factor  1( )G ~ (in reality, this is
expected to be  100 ;( )G ~ see, e.g., discussion by Cerutti
et al. 2020).10 In Figures 4(a) and (b) we take the slice along
the upstream magnetic field lines (similar to Figure 3(a)) where

Figure 2. (a): poloidal slice of the plasma density from a simulation of an aligned rotator (R75_ang0, after two full rotations of the neutron star). Magnetic field lines
originating at the stellar surface are shown with green lines. White dashed lines indicate the light cylinder. (b): equatorial slice of the plasma density. As in (a), green
lines show the direction of the magnetic field. The white dashed circle corresponds to the light cylinder. Blue arrows trace the direction of the equatorial current in the
equatorial sheet. Ripples in density are caused by the combined effect of two instabilities (tearing and kink) in the current sheet. In the slice (a), the drift-kink
instability of the current sheet is apparent. Slight collimation of field lines near the boundaries close to the poles in (a) is caused by imperfect absorbing boundary
conditions in the aligned case. This feature, not present in simulations of misaligned pulsars, however, does not affect the global solution, or the dissipation in the
current sheet.

10
In addition to the motion along the field lines, particles also experience an

E × B drift. However, the Lorentz factor associated with the drift is rather
small within a few light cylinders from the star.
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we plot quantities crucial for understanding the energy
dissipation in the current sheet: the vertical component of
the E × B drift velocity in units of c, and the energy
dissipation rate, j · E. In the upstream (above and below
the current sheet), the plasma motion is strictly con-
strained by magnetic field lines, which coincide with the
plane of Figures 4(a) and (b). Cold plasma and opposing
magnetic field lines are brought together by an E B( )´
drift (shown in Figure 4(a)); the current sheet then
becomes unstable and tears producing plasmoids (shown
with magenta contours). The dimensionless rate of inflow
is set by the reconnection; this value can be directly
measured from the simulations. For our simulations, this
value is close to

E B

B
0.1 0.2, 2rec

in

2

( )
∣ ∣

( )b º
´

» -

where the subscript “in” corresponds to the velocity component

directed into the current sheet. This value is consistent with

isolated 2D/3D simulations of the Harris sheet, and has been

demonstrated to be independent of any numerical or physical

parameters (such as the number of macroparticles per cell, the

resolution, or the extent of the box; see, e.g., Werner et al.

2018).

Figure 3. Three-dimensional rendering of the plasma density (compensated by r
2
) from a simulation of an aligned rotator (R75_ang0). The 3D rendering (panel (c))

is accompanied by two slices ((a) and (b), also visible in three dimensions as red and blue surfaces). One of the slices (a) is orthogonal to the equator and curves along
the upstream magnetic field lines, while the second one (b) is along the direction of the current perpendicular to the magnetic field. Overdense elongated tubes in panel
(c) are the 3D flux ropes, the plasmoids, which are produced as a result of the nonlinear tearing instability. In a 2D slice, (a) the dynamics of both the current sheet and
the plasmoids look very similar to those in isolated current sheet simulations. In panel (b) the drift-kink instability is visible, which deforms the current sheet in the
direction perpendicular to the direction of the tearing instability. An animated version of this figure is available and at https://youtu.be/-YXJ4yTlhWw. In the
animation, the camera rotates around the Z-axis, corotating with the star, for several rotation periods. The duration of the animation is 23 s.

(An animation of this figure is available.)

Figure 4. Two panels show different quantities in the same slice as Figure 3(a).
Panel (a) shows the E × B inflow rate into the current sheet; this corresponds to
the rate at which the reconnection of magnetic field lines occur, roughly,
βrec ∼ 0.1. In panel (b) we plot the work done by the electric field
(compensated by rxy

3
), which also indicates the electromagnetic energy

dissipation rate. The latter is localized in the thin equatorial current sheet.
On both panels we overplot the plasmoids in magenta (their boundaries are
selected as contours of large overdensities clearly visible in Figure 3(a)).
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3.2. Magnetic Energy Dissipation via Reconnection

Reconnecting magnetic field in the current sheet generates a
nonideal electric field in the direction of ∇× B, which is the
direction of the current in Figure 2(a) (in Figures 3(a) and 4(a)
and (b), this corresponds to the out-of-plane direction). The
magnitude of the nonideal electric field is of the order of
Erec∼ βrecBup, where Bup is the magnetic field strength in the
upstream. Because of the emergence of j · E (shown in
Figure 4(b)), some of the Poynting flux radiated by the star
(Equation (1)) dissipates in the magnetosphere. As seen in
Figure 4(b), dissipation is concentrated exclusively in the thin
current sheet outside the light cylinder, where the energy of the
electromagnetic field is converted into the kinetic energy of
plasma through magnetic reconnection. According to Poynt-
ing’s theorem:

S a j E rL r L d d . 3
R

r

0
3

LC

∯ ∭( ) · ( )- º = -

This means that L(r) is constant within the light cylinder,

r< RLC (where j · E= 0), but decays with radius for r> RLC.

Figure 5 shows L(r) from one of our simulations with χ= 0°

computed using the flux of the Poynting vector (blue line), and

the volume integral of j · E (red line). The orange band

corresponds to an analytical model described further in this

section.
To understand the slope of L(r) beyond the light cylinder, it

is useful to build a simple analytical model of the Poynting-flux
dissipation in the current sheet. For χ= 90° rotator this model
has been studied by Cerutti et al. (2020); here we focus on
χ= 0°. As mentioned earlier, the dissipation of Poynting flux
in our simulations is caused by the work done by the
reconnection electric field, j · E, as described by Equation (3).

The strength of the electric field generated due to magnetic
reconnection at a given distance r from the star is
Erec(r)∼ βrecBup(r). Here, the reconnecting magnetic field is a
combination of poloidal and toroidal components above and

below the current layer, B r B Brup
2 2( ) = + f , the value of

which beyond the light cylinder can be approximated as

B r B R r R r1up LC LC LC
2( ) ( ) ( )= + (rotating monopole;

see, e.g., Deutsch 1955 and Michel 1973). Here and further,
B B R RLC LC

3( )º
* *

. Since (4π/c)j=∇×B, the current
generated during reconnection can be estimated as
j∼ cBup/(2πδcs), where δcs is the characteristic width of the
current sheet. Thus, the volume integral in Equation (3) reduces
to:

⎜ ⎟⎛
⎝

⎞
⎠

L r L dr r d

c
B

2 sin

2
. 4

R

r

0
2

2 2

2 2

rec

cs
up
2

LC

( )

( )

ò òp q q

b
pd

- = -

´

p q

p q

-D

+D

The integral over the polar angle, θ, at each r is accumulated in

a small region near the equator (θ= π/2) of angular size

Δθ∼ δcs/r (which is the current sheet highlighted in

Figure 4(b)).11 Integrating Equation (4) then yields

⎜ ⎟
⎛

⎝
⎜

⎛
⎝

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠

⎞

⎠
⎟

L r

L

r

R

r

R
1 ln

1

2
1 , 5

0
rec

LC LC

2( )
( )b= - + -

-

where we also used L B R c0 LC
2

LC
2º . The logarithmic term in

this expression corresponds to the dissipation of toroidal field,

Bf, while the second term corresponds to the dissipation of

poloidal field, Br. At large distances, r? RLC, the first term

prevails, as the field is almost purely toroidal. However, for the

small region, RLC< r< 2RLC, where γ-ray emission likely

originates, contributions from both terms are important. In

Figure 5 we plot the total Poynting flux, L, across a spherical

shell of radius r (blue line). The orange band in Figure 5

corresponds to Equation (5) with βrec varying from 0.09–0.12

(this number can be directly measured from Figure 4(a)). From

the plot, it is evident that about 10% of the radiated Poynting

flux, L0, is dissipated in the outer magnetospheric current sheet

within the first RLC. The magnetic field strength weakens with

distance, and particles can only radiate (via synchrotron) in the

gigaelectronvolt range within the first one-to-few RLC. Thus,

the measured γ-ray luminosity, Lγ, should be directly correlated

with the energy dissipated in this narrow range of radii.12 The

precise value of the dissipated energy, as we have demonstrated

above, is only determined by the reconnection rate at plasma

microscales.
As we demonstrate in the next section, in our simulations,

the plasma in the upstream part of the current sheet moves
along the magnetic field lines with relativistic velocities of
Γ∼ 10. Naively, one would expect that since the rate of
reconnection is universally defined in the proper frame of the
upstream, in the lab frame the measured rate should be Γ times
slower. Nevertheless, we do not observe any significant change

Figure 5. Dissipation of the Poynting flux in the outer magnetosphere from a
simulation of an aligned rotator. The blue line is the direct measurement of the
Poynting flux vs. r for two different simulations: R75_ang0 (solid line), where

d x3 5e
LC –» D , and R60_ang0 (dashed line), where d x0.2 0.5e

LC –» D . The
red line shows the j · E, which accounts for the dissipation rate of the
electromagnetic energy. The orange band is the theoretical fit, Equation (5),
with βrec ≈ 0.09–0.12. L0 is computed from Equation (1). A slight increase of L
with respect to L0 in the inner magnetosphere is due to the fact that the Y-point
in our simulation is slightly inside the r/RLC = 1; this leads to slightly more
open field lines and thus more Poynting flux. Weak synchrotron cooling of the
particles is present in both of these simulations; however, as we show further,
the effect of cooling on the reconnection rate in this high-magnetization regime
is negligible.

11
Notice that the exact value of δcs is irrelevant, since d rsin 2cs( )ò q q d »

(for θ ä (π/2 − δcs/r, π/2 + δcs/r)), as long as δcs= r.
12

In fact, in the radiative regime considered in our simulations, a considerable
amount (about half) of the dissipated energy is radiated away, with the other
half being deposited into the acceleration of pairs.
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in βrec∼ 0.1 (similar observations have been made by Cerutti
et al. 2020). To check the consistency of this result in a more
controlled way, we performed local 2D simulations of the
current sheet, where the upstream plasma was initialized with a
relativistic velocity component along the unreconnected
magnetic field. From these simulations, we find that the global
reconnection rate in a given reference frame is controlled by the
strength of the electric field in the x-points, which are at rest.
Despite the motion of the upstream, the reconnection rate
remains constant, as long as the outflow velocities from the x-
points remain relativistic. This condition is satisfied as long as
the characteristic Alfvén four-velocity in the current sheet is
much larger than the square root of the bulk four-velocity of the
upstream, Γ: u s~ G .13 For realistic pulsar para-
meters, the particle four-velocity, Γ, which (close to the light
cylinder) is mostly along the magnetic field lines, is of the order
of 10–100, while the magnetization is close to 105–106. This
means that the reconnection is unlikely to slow down because
of the bulk motion of the upstream.

For other values of χ, our results are consistent with earlier
works (PIC: Philippov et al. 2015; and MHD: Tchekhovskoy
et al. 2013). Namely, the spin-down luminosity near the light

cylinder S ad L 1 sin0
2∮ ( )c» + , and for larger values of χ,

we see inhibited dissipation in the current sheet, as the jump of
the magnetic field across the current sheet is balanced primarily
by the displacement current (as opposed to the conduction
current) for larger inclinations (see, e.g., Philippov &
Spitkovsky 2018).

Some of the previous 2D axisymmetric simulations of
aligned pulsars (Belyaev 2015; Hu & Beloborodov 2022)
reported the presence of excess dissipation near the Y-point, at
the level of a few percent of L0, with a lower dissipation rate at
r> RLC. While the reduced dissipation rate is caused by the
fact that in 2D simulations only one of the magnetic field
components can be reconnected (only the poloidal one), the
anomalous dissipation near the Y-point has unclear origins. In
our 3D simulations, we also see signs of excess dissipation in
the Y-point, but only in the aligned case, and only when the
skin depth near the light cylinder is marginally resolved
(dashed blue line in Figure 5).14

The electromagnetic energy dissipated during the reconnec-
tion in the current sheet is deposited into plasma particles. In
the next section, we focus on particle energization in the
current sheet and its consequences for the observed high-
energy emission in γ-ray pulsars.

4. γ-Ray Emission

Relativistic magnetic reconnection is known to produce
nonthermal particle population (Guo et al. 2014; Sironi &
Spitkovsky 2014; Werner et al. 2016); reconnection in the
current sheets of neutron star magnetospheres is no exception.
These energized particles are believed to radiate via synchro-
tron mechanism, producing the pulsed high-energy emission
observed in γ-ray pulsars (Cerutti et al. 2016; Philippov &
Spitkovsky 2018). However, the synchrotron drag, the strength
of which depends on the value of the magnetic field outside the

current sheet, can inhibit the acceleration process, greatly
affecting the outgoing photon spectrum.

4.1. Dynamical Importance of Synchrotron Drag

In the current sheets of pulsar magnetospheres, the
synchrotron cooling timescale for particles is always much
shorter than the system-crossing timescale, characterized by the
rotation period. However, it can be comparable to the
acceleration time of the highest-energy particles, meaning that
the relative importance of cooling can be significant at
microscopic timescales. The efficiency of cooling can be
conveniently quantified with a dimensionless number γrad. This
number corresponds to the Lorentz factor of particles for which
the synchrotron drag force in the given background magnetic
field B is comparable to the Lorentz force from the
reconnection-driven electric field E∼ βrecB. This condition
reads: e B B4 3 Trec

2
rad
2∣ ∣ ( )b s g= , where σT is the Thomson

cross section.15 Particles with γ? γrad will lose their energies
while being exposed to a perpendicular magnetic field
component much faster than they are able to accelerate; the
opposite is true for particles with γ= γrad. Notice that strictly
speaking this is not applicable to particles at x-points, since the
magnetic field vanishes there.
The main parameter that determines the characteristic

maximum energy to which particles accelerate during recon-
nection is the magnetization of the upstream (unreconnected)
plasma, σ. For a given background magnetic field, B, and
number density of inflowing plasma, n, this dimensionless
parameter is equal to twice the ratio of the magnetic energy
density and the rest mass energy density of plasma:

B

nm c

4
, 6

e

2

2
( )s

p
º

where B and n are measured in the proper frame, where plasma

is at rest. In Figure 6 we show the magnetization parameter in

the upstream of the reconnecting equatorial current sheet in a

poloidal slice. In our typical simulations, magnetization of the

upstream, σLC, is close to 500–1000, as shown with a vertical

slice in Figure 6(b). This parameter, which in relativistic

reconnection is always ?1, determines the characteristic

maximum energy to which particles can be accelerated in a

single x-point (or x-line in three dimensions; see Figure 4(b)). If

secondary reacceleration is prohibited, the nonthermal distribu-

tion function of accelerated particles extends at most to

energies of a few times σmec
2. Energized particles, however,

may either then reenter the current sheet or become trapped in

plasmoids and get accelerated again via secondary processes to

even higher energies (Petropoulou & Sironi 2018; Hakobyan

et al. 2021; Zhang et al. 2021). However, as we demonstrate

below, in pulsar magnetospheres with realistic parameters, this

process is suppressed due to synchrotron losses.
Later in this section we will refer to the case when γrad< σ

as the strong cooling regime, while the opposite case will be

13
More details of our findings together with some discussion can be found in

the Appendix C.
14

We see this at resolution of x860 3( )D , where d x0.5e
LC ~ D . For the higher

resolution of (2200x)3 considered, e.g., in Figure 4, and d x5e
LC ~ D , we see no

signs of this effect.

15
In terms of PIC simulations, defining dimensionless γrad is equivalent to

upscaling the classical electron radius, re, to boost the relative efficiency of
synchrotron losses. Also note that in this rough definition, the magnetic field is
considered to be exactly perpendicular to the motion of a particle. In our
simulations, as well as in reality, particles flying at small pitch angles w.r.t. the
magnetic field will be cooled less efficiently. Thus, γrad can be thought of as
just a proxy for the average cooling efficiency for a population of isotropically
distributed particles.
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referred to as the weak cooling regime. The value of γrad (close
to the light cylinder) only depends on the magnetic field
strength: B10 10 G

rad
LC 5

LC
5 1 2( )g » - , which we know rather

reliably for pulsars by extrapolating the magnetic field strength
at the surface. The magnetization, σLC, on the other hand,
depends on plasma density near the light cylinder, which is
harder to constrain. However, we can estimate that approxi-
mately, by assuming that the cutoff frequency of the γ-ray
photons corresponds to the synchrotron peak energy
for the highest-energy particles with Ee∼ 4σLCmec

2,
 E4B

LC LC 2
cut( )w s » . This provides a rough empirical estimate

for σLC, which for the population of γ-ray pulsars varies
between 105 and 106. Consequently, the reconnection in the
current sheets of pulsars proceeds in the marginally radiative
regime, where

rad
LC LCg s~ . In the next section we quantitatively

investigate how the electromagnetic energy dissipation rate, as
well as the particle distribution and synchrotron spectra, change
depending on the ratio

rad
LC LCg s .

4.2. Particle Acceleration and Synchrotron Spectra in the
Radiatively Cooled Magnetosphere

In our simulations, we keep σ? 1 in the outer magneto-
sphere (to ensure the reconnection proceeds in the ultrarelati-
vistic regime), and vary the ratio γrad/σ. Following the
discussion earlier, this ratio determines the relative importance
of the effects of synchrotron cooling on reconnection
dynamics, and, as we demonstrate later, results in qualitatively
different high-energy radiation spectra. In Figure 7 we show
snapshots from simulations with three different inclination
angles, χ= 0°, 20°, and 60° (three rows), comparing two
extremes of the cooling efficiency in each case: no cooling (left
column, panels (a), (c), and (e)), and strong cooling

1 15
rad
LC LCg s » (right column, panels (b), (d), and (f)). In

the same snapshot we also plot the integrated Poynting flux, L,
as a function of radius with the x-axis corresponding to the
radius in RLC (shared with the x-axis of respective snapshots).
We find that the general structure of the current sheet is largely
unaffected by the strength of the synchrotron cooling. At low
inclination angles, χ 20°, the current sheet is more

intermittent with stronger cooling (compare Figure 7(a) and
Figure 7(b)), but at higher inclinations, the difference is
negligible. The rates of magnetic reconnection and, as a result,
the Poynting-flux dissipation curves, L(r), are only marginally
affected by the cooling strength for all values of χ.
We further closely inspect two simulations with χ= 20° and

χ= 60° (these simulations will be referred to as R75_ang20,
and R75_ang60; all of the other parameters except for the
inclination angle are the same as in R75_ang0). In the first
series of runs, we keep σLC≈ 500–1000 and vary

rad
LCg to

capture the following regimes: 1 15, 1 3, 2,
rad
LC LCg s = ¥

(where γrad=∞ corresponds to a simulation without synchro-
tron cooling; for future reference, we denote these simulations
as R75_ang20_gr1o15, R75_ang60_gr1o15, ...,
R75_ang60_grINF).
Particle distribution functions in the current sheet are also

very similar for all of the values of the cooling strength, as
shown in Figures 8(a) and (c). In all of the studied cases,
particles in the layer are able to accelerate to γ∼ σLC in x-
points, forming a power law of f∝ γ−1− γ−2

(for larger values
of χ= 60°, the spectrum steepens from γ−1 to about γ−1.3

).
Only in the most strongly cooled simulation do we see that the
cutoff of particle distribution is slightly shifted toward lower
energies. This marginal difference is likely an effect of
comparably small-scale separation in our simulations, and will
most likely be unnoticeable for realistic systems. In weakly
cooled simulations above γ> σLC, we see a smooth transition
to γ−2.5− γ−3 and, eventually, to an almost exponential cutoff.
Naively, one would expect that in the reconnection process
with strong cooling, particles cannot gain energies higher than
γradmec

2; however, in reality, the cooling becomes faster than
the acceleration for these particles. As mentioned above, this is
not necessarily true, as the acceleration takes place in the region
of the current sheet where there is virtually no cooling (this has
also been demonstrated in 2D simulations by Cerutti et al.
2014; Kagan et al. 2016; Hakobyan et al. 2019, etc.). On the
other hand, in the strong cooling regime, once particles leave
the accelerating regions (either back to the upstream or into
plasmoids), they very quickly lose their energies without a
chance to get reaccelerated again to energies larger than a few
σmec

2. As a result, the nonthermal distribution of particles,
even in the case of a very strong cooling, is determined by the
acceleration at x-points and extends up to γ∼ few σ (see, e.g.,
Sironi 2022).
In Figures 8(b) and (d), we show the spectra of emitted

synchrotron photons for both χ= 20° and χ= 60° simulations
for different cooling strengths. In all cases, we see a recurring
pattern in photon spectra: a rise νFν∝ ν, a transition with a
peak and a decay at higher energies. The power-law index for
the distribution of photons is roughly consistent with the
power-law index for the distribution of particles, i.e., f∝ γ− p

leads to νFν∝ ν−( p−3)/2.
Since the majority of the particles are unable to retain

energies γ> γrad (and since σ> γrad), the spectral peak in
photon energies, Ep, roughly corresponds to the synchrotron
emission of particles with γ∼ γrad: E Bp

LC
rad
LC 2( )w g» . This is

evident from a comparison of the color bars in Figure 8(a), (b):
we see a shift of the emission peak toward lower energies for
simulations with stronger cooling. The spectrum, nevertheless,
extends farther, as particles are still able to accelerate to
energies >γrad in the x-points, albeit rapidly radiating away. In
the case of moderate-to-weak cooling (σ< γrad), the majority

Figure 6. (a): plasma magnetization parameter, σ, in a poloidal slice of the

simulation R75_ang0_gr2 with weak synchrotron cooling ( ;LC
rad

LCg s
subscript gr2 corresponds to 2LC

rad
LCg s » ). A 1D slice of the σ across the

current sheet is shown in panel (b). Magnetization of the upstream is close to

103, where the background plasma density n n R rfew GJ
2· ( )~ *

*
. Magnetic

field lines are shown by green in panel (a).
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of particles is accelerated to γ∼ σ, and the peak is controlled

by the value of σ: E Bp
LC LC 2( )w s= (see green lines in

Figure 8(b), (d)).
Note that we do not capture significant intermittency at

higher energies for the strong cooling simulation, which was

prominent in 2D localized simulations by Hakobyan et al.

(2019). Because of this, simulations with stronger cooling also

have a smaller spectral cutoff energy together with a smaller

spectral peak, despite the fact that the cutoff in particle

distribution is unaffected. In two dimensions, the high-energy

intermittency, which was responsible for extending the cutoff

to values close to ÿωBσ
2, was primarily caused by merger

events of plasmoids of different sizes varying from just a few to

hundreds of plasma skin depths. In our global 3D simulations,

plasmoids are at most several skin depths in size, and there is

only a handful of them in the current sheet. This striking

difference in the separation of scales between local 2D and

global 3D simulations, as well as the overall complexity in the

structure of the current sheet in three dimensions, may explain

the observed difference. Future large-scale localized 3D

simulations of magnetic reconnection in the high-σ strong
cooling regime will be able to clarify this conflict and provide a
more definitive picture.

4.3. Effects of Additional Pair Loading

To test how particle acceleration and radiation spectra
change with the value of magnetization, σLC, we artificially
load the current sheet with extra plasma to alter the effective
value of σ in the current layer (see Figure 9). For each pair
injected from the surface, we initialize M− 1 additional pairs at
rest in the cyan region shown in Figure 9.16 All of the other
parameters, such as 10

rad
LC 3g » and Vpc≈ 5000mec

2, are kept
constant. These “secondary” pairs rapidly catch up with the
bulk E× B outflow, and their ultimate effect is the decrease of

Figure 7. Density snapshots from late stages (more than two rotations) of six different simulations with varying obliquity angle, χ, and synchrotron cooling efficiency,

rad
LC LCg s . All of the slices are in the poloidal plane. Rows correspond to, respectively, χ = 0° ((a) and (b)), 20° ((c) and (d)), and 60° ((e) and (f)). Simulations in the

left column ((a), (c), and (e)) have synchrotron cooling turned off, while the ones on the right ((b), (d), and (f)) have very strong synchrotron cooling,

1 15
rad
LC LCg s » . Each panel also contains 1D plots of L(r)/L0 (white line; L0 is the flux measured at r = 0.75RLC) with horizontal axes, r, having the same scale as

the x-axes of snapshots. Green bands correspond to the dissipation due to reconnection estimated by Equation (5) with the rate varying between 0.8 and 0.15.

16
For computational purposes, we limit injection only to field lines close to

the equator that participate in reconnection. Since particles are well magnetized
and any transport in the transverse direction to the magnetic field is suppressed,
the field lines at higher altitudes have little to no effect on the reconnection
process.
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the effective magnetization ∼M times (as shown in the left
panels of Figure 9).

In Figure 10 we show corresponding particle distributions in
the current layer, as well as the emerging radiation spectra for
all of these simulations. The blue line shows the fiducial case
without additional injection. In that simulation the magnetiza-
tion is σLC∼ 103, and particles in the current layer form an
extended power law of f∝ γ−1 extending to γ∼ σLC. In this
moderate cooling regime, the peak of the radiation spectrum
corresponds roughly to the synchrotron peak of the particles
with 10

rad
LC 3g g~ ~ . With increasing pair density, M,

magnetization at the light cylinder drops proportionally (as
shown with the red and green lines in the particle spectra of
Figure 10). In the cases of M= 2 and M= 20, the magnetiza-
tion values near the Y-point are, respectively, σLC≈ 500 and
≈50. Particles form a clear hard power-law distribution up to
γ∼ σLC with a steepening to f∝ γ−2− γ−3 at higher energies,
γ> σLC, followed by a cutoff. In these cases, pairs are still able
to accelerate to energies >σLCmec

2 since the cooling is weak

( 10
rad
LC 3 LCg s~ < ). In the simulation shown with a dashed

green line, we inhibit this secondary acceleration by enhancing
the synchrotron cooling strength (decreasing

rad
LCg to ≈200).

These simulations clearly demonstrate that the particle
acceleration potential of the pulsar outer magnetosphere is
indeed determined by the local magnetization parameter,

max
LCg s~ , rather than the electric potential drop near the

polar cap, Vpc/mec
2, defined in equation Equation (A1). In

pulsars these values are correlated, with σLC being significantly
smaller:

⎜ ⎟
⎛
⎝

⎞
⎠

n

n

V

m c

V

m c

1

2
, 7

e e

LC
LC

GJ
LC

1
pc

2

pc

2
( )s »

-

where n n 1LC
GJ
LC  is the plasma multiplicity near the light

cylinder.
Photon spectra in these runs are consistent with our earlier

predictions (see Section 4.2). In the first run (blue line) the
spectral peak is set by particles with energies

rad
LC LCg g s~ ~ .

Figure 8. Panels (a) and (c) show particle spectra and panels (b) and (d) photon spectra for the R75_ang20, and R75_ang60 simulations in different synchrotron
cooling regimes. Effective σ at the light cylinder is marked with yellow stripes. Three smaller bars of different colors in panels (a) and (c) indicate the effective γrad.
The color bar at the top of both panels puts particle energies into correspondence with synchrotron peak energies, E ∝ γ2BLC. Photon energies are normalized to

E B0
LC 2

LC( )sµ . While particle spectra look almost identical (except for the strongest cooled case), peaks of photons are shifted to smaller energies for smaller γrad/σ.
Only particles in the current layer are accounted for. Simulations without synchrotron cooling (black lines) are not shown in panels (b) and (d), since we do not collect
photons in that case.
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When we decrease σLC (while keeping the cooling strength,

rad
LCg , constant) we see that the peak is only marginally sensitive

to σLC (which drops from 103 inM= 1, to 200 inM= 2, and to

50 in M= 20), and is controlled by particles with
rad
LCg g~

(hence the similarity of the red and green curves). When we

decrease
rad
LCg to 200 for the σLC∼ 50 run (green dashed line),

the peak is shifted toward lower energies (despite the fact that

particle distributions are only marginally affected).

5. Discussion

5.1. Summary

In this work we closely inspect 3D PIC simulations of

neutron star magnetospheres with the strong synchrotron

radiation-reaction force included. Our primary focus is the

energy dissipation and the plasma dynamics in the reconnecting

current sheet. To be able to properly capture the kinetic physics

governing the energy extraction in the current layer, we push

the separation of macro-to-microscales in our simulations
to ∼200.
We show that the rate of plasma inflow into the reconnecting

equatorial current sheet, which is controlled by plasma kinetics
at the scales of microscopic x-lines, determines the dissipation
rate in the entire magnetosphere. This puts a stringent
constraint on how much electromagnetic energy can be
dissipated (and, ultimately, radiated) in the current layer within
a few light cylinders. From simulations we find that this
dissipation rate is almost insensitive to both the bulk motion of
the background unreconnected plasma, and the synchrotron
cooling strength, as long as the magnetization is high: σLC? 1.
The fraction of the dissipated energy within the region between
RLC< r< 2RLC in the outer magnetosphere varies between 1%
and 10%, with the exact value depending only on the pulsar
inclination angle.
Due to the fast synchrotron cooling timescale, reconnection

in the equatorial current layer proceeds in the radiatively
efficient regime. A large fraction of the dissipated electro-
magnetic energy is radiated away by the accelerated pairs.
Since cooling is always faster than the dynamical time of the
current sheet, the amount of radiated energy is insensitive to the
cooling strength and only depends on the amount of magnetic
energy dissipated.
We confirm that the particle distribution is almost unaffected

by synchrotron cooling, with particles in the current sheet
forming a hard power-law spectrum with steep cutoff at
energies of ∼σLCmec

2. Photon spectra, on the other hand, are
evidently different. In the marginal cooling regime,

rad
LC LCg s~ , both the peak and the high-energy cutoff of the

emission are controlled by the magnetization parameter,
E E fewBp cut

LC LC 2( · )w s» » . In the magnetospheres where

synchrotron cooling is strong,
rad
LC LCg s< , plasmoids that carry

the bulk of the plasma and contribute to the high-energy
emission the most quickly cooled down to the characteristic
temperatures of T m ce erad

LC 2g~ (see, e.g., Uzdensky &
Spitkovsky 2014). Our simulations suggest that the peaks of
the emission are thus controlled by the synchrotron
emission of particles with energies comparable to Te:

 E T m c 20 MeVB e e Bp
LC 2 2 LC

rad
LC 2( ) ( )w w g» ~ » .

5.2. Observational Implications

Observations by the Fermi telescope during the last decade
have shown that some of the pulsars with E 1034  erg s−1

emit in γ-rays with characteristic luminosities ranging between
0.1% and 10% of the spin-down power. Our 3D PIC
simulations provide strong evidence that this emission is
powered by magnetic reconnection in the equatorial current
sheets of pulsar magnetospheres. Reconnection occurs in the
nonlinear stage of the tearing instability, which develops in the
equatorial current sheet on microscopic timescales,

w ct
1

csw » G- , where wcs is the characteristic width of the

sheet, and R RLCG »
*

is the bulk Lorentz factor of the
upstream plasma in the wind.17 The width of the current sheet,
wcs, is defined by the pressure equilibrium, and is set by the
Larmor radii of particles with characteristic Lorentz factors of

T m ce e
2

rad
LC( )g g» » : w m c e Becs rad

LC 2
LC(∣ ∣ )g» , where the

rad
LCg parameter is set by radiation-reaction force. In this paper

we explicitly assumed that the plasma microphysics is

Figure 9. Plasma density, compensated for the falloff with the distance,

nr n R2
GJ

2( )*
*
, for three simulations R75_ang0 with different pair loading

rates. The additional injection region is highlighted with cyan. Newly created
particles are initialized with zero velocity. From top to bottom, M = 1 (no extra
injection, all particles originate at the surface), M = 2 (one particle is injected
per each surface-injected particle), M = 20. To the left of each panel, we plot
the magnetization of the steady-state solution for each case as a function of
vertical coordinate (the corresponding slice is shown with a white dashed line).

17
The growth rate of the instability is defined as c/wcs in the rest frame of the

upstream plasma and should be Lorentz-boosted appropriately.
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disentangled from the large-scale structure of the pulsar
magnetosphere by taking a large enough separation of micro-
to-macro scales. For this assumption to be valid, it is necessary
for the tearing instability to develop much faster than the
dynamical time of the magnetosphere—the pulsar rotation
period, Ω−1. The ratio of these timescales is always large for γ-

ray pulsars,  10t
3

36 12
w W » , meaning that at least for the

young pulsars with E 1035  erg s−1, the reconnection
develops almost instantly in the current sheet near the Y-
point.18

The amount of energy dissipation within a few light
cylinders beyond the Y-point, where the high-energy radiation
originates, is determined by the reconnection rate, βrec≈ 0.1,
and the pulsar inclination angle. Importantly, we find that this
rate is not suppressed by the presence of the bulk flow of the
upstream plasma along the magnetic field lines, as long as
the Lorentz factor of the Alfvén velocity is larger than that of

the bulk flow, R RLC
LCs G »

*
.19 In young pulsars

 20 12
1 4

36

1 8G » , whereas  500LC
36

1 4

4
1 2s » - , implying

that the two are separated by at least an order of magnitude.

However, even when LCs ~ G (which might be the case for
the older pulsars with E 1034 » erg s−1

), our findings indicate

that the rate is only marginally slower (by a factor of 2 at most),
which is virtually unnoticeable for the purposes of
observations.
Our simulations demonstrate that the dissipated power is further

radiated away via synchrotron radiation, which we identify as the
main emission mechanism in our simulations. Curvature radiation
in this context is negligible (contrary to what has been reported by,
e.g., Kalapotharakos et al. 2018), as the dynamically strong cooling
prevents particles from accelerating to energies beyond σLCmec

2,
and the Larmor radii of the most energetic particles, ρL, are limited
to microscopic plasma scales, R 2 10 1LLC

4
4· r » . For the

Vela-like pulsars, where the discharge near the polar cap is the main
source of pairs, and there is no additional pair production in the
current sheet, most of the dissipated energy is emitted directly in the
form of the highest-energy synchrotron photons around one to a
few gigaelectronvolts, leading to characteristically high values of
L E 1% 10%– »g . The youngest Crab-like pulsars, on the other
hand, produce a sufficient amount of high-energy photons, so that
pair creation near the light cylinder becomes an important source of
additional pair plasma (Lyubarskii 1996; Hakobyan et al. 2019). To
estimate the fraction of the dissipated magnetic energy that goes
into these secondary pairs, we need to evaluate the effective optical
depth for the γ-ray photons, τγx= fγxσTnxRLC, where fγx≈ 0.25
(given by the maximum cross section of the pair-production

process: 0.25 ;T
max( )s s»gg see, e.g., Akhiezer & Berestetskij 1965),

and nx is the number density of X-ray photons, the presence of
which is required for the gigaelectronvolt photons to pair produce.20

The effective number density of the low-energy photons can be

estimated as n L c R4x x x LC
2( ) ( )e p» , where Lx is the luminos-

ity in X-rays, and εx is the characteristic energy of X-ray
photons. The pair-production cross section is the largest for the
photons that satisfy m cx e

2 2( )e e »g (here, εγ≈GeV). Sub-

stituting all of the values, and taking L E 1%x
 ~ , which is the

case for the youngest pulsars (Marelli et al. 2011), we finally

find:  10x
2

36

5 4
12

t »g - . For the Crab, E 4 1038· »
erg s−1, and we find that τγx≈ 1. The relatively large value

Figure 10. Particle energy distributions in the current layer and photon spectra for simulations shown in Figure 9. The dashed lines indicate the effective magnetization

near the light cylinder, σLC, and the corresponding photon energies, E BLC 2
LC( )sµ . We also show an additional simulation (with a dotted line) where we enhance

cooling for the M = 20 case by decreasing γrad ≈ 200. In all of the other cases, the cooling strength is fixed at γrad ≈ 1000. Photon energies are normalized

to E B0 1
LC 2

LC( )sµ = .

18
Here and further in this section we normalize all of the quantities to fiducial

values of  E 1036
36( º erg s−1

),  B 10 G12
12( )º

*
, and  104

4kº
(plasma multiplicity w.r.t. the local Goldreich–Julian value). For reference, E
varies between 1032 and 1038 erg s−1

(Vela: 7 × 1036 erg s−1, Crab: 4 × 1038

erg s−1
), B* weakly changes between 1012 − 1013 G, and κ ≈ 102–107 (where

104 is the case only for a few of the youngest pulsars, e.g., the Crab). In
practice, κ is determined by the dynamics of the polar cap discharge, and the
pair-production efficiency near the light cylinder, both of which indirectly
depend on E and B* (or P and P ). But for the purposes of this discussion, we
omit this dependency.
19

The value of Γ, which is the Lorentz factor of the bulk motion of pairs
flowing from the polar cap to the outer magnetosphere, is set by the last
curvature photons to pair produce before escaping the polar cap discharge
region. The energy of pairs produced by these photons is determined by the
angle, ψ, between the photon momentum and the magnetic field: γ± ≈ 1/ψ
(this is valid in the limit where the energies of photons are large: ?mec

2, and
the angle ψ= 1; see, e.g., Timokhin 2010). Since the discharge operates up to
≈R* from the surface of the star, the last photons to pair produce will have
ψ ≈ R*/Rc, where Rc is the radius of curvature of the magnetic field lines
R R R Rc LC»

* *
. From these, we finally find: R Rlast

LC
( )gG = » *

.

20
See also similar arguments in the context of the M87* by Ripperda et al.

(2022).
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for the optical depth means that the nonnegligible fraction of
the dissipated energy is deposited into secondary pairs
produced in the reconnection upstream. Characteristic energies
of the produced pairs can be estimated as E m cesec

2( )g » g ,
where Eγ≈ 0.1–1 GeV is the characteristic energy of the pair-
producing photons. For the Crab, 10sec

3g » , and the
synchrotron emission of these secondary pairs corresponds to
energies E e B m c 1 keVesec sec

2
LC∣ ∣ ( )g» » .

The maximum energy to which particles accelerate during
the reconnection process is controlled by the plasma magne-
tization parameter near the light cylinder, few-to-ten σLC,
which in turn determines the cutoff energy in the observed
emission. The synchrotron cutoff can be expressed as

E e B m c3 2 ecut cut
2( ) ∣ ∣ ˜ ( )g» ^ , where E BB

2 2˜ ( )b= + ´ -^

E 2( · )b (see, e.g., Cerutti et al. 2016), and γcut≈ few · σLC.
For reconnection in the strong cooling regime, most of the
dissipated energy is radiated away via emission from the
highest-energy pairs. The dissipation power is equal to |e|Erecc,
where Erec≈ βrecBLC, while the synchrotron radiation power is

c B 4T cut
2 2˜ ( )s g p^ . From the definition of

rad
LCg , we may then find:

B Bcut rad
LC

LC
˜g g»^ , where BLC is the upstream magnetic field

strength. Substituting this into the expression for the cutoff
energy yields: E e B m c3 2 ecut rad

LC 2
LC cut rad

LC( ) ( ) ∣ ∣ ( )( )g g g»
20 MeV cut rad

LC( )( )g g» . The cutoff energy is then uniquely

set by the ratio cut rad
LCg g , resulting in Ecut»

  200 MeV 36

7 8

12
1 4

4( )  - . For Vela-like pulsars, κ≈ 103−
104 (Timokhin & Harding 2015), E 10 1036 37 » - erg s−1,
resulting in Ecut≈ 1–10 GeV.21

For the most energetic Crab-like pulsars with a strong
magnetic field near the light cylinder (BLC∼ 4 × 106 G for
Crab), pair creation near the Y-point and beyond is important.
The amount of produced pairs is proportional to the optical
depth, τγx, estimated earlier, and the number of gigaelectron-
volt photons. The production rate can be estimated as
N Lx t e» g g g , where εγ≈GeV. To obtain the multiplicity

κ, we compare this with the GJ flux, N cE eGJ ∣ ∣ » , where we

assumed that the N eGJ
 is equal to the GJ current: cE . We then

find the multiplicity of pair production near the light cylinder

 N N L E L E40 1% 0.1%xLC GJ 36

7 4

12
1 2( )( )    k = » g
- . For

the Crab pulsar, L E 1%x
 » , and L E 0.1% »g yielding

κLC≈ 106. For the Vela, on the other hand, L E 0.01%x
 » ,

and L E 1% »g yielding κLC≈ 3 (similar to what has been
obtained by Lyubarskii (1996).22 Substituting κ≈ κLC for the
Crab to the relation for the cutoff energy, we then find
Ecut≈ 0.1–1 GeV.

To reiterate, while the amount of the dissipated magnetic
energy is uniquely set by the microphysics of the reconnection
and the inclination angle, the luminosity of the observed
emission can be somewhat different between the high-E Crab-
like, and the low-E Vela-like pulsars. The cutoff energies are
dictated by the highest-energy pairs, and in both cases, the
numbers are close to the observed one to a few gigaelectron-
volts. Spectral peaks, on the other hand, are different. In the
case of Vela-like pulsars, most of the dissipated Poynting flux

is radiated away via synchrotron at energies close to the cutoff
around 1–10 GeV. For the Crab-like pulsars, however,
secondary pair production near the light cylinder is important,
and a large fraction of the dissipated energy goes into pairs that
further re-radiate via synchrotron at a range of energies
spanning all the way to kiloelectronvolts, resulting in a much
broader spectrum. This yields a smaller γ-ray luminosity in the
Fermi band (between 0.1 and 100 GeV), which is clearly

observed by Abdo et al. (2013), who reported E L1 2 µ g

beyond E 1036  erg s−1.

5.3. Future Work

In our simulations we did not include self-consistent pair
production (neither the γB→ e± process near the polar cap, nor
the γγ→ e±, Breit-Wheeler, process near the light cylinder),
instead choosing to provide a constant inflow of plasma from
the surface of the star. Our reasonable assumption was that as
long as enough plasma is provided to the magnetosphere
(n nGJ), its general structure, as well as the dynamics of the
current layer would not depend on how exactly the plasma was
supplied. However, as mentioned earlier, for the youngest
Crab-like pulsars, the secondary pairs produced by the two-
photon pair production in the outer magnetosphere can carry a
large fraction of the dissipated energy, re-radiating it at optical
to X-ray frequencies. Additionally, as was shown in 2D
simulations of an isolated current sheet (Hakobyan et al. 2019),
and as mentioned in Section 4.3 of this paper, these secondary
pairs inhibit the acceleration process during reconnection, thus
controlling the extent of the γ-ray signal. To understand this
process in more details, and also study the intermittency, the
light curves, and the polarization characteristics of the distinct
X-ray signal these pairs produce, global 3D simulations with
proper two-photon pair-production physics are necessary. The
Tristan-MP v2 code (Hakobyan & Spitkovsky 2020), used
in this paper, supports the capabilities of tracking individual
photons and modeling their interaction pair by pair. In the
future we plan to apply this capability, coupled with the hybrid
guiding center particle pusher, to model the pair-production
process and its dynamics in the global context of the
magnetosphere more realistically. While we think our main
conclusions outlined in Section 5.2 will still hold, these more
robust simulations will allow us to more self-consistently
predict the optical/X-ray luminosity for the young pulsars
(which we simply postulated empirically for the purposes of
our estimations), to understand the long-term evolution of the
secondary pairs, as well as their effect on the structure of the
pulsar wind.
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21
For the least energetic γ-ray-emitting pulsars with E 1036  erg s−1, it is

likely that the polar cap discharge is less efficient, and the resulting plasma
multiplicity near the light cylinder is κ  103, which yields the same cutoff
energy.
22

Notice that the total multiplicity κ = κLC + κPC, where κPC is the
multiplicity of the pair cascade near the polar cap.
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Appendix A
Numerical Setup and Limitations

In this Appendix we present some dimensionless relations
both in the context of astrophysical pulsars, and our
simulations. We discuss how each of these parameters is up/
down-scaled in our global simulations relative to realistic
values.

Consider a rotating perfectly conducting neutron star with a
radius R* and a magnetic moment B R 3m =

* *
, where B* is the

magnetic field strength near the equator. For simplicity let us
consider χ= 0°, i.e., the magnetic moment is aligned with the
rotation axis. If the magnetosphere is filled with enough plasma
to provide the necessary charge density for screening the
parallel electric field, then magnetic field lines that originate
inside a circular region of radius Rpc around the magnetic axis
will be open, i.e., will continue to infinity. This region, the

polar cap, has a radius of R R R Rpc LC=
* *

, where
RLC= c/Ω is the light cylinder of the neutron star. The electric
field generated at the surface of the star across the polar cap
generates a potential drop, Vpc, which can be written in a
dimensionless form:
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is the nominal gyrofrequency at the

surface of the star, and P is the rotation period of the star.
Defining the plasma multiplicity close to the light cylinder,

λ, as nLC= λΩBLC/2πc|e|, the scale separation (ratio of the
light cylinder to the plasma skin depth) in the magnetospheric
current layer is given by the following expression:
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The duration, resolution, and other parameters of our
simulations are chosen in such a way as to satisfy several
requirements, while still being computationally feasible. These
requirements are as follows:

1. T 3P: the durations of our simulations are typically a
few rotation periods to ensure the initial transient state
has passed and a steady-state is reached;

2. L R53
LC

3( ) : the size of the domain has to be large
enough to fit at least 1RLC of the current sheet;

3. R*?Δx: the stellar surface needs to be well resolved;
4. Vpc/mec

2
? 1: the potential drop at the polar cap needs to

be very large;

5. λ> 1: to ensure enough plasma is provided to screen the
accelerating electric field, the plasma multiplicity has to
be at least a few;

6. d xe ~ D* : the plasma skin depth at the surface of the star
has to be marginally resolved (or at least not strongly
underresolved);

7. d xe
LC D : the plasma skin depth near the magneto-

spheric current sheet has to be resolved to properly
capture the reconnection process;

8. R d 100eLC
LC  : the scale separation in the current sheet

has to be large;
9. σLC? 1: to ensure the reconnection is in the high-σ

regime (as shown in Equation (A2), this is guaranteed
from the first and second conditions);

10. tB
LC 1w D - : to properly capture the synchrotron cooling

and gyration of particles in the current layer, their
corresponding gyration periods have to be resolved.

In our simulation R75_ang0, we use L= 2040Δx,
R*= 75Δx, RLC= 444Δx (P= 6200Δt, Ω≈ 10−3

Δt−1, with
the speed of light being c= 0.45Δx/Δt), and t10B

3 1w » D -* .23

This yields Vpc/mec
2≈ 5× 103, t5B

LC 1w ~ D - (marginally
underresolved for the lowest energy particles). We
also typically have λ∼ 5− 10, and, thus, d x0.1e » D* ,

d x2 5e
LC » - D , and R d 100 200eLC

LC –~ . Magnetization,
on the other hand, is σLC∼ 500–1000.

Appendix B
Guiding Center Approximation

In all of our simulations of pulsar magnetospheres, we
employ a hybrid particle mover algorithm (Bacchini et al.
2020). The algorithm allows us to switch between two
numerical schemes for solving the equation of motion of
particles depending on the electric and magnetic field values at
particle location, as well as the momentum of the particle. In
the guiding center approximation (GCA) regime, the motion of
the particle is reduced to the motion of its guiding center,
ignoring the curvature and ∇B drift terms, which are much
smaller than the E× B term. The equation of motion in this
regime can be written in the following form:

r
v

d

dt

u

du

dt

q

m
E

m u

B
v c

,

,

2
1 0. B1

E

s

s

s g
E

2
2 2 ( )






g

m

= +

=

º - =^

Here vE is the three-velocity of the frame where E and B are

parallel,

v
w

w c
w c

2
1 1 4 , B2E

E

E

E2 2

2 2( ) ( )= - -

with wE/c=E× B/(E2
+ B2

). Here we implicitly decomposed

the velocity of particle into three different components:

u B v uu , B3E g
ˆ ( ) g= + + ^

23
This means that gyration of the coldest particles is extremely underresolved

near the surface of the star. This is only possible because of the coupled GCA/
Boris particle pusher we employ.
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where u⊥g is the particle velocity component responsible for its

gyration. Notice that we enforce the magnetic moment of the

particle to be zero in the GCA regime. This assumption has

physical justification: in pulsar magnetospheres, the bulk of the

particles essentially reside at the zeroth Landau level, radiating

their perpendicular momentum via synchrotron mechanism

almost instantly. Setting μ= 0 when particle switches from the

conventional algorithm to GCA is similar to that process. The

GCA algorithm allows us to significantly underresolve cold

particle gyration close to the stellar surface as well as in most of

the magnetosphere, while still being able to model the strong

synchrotron cooling for the high-energy particles treated with

the conventional pusher.
In order to properly capture the regions where important

kinetic plasma physics occurs (such as reconnection in the
current layer), while still retaining the GCA approach for the
bulk of the particles in the magnetosphere, we employ simple
criteria for switching between the conventional Boris and
GCA. If either of the following two conditions is satisfied, the
full equation of motion of the particle is solved with the
conventional algorithm:

m c

q B
f x

E

B
f

,

. B4

s

s
B

E

2

∣ ∣

( )

gb > D

>

Here fE and fB are dimensionless numbers that we typically

choose to be 1 and 0.95 correspondingly. The first condition

ensures that only particles with unresolved gyroradii are

reduced to their corresponding guiding centers. The second

condition ensures that the GCA is not applied in the regions of

vanishing magnetic field where particle gyration is ill-defined.

Appendix C
Dependence of the Reconnection Rate on the Upstream

Motion

To test how the rate of magnetic reconnection depends on
the bulk velocity of upstream plasma along the layer, we
perform 2D localized simulations. We start with a Harris
equilibrium defined in the frame moving with a Lorentz factor
Γ along the current layer with respect to the lab frame. In the
first set of simulations, we keep σup/Γ= B2/(4πρupΓ)= 20
constant (ρup is the upstream density in the lab frame) and vary
Γ (meaning that we also vary σup). In the second set, we keep
σup= 100 (as measured in the lab frame), while, again, varying
Γ. After about a light-crossing time of the box, when the
reconnection proceeds in the plasmoid-dominated stage (but
before it shuts down because of the finite size of the box) we
can measure the effective reconnection rate in two ways. We
can either directly measure the upstream drift velocity toward
the current layer, βin= (E× B)in/B

2, or we can compute how
fast the magnetic energy is dissipated by evaluating the slope of
the dEB/dt curve, where EB= ∫Vd

3rB2/8π is the total magnetic
energy contained in the box. Both of these methods unsurpris-
ingly provide the same answer; so below, we only report the
direct measurement of βrec.
In Figure 11 (left) we plot our measurements for the inflow

velocity, βin= βrec as a function of the bulk Lorentz factor of
the upstream, Γ, for the two simulation series mentioned above.
The red curve corresponds to the case when σup/Γ= 20 is kept
constant; in this series, we see almost no variation in the inflow
velocity, the value of which lies between 0.8 and 0.14. Notice
that keeping σup/Γ fixed means that we scale σup (in the lab
frame) up with increasing Γ. In the case when σup is kept fixed,
we see a moderate decrease in βrec.
To understand this effect, let us consider separately the

velocities of relativistic outflows from the x-point (as shown in

Figure 11. Left: reconnection rate, measured as βrec = (E × B)in/B
2 in the upstream for localized 2D simulations initialized with an upstream flying with a Lorentz

factor of Γ along the current layer. The green dashed line shows the naive expectation that the rate, being universal in the proper frame of the upstream plasma, in the
lab frame should scale as 1/Γ. Right: zoom in of a region of our simulation with σup = 100, Γ = 10. The plot shows the four-velocity component of plasma along the
sheet, Uy. Initially, the upstream plasma is pushed in the +y-direction. In the current sheet, nevertheless, relativistic outflows move in both directions, where the x-
points in-between are static.

15

The Astrophysical Journal, 943:105 (17pp), 2023 February 1 Hakobyan, Philippov, & Spitkovsky



the right panel of Figure 11). In the frame co-moving with the

upstream plasma, the velocities of these outflows should

be symmetric w.r.t. the y-axis. Or in other words,

u u s¢ » ¢ = ¢ , where dashed quantities are measured in

the frame co-moving with upstream plasma. Here

B c4 ;
e

2 2( ) ( )s pr¢ º ¢ ¢ “±” indicate the direction of motion

along and opposite to the current layer (the y-axis). Boosting

back to the lab frame we find: u u» ¢ G+ + , and u u» ¢ G- - ,

assuming the “upstream” frame moves along the y-axis with a

Lorentz factor of Γ? 1. Cold upstream magnetization (not

including bulk Lorentz factor) in the lab frame,

σ≡ B2/(4πρec
2
), can be expressed as s s= ¢ G, since

Bup= By does not transform, and e er r= G ¢ . Then the outflow

velocities in the lab frame can be written as: u u 3 2» G+ , and

u u 1 2» G-
- , where u s= is the relativistic Alfvén

velocity in the lab frame. This can be also seen in the right

panel of Figure 11: outflow velocities along the y-axis

measured in the lab frame are clearly asymmetric. When Γ
1/2

becomes comparable to u , the outflow velocity in the direction

opposite to the upstream boost, u−, may become nonrelativis-

tic. In this case, it is natural to expect the reconnection rate,

defined in our case as βrec≡ vin/vout≈ vin/c to drop, since the

effective outflow three-velocity, vout, can now be smaller
than c.
Arguments provided in this section are not exhaustive, and

should rather be taken as possible explanations of empirical
facts, observed in numerous simulations. Further investigation
is definitely necessary to better understand the nature of the
mechanism that controls the reconnection rate in these cases.

Appendix D
Energy Distribution of Particles in the Different Parts of the

Simulation Domain

For the simulation R75_ang0, the magnetization parameter
in the upstream, shown in Figure 6, is close to σLC∼ 103 (as
shown with the line-out plot on the right) and drops to zero
inside the current sheet, where the magnetic field vanishes. This
means that the characteristic energies to which particles can get
accelerated in the current sheet are comparable to σmec

2
(as

will be demonstrated shortly).
Let us consider distribution functions for e± in different

regions of our simulation R75_ang0, as shown in Figure 12.
On a poloidal slice in Figure 12(a), we show the bulk Lorentz

factor of the plasma, U c1 2 2G = + , which is computed

Figure 12. Distribution functions of electrons and positrons measured in different locations of our simulation shown on an azimuthally averaged poloidal slice.
Synchrotron cooling in this particular simulation (R75_ang0_gr2) is weak. The bulk Lorentz factor is shown in panel (a). Panels (b), (c), and (d) show distribution
functions in the separatrix, the current layer, and the upstream, respectively. Plasma in the upstream is typically cold with a bulk outflow Lorentz factor of a few. In the
current sheet, the bulk motion of plasma is dictated by the dynamics of reconnection, and the characteristic outflow velocities are comparable to the Alfvén speed with
a Lorentz factor s~ . As expected, the highest-energy particles are produced in the current layer where magnetic reconnection occurs.
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using the bulk four-velocity, U= ∫uf (u)d3r. Figures 12(b),
12(c), and 12(d) show the distribution functions of the electrons
and positrons in three different regions: in the separatrix (last
closed field line), in the current sheet, and in the upstream
correspondingly. Upstream plasma is relatively cold; electrons
and positrons flow outwards along the magnetic field lines,
gaining characteristic bulk Lorentz factors of Γ∼ 10
(Figure 12(d)). On the separatrix (Figure 12(b)), both electrons
and positrons from the surface are marginally accelerated by an
unscreened electric field, gaining energies close to
〈γ〉∼ 10–100. This region also hosts hot electrons returning
from the Y-point, which is evident from the excess of electrons
at Lorentz factors of a few 102 shown in Figure 12(b).

These two regions, the upstream and the separatrix, act as an
“intake” and an “exhaust” for the current sheet. It is important
to note that particles in these regions are generally exposed to a
substantial orthogonal magnetic field component. This means
that high-energy particles from the current sheet cannot exist
there for timescales longer than the short cooling time. Thus,
the main role in shaping the observed γ-ray emission is played
by the current sheet, where constant release of magnetic energy
sustainably accelerates particles in x-lines, where the magnetic
field strength is zero (the cooling is nonexistent).

In the current sheet (Figure 12(c)) we see a substantial
nonthermal particle population, extending to γ∼ σ∼
500–1000. The bulk motion of the current sheet, on the other
hand, has a Lorentz factor of Γ∼ 10–100, consistent with
characteristic velocities of relativistic flows along the current
sheet during the reconnection, sG ~ (which corresponds to
the Alfvén speed).24 Notice, also, that the distributions of
electrons and positrons are slightly different: positrons extend
to slightly higher energies. This is due to the fact that the
electric field generated during reconnection “pushes” the
electrons opposite to the global E×B drift, which is charge-
invariant and directed radially outward (in Figure 3(a), the
reconnection electric field is pointing in the out-of-plane
direction and has both toroidal and radial components). This
difference in the electrons and positrons has been observed in
earlier simulations (see, e.g., Cerutti et al. 2015); however, it
almost vanishes for large obliquity angles, χ, which we also see
in our simulations.
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