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ABSTRACT

The radiation drag in photon-rich environments of cosmic explosions can seed kinetic instabilities by inducing velocity spreads
between relativistically streaming plasma components. Such microturbulence is likely imprinted on the breakout signals of
radiation-mediated shocks. However, large-scale, transverse magnetic fields in the deceleration region of the shock transition can
suppress the dominant kinetic instabilities by preventing the development of velocity separations between electron—positron pairs
and a heavy ion species. We use a 1D five-fluid radiative transfer code to generate self-consistent profiles of the radiation drag
force and plasma composition in the deceleration region. For increasing magnetization, our models predict rapidly growing pair
multiplicities and a substantial radiative drag developing self-similarly throughout the deceleration region. We extract the critical
magnetization parameter o ., determining the limiting magnetic field strength at which a three-species plasma can develop kinetic
instabilities before reaching the isotropized downstream. For a relativistic, single ion plasma drifting with y,, = 10 in the upstream
of a relativistic radiation-mediated shock, we find the threshold o &~ 10~ for the onset of microturbulence. Suppression of
plasma instabilities in the case of multi-ion composition would likely require much higher values of o .. Identifying high-energy
signatures of microturbulence in shock breakout signals and combining them with the magnetization limits provided in this work
will allow a deeper understanding of the magnetic environment of cosmic explosions like supernovae, gamma-ray bursts, and
neutron star binary mergers.
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1 INTRODUCTION

Relativistic radiation-mediated shocks (RMS) can generate the first
bright burst of radiation observed from powerful cosmic explosions.
Such transients include the early phases of supernovae (e.g. Cheva-
lier & Fransson 2008; Soderberg et al. 2008; Xiang et al. 2019),
the prompt emission of gamma-ray bursts (GRBs; e.g. Page et al.
2007; Abdo et al. 2009), and short GRBs from neutron star binary
mergers (Goldstein et al. 2017). Systematic observation of such
fugitive flashes remains a challenge even with current wide-view
surveys (Bayless et al. 2022). Still, when captured and paired with
theoretical models of radiative processes (Levinson & Nakar 2020),
they provide a rich insight into the precursor environment. This
paper examines how the magnetic field strength, varying significantly
between different progenitor systems, impacts the microphysics on
kinetic scales of radiation-mediated shocks.

In optically thick media, radiative, quantum-electrodynamics
(QED) interactions drive the dissipation that injects the energy stored
in collective plasma motions into a reservoir of highly energetic
photons (Lundman, Beloborodov & Vurm 2018). It is this radiation
loaded around the shock transition layer that is released promptly
during the so-called shock breakout (Nakar & Sari 2012; Waxman &
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Katz 2017). Compared to collision-less shocks, mediated by the
collective plasma dynamics on kinetic scales associated with the
particle Larmor radius, RMS are generally much wider and extend
over several photon mean free paths (Levinson 2012). Plasma
kinetic effects can then act locally, well-separated from the global
RMS size. Instabilities can develop on small scales under certain
conditions, such as the microturbulence examined in an earlier work
by Vanthieghem et al. (2022). One trigger for growing wave modes is
the relative drift velocity of different particle species induced by the
different slow-down rates in the deceleration region (Levinson 2020).
Plasma components decouple and develop a relative drift velocity due
to an imbalance between the radiative force, acting equally on lepton
species, and the restoring electric field that accelerates electrons
and positrons into different directions. Growing unstable modes can
seed kinetic-scale electromagnetic fields. This microturbulence in
the radiation-rich downstream is likely to impact signals observed
during the shock breakout.

In magnetized environments, a transverse magnetic field generates
oscillatory velocity drifts that couple the various plasma compo-
nents. While a radiative force drives small velocity separations,
the coupled plasma will partially compensate for the deceleration
of light particles (i.e. leptons) by growing an intermittent longi-
tudinal electric field. This magnetization-induced force decelerates
the heavy ions while re-accelerating the leptons. In this state, the
deceleration profiles resemble those of a single fluid. The strength of

© 2023 The Author(s)

Published by Oxford University Press on behalf of Royal Astronomical Society

€20z Jaquiaidag |0 uo Jesn puelkiely Jo Alsiaaiun Aq 8062869/92 1L 9/t/6 1 S/a01e/Seluw/wod dno-olwapeoe//:sdiy Wol) papeojuMo(]



the magnetic fields in the astrophysical environments where RMS
are expected to operate is not well constrained. It likely varies
widely between different scenarios of cosmic explosions, but again
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within the different systems of the same explosion mechanism. In
this paper, we, therefore, study the impact of transverse magnetic
fields independent from the progenitor system to determine at which
critical magnetization a radiation-mediated shock will likely develop
kinetic instabilities. An observational signature of microturbulence
during the shock breakout, or the lack thereof, would then allow for
setting limits on the magnetic properties of the shock generation
site, and a deeper understanding of its immediate astrophysical
environment.

This paper extends our previous work on the growth of micro-
instabilities in an unmagnetized environment (Vanthieghem et al.
2022). Section 2 reviews the numerical methods used for a (self-
consistent) radiative transfer modelling of RMS deceleration regions.
We present the employed units and normalization (Section 2.1), as
well as the 1D multifluid radiative transfer system of differential
equations (Section 2.2). We numerically evaluate the magnetic
coupling of different species in Section 3, both for equilibrium
configurations with a constant radiative force (3.1), and consistently
modelled radiative transfer (3.2). Section 4.1 contains the main
findings of this paper and gives specific magnetization thresholds
for the strong coupling of plasma components in the deceleration
region. We give a summary of our results and their implications
in Section 4. A detailed review of the linear plasma response is
given in Appendix A, the numerical implementation is presented in
Appendix B and calibrated in Appendix C, Appendix D reviews local
plasma scalings and unit systems.

2 METHODOLOGY

2.1 Units and normalization

The physics described in this paper covers largely different time and
length scales. The coordinates (ct and x) are scaled to the Thomson
length in the shock front frame A = 1/(orii,y,), where ot is the
Thomson cross-section, 71, is the upstream density measured in the
upstream baryon frame (denoted by a bar), and y, is the upstream
baryon Lorentz factor in the shock front frame. Densities in the
shock front frame are rescaled to the upstream baryon density as
it =iy [(ii, y.). Electromagnetic fields E,, E,, and B, are normalized
by the fiducial electric field (denoted by a tilde)
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Our numerical scheme employs a normalization that isolates the
dimension-less scale-separation factor, yxo:
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This factor is proportional to the second power of the ratio between
the radiative scale A and the electron skin depth d,. The presented
multifluid plasma models cannot resolve realistic scale separations.
Therefore, we introduce yx as a free parameter chosen according to the
limits of the respective numerical scheme and extrapolate converged
results to realistic scales (where x — o). The key parameters that
characterize the plasma in terms of the scale-separation factor x are
the magnetization, the Larmor radius, the plasma skin depth, and the
radiative length. The magnetization of the upstream with mass ratio

Here, B, is the transverse (along the z-direction) magnetic field
strength measured in the shock front frame. The Larmor radius in
the frame of the upstream plasma is
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We note that the product x &, fully determines the Larmor radius for
given y, and 71,,. The ion plasma skin depth is:
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Combining equations (4) and (5) yields d/p = 5,/>u=". The pre-
sented simulations rely on a careful evaluation of the transition to
a realistic scale separation. Increasing x reduces the plasma skin
depth or, vice versa raises the plasma frequency. Thus, and despite
using implicit methods (Appendix B), the numerical integration for
realistically large values of x — xo becomes prohibitive due to the
high resolution required to resolve the smallest scales.

U

2.2 1D multifluid radiative transfer

In this section, we discuss a 1D radiative transfer model formulated
as a system of equations coupling the flow of five fluids with the
dynamics of electromagnetic fields. The fluids encode the collective
motion of individual species (s), namely protons (p), electrons (—),
and positrons (+), as well as two photon beams flowing towards
the upstream (y — u) and towards the downstream (y — d). The
continuity equations for the different species are then given by:

i, + 0z (A,B5) =0, (6)
afﬁi + a} (ﬁiﬁl) = Zéyyﬁy—uiﬁy—ma (7)

atn}’""—i_a ( V*’ulBy—m)

=-2 (a+n+ +6_n_ + &Wﬁy_,d) fly—us (8)
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Following the derivations by Levinson (2020), we include the source
term of equation (7) to account for pair production with a respective
sink in the photon beams (equations 8 and 9). Here, o, is the pair
production cross-section. Terms proportional to o 1, the Compton
scattering cross-section, balance the inverse-Compton scattering of
beam photons with a transition from (y — u) to (y — d). The total
4-current density is conserved, as one can see from building the sum
over equations (6) to (9). For the remainder of this paper, we assume
highly beamed photons with —g;_,, = B;_,, = 1, such that only the
momentum equations for protons and pairs need to be integrated:

(8 + Byos) uy = u (Ec + B)B) (10)
(0 + B10:) (haul) = + (Ev + BLB:) — Fraa, (11
(0 + By0:) u) = u (Ey — B B.) (12)
(00 + o) (haaet) =+ (B, - pLB.). (1)
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Here, F,,q denotes the Compton scattering drag in the Klein—Nishina
(KN) regime, or radiative force, which can be consistently modelled
as Frag = 26+hyulii,_.,,. We generally assume that leptons have
the same temperature and baryons are cold, such that h. = 1 + 47
Following Granot, Nakar & Levinson (2018), we approximate

7’; _ ﬁl Y+ + V- .

- 14
a2 (14

The density of quanta, /7;, combines the density of pairs created inside
the shock with the contribution from back-scattered photons,
fiy =iy — [, (8 =0)—i_] +fi,—a, (15)

and we adopt n = 0.45. With these definitions, the scattering cross-
sections (normalized to o) are

32y (1 +4aT)]

Gy +6
Gyy = % (16)

Finally, the continuity equations (6) to (9) are coupled to the
momentum equations (10) to (13) via:

GE, =—x [A By + i py — B, (17)
GEy =—x [A,B) + iy —i_pl] —0:B., (18)
B, = —3:E,. (19)

We integrate this system of equations with the method described and
profiled in appendices B and C. For studying multifluid equilibria
in the deceleration region independent of the downstream (shock)
conditions, it is convenient to replace equation (8) for g, = —1
by (cf. Levinson 2020)

afﬁyﬁu + aiﬁyau =2 (&+ﬁ+ +6-n-+ 5'yyﬁy~>d) ﬁy%u- (20)

This adaptation is a numerical trick that solves the system of
equations (6) to (19) by driving it to an equilibrium state with
07l ., — 0, as it is expected in the shock front frame. We em-
phasize two aspects of this altered system of equations. First, the
reformulation of equation (20) allows us to use the time-dependent
system of equations outlined above to find steady-state solutions
of the deceleration profiles (time-independent). Secondly, these
equilibrium profiles are decoupled from the physical conditions at
the shock itself, most notably they do not include a priori information
about the photon beam 7i,_,, injected downstream. However, it
allows us to study the deceleration profiles of the different particle
species and their dependence on upstream conditions (prescribed by
yuand ,).

In the following sections, we evolve the full five-fluid system in
time, starting at f = 0. We choose the initial and upstream boundary
conditions of y + =y, = y, with y,, = 10, a pair multiplicity of M =
1, a realistic mass ratio of 1/ = 1836, as well as a seed radiation
field of 71,_., =0.01 and 7i,_.;, = 0. These boundary conditions
follow the setup described by Levinson & Nakar (2020, Section III.
B). As we explore the effect of magnetization and scale separation,
controlled by &, and x, the discrete mesh and domain extensions are
stated separately for each numerical experiment. In the downstream,
we employ zero gradient boundary conditions. In practice, we evolve
each setup in time either until the equilibrium state is established in
the whole domain or the numerical solution breaks down due to
extreme density and velocity gradients in the deceleration profile
(and, hence, unresolved plasma scales).
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Figure 1. Schematic outline of typical (reversed) relativistic radiation-
mediated shock profiles (RMS, panel a). Cartoons of particles indicate the
respective plasma compositions (black: ions; blue: electrons; red: positrons;
orange: photons). In (b) we show a cartoon of the employed setup. Panels
(c) to (e) show solutions of deceleration profiles for periodic systems with a
constant radiative force acting on lepton species (see Vanthieghem et al. 2022,
Section 5). Without magnetic fields (panel c), the different particle species
quickly decouple and develop a significant velocity separation (see Levinson
2020). In the magnetized case (panels d/e), leptons are coupled to the ions.
Oscillations of the leptons are induced by a longitudinal electric field £,
(panel e). Such fields effectively decelerate the coupled ions and can prevent
the development of a large velocity spread.

3 MAGNETIZED EQUILIBRIUM
CONFIGURATIONS

Fig. 1 (panel a) shows the astrophysical context of the photon-rich
target environment. While lepton and ion species quickly decouple in
the unmagnetized case (seeding various plasma modes as discussed
in Vanthieghem et al. 2022, panel c), the addition of a transverse
magnetic field efficiently couples the particles and prevents the

€20z Jaquiaidag |0 uo Jesn puelkiely Jo Alsiaaiun Aq 8062869/92 1L 9/t/6 1 S/a01e/Seluw/wod dno-olwapeoe//:sdiy Wol) papeojuMo(]



Magnetically driven coupling in relativistic RMS

growth of velocity drift (panels d/e). A self-consistent description
of this coupling mechanism is the subject of this work.

One important auxiliary quantity for the interpretation of the
deceleration profiles is the relative drift between ions and leptons
measured in the local baryon frame and denoted i 1. The respective
boosts along w7, can be written as

fe = uly) —ubyL, @1

where the Lorentz factors are associated with the bulk motion
along the x-direction. The pair multiplicity M =7i /i, is the
other relevant plasma characteristic that determines the strength
of interspecies coupling and thereby affects the development of
microturbulence in the deceleration region. Finally, we define the
pair-loaded optical depth (omitting Klein-Nishina effects, see Granot
et al. 2018; Levinson 2020):

= /ﬁ, dx. (22)

3.1 Scales of lepton-ion coupling with constant radiative force

This section reviews the coupling of different species for a constant
radiative force F;,q used as a source term in equation (11). Normal-
ized to the upstream conditions m ,@,,c one can write

—1/2.,1/2

-Fra = - ~‘rad/vl*l/zx Yu mpd)puc- (23)

We present a linear analysis of the cold pair plasma response (hy =
1, T = 0) in Appendix A. Equation (A30) suggests that in the far
upstream, the scales of coupling between different species are well-
separated from the plasma scales:

(o ~1/2

=y ey A 107 (3) M (5) (24)

Using equation (5), the length scale of interspecies coupling written
with local plasma properties in the shock front frame is

_27t

L
LA W (%) (1+2M)5. (25)

W+ Yu

4

It is clear that commonly AL >> p. The mean amplitude of the lepton
oscillation around the slowly decelerating ions, as evaluated for far
upstream conditions in Vanthieghem et al. (2022, Section 5), is:

A = (14 2M) Fug § (26)

The results displayed in Fig. A1 compare the linear estimates (24)
and (26) to the direct integration of the effective three-fluid system.
The good agreement between numerical results and analytic esti-
mates validates the arguments we brought forward in Vanthieghem
et al. (2022, Section 5). As we will discuss throughout this section,
the linear-theory estimate does not include the effects of finite lepton
temperatures as well as the rapidly changing fluid dynamics during
strong deceleration. In this section, we will address the first of these
points, namely the dependence of the cold plasma scalings derived
in Appendix A on the temperature model introduced in Section 2.2.

We examine the plasma response for a heated plasma (constant /1.
>1,T > 0. Dividing the momentum equations (10) to (13) by Ay
and adjusting the currents accordingly, a change in s corresponds to
re-scaling the cold-plasma characteristics as u" = hap, x" = x/h<,
and .ﬁi’ld = Frud /h+. We note that it follows from equations (3) to (5)
that 5" = hyp and d" = d. For F,q = const., and i, = const., the
radiative transfer sources of equations (6) to (9) can be neglected. As
an illustrative example, we integrate the effective three-fluid system
(+, —, p) for boundary conditions of y,, = 10, with a magnetization
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Figure 2. Comparison of the multifluid integration for Frag = const. in
the cases of cold plasma (hy = 1, top panel) and hot plasma (ke = 10,
bottom panel) with the re-scaling of parameters discussed in Section 3.1. The
dynamics of interspecies coupling agree for both cases, and the cold-plasma
estimates of equations (25) and (26) are equally valid.

of 5, = 107, and a multiplicity of M = 1. The discretized mesh
spans ¥ € [0, 130] with AX = 0.01 and a time step according to
the CFL condition of fcp, = 0.1. Guided by the previously stated
scalings with iy, we vary hy itself and adapt the parameters y, u,
and Frag. Fig. 2 shows a direct comparison between the multifluid
integration for cold plasma (top panel) and warm plasma (bottom
panel) with parameters varied according to the aforementioned re-
scaling. Especially, we see that for 4. = const., we can adjust the
linear-theory characteristics for the interspecies coupling in a heated
plasma as follows:

@y = hi'dw = M = hada, 27

Al = A, (28)

While the amplitude of the lepton oscillation does not change,
the length scale of the lepton coupling scales with the enthalpy.
The following section will present a comparison of all relevant
scales in self-consistently modelled deceleration profiles. Subsequent
comparisons with the linear theory estimates make use of the scaling
in equation (27).

3.2 Pair-loaded deceleration profiles

In this section, we use Frq = 26+hywiit, ., as a radiative force
profile in equation (11). Such a choice of sources models the radiative
transfer in the deceleration region self-consistently while capturing
the effects of interspecies coupling by the transverse magnetic field.
We integrate the full five-fluid system for boundary conditions of
v« = 10, a multiplicity of M = 1, a scale-separation of y = 10!,
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and a realistic mass ratio of 1/ = 1836. Following Levinson (2020),
we seed the radiation field with 7i,,_.,(0) = 0.01. In this section, we
vary the magnetization parameter G,. The discretized mesh spans
X € [0, 40] with A% = 0.005 and uses a time-step according to the
CFL condition of fcp, = 0.1.

To analyse the self-consistently modelled deceleration profiles,
we introduce two relevant parameters for the comparison of various
scales. First, we measure how rapidly the coupling length (equa-
tion 25) changes per oscillation period of the interspecies coupling:

dOw/r) 1
df Gu/N)

£ = (29)
Secondly, we compare the coupling length to the deceleration length
scale. From the evaluation of unmagnetized deceleration profiles in
the single-fluid approximation (Granot et al. 2018), we can deduce
the deceleration length as

2
Al = <1 +4,,L> &), G+ 1)L 30)
Yu A
We note that in the deceleration region, before the decoupling of
species, the different cross-sections 6+ ~ &,, coincide with good
accuracy. We can then compare the coupling length scale to the local
deceleration scale and for 7i; ~ 3M > 1 we find

= v’ (B v\, - P
8:7%1271— 7 M? 1+4n; hi%i' 31

R Vu

4

The derivation of expression (31) uses the scaling with enthalpy
established in Section 3.1. It is convenient to use ¢ for the definition
of different coupling regimes. In the unmagnetized case, radiative
deceleration dominates all species. This limit corresponds to & >
1. Weak interspecies coupling is expected when A, approaches
the radiative length scale, namely ¢ 2 1. Finally, we define strong
coupling as the limit where the deceleration length exceeds the typical
scale for lepton-ion coupling, as to say ¢ < 1.

Fig. 3 shows a typical deceleration profile for a mild magnetization
&.x = 10* and a weak interspecies coupling. As the coupled lepton-
ion fluid decelerates, the multiplicity gradually grows (panel d).
Eventually, the species decouple and a significant velocity separation
is established (panel c). The lepton-ion coupling can be identified
by the lepton oscillations in panel (b) of Fig. 3. As expected from
equations (25) and (26) both the coupling amplitude and wavelength
are expected to decrease for larger magnetization. Therefore, the
lepton oscillations are not directly noticeable for the strongly coupled
case displayed in Fig. 4. Comparing both setups, we outline the main
effects of magnetic coupling. First and foremost, the coupling of
species due to higher magnetization shifts the location of significant
velocity separation downstream. For the presented cases, the location
of a velocity separation of ity = 0.1 is translated by AX &~ 1.4 and
At* = 32.3. Following the increasing optical depth, the multiplicity
at this given velocity separation changes by AM = 13. At the same
time, the radiative force increases by a factor of 4.5.

Fig. 5 repeats this analysis more systematically for a wide scan of
magnetization parameters, spanning over seven orders of magnitude.
By varying the upstream magnetization, we effectively change the
upstream value of e, as to say the strength of coupling prior to the
deceleration. When initializing ¢ < 1 (similar to the case shown in
Fig. 4), we can use the transition point ¢ = 1 to measure the location
of lepton-ion decoupling. We indicate the transition between the
coupling regimes (see equation 31 and below) by a grey shade in
Fig. 5. As expected from the linear estimate in equation (26), an
increasing magnetization requires a larger multiplicity and radiative
force to reach a certain velocity separation. This statement is true
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Figure 3. Solution of the magnetized multifluid integration (implicit—
explicit) for weakly coupled conditions with x = 10", 5, = 1077, and
w_oAt = 10.0 at the time 7 = 25.9. We display Lorentz factors of ions,
electrons, and positrons (panel a) as well as a zoom into the t* € [0,
60] interval (panel b). For the chosen parameters, the deceleration length
is comparable to the coupling wavelength, or Ag < Ai. Leptons and ions
decouple and develop a velocity separation (panel ¢). We show the multiplicity
profile as well as the scale ratios (panel d) defined in equations (29) and (31).

independently of the measurement location in the immediate decel-
eration region, with similar trends at i, = 0.1 (blue line) and ¢ =1
(red line). However, as we show in Fig. 6 (panel b), the amplitude
estimate of equation (26) broadly overestimates the actual velocity
separation. The relative difference between a linear-theory estimate
(see also Vanthieghem et al. 2022) and the actual separations in self-
consistent deceleration profiles grows with increasing magnetization.

The principal reason for the differences emerging in Fig. 6 can be
found in equation (29). The linear analysis reproduced in Appendix A
relies on the assumption that the wavelength of the lepton-ion
coupling changes slowly. In other words, for equation (26) to be
applicable requires £ < 1. Already for mild magnetizations, this
criterion is not fulfilled in the deceleration region (dashed line in
panel d, Figs 3 and 4). With increasing magnetization, we generally
find & 2 1. This finding has significant consequences. While lepton
oscillations can be easily found for mild magnetization and small
multiplicity (panel b, Fig. 3), the rapid change of A, renders the
linear theory reviewed in Section 3.1 inaccurate during the strongest
deceleration. This especially applies to the estimate of the oscillation
amplitude in equation (26).

Leptons and ions decouple when the coupling length exceeds
the deceleration length, independently of the amplitude of lepton
oscillations. As argued above, the role of the magnetic field becomes
subdominant for ¢ > 1. Thus, a (sufficient) condition for decoupling
can be obtained by ¢ = 1. Fig. 4 shows the coincidence of ¢ = 1 with
the onset of the rapid growth of multiplicity (panel d) and (eventually)
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Figure 4. As Fig. 3, but for strongly coupled conditions with a larger
magnetization of &, = 107 at the time 7 = 26.3. For the chosen parameters,
coupling initially dominates over deceleration, or Ag > Ax. The vertical grid
line indicates the transition ¢ =A4/Ag = 1. The inset panel (b) extends over
the interval * € [0, 60].

velocity separation (panel c). We, therefore, use ¢ = 1 as a second
criterion to evaluate plasma properties during the decoupling phase
in Fig. 5. There is a significant separation between all observables
at the different measurement points. At the same time, as shown
in Fig. 6 (panel a), the location of decoupling (¢ = 1) approaches
the one where 7z, = 0.1. During the most efficient deceleration, the
density of quanta grows rapidly and all species slow down due to the
action of the radiative drag force. Therefore, the possible length of
the deceleration region is finite, and we discuss the implications of
these findings in the following section.

4 DISCUSSION

4.1 Thresholds for magnetic coupling in the deceleration region

In Section 3.2, we outline various indicators that show the insuf-
ficiency of the coupling amplitude A, (equation 26) as a measure
of velocity separation. In general, A. overestimates the velocity
separation by more than one order of magnitude. In other words,
the self-consistent deceleration profiles create a velocity separation
i+ for combinations of multiplicity M and radiative force Fi,qg
incompatible with equation (26). A closer analysis of the separation
of scales shows that during the deceleration phase, we find &€ ~ 1. This
regime of rapidly changing coupling properties naturally renders the
amplitude estimate A inaccurate, and we require an adapted limit
to the critical magnetization.

We use equation (31) to constrain a critical magnetization o . that
discriminates between coupled profiles and those with significant
velocity separation. A conservative estimate can be developed by

10°
107
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W 10710
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0.8
£ 07
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10—21 10—20 10—19 10—18 10—17 10—16 10—15 10—14 10—13
au (/xo)

Figure 5. Multifluid integration (implicit-explicit) with varying magnetiza-
tion for x = 10" and w_gAr = 10.0. We extract characteristic properties
of the deceleration profiles at two different locations: for a fixed velocity
separation of iy = 0.1, and the location of decoupling, ¢ =i4/Ag = 1. This
figure displays the multiplicity (panel a), the radiative force (panel b), as well
as the baryon deceleration (panel c).

assuming that the multiplicity saturates at maximum downstream
values of M = y,,/(3u) > 1 (Ito, Levinson & Nagataki 2020), that
the magnetic field remains B, ~ B., and that ji p ~ 1. For species
decoupling at ¢ &~ 1, equation (31) can be written as

2
o0 (ya) ~ 9.7 x 1072y MK 5, (1 + 47;%) . (32)
For a decoupling velocity of y, = 1.15 and y,, > 1 we find
Yu\*
o (v = 115,y > D~ 107 (T6). (33)

Vanthieghem et al. (2022) estimate the turbulence coupling time
required for the microturbulence to grow up to a level that can
balance the radiation drag as @,, 7. = 10/ Mhgj1/Fr,q. We obtain
the time-scale @, T+ for the magnetic coupling from equation (25),
and requiring 7. /7. = 1 yields a separate threshold for o :

0. (va) 4.3 x 107 Bylys Mh. (34)
For a decoupling velocity of y, = 1.15 and y, > 1 we find

3
O (ya = 115, 7, > 1)~ 107 (’ILO) . (35)

The critical magnetization constrained by equation (32) assumes
that the decoupling happens close to the immediate downstream.
However, merely reaching ¢ = 1 does not imply a sufficient velocity
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Figure 6. Selected properties of the deceleration profiles shown in Fig. 5.
Panel (a) shows the two positions where the measurements are taken and how
they approach each other for increasing magnetization. We then compare
the measured velocity separation to the linear-theory amplitude estimate of
equation (26) in panel (b). Evaluating the expression for A1 overestimates
the velocity separation throughout all tests, with the relative error increasing
for higher magnetizations.

separation of the different species to trigger plasma instabilities and
microturbulence. The system needs time to develop a significant
velocity spread in the decoupled state. Specifically, when ¢ > 1,
the action of the radiative force becomes dominant and the system
effectively behaves like the unmagnetized one. The growth of the
velocity separation is then proportional to the radiative force Fruq
and develops on a fraction of the radiative length scale. While the
exact velocity during the decoupling phase is unknown, we repeat
our previous analysis for conditions where the effective one-fluid
system has not fully decelerated. Granot et al. (2018) estimate the
number of quanta for a mildly relativistic RMS profile as
~ ﬁl ~ 1 Yu

M= 3 2 2 (36)
For an arbitrarily chosen value of y = 2 to allow for a velocity
separation before full deceleration of all species, equation (32)
becomes

o.(y =2)~ 19 x 10*13)/;. 37

The thresholds for decoupling at different locations in the de-
celeration profiles derived in equations (32) and (37) are highly
sensitive to the velocity during decoupling (with a dependence on
the fourth power on the flow Lorentz factor). They differ by more
than two orders of magnitude. Fig. 7 gives a visual account of
the various estimates of o, presented in this section. The shaded
region enclosed by blue lines is the main novelty of this paper,
fixing o, by evaluating when the multispecies beam decouples for
y S 2 at ¢ = 1. Contrasting this conservative estimate that is
validated by the self-consistent deceleration profiles presented in
Section 3.2, the linear theory threshold derived from the coupling
amplitude (26) overestimates o . by several orders of magnitude (grey
shaded region). Finally, magnetization thresholds from demanding
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Figure 7. Different estimates of the critical magnetization for varying
injection velocities y,. We visualize, which combinations of y, and o,
potentially lead us to sufficient velocity separation and the development of
microturbulence (Vanthieghem et al. 2022). The conservative limit given by
the turbulent coupling 7./7+ = 1 in equation (32) is displayed by blue lines.
Conservative limits given by the growth rate of the instability (equation 34)
are shown by magenta lines. The grey lines denote the previously employed
but invalid linear theory estimate (equation 26).

sufficiently fast growth of the seed instabilities of the microturbulence
discussed in Vanthieghem et al. (2022, see fig. 2) are indicated by
magenta-coloured bands.

4.2 Magnetization of astrophysical environments

Relativistic RMS may take place in different astrophysical environ-
ments with very different magnetization levels. One such environ-
ment is the ejecta from binary neutron star or black hole—neutron star
mergers, where the shock driven by the GRB jet and the cocoon is
mildly relativistic and possibly ultrarelativistic. The magnetic field
in the ejecta is unknown, but we can get a rough estimated lower
limit as follows. The expectation is that at the launching site of the
ejecta, at radii » ~ 10° — 107 cm, the magnetic field is not very far
from equipartition. As the ejecta expand the density of each fluid
element drops as r~> while the magnetic field energy density drops
at most as #~*. This implies that ¢ drops at most as r~!, so we can
estimate o > (10% cm)/r. Therefore, any shock that takes place at r
< 108 cm (i.e. within ~1000s of the merger) will have a magnetic
field that is strong enough for full coupling.

Relativistic shocks can also occur in extreme supernovae of
stripped-envelope progenitors. Such shocks can be driven by a highly
energetic explosion or by a jet and its cocoon, such as a long GRB
jet (Nakar & Sari 2012). These shocks can propagate either within
the stellar envelope or in the wind. The magnetization level is

B 2 0 -1
~ 1078 -2 38
’ <100G> (10—10gcm—3) Yu (38)

The magnetic field in these progenitors is unknown, but we can use
observations of Wolf—Rayet stars to get an idea of possible values.
These observations suggest that the magnetic field on the surface can
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be as high as a few hundred Gauss (e.g. de la Chevroticre et al. 2014;
Hubrig et al. 2016). The upstream density depends on whether the
shock travels in the envelope or the wind. The density in the envelope
drops near its edge and at an optical depth of unity (to infinity) it
is of the order of 10~"gcm™> for a star with a mass of 10M and
radius of 10'' cm (e.g. Nakar & Sari 2010). Therefore, a relativistic
shock that propagates near the edge of the envelope of a compact
Wolf-Rayet star probably does not have full coupling between the
various plasma constituents. In the wind, the density is expected to
be of the order of 10~'°gcm™> near the stellar edge at a radius of
~10"'"! cm, implying that the magnetic fields are more likely to induce
full coupling. Finally, in low-luminosity GRBs, the shock seems to
break out of the progenitor at a radius of ~10'3 cm (Nakar 2015). In
these progenitors, there is no information about the magnetic fields.

4.3 Limitations

In this paper, we study the coupling of electron—positron pairs to
a single species of heavy ions during the formation of relativistic
radiation-mediated shocks in the presence of a magnetic field
perpendicular to the initial propagation direction of the plasma flow.
In particular, we provide critical magnetizations o that effectively
prevent the radiation drag from decoupling pairs and ions for different
upstream velocities y,, (Fig. 7). Relativistic shocks (y, > 1) have
magnetic fields oriented quasi-perpendicular to the flow direction
expansion (Gallant et al. 1992, see also discussion in Plotnikov,
Grassi & Grech 2018), for which the 1D models shown in this work
are a viable approximation. Mildly relativistic flows can show a
significant longitudinal magnetic field component with B along
Fraa. Parallel magnetic fields do not affect the longitudinal fluid
velocities of different species, and as such, they do not contribute to
the coupling of different species examined in this paper. However, the
additional transverse currents they induce can change the nature and
growth of the micro-instabilities described by Vanthieghem et al.
(2022). How the radiation-drag-induced microturbulence reacts to
magnetic fields for various obliquities can be treated as an isolated
question in future work. We predict the excitation of microturbulence
due to plasma instabilities for low magnetization. In this regime,
the effect of transverse magnetic fields on the growth of the
micro-instabilities is negligible. In the regime of strong coupling,
transverse instabilities can develop in addition to magnetically driven
oscillations. The growth of such modes cannot be captured in our
reduced 1D description and poses a clear limitation. However,
their saturation level is likely constrained by the absolute velocity
separation between species for a given external magnetic field. In this
work, we find that the velocity separation is small for large parts of the
deceleration region and only becomes relevant close to the immediate
downstream. The critical magnetization levels derived in Section 4.1
are conservative estimates of the conditions during decoupling that
likely occur for small velocity separations (see Fig. 4). Studying
the feedback of additional transverse modes on the shock dynamics
is left for further studies with consistent shock (micro)physics and
higher dimensionality.

Our derivations (and those by Vanthieghem et al. 2022) consider
the dynamics of a baryon-pair plasma with a single ion species. As
visualized in Fig. 1 (panels d/e), such a three-component plasma
efficiently re-accelerates pairs in the presence of transverse magnetic
fields and counteracts the radiation drag. Such a well-coupled three-
component plasma can be treated in a single fluid approximation and
will likely suppress kinetic instabilities due to negligible velocity
spreads. This simple picture becomes more complicated when ion
species with different charge-to-mass ratios are present. Mediated by
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the lepton deceleration, the various ion species will quickly develop a
velocity separation, and pairs will no longer be coupled to the single
stream of heavy ions. Velocity separations will likely develop even in
the presence of transverse magnetic fields. However, the dynamics of
these magnetized multi-ion systems as well as their unstable modes
are not yet explored.

5 CONCLUSION

The main result of this paper provides critical magnetizations for
which the growth of kinetic instabilities in a photon-rich three-
species pair-ion plasma becomes increasingly difficult. Consistently
derived limits on o (blue band in Fig. 7) are lower than our previous
simplistic estimates (Vanthieghem et al. 2022, Section 5). In the
presence of a transversal magnetic field, especially for relativistic
systems with upstream velocities of y, ~ 10, a mild magnetization
of o, ~ 1077 is sufficient to prevent velocity spreads and the
growth of kinetic instabilities. The magnetization in different RMS
environments is not sufficiently constrained by theory or observation.
Still, the presence of at least small magnetic fields is very likely, such
that plasma components may decouple only in the late phase of their
deceleration, close to the sub-shock in the downstream transition.
There, the growth of microturbulence would induce high-energy
tails in the particle distribution with a possible imprint on the signal
observed during the shock breakout. While we do not know what an
imprint of microturbulence in the shock breakout signal would look
like, its occurrence, or lack thereof, can now be used to constrain the
ambient magnetic field strength.
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APPENDIX A: LINEAR ANALYSIS OF THE
MULTISPECIES PLASMA RESPONSE

This section reviews the linear analysis of the characteristic response
of a magnetized multispecies plasma vastly used in this work and
parts of Vanthieghem et al. (2022). As shown below, the allowed
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Figure Al. Validation of the linear analysis for the amplitude A4 of the
velocity spread (top panel) and coupling frequency w- (bottom panel). For
different multiplicities M, we show measurements from a direct (explicit)
integration of the multifluid system (data points) for y, = 10, @0 = 0.1, and
x = 107. The data points are compared to the analytic estimates (solid lines)
given by equations (25) and (26).
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plasma oscillations are independent of the radiative force Frads
assumed to be constant in this section. We further assume that the
system is uniform (k, = 0), that the plasma is cold (k. = 1), and
that the mass ratio is infinite, © — 0. Without loss of generality, we
can reduce the system of equations (6) to (19) and assume that all
quantities are given in the plasma rest frame:

drut = ZT (Ex + BYB,) — 8, Fruas (A1)
o) = ;17 (E,— B:B.) . (A2)
FE, = —x > aaB!, (A3)
GEy=—x D @A) (A4)

Here, we used the normalization §; = ¢,/e and 7ty = m;/m, for
the different species s. We define §, = 0 and 6. = 1 to study the
allowed perturbations of the equilibrium flow of y,. We exploit
a linearization of velocities u; = y;B,, namely du} = y(fBﬂsx and
du) = pyB; . Since in the limit . — 0 the change in the ion velocity
vanishes, (Sufp =0, only s € [ +, —] is considered and in frequency
space, where we use 0; — —iw, equations (A1) to (A4) become

VS
—ioduy = ?— <8EX + uzs t) = Frads (A5)
s Yo P
G (o utk
Cigow = & (SEy _ f) , (A6)
mg Yo P
—i@SE, = _yi > Gl (A7)
0 s
—i@sE, = X" gasu). (A8)
Yo =5

This inhomogeneous system of equations admits a particular solution
for which all time derivatives vanish:

i M .
S Y= — Y= — ) Al
u_ P uz M1 uy, (A9)
sul =292 (M + 1) %ﬁmd, (A10)
SE, = — QM + 1) Fra. (A11)

Here we use duj = ¢ E v = 0, with the plasma multiplicity M = 7.
This particular solution dictates the amplitude of the oscillations of
the general solutions (see below). The appearance of the constant
longitudinal electric field 8 E, is imposed by requiring a vanishing
mean transverse current (i.e. no constant current) in equation (AS).
In reality, when the ion mass is finite, this mean electric field is
responsible for the deceleration of the ions (and hence the entire
plasma) inside the shock transition layer. The general solution is
the sum of the particular and the homogeneous solutions, where the
homogeneous solution is

G (. owd
—iqout = I (SEX + 25 i) , (A12)
s Yo P
Gs _ o Sut X
—iqou? = I ((SEy -2 f> , (A13)
g Yo P
- X -
—i®sE, = -2 qunjauj, (Al4)
—i@sE, = - X" g,n,sul. (A15)
Yo
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The linearized momentum equations (A12) and (A13) can be cast in
matrix form

SEN _ (—idGne/q) = 1)y x3/p (8u\ _ (85
SE, ) — \ 1yt x1/p—i@Gig/G) )\su)) = " \ou) )’
(A16)

with the inverse

_ v oG [ io -y
M= . .

s w? — Q2 i (Qs/l/o lw )
Here, we introduced the lab-frame quantities @ = yo@ and y§Q, =

(qs/ﬁzs)i/ﬁ. We can now write du; = ./\/ls_' -8 E, such that equa-
tions (A14) and (A15) become

(A17)

—iwSE = —x > Agdu,=—x Y _ nGM;" - SE. (A18)
Rearranging this expression yields
140> A sE =6 sE =0 (A19)
—~

Non-trivial solutions to this equation require det§ = 0. We exploit a
simpler representation of &, namely

%__ S —iD)/O
"~ \iD/y S

Here, we use w? = xy0§>ii, /1 to express the variables S and D:

) det & = §? — D% (A20)

2
w
S=1- —— A21
P 21
Q  w?
D= —_ A22
pPECP w2

We approximate this to first order by Taylor expansion around 2,/
~ 0. Hence, we consider the regime in which the frequency of the
instability exceeds the gyration frequency of all species.

2

a)S
S~ 1 _ZE’ (A23)
2
Q
D~y B (A24)
w” W

s

From deté = (S — D)(S + D), it is straightforward to find
D = =£S. This equation has three roots for the system defined in
equations (A23) and (A24). First, we explore the limit of w & wy. At
zeroth order in Q/w ~ 0 one has Dy & 0, such that

2

So=1-> % ~o.

s a)o

(A25)

At this point, we recall that we assume a plasma of multiplicity
M =iy, and i- = M + 1. Equation (A25), thus, reduces to the
pair plasma frequency

wp =Y ol =xy(1+2M). (A26)

In the same way, we can generalize the first-order expression in
equation (A24):

(A27)
We now aim at obtaining an expression for w at first order and we

tackle this derivation by a perturbation approach. We are looking to
find the perturbation S in the decomposition w & wy + dw. A Taylor
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expansion of the variables S and D to first order and recalling Q,/w
~ () yields

_1/2
_ -2, -1_%

Sw :i:l
o 20 M ToMm

(A28)

Secondly, we explore the limit w < @y as defined in equation (A26).
With @3 /@ 3> 1, equation (A23) is approximated as

2

s s
>
s

It is now straightforward to solve for the frequency and to recover

(A29)

® _ y—zu—li _ el _ wx (A30)
wpo 0 1+2M wpo a)p()’

Leptons are coupled to heavy ions via an oscillation of low frequency
(compared to wy). We derived the separation between species during
this oscillation in a semi-analytic analysis for a constant radiative
force (]-N'md = const.) and a finite mass ratio x. The mean amplitude
of the lepton oscillation (around the slowly decelerating ions) was
also obtained by Vanthieghem et al. (2022, Section 5) and can be
rewritten in the radiative units:

As = (14 2M) | Fral 657
= (1 4+ 2M) Fraa G5 P2 =12y 12
. B\ p
=0 4+2M) Fa 2 22 ) 2.
(14 2M) Fra i) 7

(A31)

Fig. Al compares equations (A30) and (A31) to direct integration
of the underlying equations for the basic cold plasma setup in
Section 3.1, with varying magnetizations &,. We find an excellent
agreement between the linear theory estimates and measurements in
a multifluid integration.

APPENDIX B: IMPLICIT-EXPLICIT TIME
STEPPING

The various time-scales resolved by equations (6) to (19) can
differ by orders of magnitude, specifically the inverse of the fast
electromagnetic (plasma) frequency and the long radiative time-
scale 1/d = y, x1u"/? ~ 10'2. Thus, multifluid systems have tight
constraints on the integration time-step. This issue is well-known
throughout the literature (e.g. Amano 2016; Balsara et al. 2016),
and we address it by treating the high-frequency () components
implicitly:

duy, = p (Ex + B)B.) . (B1)
O (heuwy) =+ (E. + BLB.), (B2)
oy = (Ey — By B.), (B3)
O (heuy) ==+ (Ey — B1B.) . (B4)
OE. = —x [ApBy + A pL —A-pL] (BS)
FEy = —x [ApBy + i Bl —i pl]. (B6)

First, we write equations (B1) to (B6) as a second-order Crank—
Nicolson scheme of the form

fo=of =4 5[ () + 5 () (1)
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where n denotes a specific time-step and 7 is a mesh index of the 1D
domain. Furthermore, we use

2 ) y y
v={u),ul, u’ uwl,uy,ul E Ey}, (B8)

and an appropriately chosen vector of source terms S;. For each i,
we solve the system f; = 0 by optimizing the vector v?“ with an
iterative Newton—Raphson method (cf. Section 9.6 in Press et al.
2007). The low-frequency (L) components of the system are given

by equations (6) to (9), as well as:

(3 + B 0:) uy = pg, (B9)
(07 + BLOz) (haul) = =26 hsuliiy, . + &, (B10)
%E, = —9:B., (B11)
B, = —3;E,. (B12)

We integrate the low-frequency system £ with an explicit iterative
Crank—Nicolson method (Teukolsky 2000). The full decomposed
system (implicit high-frequency H versus explicit low-frequency
L) is assembled by an operator splitting technique (Strang 1968;
LeVeque 2007) for each time-step, such that

n+l At At
v =exp [77{] -exp[AtL] - exp {77{} v (B13)
The benefits of this implicit—explicit multifluid integration are best
exemplified by modelling the plasma oscillation of a standing
Langmuir wave in a pair plasma. For time-steps with wioAf > 1,
our method conserves the total energy of the system, while losing
the exact phase of the oscillation. As expected, numerical diffusion
errors are substituted by inaccuracies in the dispersive properties of
the solver. To increase the numerical stability of the finite-difference
scheme, we include a hyperdiffusivity term proportional to the fourth
derivative, D/ At x f®(x), to the momentum equations (10) to (13).
For all the results shown throughout this work, we employ & = 1072,

APPENDIX C: CALIBRATION AND
CONVERGENCE

We benchmark the method described in Sections 2 and Appendix B
against independently derived results with &, = 0 (Section 3.B,
Levinson 2020). As in Section 3, we choose the seed photon
density of 71, _,, (x,) = 1072 and y, = 10. Throughout this set of
tests, we vary the numerical parameter x € [10°, 10'°] and the
resolution Ax to probe the convergence of our method. Specifically,
we change the number of grid points N, per lab-frame radiation
length scale A, where N,/A € [1, 1000]. With the CFL factor
(Courant, Friedrichs & Lewy 1928) fcp = 0.1, and the upstream
electron plasma frequency w_ (adapting equation 5) the plasma
scale is resolved with w_oAr € {0.1, 1, 10, 100}. First, Fig. C1
shows an exemplary solution for the enthalpy closure and boundaries
according to Levinson (2020). Our results are directly comparable
to their fig. 1, where we note a difference of factor two on the
x-axis due to another definition of t*. The analysis presented in
this paper relies on relations between the multiplicity M and the
radiation force JF,q for a specific velocity separation iz; between
ions and pairs. As a second test, we measure the convergence of these
observables with resolution in Fig. C2 by displaying the difference of
individual solutions to the converged result (assumed as the average
between the solutions for the highest resolution reference cases).
Overall, the method produces an approximate scaling with second-
order (grey lines in Fig. C2), while some features emerge for high
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Figure C1. AsFig. 3, but for fully uncoupled conditions in the unmagnetized
case (see Levinson 2020) at the time 7 = 42.0. In the bottom panel, we
show the electric field in addition to the multiplicity for an implicit—explicit
integration. The inset panel (b) extends over the interval t* € [0, 60].
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Figure C2. Convergence test for the unmagnetized reference case shown in
Fig. C1. We show the relative errors of the multiplicity AM /M and radiative
force A Frad/Frad measured at a velocity separation of i+ = 0.25 for varying
temporal and spatial resolutions. We compare the explicit integration (left-
hand column) to an implicit—explicit time-stepping (right-hand column, cf.
Appendix B). The grey line scales in second order.
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Figure C3. Relative errors of the multiplicity AAM /M and radiative force
AFrad/Frad for the implicit—explicit integration, measured at a velocity
separation of #4 = 0.05. We vary the scale separation in the magnetized
case with a constant product x&, = 10°. The grey line scales with first order.

resolutions. The implicit—explicit time-stepping with the operator
splitting introduced in Appendix B shows convergence properties that
are comparable to a fully explicit integration. Notably, the implicit—
explicit scheme is capable of overstepping the time-scale set by
the upstream electron plasma frequency w_o by several orders of
magnitude. Our method passes this convergence and, especially, is
capable of producing accurate results while implicitly underresolving
the plasma frequency.

Adding a background magnetization introduces the additional
scale of the Larmor radius (see equation 4). With the product &, x as
well as the remaining upstream conditions fixed, both the radiative
length scale A and the Larmor radius f are determined. A variation of
the scale separation factor x and the resolution w_yAt¢ then merely
changes the number of grid points (or resolved skin depths) per
radiative/electromagnetic length. In Fig. C3, we demonstrate the
convergence of the key observables (M, F.,q) for varying resolutions
and linearly increasing x. For marginally resolved plasma scales
(w_oAt = 1 — 10), the stationary solutions converge for fixed
&, x with decreasing scale separation. Already for the numerically
accessible regime of y ~ 10'°, the presented solutions are well
converged with AM/M < 1073, More importantly, our results
suggest that the stationary solutions can be modelled with significant
scale separation and then extrapolated to realistic values of x and
&, while keeping &, x constant. We note that the accuracy of our
method for magnetized setups deteriorates for w_oAz > 10.

6137
APPENDIX D: LOCAL PLASMA QUANTITIES

D1 General plasma characteristics

In an arbitrary frame boosted along the x-direction with a velocity
y, we can define the magnetization as

(LY (B, DI
°"<E> (3) B o1

As before, the magnetic field B, is measured in the shock front frame.
Equally, the Larmor radius can be written for a general boost:

(¥ (B
o= (2) ()

The plasma skin depth can be rescaled as follows:

1\ 12
d, = <1> (—) d. (D3)
Yu n,

D2 Units of the radiative force

To calculate the radiative force acting on leptons in commonly used
units (m ,®,0c, see Vanthieghem et al. 2022), we write equation (11)
without normalizations:

by
—— (8 + vidy) (hemecul) (D4)

mec
—i e (E. + BLB.) — 262hsu’ii

= mecz x + Pz LUy gy

This expression can be recast into the following familiar form,

X 2
% = +e (E, + BLB.) — ==

where we can identify the radiative force (using equation 5):

26 hatliiy .y, (D5)

mec?

Strad = 5 25ihiuiﬁy_>u
- 12
MeC@po¥,'” .
= WZaihiu;ny_m
= 26chauity, i x T2y Pmydpc. (D6)

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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