IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 2, MARCH 2023

1555

OpenGridGym: An Open-Source Al-Friendly
Toolkit for Distribution Market Simulation

Rayan El Helou™, Student Member, IEEE, Kiyeob Lee

Le Xie
and Vijay Subramanian

Abstract—This paper presents OpenGridGym, an open-source
Python-based package that allows for seamless integration of
distribution market simulation with state-of-the-art artificial
intelligence (AI) decision-making algorithms. We present the
architecture and design choice for the proposed framework, elab-
orate on how users interact with OpenGridGym, and highlight
its value by providing multiple cases to demonstrate its use.
Four modules are used in any simulation: (1) the physical grid,
(2) market mechanisms, (3) a set of trainable agents which inter-
act with the former two modules, and (4) environment module
that connects and coordinates the above three. We provide tem-
plates for each of those four, but they are easily interchangeable
with custom alternatives. Several case studies are presented to
illustrate the capability and potential of this toolkit in help-
ing researchers address key design and operational questions
in distribution electricity markets.

Index Terms—Distribution electricity market, open-source
platform, artificial intelligence, demand response.

I. INTRODUCTION

ODERN electric grids are shifting from a centralized
Mto a more distributed architecture. This brings up a
new set of operational challenges due to the expected rapid
growth of a diverse set of distributed energy resources (DERs),
such as rooftop photovoltaics (PVs), electric vehicles (EVs),
and storage systems at the grid edge. It also introduces more
decision-makers (agents) into the picture who could strategi-
cally game the system under decentralized electricity market
designs. Adding decision-makers such as DER owners, flex-
ible loads and aggregators may significantly influence both
physical and market operations. Thus, it is indispensable
to understand in modern grids the implications of different
market design and operational issues.

Manuscript received 27 September 2021; revised 11 March 2022 and
16 June 2022; accepted 26 July 2022. Date of publication 10 October 2022;
date of current version 20 February 2023. The work of Rayan El Helou,
Kiyeob Lee, Dongqi Wu, Le Xie, and Srinivas Shakkottai was supported in
part by NSF under Grant ECCS-2038963. The work of Vijay Subramanian was
supported by NSF under Grant ECCS-2038416. Paper no. TSG-01574-2021.
(Corresponding author: Le Xie.)

Rayan El Helou, Kiyeob Lee, Dongqi Wu, Le Xie, and Srinivas Shakkottai
are with the Department of Electrical and Computer Engineering, Texas A&M
University, College Station, TX 77843 USA (e-mail: le.xie@tamu.edu).

Vijay Subramanian is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48103 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TSG.2022.3213240.

Digital Object Identifier 10.1109/TSG.2022.3213240

, Member, IEEE, Dongqi Wu
, Fellow, IEEE, Srinivas Shakkottai
, Senior Member, IEEE

, Student Member, IEEE,
, Senior Member, IEEE,

In particular, distribution grids are more susceptible to such
evolution than transmission grids, as the latter is more capable
at dampening intermittencies in load and generation than the
former. It is necessary to focus more of our efforts on the
design of distribution-level markets, and to explore alternatives
to traditional approaches that rely on outdated assumptions of
the distribution grid. There is a wide range of candidate market
mechanisms for modern distribution grids, primarily due to the
fact that much more decision-makers are involved, each with
more constraining requirements than those of a transmission-
level aggregator.

For example, conventional electric consumers at the dis-
tribution grids are fixed rate payers with the rate determined
a-priori by the regulatory agencies. Local electric utilities plan
the distribution grid capacities accordingly based on expected
load growth. However, such a mechanism may be rendered
ineffective due to the lack of clear incentives to encour-
age time-varying load flexibility at the operational stage. To
address the need for new institutional design at the distribu-
tion grid level, alternatives to this pricing mechanism have
been proposed in [1] where prices dispatched to prosumers
(i.e., two-way power usage) are driven by their consump-
tion patterns over time, measured using smart meter data.
Nonetheless, demand in the short run is assumed to be
inelastic. Similar market mechanisms for a wholesale market-
like distribution locational marginal pricings (DLMPs) have
also been introduced and conceptually investigated in the
literature [2].

While there is a growing body of literature that advocates
the use of DLMPs and theoretical properties of DLMPs have
been investigated [3], [4], [5], concrete comparisons with alter-
natives to DLMPs are missing and are yet to be analyzed
both theoretically and empirically. This is an important gap
between the conceptualization of how market clearing and
pricing should be done via DLMPs and its implementation
in practice. Moreover, while game theory offers analytical
tools to investigate strategic interactions on how DER, DER
aggregators and flexible demands may participate in future
electricity markets, without making substantial assumptions on
how decision-makers strategically interact, analysis of game
theoretic models is intractable in many settings [6].

Similar to the LMP calculation in bulk transmission system
market operation using Optimal Power Flow (OPF), the
approach and formulation have been proposed for the com-
putation of DLMP in [7], [8] for distribution networks, using

1949-3053 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 01,2023 at 02:36:47 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5958-8019
https://orcid.org/0000-0002-2851-0737
https://orcid.org/0000-0002-0238-6088
https://orcid.org/0000-0002-9810-948X
https://orcid.org/0000-0002-5882-6433
https://orcid.org/0000-0001-9136-6419

1556

Fig. 1. Envisioned distribution grids with DERs participating in local markets.

the DistFlow power flow model for radial networks, with the
objectives to minimize either power loss or generation cost.
In [5], the properties of convex relaxations using the DistFlow
model are investigated, and Distribution Locational Marginal
Pricing (DLMP) is formulated, and results reveal the nature of
DLMP distribution relative to physical constraints. In [2] the
degradation cost of transformers is explicitly factored in the
LMP calculation for distribution networks.

The inelastic nature of electricity demand is frequently the
binding constraint of LMP-based mechanisms in OPF-based
power system planning, where many ultra-high marginal prices
result from the necessity to meet invariant local demand either
by using expensive reserve or sub-optimal dispatch. Demand
response (DR) programs can incentivize end-users in real-time
to adapt their power consumption to the availability of elec-
tric power generation and delivery and introduce elasticity.
References [9], [10] and [11] propose a novel DR program
where end-users receive coupons as incentives to shift power
consumption from peak hours to off-peak hours. This approach
has been tested by conducting a case study on real users in
Texas, with results that suggest that people respond positively
to such incentives. Such programs can be easily implemented
using our proposed simulation framework.

A. Existing Approaches to Electricity Market Simulation

There already exists a set of widely-used open-source tools
for simulating physical operations of both transmission grids
(e.g., MATPOWER [12] and pandapower [13]) and distribu-
tion grids (e.g., OpenDSS [14] and GridLAB-D [15]), and a
proposed set of tools for electricity market simulation (e.g.,
AMES test bed [16]). All these tools work well under a tra-
ditional assumption of weak coupling between physical and
market models of electric power grids. This assumption needs
to be re-visited in modern grids due to the intermittence of
electricity generation and consumption, as well as the likely
participation of a variety of large and small agents.

In this paper, we provide a simulation toolkit that can help
researchers simulate and compare the outcomes of various
market mechanisms for realistic distribution grids. As implied
in Figure 1, we rely on a framework that enables modular
representation of grids, markets, and DER-controlling agents,
which could potentially participate either in market or physical
grid operations. In contrast, the existing set of tools is either
not friendly to learning-based algorithms, or does not pro-
vide an easy-to-interchange modular structure which enables

IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 2, MARCH 2023

experimenting with various models for both grid and market
operations.

B. Our Contributions

To account for the multiplicity of agents in distribution
electricity markets, we propose a new formulation where
demand and supply entities are agents that submit bids or
offers into the market, and prices are dispatched to them by a
market operator. We develop an OpenAl Gym-like [17] bench-
mark for testing such multi-agent environments and invite
machine learning (ML) and power systems experts to test
the use of reinforcement learning (RL) to fulfill user-defined
objectives. A similar effort has been made by RTE France
with their Grid2Op platform, an environment popularized by
the L2RPN competition [18], but the platform is restricted
to physical operations, and does not include market opera-
tions. Reference [19] reviews the use of RL in electric power
systems, and the aim in our proposed work is to provide
a benchmark environment for distribution electricity market
simulations.

Here are the key contributions of our work:

« We propose a framework to serve as a benchmark for joint
market and distribution grid simulation in a competitive
multi-agent setting.

« We provide an open-source Python-based user-friendly
toolkit for performing simulations with trainable Al-
driven agents, with use cases to demonstrate it.

The remainder of this paper is organized as follows. In
Section II, we introduce our proposed Python-based package,
OpenGridGym [20], and we provide a high-level overview
of its architecture and user interface. In Section III, we dive
deeper into the definitions of each simulation module and how
those modules interact with one other to deliver a user-friendly
experience. In Section IV, we present three different use cases
of OpenGridGym that showcase its extensibility. In Section V,
we provide concluding remarks and future directions.

II. OPENGRIDGYM
A. Motivation

As distribution grids continue to modernize, the need to
reconsider traditional market mechanisms grows, and some
questions need to be raised. For example, should local markets
be based on peer-to-peer transactions, or should the distri-
bution grid be governed by DLMP-based mechanisms, and
what are the implications of such propositions? To answer
these questions in a consistent manner, we should be able to
easily integrate models of physical distribution grids with mar-
ket models in a unified framework which is accessible to all
researchers in this domain. Moreover, what role does artifi-
cial intelligence (AI) play in shaping the future of electricity
markets? By using a programming language like Python, an
entire ecosystem of Al-friendly tools is inherently available to
a researcher who seeks to answer such questions.

With our proposed modular Python-based simulation pack-
age, OpenGridGym [20], it is easy to swap out market
mechanisms while keeping the same physical grid model, and
vice-versa, to answer questions such as the ones asked above.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 01,2023 at 02:36:47 UTC from IEEE Xplore. Restrictions apply.

HELOU et al.: OpenGridGym: AN OPEN-SOURCE AI-FRIENDLY TOOLKIT FOR DISTRIBUTION MARKET SIMULATION

The name “OpenGridGym” refers to the fact that we pro-
vide an open-source environment to exercise various grid and
market designs, and to train agents to meet their objectives.
By leveraging existing open-source simulation tools already
developed by researchers (e.g., OpenDSS by EPRI [14]),
OpenGridGym is able to account for new modalities such as
real-time monitoring of substations, distributed storage, photo-
voltaics, electric vehicles, and more. Off-the-shelf Al-friendly
tools for learning and optimization, such as PyTorch [21] and
CVXPY [22], are readily available to the user, unlike with
existing non-Python-based market simulators. We provide use
cases in Section IV to illustrate the use of OpenGridGym.

B. Proposed Architecture and Design Decisions

In this section, we present the high-level architecture design
of our simulation framework, and in the section that follows,
we go deeper into how each of its components (Grid, Market
and Agents) operate individually and collectively.

The goal of this tool is to introduce a framework for simu-
lating electricity markets. We suggest the use of Python as the
main programming language partly because it is open-source,
but mainly because it hosts an ecosystem of Al- and ML-
friendly tools which are readily available to the user. Our work
is inspired by the well-known OpenAlI Gym [17], which facil-
itates the simulation of Markov Decision Processes (MDPs)
and testing reinforcement learning (RL) algorithms. OpenAl
Gym provides the user with two main contributions: 1) A set
of (empty) base classes which the user can fill in to repre-
sent their simulation environment, and 2) a set of use cases to
demonstrate multiple examples of how such base classes can
be filled in by the user to provide meaningful outcomes. We
aim to contribute similarly in our work.

In the section which follows, we introduce the Python-based
base classes for simulating electricity grids, market mech-
anisms, and various agents’ behaviors which influence the
two. Our design philosophy is the following. Each user of
OpenGridGym should be given as much flexibility as possible
over what they’d like to simulate, while simultaneously main-
taining a level of consistency in the framework under which all
researchers would operate. The implications are twofold. First,
there needs to be minimal constraints on users’ choice of grid
format, market mechanism, and agents’ behaviors. Second, we
provide entirely Python-based easy-to-edit base classes which
act as building blocks for the user to implement their own ver-
sion of a market simulation. Additionally, we do provide a set
of templates, showcased in Section IV, where we demonstrate
how OpenGridGym could be used.

C. User Interface

As labelled on the left of Figure 2, there are three steps
the user needs to follow to begin the simulation process (to
create a grid, a market, and agents). Each of these steps involve
creating their own or selecting from existing modules. The
order specified in the figure is based on the principle that the
physical grid is lower-level than the market which acts on top
of it. Here is the order:

1557

1) Select existing or create new grid

Grid
Files

Scenario
Files

Physical
Grid Model

market mechanism

2) Select existing or create new

A,

Market
Rules

Simplified
Grid Model

C

3) Select existing or create new agents

Agents

4) Environment runs

Exogenous
Agents

) |

Exogenous
Agents

)

Grid

Market

slower
>

Controllable
Agents

Controllable
Agents

1T

faster
>y

Fig. 2. User interface and simulation flowchart. The terms slower and
faster indicate that market negotiations occur much more frequently than
post-market-clearing interactions with the grid.

1) The user selects a grid from some case file or folder
which contains the full detailed model of the physical
system (indicated by the Physical Grid Model block).
This implicitly means that the user also selects which
simulator they prefer to use (e.g., OpenDSS [14]). The
Scenario Files block indicates any exogenous input that
might affect the grid state, e.g., weather and load data.
Hence, it points to the Exogenous Agents block.

2) The user selects or creates a module to represent the
market mechanism. For each market mechanism in gen-
eral, there is a set of rules which dictate the prices
dispatched to all participants. More specifically for elec-
tricity markets, since distribution (or transmission) grids
are physical systems with constraints that need to be
obeyed, any responsible market mechanism should also
somehow model the grid to take those constraints into
account. Such a model of the physical grid could be
simple for market clearing purposes. This is indicated
by the Simplified Grid Model block in the figure.

3) The user initializes a list of agents in the environment.
Those agents are each an object in Python and they do
not need to share the same decision-making policies.
For each agent listed, the user either selects or creates
a module to capture how they interact with either the
physical grid directly or just with the market. Here is
where Python’s Al-friendly ecosystem can be utilized.
For example, the Controllable Agents block refers to the
fact that agents are not parametrized by a predetermined
set of files (e.g., the Scenario Files). Rather, a learning
algorithm can be associated with them so that each agent
can individually seek its personal objective. This implies
that such agents are effectively players in a stochastic
game provided that there’s more than one of them.

Once those three steps are complete, the environment can

run as shown in the fourth step of the figure. We employ
a two-timescale discrete-time sequential process which simu-
lates the interplay between the metaphysical market and the
physical grid. This is illustrated in Figure 3. The exact formu-
lation of this process is shown in Algorithm I in the section
that follows, but simply put, negotiations in the marketplace
occur much more frequently than changes to the physical grid

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 01,2023 at 02:36:47 UTC from IEEE Xplore. Restrictions apply.

1558

Algorithm 1 Environment Episode
1: Instantiate the following objects in Python:

e« grid > e.g. with connection to OpenDSS
¢ market > constrained by simplified grid model
e agents > with scenarios and user profiles

2: Reset grid state.

3: while grid episode not complete do

4 Reset market state.

5: while market episode not complete do

6 agents submit bids, offers.

7 market dispatches prices and quantities.
8 end while (market clears)

9 agents submit grid actions.

10 grid updates state.

11: end while

Market Negotiations Market Negotiations
A A

Y K4 g ¢

Time
Physical Snapshots

Market Clearing

Fig. 3. Two-timescales for agent participation, one for negotiating in the
market, and one for acting on the physical grid after the market clears.

which are governed by market clearing. Our philosophy behind
this is the following. The physical grid is governed at every
time step by choices made by individuals who are faced with
various opportunities, namely to increase or decrease electric-
ity consumption (or production). We assume that those choices
are determined as a result of negotiations made in a market-
place. For this simple reason, we model the market with a
faster time-scale. To be clear, when we say one step is taken
in the physical grid, we refer to time scales closer to those
of tertiary control in power grids, not to those of primary and
secondary control. Transient control can still occur in between
time steps marked by the term Market Clearing in Figure 3,
but we do not impose any restrictions on such control in our
proposed framework.

III. PYTHON-BASED MODULES

In this section, we define all the modules involved in the
simulation process and explain how they tie together to pro-
vide a reasonable user experience. There are four modules
involved in any instantiation of our proposed framework, and
for each of those, we will describe the concept and show some
minimal snippets of Python code to illustrate the ease of their
implementation. The four modules are Grid, Market, Agent
and Environment, as discussed earlier at a higher level in the
previous section.

In contrast with OpenAl Gym’s framework [17] for
modelling discrete-time sequential processes, we do not pro-
pose that agents submit actions directly to the Grid object and
receive observations or rewards in return. Rather, each agent
sets their actions in their local memory, and the environment
is expected to pull them as needed. OpenAl Gym’s approach
works well in single-agent settings with one environment mod-
ule involved. However, when there are several players (Grid,

IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 2, MARCH 2023

-
P

Environment

Agent Agent Agent

Fig. 4. Implicit access of Python objects to one another via the Environment
object. The head of an arrow is accessible as an attribute by the object on the
tail of the arrow. Note: agent-to-agent communication is inherently possible.

Market and multiple Agents), building an explicit communica-
tion layer is cumbersome. Our simple solution is that each of
those players or objects has direct access to an object we call
the Environment, which in turn can access all other objects, as
shown in Figure 4. One of the implications of this is that all
objects can implicitly talk to one another, thanks to Python’s
built-in pointer system.

Off-the-shelf reinforcement-learning (RL) packages can still
be used to train agents under this new framework. For each
agent, the user would just need to ensure that they can extract
actions, observations and rewards at any time step. For exam-
ple, for an agent to access observations, say voltages, from
the grid, we can simply write agent.env.grid.get_
voltages () in Python. Similarly, for the Market object
to receive actions from some agent, the user simply calls
market.env.agent.get_market_actions().

There is no strictly correct way to model any of the four
objects introduced in the following sections, as argued in the
previous section. However, we propose that if the user fol-
lows the template we provide, then they can more consistently
control experiments to compare market mechanisms with one
another, agent behaviors with one another, and grid models
with one another.

A. Grid

We propose that each grid object the user instantiates must
have at least two functions implemented: reset and step.
This is shown in the snippet code below.

s)
class CustomGrid (BaseGrid) :
def _ init_ (self, dss_case='",
scenarios=""):
self.dss = DSS(case=dss_case)
self.scenarios = scenarios
def reset (self):
self.t = -1
def step(self):
self.dss.solve ()
\ 7

At the beginning of each episode, the environment auto-
matically calls env.grid.reset () to reset the state of the
grid. This includes resetting timing, weather information, any
control equipment’s states, scenarios, etc. At every iteration,
the environment automatically calls env.grid.step() to

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 01,2023 at 02:36:47 UTC from IEEE Xplore. Restrictions apply.

HELOU et al.: OpenGridGym: AN OPEN-SOURCE AI-FRIENDLY TOOLKIT FOR DISTRIBUTION MARKET SIMULATION

execute all agents’ actions, to solve power flow, to update
its states and to store any relevant information as a result of
agent’s actions.

The actual model of the grid, labelled as CustomGrid in
the snippet of code above, is either created (and filled in) by
the user or selected from existing templates which we provide.
For example, for a use case we show later in this paper, we
rely on an IEEE 34-bus distribution grid in which the step
function collects agents’ actions and uses those to update the
OpenDSS-based model accordingly.

Under this framework, leaving the step function empty
is equivalent to simulating scenarios where agents do not
influence the physical grid at all. This could be useful when
experimenting with market-only interactions.

B. Market

Similar to the grid object, the market object also expects two
functions to be implemented by the user: reset and step.

class CustomMarket (BaseMarket) :
def _ init_ (self):

reset (self) :
self.t = -1

def

def step(self):

That is, there is no restriction on how the market is mod-
elled, provided that the user specifies in the reset function
how the market initializes any states or information it may
derive based on the grid, and that the user specifies in the
step function how the market uses agents’ actions to dispatch
electricity prices and quantities to be consumed or produced
by all participants.

As shown in Algorithm 1, this market object iterates through
a sequential negotiations process, but at no point in the process
is the physical grid affected. Once the market negotiations
terminate, we declare that the market has cleared. Based on
this, agents can then determine the actual amount to consume
or produce as described in the following section.

C. Agent

The minimal requirements on agents is that they are able to
state what actions they’d like to apply on the market and on the
grid. During the environment’s market updates, agents’ actions
are expected to be declared in the set_market_actions
function. Similarly, during grid updates, agents’ actions are
expected to be declared in set_grid_actions.

class CustomAgent (BaseAgent) :
def _ init_ (self):

def set_market_actions (self):

def set_grid_actions(self):

1559

That is, by implementing those two functions for some
agent, users would have completely modelled the behavior of
said agent. Of course, those functions could internally rely on
other local functions, which the user is free to create in Python.
We provide examples of agents in the use cases. One exam-
ple is a producer agent which submits actions in the form of
supply curves that the market uses to determine optimal price
and quantity dispatch.

D. Environment

Finally, the environment object, which ties the Grid, Market
and Agent objects together is presented here. We illustrate this
in Algorithm 1.

From an object-oriented programming perspective, it is
redundant to explicitly create an object to represent this envi-
ronment if it simply iterates over all other objects. However,
the environment object can provide the user with a much
cleaner and easier-to-use interface. To highlight this, we show
in the snippet of code below how to set up and simulate an
environment having previously defined grid, market and
[list of] agents according to the previous sections.

env = Environment (grid, market,
env.reset ()
for t in env.iterate():

pass

agents)

We go into further details in the code’s documentation about
the different capabilities afforded by this style of interaction
with the environment, such as the use of callbacks for example
to easily save or extract data mid-simulation.

As shown in Figure 4, the environment can be accessed
by all other objects and can access each of them. The figure
appears to suggest that observation and control are proposed
to be centralized. Indeed, we propose that in simulation, all
objects should be able to access one another via a central
Environment, whereas in practical implementation there should
be explicit communication networks that restrict this.

Our justification for this is that during simulation, ultimately
there is only one user, which is the person using this platform.
The best experience for them involves being able to easily
access everything, as enabled by this ‘centralized’ environment
object. However, with that we must emphasize that we do not
enforce that the user’s implementation of the Grid, Market and
Agent objects satisfy the user’s desired outcomes. Simply put,
by providing flexibility under the framework, we hand over
the responsibility to the user to ensure they are implementing
the simulation the way they want to. Nonetheless, as shown
in the section which follows, we provide templates that can
aid users in designing their own use cases.

IV. USE CASES

In the previous section, we provided a blueprint for setting
up and executing distribution electricity market simulations. In
this section, we provide a few use cases of OpenGridGym for
two main purposes: 1) to express the variety of simulations
that could be executed, both in complexity and in relation

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 01,2023 at 02:36:47 UTC from IEEE Xplore. Restrictions apply.

1560

to real-world problems, and 2) to show how OpenGridGym
can be used to test and train Al-based approaches to solving
problems in this domain.

Furthermore, we wish to convey to the reader that it is
the simulation platform and its capabilities which we seek
to highlight, rather than the use cases themselves. Neither the
market mechanisms used nor the agent behaviors assumed in
the use cases are suggested to be ideal. We provide those
simplified use cases to reflect how users might interact with
OpenGridGym to investigate the impact of possible designs
and mechanisms that they may desire to experiment with.

A. Use Case 1: Topology-Induced Market Power

Here are the three goals of this use case:

« Investigate the impact of network constraints in dis-
tribution grids on electricity pricing in a competitive
market.

« Explore price-responsive elastic demand as an antidote to
network congestion.

« Showcase the use of OpenGridGym’s framework in set-
ting up and executing a simulation environment to enable
such inquiries.

To set up this use case, we follow the blueprint described
in the previous section. That is, we first define the underly-
ing model of the physical grid. Second, we suggest a market
mechanism for dispatching prices and quantities based on con-
sumer/producer input. Third, we introduce different kinds of
agents to participate in this market, and describe their behav-
ior. Finally, we show the results of the simulation extracted
from the environment object.

1) Grid Model: We rely on the standard IEEE 34 node
feeder as one specific model of a physical grid, and use
OpenDSS to simulate power flow corresponding to differ-
ent load and generation profiles. This distribution grid model
is represented by a 69 kV feeder, a substation transformer
which step-down to 24.9 kV, a mixture of single- and multi-
phase unbalanced loads (28 in total), single- and three-phase
distribution lines, capacitors and regulators.

OpenDSS offers the capability to connect directly to it using
Python, and we supplement that with a user-friendly interface
for the user to more seamlessly interact with it. That is, when
agents submit what we referred to as ‘grid actions’ in this
paper, OpenDSS is called to solve power flow and return the
results corresponding to those actions.

For the purposes of this specific use case, we are more
interested in how agents interact in the market, rather than with
the physical grid. Therefore, we reduce the grid model here
to single-snapshot power flow, as opposed to a time-series.

2) Market Mechanism: In today’s distribution grids, most
consumers of electricity participate in local retail markets
where a regional load serving entity offers them prices for
consumption that could remain fixed for months or even years.
With the increase of power demand on distribution grids,
especially now with the introduction of fast-charging electric
vehicles, there needs to be either an increase in the grid’s
capacity or some form of demand response to counteract that.

IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 2, MARCH 2023

We explore a market mechanism which models consumers
as price-responsive. In this model, consumer agents submit
elastic demand curves as bids to the market, and the market is
expected to dispatch demand corresponding to the submitted
bids to ensure, using a simplified DC power flow model, that
none of the distribution lines overflow. Let gpys; represent net
quantity consumed at bus , and let giine, ; represent the quantity
of power flowing from bus i to bus j. A consequence of radial
topology is the following equality.

Qline;; = qbus; T Z Qline; (D
keC(j)

where C(j) is the set of buses ‘children’ to j (i.e., downstream
from the feeder). Knowing the topology, the market optimizes
over all quantities consumed/produced in attempt to enforce
thermal line limit constraints.

The market object is expected not only to dispatch the
amounts of power consumed or produced by each participant,
but to also dispatch electricity prices. Due to page limits for
this paper, we defer the detailed formulation of the price-
quantity optimization problem to a separate document, but
here is the short summary. Consumers submit bids as demand
curves, producers submit offers as supply curves, and for each
of those, we rely on a simplified parametric model to define the
curves. Supply and demand curves are chosen as affine rela-
tionships between price and quantity as follows (s for supply,
d for demand):

Pmax — Pmin

Ps = (gs — gmin) + Pmin ()
9max — 4min
Pmin — Pma
pPd = M(Qd — ¢gmin) + Pmax 3)
dmax — qmin
Pmax = Pmin €]
gmax > dmin &)

where (Pmax, Pmin» gmax, gmin) Sufficiently parametrize either
supply or demand curves. That is, for each bid or offer, an
agent submits a quadruple of scalars to represent their par-
ticipation in the market. Note that supply curves are strictly
non-decreasing and demand curves are strictly non-increasing.
Finally, it is the market’s role to ensure that all participants
are minimally satisfied while leaving no money on the table,
expressed as follows:

(s, qs) on or above supply curve 6)
(pd, gq) on or below demand curve 7

Y paqa =) _psds ()
d s

The objective used in the market’s optimization problem
is to maximize the sum of net consumer and net producer
surpluses. We know from classical economics that in cases
without any network constraint, i.e., no limit on exchange
of quantity between supply and demand, the optimal price-
quantity dispatch is the intersection of aggregated supply and
demand curves. However, in case of network constraints, the
optimal solution becomes less trivial. The purpose of this
use case is not to advocate for this market mechanism, but
rather to test the impact of demand and supply flexibility (or

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 01,2023 at 02:36:47 UTC from IEEE Xplore. Restrictions apply.

HELOU et al.: OpenGridGym: AN OPEN-SOURCE AI-FRIENDLY TOOLKIT FOR DISTRIBUTION MARKET SIMULATION

elasticity) on consumer prices. We say a consumer is less
price-responsive the steeper their demand curve is.

3) Agent Behavior: To compare price-responsive to price-
unresponsive consumers, we use the parametrization of
demand curves described in the market formulation.
Each consumer agent submits a quadruple of scalars
(Pmax»> Pmin»> gmax> gmin) provided that pmax > pmin and gmax >
gmin, and in doing so, they declare their bid to the market.
Producer agents do the same with parametrized supply curves
to declare their offers to the market.

Each agent seeks to maximize their own personal rewards,
which are made up of two components. For each price-quantity
dispatch from the market, supply agents receive a net amount
of money equal to the product of price, payed for by the
demand agents. Furthermore, for each supply agent, there is
an opportunity cost cs(gs) for each quantity ¢ dispatched by
the market. This quantity is hidden from everyone but the
agent. Similarly, for each demand agent, there is a hidden util-
ity ug(gq) in consuming dispatched quantity g,. From these
quantities, we define the market dispatch-based reward signal
r for each agent as follows:

rs(Ps, 4s) = psqs — ¢s(qs))
ra(pd, 44) = ud(qd) — pdqd (10

Economics theory suggests that in purely competitive mar-
kets, it is in the interest of producers to submit supply curves
that most closely reflect their ‘true’ opportunity costs, to
remain competitive. When faced with network constraints
however, it is possible for producers with market power to cap-
italize and submit much higher prices than their cost, which
we explore in this use case. Nonetheless, in general, it is left
to the user to utilize Python’s Al-friendly ecosystem to train
this agent to maximize its rewards.

4) Environment Results: For this use case, we initialize 28
demand bids (one per load) as inelastic, and we introduce
a total of 5 supply units with equal supply capacity, spread
uniformly across the grid. One supply unit is located at the
feeder node of the distribution network with a horizontal sup-
ply curve, i.e., fixed price for all quantities, derived from
transmission-level wholesale, and assumed to be exogenous to
our simulation environment. The other four supply units are
price-responsive, i.e., their supply curves are increasing. Under
this scenario, we observe that all consumers are dispatched a
price of 4.3 ¢/kWh with no congestion in the network.

Next, we iterate through the market, where agents update
their bids and offers, and we purposefully instruct consumer
agents to keep their demand inelastic. The results are shown in
Figure 5. The natural consequence is that prices must go up
since generators increased their price offers with no objec-
tions. The figure shows us two things. First, we see that
not all consumers now pay the same price ({4.6, 4.8 and
around 6.9} ¢/kWh). Second, even though the feeder node
remained fixed price (and cheaper than other supply), con-
sumers still buy at more expensive prices, simply due to
network congestion.

Since the network is congested, it limits the amount of cheap
power deliverable to certain pockets of load in the network,

1561

=Y
o

% log [o] o n]

Price (¢/kWh)

N w » [¢)] » ~ [oe] ©
L L L L L L L

Demand Dispatch
0 Supply Dispatch

Demand Curves

Supply Curves

-

100 200 300 400

Quantity (kwWh)

500

Fig. 5. Market dispatch for inelastic demand and elastic supply. Prices
increase for most consumers due to line congestion.

=Y
o
——

Akt I \!
\
%ﬁn@ oo o
R R : o
Demand Dispatch
0 Supply Dispatch

Demand Curves
Supply Curves

Q

Price (¢/kWh)

N w » [¢)] » ~ [oe] ©
L L L L

-

100 200 300 400

Quantity (kWh)

500

Fig. 6. More elastic demand curves lead to lower prices.

thus creating an advantage to local pricey generators. This is
a fundamental property of congested radial networks. We do
not wish to go deeper in this use case to analyze this mar-
ket mechanism. However, we’d like to continue this example
to show how consumer price-responsiveness can serve as an
antidote to this topology-induced price increase.

Proceeding in the simulation, supply agents still submit rel-
atively high prices, but the demand agents now submit more
elastic demand curves. As a result, the market dispatches lower
consumption quantities, even though the network remains con-
gested. This is shown in the updated supply/demand curves of
Figure 6.

A natural question that may arise is, how much demand
flexibility is needed to lower the prices? To answer this, we
do not change supply agents’ offer for now. We just randomly
select bid offers by demand agents such that some of them are
flexible, and some not. We consider two scenarios, one with
8% flexible, and one with 75%. As shown in Figure 7, for
the former case, the average consumer price is 6.64 ¢/kWh,
whereas for the latter, the average price is 5.28 ¢/kWh.

To conclude this use case, here are three takeaway messages
we wish to deliver. First, by following OpenGridGym’s frame-
work to set up this use case, we can very easily separate and

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 01,2023 at 02:36:47 UTC from IEEE Xplore. Restrictions apply.

1562

8% Demand Flexibility. Average Price: 6.64

Flexible

, 822
(@]
O O 842 g
O-O0—0-0-0-0-0-0-0-0-0-0O O~ ~—O0—0-0 i;
g -00 © d
O ' - o
Q — Not Flexible
O—@-0O-0O
830
75% Demand Flexibility. Average Price: 5.28
. Flexible
°
° ° g
O-0—00000-0-0- 000 @O - @ - 0-0@ i;
e Oe o d
[] - [
Q — Not Flexible
o000

Fig. 7. Average consumer price for a congested network with different levels
of demand flexibility.

debug each of the grid, market and agent simulation objects.
Second, by loading a pre-defined OpenDSS-based IEEE test
case, we didn’t need to create the actual network, rather just
specify it. This means the user can repeat this experiment
on different standard grids easily, or of course create their
own. Third, we were able to simulate a meaningful experi-
ment using this framework. Namely, in this case, we were able
to show that even in congested radial networks, via demand
flexibility you can reduce the prices by some margin. Granted,
this specific market mechanism calls for much more in-depth
exploration, but here, the purpose is to provide a template for
users to get an idea of how OpenGridGym works.

B. Use Case 2: Learning in Peer-to-Peer Markets

Consider a market of the sharing economy [23], [24] where
market participants can switch roles between producers and
consumers depending on availability of their resources. For
example, PV home owners generating extra energy could
shortly serve as producers by providing additional resources
to the grid and they could also serve as consumers in this
market when they do not produce energy from PVs. Thus,
market participants are turned into prosumers who can both
produce and consume resources. In this use case, we model
such PV home owners as agents and consider the Peer-to-Peer
(P2P) market. Here, geographic locations and weather deter-
mine which agents shift from being producers to consumers; If
there are no available PV home producers, consumers can also
buy the electricity from a utility provider. In this market, the
role of the market maker is to match the producers and con-
sumers so that a producer-consumer pair can negotiate to make
a transaction if agreed. The objective of the market maker is to
serve as a middleman between producers and consumers while
respecting physical grid constraints. In this market, agents are
concerned with a simple collection of tasks that they negotiate
(bargain) the agreed price with other agents.

IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 2, MARCH 2023

1) Grid Model: We use the same grid model used in Use
Case 1.

2) Market Mechanism: The role of this P2P market is to
match producers and consumers so that a producer-consumer
pair goes through a number of negotiation steps to find an
agreement on the price. If they both agree on the price, trade
happens; otherwise they fail to make a trade. To be specific, the
market maker allows a matched pair of producer and consumer
to bid a number of negotiation steps, denoted by 7' € N. For
each market negotiation step r < T, an agent (either producer
or consumer) can explore to learn an optimal action, which
depends on the opponent’s strategies and vice versa. Given a
matched pair, denote bid offers from producer and consumer
by b, and b respectively at time t. If b, ; < b.;, the mar-
ket maker says a trade is successful. Producer p receives a
reward rp ; = by ; — Cservice and consumer ¢ receives a reward
Te,t = Ub —bp 1 — Cyervice WheTe cyepice 18 a fixed service fee in
the market and ub is an utility price that consumer can alter-
natively purchase from. If b, ; > b, then both producer and
consumer receive a reward 7, ; = r¢; = —Close @S a penalty
when the transaction is not successful.

Lastly, we note that the market performs random matching
between producers and consumers without considering agents’
locations, generation amount or consumption demand.

3) Agent Behavior: We make a number of assumptions
about agent behavior for simplicity of demonstration. First, we
assume that all producers are homogeneous and generate the
same fixed amount of electricity, say 3 kWh, and consumers
purchase the same quantity. With this assumption, the mar-
ket maker chooses a random matching between producers and
consumers. In the absence of uniformity, the market maker
can use a maximum weighted matching or other alternative
matching algorithms with respect to generation amount and
demand. When agents are matched by the market maker with
an opponent and they negotiate. We assume that they have
finitely many actions A; to choose from in their bid offers,
where A; = {0,0.5,1,1.5,...,10}. Finally, we assume that
all agents implement quantal response dynamics defined as
follows. When a pair of producer and consumer is matched,
there are 7 = 10 episodes where each agent can interact with
the other agent such that their policies are fixed within each
episode and updated between episodes. The policy update is
as follows:

For a fixed constant A € (0, o0) and in each episode ¢t € T,
the probability of choosing action a; € A; given w_;, is

exp (Aui(ai, a—i))
Y aea, exp (Mui(a}, a-i))

Pi(ai, m-i1) = Ex_,, (11)

where u;(-) is a reward for agent i defined in the market
mechanism. Agent i does not know m_;; because it is pri-
vate information of agent —i, yet can approximate 7_;; from
the samples in episode ¢ € [7T] while interacting in the
episode . When 7_; is approximated by 7_;, we can compute
Pi(a;, 7_;,) for each a; € A; and let 7 ;41(-) = Pi(-, m_i).
When 7n* = (n*, n¥;) is a fixed point of Eq. (11), it is called
a quantal response equilibrium (QRE) [25].

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 01,2023 at 02:36:47 UTC from IEEE Xplore. Restrictions apply.

HELOU et al.: OpenGridGym: AN OPEN-SOURCE AI-FRIENDLY TOOLKIT FOR DISTRIBUTION MARKET SIMULATION

Consumer

Producer

05 2 0.5 2
04 3 04 5
03 g 03 g
02 & > 02 @
0.1 5 Ottty 0.1
3
0.0 Ay s 0.0
10 Wm[[[“l 10
0 1
10 AN
15 0.5
20
Ac1i0ns
Fig. 8. Action Distribution of producer and consumer.
5 W Producer
Consumer 0.6
°
G4 £
5 3
o 0.4
3 o
E &
22 £
w ~ 0.2
1
0 — 0.0 s
0.5 1 5 10 0.5 1 5 10
))

Fig. 9. Expected Rewards and Trade Probabilities.

4) Environment Results: Using the Grid, Market and Agent
formulation above, we implement the environment and demon-
strate negotiations between a matched pair of producer
and consumer. We show a multi-period negotiation between
matched pairs. For each market step, the producer and con-
sumer agents negotiate for a trade over the next several grid
steps. At the time of the negotiation, generation and load fore-
cast time series are used for the producers and consumers
respectively. If a consumer cannot get enough energy from
its paired producer for either supply deficiency or unsuccess-
ful negotiation, the energy deficiency is cleared using grid
power drawing from the substation at the retail price from
the utility company. This formulation is able to account for
the thermal inertia of loads across different market intervals
and uncertainty of future renewable generation after the power
transaction settlement.

The action distributions of a matched pair of producer and
consumer are shown in Fig. 8 for each A € {0.5, 1,5, 10}
where each distribution is averaged over 5 producers and 5
consumers respectively. It is observed that distribution skews
towards higher actions for higher A while distribution shifts
towards a uniform distribution for lower A. Similarly, it is also
observed the expected rewards are higher for higher A whereas
the trade probability is mostly constant for different A. Note
that without grid constraints binding, there are many pure Nash
equilibria in our bargaining model where trade happens. The
QRE for large A values approximates a Nash equilibrium.

It is also noticed in numerical experiments that under certain
operating conditions, the settled bilateral transactions cannot
be realized in the grid step. In radial distribution networks
there is usually one electric path between producers and con-
sumers at different buses, and when the power being traded
exceeds rating of any line in the grid, the power flow results
become infeasible. Under such conditions, market transactions
can potentially impact the operation of physical distribution
grid. Our platform can be used to study this impact.

1563

C. Use Case 3

The third use case attempts to establish a general compre-
hensive market structure for future distribution systems where
prosumers in the network trade their power generation and
consumption with fellow prosumers or with the transmission
grid. There are three roles for any prosumer to participate in
the market: as a power producer, power consumer or demand
response provider. Power producers are able to inject net
positive real power into the network with distributed energy
sources such as PVs, diesel engines or charged batteries. Power
consumers have net negative real power capacity that need to
be supplied by the transmission grid or other producers. In
the case of network congestion which results in high price or
insufficient supply, demand response providers at certain parts
of the network can voluntarily reduce their power consumption
in exchange for a profit, which is paid for by other consumers
that benefit from such reduction.

1) Grid Model: The IEEE 37-node feeder benchmark
system is used in this case study. This system is a 4.8kV
mid voltage distribution with around 2200kW total load. This
network is characterized by a all-delta configuration with one
large three-phase load and many spot single-phase loads. The
system information is automatically extracted and processed
using OpenGridGym.

2) Market Mechanism: Using our proposed framework,
we demonstrate a possible market mechanism for distribu-
tion system operators (DSOs) that utilizes the concept of
Distribution Locational Marginal Prices (DLMPs). As with
LMP’s in current transmission systems, power producers
submit a convex cost function that maps their net power
production to desired revenue. The DSO then runs security-
constrained optimal power flow (SCOPF) to determine the
exact dispatch for every producer in the network that mini-
mizes the total energy cost. A distinctive feature in distribution
systems compared to transmission systems is the existence of
an infinite source. Most if not all distribution networks are con-
nected to the transmission system through a transformer in a
substation whose capacity rating is large enough to supply the
entire distribution network. However, the price to use power
from the transmission system can also change with time, as
the price may be affected by the transmission system LMP.
The detailed problem formulation of SCOPF is as follows:

min LM, saurcemax(o Psource)
PG,PD ’

+ Cgen(Pg)‘i‘cDR(ﬁ_Pd) (12)
subject to:

psource _ IT(Pd — Pg) (power balance) (13)

PS. <PS<P§. (generator limit) (14)
0<pPl<pd (demand response)

(15)

Ap = AP? — AP? (bus injections) (16)
Afline — HA p

- fmax Sfline Sfmax

where cgen and cpg are the cost functions of distributed gen-

erators and demand response providers; P*°“¢ is the total

(power transfer) (17)
(line flow limits)(18)

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 01,2023 at 02:36:47 UTC from IEEE Xplore. Restrictions apply.

1564

13.0
DER1

”?ERSWh 10¢ / kWh o

11.8
z
T
105 &
<
&) &
%O Substation 9.2 =

8¢/ kWh
DER2 8.0

12¢ / kWh

Fig. 10. Distribution of DLMPs in the IEEE 37-Node Feeder.

power drawn from the substation transformer; P4 and P8 are
the power consumption and generation at each bus, while P4
is the initial load value before demand response; f/"¢ is the
real power flow in lines and must not exceed the ratings; H is
a matrix computed from the network topology that maps net
real power injections at each bus to real power flows at each
line.

3) Agent Behavior: In a learning problems, the cost curves
(which may be parameterized as polynomial of piecewise func-
tions) of power producers and demand response providers are
determined by agents. During every market clearance interval,
each agent observes market information disclosed by the DSO
and determine the parameters of its cost curve, cgen OF CDR.
After the DSO solves the SCOPF problem, each agent receives
a dispatch that specifies how much power they are allowed to
produce and consume. The reward of each agent is then cal-
culated based on their net energy consumption, production or
reduction and the DLMP at their bus.

4) Environment Results: OpenGridGym provides an imple-
mentation using CVXPY [22] and NetworkX [26]. At each
market step, the DSO uses the agents’ input to compute a
DLMP for every load bus in the network, which is then used
to calculate the cost and revenue of all market participants.
An example of DLMP distribution in a simple radial network
is shown in Fig. 10.

V. CONCLUSION

This paper presents a simulation platform, OpenGridGym,
for scalable multi-agent market simulation for future distri-
bution systems. This platform is open-source and based on
user-friendly Python toolkit. This platform could serve as a
benchmark for the research community to simulate and ana-
lyze the outcome of various market mechanisms with direct
access to Al-friendly ecosystem via Python.

Building upon this open-access toolkit, many interesting
research questions in distribution market design and outcome
could be quantitatively analyzed. To showcase OpenGridGym,
we present different use cases and demonstrate how users can
easily integrate trainable Al-driven agents into their simula-
tion. Future work on OpenGridGym includes expanding the
use cases to provide users with even more templates to fol-
low, and to assist the design of alternative market mechanisms
to address challenges faced in modern distribution grids.

REFERENCES

[1]1 A. Venkatraman, A. A. Thatte, and L. Xie, “A smart meter data-driven
distribution utility rate model for networks with prosumers,” Utilities
Policy, vol. 70, Jun. 2021, Art. no. 101212.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]
(18]

[19]

(20]

[21]

(22]

[23]

[24]

[25]

[26]

IEEE TRANSACTIONS ON SMART GRID, VOL. 14, NO. 2, MARCH 2023

P. Andrianesis and M. Caramanis, “Distribution network marginal costs:
Enhanced AC OPF including transformer degradation,” IEEE Trans.
Smart Grid, vol. 11, no. 5, pp. 3910-3920, Sep. 2020.

L. Bai, J. Wang, C. Wang, C. Chen, and F. Li, “Distribution loca-
tional marginal pricing (DLMP) for congestion management and voltage
support,” [EEE Trans. Power Syst., vol. 33, no. 4, pp. 4061-4073,
Jul. 2018.

A. K. Zarabie, S. Das, and M. N. Faqiry, “Fairness-regularized DLMP-
based bilevel transactive energy mechanism in distribution systems,”
IEEE Trans. Smart Grid, vol. 10, no. 6, pp. 6029-6040, Nov. 2019.
A. Winnicki, M. Ndrio, and S. Bose, “On convex relaxation-based dis-
tribution locational marginal prices,” in Proc. IEEE Power Energy Soc.
Innov. Smart Grid Technol. Conf. (ISGT), 2020, pp. 1-5.

S. Bose and S. H. Low, “Some emerging challenges in electricity
markets,” in Smart Grid Control. Cham, Switzerland: Springer, 2019,
pp. 29-45.

L. Gan, N. Li, U. Topcu, and S. H. Low, “Optimal power flow
in tree networks,” in Proc. 52nd IEEE Conf. Decis. Control, 2013,
pp. 2313-2318.

L. Gan, N. Li, U. Topcu, and S. H. Low, “Exact convex relaxation of
optimal power flow in radial networks,” IEEE Trans. Autom. Control,
vol. 60, no. 1, pp. 72-87, Jan. 2015.

H. Ming, B. Xia, K.-Y. Lee, A. Adepoju, S. Shakkottai, and L. Xie,
“Prediction and assessment of demand response potential with coupon
incentives in highly renewable power systems,” Prot. Control Mod.
Power Syst., vol. 5, pp. 1-14, Apr. 2020.

B. Xia et al., “EnergyCoupon: A case study on incentive-based demand
response in smart grid,” in Proc. 8th Int. Conf. Future Energy Syst.,
2017, pp. 80-90.

J. Li et al., “Energy coupon: A mean field game perspective on demand
response in smart grids,” in Proc. ACM SIGMETRICS Int. Conf. Meas.
Model. Comput. Syst., 2015, pp. 455-456.

R. D. Zimmerman, C. E. Murillo-Sianchez, and R. J. Thomas,
“MATPOWER: Steady-state operations, planning, and analysis tools
for power systems research and education,” IEEE Trans. Power Syst.,
vol. 26, no. 1, pp. 12-19, Feb. 2011.

L. Thurner et al., “Pandapower—An open-source python tool for conve-
nient modeling, analysis, and optimization of electric power systems,”
IEEE Trans. Power Syst., vol. 33, no. 6, pp. 65106521, Nov. 2018.
R. C. DL}%;m and D. Montenegro, The Open Distribution System
Simulator'™ (OpenDSS), Reference Guide, Electr. Power Res. Inst.
(EPRI), Palo Alto, CA, USA, 2018.

D. P. Chassin, K. Schneider, and C. Gerkensmeyer, “GridLAB-D: An
open-source power systems modeling and simulation environment,” in
Proc. IEEE/PES Transm. Distrib. Conf. Expo., 2008, pp. 1-5.

L. Tesfatsion. “The AMES wholesale power market test bed.”
2022. [Online]. Available: http://www2.econ.iastate.edu/tesfatsi/
AMESMarketHome.htm

G. Brockman et al., “OpenAl gym,” 2016, arXiv:1606.01540.

A. Marot et al. “L2RPN: Learning to run a power network in a sus-
tainable world NeurIPS2020 challenge design.” Jun. 2020. [Online].
Available: https://www.public.asu.edu/~yweng2/Tutorial5/pdf/111.pdf
M. Glavic, “(Deep) reinforcement learning for electric power system
control and related problems: A short review and perspectives,” Annu.
Rev. Control, vol. 48, pp. 22-35, Jan. 2019.

R. E. Helou, K. Lee, D. Wu, L. Xie, S. Shakkottai, and V. Subramanian.
“OpenGridGym.” 2022. [Online]. Available: https://github.com/tamu-
engineering-research/OpenGridGym

A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc. 31st
Conf. Neural Inf. Process. Syst., 2017, pp. 1-4.

A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A rewriting
system for convex optimization problems,” J. Control Decis., vol. 5,
no. 1, pp. 42-60, 2018.

B. Xia, S. Shakkottai, and V. Subramanian, “Small-scale markets for
a bilateral energy sharing economy,” IEEE Trans. Control Netw. Syst.,
vol. 6, no. 3, pp. 1026-1037, Sep. 2019.

R. Henriquez-Auba, P. Hidalgo-Gonzalez, P. Pauli, D. Kalathil,
D. S. Callaway, and K. Poolla, “Sharing economy and optimal invest-
ment decisions for distributed solar generation,” Appl. Energy, vol. 294,
Jul. 2021, Art. no. 117029.

R. D. McKelvey and T. R. Palfrey, “Quantal response equilibria for
normal form games,” Games Econ. Behav., vol. 10, no. 1, pp. 6-38,
1995.

A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network struc-
ture, dynamics, and function using NetworkX,” in Proc. 7th Python Sci.
Conf., Pasadena, CA, USA, 2008, pp. 11-15.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 01,2023 at 02:36:47 UTC from IEEE Xplore. Restrictions apply.

HELOU et al.: OpenGridGym: AN OPEN-SOURCE AI-FRIENDLY TOOLKIT FOR DISTRIBUTION MARKET SIMULATION

Rayan El Helou (Student Member, IEEE) received
the B.S. and M.S. degrees in electrical and com-
puter engineering from Ohio State University,
Columbus, OH, USA. He is currently pursuing the
Ph.D. degree with the Department of Electrical
and Computer Engineering, Texas A&M University,
College Station, TX, USA. His research interests
include power systems dynamics, modeling and
control of smart grids, and reinforcement learning.

Kiyeob Lee (Member, IEEE) received the B.S. and
Ph.D. degrees in electrical and computer engineer-
ing from Texas A&M University, College Station,
TX, USA, where he is currently a Postdoctoral
Researcher with the Department of Electrical
and Computer Engineering. His research interests
include modeling and control of demand response,
electricity markets, and hosting capacity analysis.

Dongqi Wu (Student Member, IEEE) received
B.S. degree in electrical engineering from Purdue
University and the Ph.D. degree in electrical engi-
neering from Texas A&M University. He works with
Guangdong Electric Power Design Institute, China
Energy Engineering Group, Guangzhou, China. His
dissertation topics focused on power system hazard
study and mitigation. His current interest include
energy and economic development planning, low-
carbon power system design, and machine learning
application.

1565

Le Xie (Fellow, IEEE) received the B.E. degree
in electrical engineering from Tsinghua University,
Beijing, China, in 2004, the M.S. degree in engineer-
ing sciences from Harvard University, Cambridge,
MA, USA, in 2005, and the Ph.D. degree from the
Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA, USA,
in 2009. He is currently a Professor with the
Department of Electrical and Computer Engineering,
Texas A&M University, College Station, TX, USA.
His research interests include modeling and control
of large-scale complex systems, smart grids application with renewable energy
resources, and electricity markets.

Srinivas Shakkottai (Senior Member, IEEE)
received the Ph.D. degree in electrical and computer
engineering from the University of Illinois at Urbana
Champaign in 2007.

He was a Postdoctoral Scholar of Management
Science and Engineering with Stanford University
in 2007. In 2008, he joined Texas A&M University,
where he is currently a Professor of Computer
Engineering with the Department of Electrical
and Computer Engineering. His research interests
include caching and content distribution, wireless
networks, multi-agent learning and game theory, and network data collection
and analytics. He was a recipient of the Defense Threat Reduction Agency
Young Investigator Award in 2009, the NSF CAREER Award in 2012, and the
Research Awards from Cisco in 2008 and Google in 2010. He received the
Outstanding Professor Award in 2013, the Select Young Faculty Fellowship
in 2014, and the Engineering Genesis Award at Texas A&M University in
2019.

Vijay Subramanian (Senior Member, IEEE)
received the Ph.D. degree in electrical engineer-
ing from the University of Illinois at Urbana-
Champaign, Champaign, IL, USA, in 1999. He
worked with Motorola Inc., The Hamilton Institute,
Maynooth, Ireland, for many years, and also with
the EECS Department, Northwestern University,
Evanston, IL, USA. In Fall 2014, he started in his
current position as an Associate Professor with the
EECS Department, University of Michigan, Ann
Arbor. From 2022 to 2023, he is visiting UIUC
hosted graciously by CSL and also the ECE Department. His research
interests are in stochastic analysis, random graphs, multiagent systems, and
game theory (mechanism and information design) with applications to social,
economic, and technological networks.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 01,2023 at 02:36:47 UTC from IEEE Xplore. Restrictions apply.

