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A B S T R A C T 

The radiation drag in photon-rich environments of cosmic explosions can seed kinetic instabilities by inducing velocity spreads 

between relativistically streaming plasma components. Such microturbulence is likely imprinted on the breakout signals of 

radiation-mediated shocks. Ho we v er, large-scale, transv erse magnetic fields in the deceleration region of the shock transition can 

suppress the dominant kinetic instabilities by preventing the development of velocity separations between electron–positron pairs 

and a heavy ion species. We use a 1D five-fluid radiative transfer code to generate self-consistent profiles of the radiation drag 

force and plasma composition in the deceleration re gion. F or increasing magnetization, our models predict rapidly growing pair 

multiplicities and a substantial radiative drag developing self-similarly throughout the deceleration region. We extract the critical 

magnetization parameter σ c , determining the limiting magnetic field strength at which a three-species plasma can develop kinetic 

instabilities before reaching the isotropized downstream. For a relativistic, single ion plasma drifting with γ u = 10 in the upstream 

of a relativistic radiation-mediated shock, we find the threshold σ c ≈ 10 
−7 for the onset of microturbulence. Suppression of 

plasma instabilities in the case of multi-ion composition would likely require much higher values of σ c . Identifying high-energy 

signatures of microturbulence in shock breakout signals and combining them with the magnetization limits provided in this work 

will allow a deeper understanding of the magnetic environment of cosmic explosions like supernovae, gamma-ray bursts, and 

neutron star binary mergers. 
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1  I N T RO D U C T I O N  

Relativistic radiation-mediated shocks (RMS) can generate the first 

bright burst of radiation observed from powerful cosmic explosions. 

Such transients include the early phases of supernovae (e.g. Cheva- 

lier & Fransson 2008 ; Soderberg et al. 2008 ; Xiang et al. 2019 ), 

the prompt emission of gamma-ray bursts (GRBs; e.g. Page et al. 

2007 ; Abdo et al. 2009 ), and short GRBs from neutron star binary 

mergers (Goldstein et al. 2017 ). Systematic observation of such 

fugitive flashes remains a challenge even with current wide-view 

surv e ys (Bayless et al. 2022 ). Still, when captured and paired with 

theoretical models of radiative processes (Levinson & Nakar 2020 ), 

the y pro vide a rich insight into the precursor environment. This 

paper examines how the magnetic field strength, varying significantly 

between different progenitor systems, impacts the microphysics on 

kinetic scales of radiation-mediated shocks. 

In optically thick media, radiative, quantum-electrodynamics 

(QED) interactions drive the dissipation that injects the energy stored 

in collective plasma motions into a reservoir of highly energetic 

photons (Lundman, Beloborodov & Vurm 2018 ). It is this radiation 

loaded around the shock transition layer that is released promptly 

during the so-called shock breakout (Nakar & Sari 2012 ; Waxman & 

⋆ E-mail: mahlmann@princeton.edu 

Katz 2017 ). Compared to collision-less shocks, mediated by the 

collective plasma dynamics on kinetic scales associated with the 

particle Larmor radius, RMS are generally much wider and extend 

o v er sev eral photon mean free paths (Levinson 2012 ). Plasma 

kinetic effects can then act locally, well-separated from the global 

RMS size. Instabilities can develop on small scales under certain 

conditions, such as the microturbulence examined in an earlier work 

by Vanthieghem et al. ( 2022 ). One trigger for growing wave modes is 

the relative drift velocity of different particle species induced by the 

dif ferent slo w-do wn rates in the deceleration region (Le vinson 2020 ). 

Plasma components decouple and develop a relative drift velocity due 

to an imbalance between the radiative force, acting equally on lepton 

species, and the restoring electric field that accelerates electrons 

and positrons into different directions. Growing unstable modes can 

seed kinetic-scale electromagnetic fields. This microturbulence in 

the radiation-rich downstream is likely to impact signals observed 

during the shock breakout. 

In magnetized environments, a transverse magnetic field generates 

oscillatory velocity drifts that couple the various plasma compo- 

nents. While a radiative force drives small velocity separations, 

the coupled plasma will partially compensate for the deceleration 

of light particles (i.e. leptons) by growing an intermittent longi- 

tudinal electric field. This magnetization-induced force decelerates 

the heavy ions while re-accelerating the leptons. In this state, the 

deceleration profiles resemble those of a single fluid. The strength of 
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the magnetic fields in the astrophysical environments where RMS 

are expected to operate is not well constrained. It likely varies 

widely between different scenarios of cosmic explosions, but again 

within the different systems of the same explosion mechanism. In 

this paper, we, therefore, study the impact of transverse magnetic 

fields independent from the progenitor system to determine at which 

critical magnetization a radiation-mediated shock will likely develop 

kinetic instabilities . An observational signature of microturbulence 

during the shock breakout, or the lack thereof, would then allow for 

setting limits on the magnetic properties of the shock generation 

site, and a deeper understanding of its immediate astrophysical 

environment. 

This paper extends our previous work on the growth of micro- 

instabilities in an unmagnetized environment (Vanthieghem et al. 

2022 ). Section 2 re vie ws the numerical methods used for a (self- 

consistent) radiative transfer modelling of RMS deceleration regions. 

We present the employed units and normalization (Section 2.1 ), as 

well as the 1D multifluid radiative transfer system of differential 

equations (Section 2.2 ). We numerically e v aluate the magnetic 

coupling of different species in Section 3 , both for equilibrium 

configurations with a constant radiative force ( 3.1 ), and consistently 

modelled radiative transfer ( 3.2 ). Section 4.1 contains the main 

findings of this paper and gives specific magnetization thresholds 

for the strong coupling of plasma components in the deceleration 

re gion. We giv e a summary of our results and their implications 

in Section 4 . A detailed re vie w of the linear plasma response is 

given in Appendix A , the numerical implementation is presented in 

Appendix B and calibrated in Appendix C , Appendix D re vie ws local 

plasma scalings and unit systems. 

2  M E T H O D O L O G Y  

2.1 Units and normalization 

The physics described in this paper co v ers largely different time and 

length scales. The coordinates ( ct and x ) are scaled to the Thomson 

length in the shock front frame λ = 1 / ( σT ̄n u γu ), where σ T is the 

Thomson cross-section, n̄ u is the upstream density measured in the 

upstream baryon frame (denoted by a bar), and γ u is the upstream 

baryon Lorentz factor in the shock front frame. Densities in the 

shock front frame are rescaled to the upstream baryon density as 

˜ n = n̄ γ / ( ̄n u γu ). Electromagnetic fields E x , E y , and B z are normalized 

by the fiducial electric field (denoted by a tilde) 

E 0 = 
m e c 

2 

λe 
≈ 1 . 13 × 10 −6 γu 

( n u 

10 15 cm −3 

)

G . (1) 

Our numerical scheme employs a normalization that isolates the 

dimension-less scale-separation factor, χ0 : 

χ0 = 
4 πe 

σT E 0 
= 8 . 0 × 10 21 γ −1 

u 

(

10 15 cm 
−3 

n u 

)

. (2) 

This factor is proportional to the second power of the ratio between 

the radiative scale λ and the electron skin depth d̄ e . The presented 

multifluid plasma models cannot resolve realistic scale separations. 

Therefore, we introduce χ as a free parameter chosen according to the 

limits of the respective numerical scheme and extrapolate converged 

results to realistic scales (where χ → χ0 ). The key parameters that 

characterize the plasma in terms of the scale-separation factor χ are 

the magnetization, the Larmor radius, the plasma skin depth, and the 

radiative length. The magnetization of the upstream with mass ratio 

μ = m e / m p is 

σ̄u = 
B 

2 
u 

4 πm p c 2 ̄n u γ 2 
u 

= 

˜ B 
2 
u E 

2 
0 

4 πm p c 2 ̄n u γ 2 
u 

= 
μ ˜ B 

2 
u 

χγu 
, (3) 

Here, B u is the transverse (along the z-direction) magnetic field 

strength measured in the shock front frame . The Larmor radius in 

the frame of the upstream plasma is 

ρ̄ = γu 
m e c 

2 

eB u 
= 

m e c 
2 

eE 0 

(

γu μ

χσ̄u 

)1 / 2 

= μ1 / 2 

(

γu 

χσ̄u 

)1 / 2 

λ. (4) 

We note that the product χσ̄u fully determines the Larmor radius for 

given γ u and n̄ u . The ion plasma skin depth is: 

d̄ = 
c 

ω̄ pu 
= μ−1 / 2 

(

m e c 
2 

4 πe 2 ̄n u 

)1 / 2 

= μ−1 / 2 

(

γu 

χ

)1 / 2 

λ. (5) 

Combining equations ( 4 ) and ( 5 ) yields d̄ / ̄ρ = σ̄ 1 / 2 
u μ−1 . The pre- 

sented simulations rely on a careful e v aluation of the transition to 

a realistic scale separation. Increasing χ reduces the plasma skin 

depth or, vice versa raises the plasma frequency. Thus, and despite 

using implicit methods (Appendix B ), the numerical integration for 

realistically large values of χ → χ0 becomes prohibitive due to the 

high resolution required to resolve the smallest scales. 

2.2 1D multifluid radiati v e transfer 

In this section, we discuss a 1D radiative transfer model formulated 

as a system of equations coupling the flow of five fluids with the 

dynamics of electromagnetic fields. The fluids encode the collective 

motion of individual species ( s ), namely protons ( p ), electrons ( −), 

and positrons ( + ), as well as two photon beams flowing towards 

the upstream ( γ → u ) and towards the downstream ( γ → d). The 

continuity equations for the different species are then given by: 

∂ ̃ t ̃  n p + ∂ ̃ x 
(

˜ n p β
x 
p 

)

= 0 , (6) 

∂ ̃ t ̃  n ± + ∂ ̃ x 
(

˜ n ±βx 
±
)

= 2 ̃  σγ γ ˜ n γ→ d ̃  n γ→ u , (7) 

∂ ̃ t ̃  n γ→ u + ∂ ̃ x 
(

˜ n γ→ u β
x 
γ→ u 

)

= −2 
(

˜ σ+ ̃  n + + ˜ σ− ˜ n − + ˜ σγ γ ˜ n γ→ d 

)

˜ n γ→ u , (8) 

∂ ̃ t ̃  n γ→ d + ∂ ̃ x 
(

˜ n γ→ d β
x 
γ→ d 

)

= 2 
(

˜ σ+ ̃  n + + ˜ σ− ˜ n − − ˜ σγ γ ˜ n γ→ d 

)

˜ n γ→ u . (9) 

Follo wing the deri v ations by Le vinson ( 2020 ), we include the source 

term of equation ( 7 ) to account for pair production with a respective 

sink in the photon beams (equations 8 and 9 ). Here, σ γ γ is the pair 

production cross-section. Terms proportional to σ±, the Compton 

scattering cross-section, balance the inverse-Compton scattering of 

beam photons with a transition from ( γ → u ) to ( γ → d). The total 

4-current density is conserved, as one can see from building the sum 

o v er equations ( 6 ) to ( 9 ). For the remainder of this paper, we assume 

highly beamed photons with −βx 
γ→ u = βx 

γ→ d = 1, such that only the 

momentum equations for protons and pairs need to be integrated: 

(

∂ ̃ t + βx 
p ∂ ̃ x 

)

u 
x 
p = μ

(

˜ E x + βy 
p 

˜ B z 

)

, (10) 

(

∂ ̃ t + βx 
±∂ ̃ x 

) (

h ±u 
x 
±
)

= ±
(

˜ E x + β
y 
± ˜ B z 

)

− ˜ F rad , (11) 

(

∂ ̃ t + βx 
p ∂ ̃ x 

)

u 
y 
p = μ

(

˜ E y − βx 
p 

˜ B z 

)

, (12) 

(

∂ ̃ t + βx 
±∂ ̃ x 

) (

h ±u 
y 
±
)

= ±
(

˜ E y − βx 
±

˜ B z 

)

. (13) 
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Here, ˜ F rad denotes the Compton scattering drag in the Klein–Nishina 

(KN) re gime, or radiativ e force, which can be consistently modelled 

as ˜ F rad = 2 ̃  σ±h ±u 
x 
± ˜ n γ→ u . We generally assume that leptons have 

the same temperature and baryons are cold, such that h ± = 1 + 4 ̂  T . 

Following Granot, Nakar & Levinson ( 2018 ), we approximate 

ˆ T = η
˜ n l 

2 + ˜ n l 

γ+ + γ−

2 
. (14) 

The density of quanta, ̃  n l , combines the density of pairs created inside 

the shock with the contribution from back-scattered photons, 

˜ n l = ˜ n + −
[

˜ n p ( ̃  x = 0 ) − ˜ n −
]

+ ˜ n γ→ d , (15) 

and we adopt η = 0.45. With these definitions, the scattering cross- 

sections (normalized to σ T ) are 

˜ σ± = 
3 

8 

ln 
[

2 γ±
(

1 + a ̂  T 
)]

γ±
(

1 + a ̂  T 
) , ˜ σγ γ = 

˜ σ+ + ˜ σ−

2 
. (16) 

Finally, the continuity equations ( 6 ) to ( 9 ) are coupled to the 

momentum equations ( 10 ) to ( 13 ) via: 

∂ ̃ t ˜ E x = −χ
[

˜ n p β
x 
p + ˜ n + β

x 
+ − ˜ n −βx 

−
]

, (17) 

∂ ̃ t ˜ E y = −χ
[

˜ n p β
y 
p + ˜ n + β

y 
+ − ˜ n −β

y 
−
]

− ∂ ̃ x ˜ B z , (18) 

∂ ̃ t ˜ B z = −∂ ̃ x ˜ E y . (19) 

We integrate this system of equations with the method described and 

profiled in appendices B and C . For studying multifluid equilibria 

in the deceleration region independent of the downstream (shock) 

conditions, it is convenient to replace equation ( 8 ) for βx 
γ→ u = −1 

by (cf. Levinson 2020 ) 

∂ ̃ t ̃  n γ→ u + ∂ ̃ x ̃  n γ→ u = 2 
(

˜ σ+ ̃  n + + ˜ σ− ˜ n − + ˜ σγ γ ˜ n γ→ d 

)

˜ n γ→ u . (20) 

This adaptation is a numerical trick that solves the system of 

equations ( 6 ) to ( 19 ) by driving it to an equilibrium state with 

∂ ̃ t ̃  n γ→ u → 0, as it is expected in the shock front frame. We em- 

phasize two aspects of this altered system of equations. First, the 

reformulation of equation ( 20 ) allows us to use the time-dependent 

system of equations outlined abo v e to find steady-state solutions 

of the deceleration profiles (time-independent). Secondly, these 

equilibrium profiles are decoupled from the physical conditions at 

the shock itself, most notably they do not include a priori information 

about the photon beam ˜ n γ→ u injected do wnstream. Ho we ver, it 

allows us to study the deceleration profiles of the different particle 

species and their dependence on upstream conditions (prescribed by 

γ u and σ̄u ). 

In the following sections, we evolve the full five-fluid system in 

time, starting at ˜ t = 0. We choose the initial and upstream boundary 

conditions of γ ± = γ p = γ u with γ u = 10, a pair multiplicity of M = 

1, a realistic mass ratio of 1/ μ = 1836, as well as a seed radiation 

field of ˜ n γ→ u = 0 . 01 and ˜ n γ→ d = 0. These boundary conditions 

follow the setup described by Levinson & Nakar ( 2020 , Section III. 

B). As we explore the effect of magnetization and scale separation, 

controlled by σ̄u and χ , the discrete mesh and domain extensions are 

stated separately for each numerical experiment. In the downstream, 

we employ zero gradient boundary conditions. In practice, we evolve 

each setup in time either until the equilibrium state is established in 

the whole domain or the numerical solution breaks down due to 

extreme density and velocity gradients in the deceleration profile 

(and, hence, unresolved plasma scales). 

Figure 1. Schematic outline of typical (re versed) relati vistic radiation- 

mediated shock profiles (RMS, panel a). Cartoons of particles indicate the 

respective plasma compositions (black: ions; blue: electrons; red: positrons; 

orange: photons). In (b) we show a cartoon of the employed setup. Panels 

(c) to (e) show solutions of deceleration profiles for periodic systems with a 

constant radiative force acting on lepton species (see Vanthieghem et al. 2022 , 

Section 5 ). Without magnetic fields (panel c), the different particle species 

quickly decouple and develop a significant velocity separation (see Levinson 

2020 ). In the magnetized case (panels d/e), leptons are coupled to the ions. 

Oscillations of the leptons are induced by a longitudinal electric field ˜ E x 

(panel e). Such fields ef fecti vely decelerate the coupled ions and can prevent 

the development of a large velocity spread. 

3  MAGNETI ZED  EQUI LI BRI UM  

C O N F I G U R AT I O N S  

Fig. 1 (panel a) shows the astrophysical context of the photon-rich 

target environment. While lepton and ion species quickly decouple in 

the unmagnetized case (seeding various plasma modes as discussed 

in Vanthieghem et al. 2022 , panel c), the addition of a transverse 

magnetic field efficiently couples the particles and prevents the 
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growth of velocity drift (panels d/e). A self-consistent description 

of this coupling mechanism is the subject of this work. 

One important auxiliary quantity for the interpretation of the 

deceleration profiles is the relative drift between ions and leptons 

measured in the local baryon frame and denoted ū ±. The respective 

boosts along u 
x 
p can be written as 

ū ± = u 
x 
±γ x 

p − u 
x 
p γ

x 
±, (21) 

where the Lorentz factors are associated with the bulk motion 

along the x -direction. The pair multiplicity M = ˜ n + / ̃  n p is the 

other rele v ant plasma characteristic that determines the strength 

of interspecies coupling and thereby affects the development of 

microturbulence in the deceleration region. Finally, we define the 

pair-loaded optical depth (omitting Klein-Nishina effects, see Granot 

et al. 2018 ; Levinson 2020 ): 

τ ∗ = 

∫ 

˜ n l d ̃  x . (22) 

3.1 Scales of lepton-ion coupling with constant radiati v e force 

This section re vie ws the coupling of different species for a constant 

radiative force ˜ F rad used as a source term in equation ( 11 ). Normal- 

ized to the upstream conditions m p ̄ω pu c one can write 

F rad = − ˜ F rad μ
1 / 2 χ−1 / 2 γ 1 / 2 

u m p ̄ω pu c. (23) 

We present a linear analysis of the cold pair plasma response ( h ± = 

1, ˆ T = 0) in Appendix A . Equation ( A30 ) suggests that in the far 

upstream, the scales of coupling between different species are well- 

separated from the plasma scales: 

ω̄ ±

ω̄ pu 
= γ −2 

u μ−1 σ̄
1 / 2 
u 

1 + 2 M ≈ 10 −2 
(

γu 
10 

)−2 
M 

−1 
(

σ̄u 
10 −6 

)1 / 2 
. (24) 

Using equation ( 5 ), the length scale of interspecies coupling written 

with local plasma properties in the shock front frame is 

λ± = 
2 π

ω ±
= 2 π

γ 2 

γu 

(

˜ B u 

˜ B z 

)

( 1 + 2 M ) ρ̄ . (25) 

It is clear that commonly λ± ≫ ρ. The mean amplitude of the lepton 

oscillation around the slowly decelerating ions, as e v aluated for far 

upstream conditions in Vanthieghem et al. ( 2022 , Section 5), is: 

A ± = ( 1 + 2 M ) ˜ F rad 
ρ̄

λ
. (26) 

The results displayed in Fig. A1 compare the linear estimates ( 24 ) 

and ( 26 ) to the direct integration of the ef fecti ve three-fluid system. 

The good agreement between numerical results and analytic esti- 

mates validates the arguments we brought forward in Vanthieghem 

et al. ( 2022 , Section 5). As we will discuss throughout this section, 

the linear-theory estimate does not include the effects of finite lepton 

temperatures as well as the rapidly changing fluid dynamics during 

strong deceleration. In this section, we will address the first of these 

points, namely the dependence of the cold plasma scalings derived 

in Appendix A on the temperature model introduced in Section 2.2 . 

We examine the plasma response for a heated plasma (constant h ±
> 1, ˆ T > 0). Dividing the momentum equations ( 10 ) to ( 13 ) by h ±
and adjusting the currents accordingly, a change in h ± corresponds to 

re-scaling the cold-plasma characteristics as μh = h ±μ, χh = χ / h ±, 

and ˜ F 
h 
rad = ˜ F rad /h ±. We note that it follows from equations ( 3 ) to ( 5 ) 

that ρ̄h = h ±ρ̄ and d̄ h = d̄ . For ˜ F rad = const. , and h ± = const., the 

radiative transfer sources of equations ( 6 ) to ( 9 ) can be neglected. As 

an illustrative example, we integrate the ef fecti ve three-fluid system 

( + , −, p ) for boundary conditions of γ u = 10, with a magnetization 

Figure 2. Comparison of the multifluid integration for ˜ F rad = const. in 

the cases of cold plasma ( h ± = 1, top panel) and hot plasma ( h ± = 10, 

bottom panel) with the re-scaling of parameters discussed in Section 3.1 . The 

dynamics of interspecies coupling agree for both cases, and the cold-plasma 

estimates of equations ( 25 ) and ( 26 ) are equally valid. 

of σ̄u = 10 −6 , and a multiplicity of M = 1. The discretized mesh 

spans ˜ x ∈ [ 0 , 130 ] with � ̃  x = 0 . 01 and a time step according to 

the CFL condition of f CFL = 0.1. Guided by the previously stated 

scalings with h ±, we vary h ± itself and adapt the parameters χ , μ, 

and ˜ F rad . Fig. 2 shows a direct comparison between the multifluid 

integration for cold plasma (top panel) and warm plasma (bottom 

panel) with parameters varied according to the aforementioned re- 

scaling. Especially, we see that for h ± = const., we can adjust the 

linear-theory characteristics for the interspecies coupling in a heated 

plasma as follows: 

ω̄ 
h 
± = h 

−1 
± ω̄ ± ⇒ λh 

± = h ±λ±, (27) 

A 
h 
± = A ±. (28) 

While the amplitude of the lepton oscillation does not change, 

the length scale of the lepton coupling scales with the enthalpy. 

The following section will present a comparison of all relevant 

scales in self-consistently modelled deceleration profiles. Subsequent 

comparisons with the linear theory estimates make use of the scaling 

in equation ( 27 ). 

3.2 Pair-loaded deceleration profiles 

In this section, we use ˜ F rad = 2 ̃  σ±h ±u 
x 
± ˜ n γ→ u as a radiative force 

profile in equation ( 11 ). Such a choice of sources models the radiative 

transfer in the deceleration region self-consistently while capturing 

the effects of interspecies coupling by the transverse magnetic field. 

We integrate the full five-fluid system for boundary conditions of 

γ u = 10, a multiplicity of M = 1, a scale-separation of χ = 10 11 , 
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and a realistic mass ratio of 1/ μ = 1836. Following Levinson ( 2020 ), 

we seed the radiation field with ˜ n γ→ u (0) = 0 . 01. In this section, we 

vary the magnetization parameter σ̄u . The discretized mesh spans 

˜ x ∈ [ 0 , 40 ] with � ̃  x = 0 . 005 and uses a time-step according to the 

CFL condition of f CFL = 0.1. 

To analyse the self-consistently modelled deceleration profiles, 

we introduce two rele v ant parameters for the comparison of various 

scales. First, we measure how rapidly the coupling length (equa- 

tion 25 ) changes per oscillation period of the interspecies coupling: 

ξ ≡
d ( λ±/λ) 

d ̃  x 

1 

( λ±/λ) 
. (29) 

Secondly, we compare the coupling length to the deceleration length 

scale. From the e v aluation of unmagnetized deceleration profiles in 

the single-fluid approximation (Granot et al. 2018 ), we can deduce 

the deceleration length as 

λ−1 
R = 

(

1 + 4 η
γ 2 

γu 

)

˜ σγ γ ( ̃  n l + 1 ) 
1 

λ
. (30) 

We note that in the deceleration region, before the decoupling of 

species, the different cross-sections ˜ σ± ≈ ˜ σγ γ coincide with good 

accuracy. We can then compare the coupling length scale to the local 

deceleration scale and for ˜ n l ≈ 3 M ≫ 1 we find 

ε = 
λ±

λR 
≈ 12 π

γ 2 

γu 

(

˜ B u 

˜ B z 

)

M 
2 

(

1 + 4 η
γ 2 

γu 

)

h ± ˜ σγ γ

ρ̄

λ
. (31) 

The deri v ation of expression ( 31 ) uses the scaling with enthalpy 

established in Section 3.1 . It is convenient to use ε for the definition 

of different coupling regimes. In the unmagnetized case, radiative 

deceleration dominates all species. This limit corresponds to ε ≫
1. Weak interspecies coupling is expected when λ± approaches 

the radiative length scale, namely ε � 1. Finally, we define strong 

coupling as the limit where the deceleration length exceeds the typical 

scale for lepton-ion coupling, as to say ε < 1. 

Fig. 3 shows a typical deceleration profile for a mild magnetization 

σ̄u χ = 10 4 and a weak interspecies coupling. As the coupled lepton- 

ion fluid decelerates, the multiplicity gradually grows (panel d). 

Eventually, the species decouple and a significant velocity separation 

is established (panel c). The lepton-ion coupling can be identified 

by the lepton oscillations in panel (b) of Fig. 3 . As expected from 

equations ( 25 ) and ( 26 ) both the coupling amplitude and wavelength 

are expected to decrease for larger magnetization. Therefore, the 

lepton oscillations are not directly noticeable for the strongly coupled 

case displayed in Fig. 4 . Comparing both setups, we outline the main 

effects of magnetic coupling. First and foremost, the coupling of 

species due to higher magnetization shifts the location of significant 

velocity separation downstream. For the presented cases, the location 

of a velocity separation of ū + = 0 . 1 is translated by �λ ≈ 1.4 and 

�τ ∗ = 32.3. Following the increasing optical depth, the multiplicity 

at this giv en v elocity separation changes by � M ≈ 13. At the same 

time, the radiative force increases by a factor of 4.5. 

Fig. 5 repeats this analysis more systematically for a wide scan of 

magnetization parameters, spanning o v er sev en orders of magnitude. 

By varying the upstream magnetization, we effectively change the 

upstream value of ε, as to say the strength of coupling prior to the 

deceleration. When initializing ε < 1 (similar to the case shown in 

Fig. 4 ), we can use the transition point ε = 1 to measure the location 

of lepton-ion decoupling. We indicate the transition between the 

coupling regimes (see equation 31 and below) by a grey shade in 

Fig. 5 . As expected from the linear estimate in equation ( 26 ), an 

increasing magnetization requires a larger multiplicity and radiative 

force to reach a certain velocity separation. This statement is true 

(a)

(c)

(b)

(d)

Figure 3. Solution of the magnetized multifluid integration (implicit–

explicit) for weakly coupled conditions with χ = 10 11 , σ̄u = 10 −7 , and 

ω −0 � t = 10.0 at the time t̄ = 25 . 9. We display Lorentz factors of ions, 

electrons, and positrons (panel a) as well as a zoom into the τ ∗ ∈ [0, 

60] interval (panel b). For the chosen parameters, the deceleration length 

is comparable to the coupling wavelength, or λR � λ±. Leptons and ions 

decouple and develop a velocity separation (panel c). We show the multiplicity 

profile as well as the scale ratios (panel d) defined in equations ( 29 ) and ( 31 ). 

independently of the measurement location in the immediate decel- 

eration region, with similar trends at ū + = 0 . 1 (blue line) and ε = 1 

(red line). Ho we ver, as we sho w in Fig. 6 (panel b), the amplitude 

estimate of equation ( 26 ) broadly o v erestimates the actual velocity 

separation. The relati ve dif ference between a linear-theory estimate 

(see also Vanthieghem et al. 2022 ) and the actual separations in self- 

consistent deceleration profiles grows with increasing magnetization. 

The principal reason for the differences emerging in Fig. 6 can be 

found in equation ( 29 ). The linear analysis reproduced in Appendix A 

relies on the assumption that the wavelength of the lepton-ion 

coupling changes slowly. In other words, for equation ( 26 ) to be 

applicable requires ξ ≪ 1. Already for mild magnetizations, this 

criterion is not fulfilled in the deceleration region (dashed line in 

panel d, Figs 3 and 4 ). With increasing magnetization, we generally 

find ξ � 1. This finding has significant consequences. While lepton 

oscillations can be easily found for mild magnetization and small 

multiplicity (panel b, Fig. 3 ), the rapid change of λ± renders the 

linear theory re vie wed in Section 3.1 inaccurate during the strongest 

deceleration. This especially applies to the estimate of the oscillation 

amplitude in equation ( 26 ). 

Leptons and ions decouple when the coupling length exceeds 

the deceleration length, independently of the amplitude of lepton 

oscillations. As argued abo v e, the role of the magnetic field becomes 

subdominant for ε > 1. Thus, a (sufficient) condition for decoupling 

can be obtained by ε = 1. Fig. 4 shows the coincidence of ε = 1 with 

the onset of the rapid growth of multiplicity (panel d) and (eventually) 
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(a)

(b)

(d)

(c)

Figure 4. As Fig. 3 , but for strongly coupled conditions with a larger 

magnetization of σ̄u = 10 −6 at the time ̄t = 26 . 3. For the chosen parameters, 

coupling initially dominates o v er deceleration, or λR > λ±. The vertical grid 

line indicates the transition ε = λ±/ λR = 1. The inset panel (b) extends over 

the interval τ ∗ ∈ [0, 60]. 

velocity separation (panel c). We, therefore, use ε = 1 as a second 

criterion to e v aluate plasma properties during the decoupling phase 

in Fig. 5 . There is a significant separation between all observables 

at the different measurement points. At the same time, as shown 

in Fig. 6 (panel a), the location of decoupling ( ε = 1) approaches 

the one where ū ± = 0 . 1. During the most efficient deceleration, the 

density of quanta grows rapidly and all species slow down due to the 

action of the radiative drag force. Therefore, the possible length of 

the deceleration region is finite, and we discuss the implications of 

these findings in the following section. 

4  D ISC U SSION  

4.1 Thresholds for magnetic coupling in the deceleration region 

In Section 3.2 , we outline various indicators that show the insuf- 

ficiency of the coupling amplitude A ± (equation 26 ) as a measure 

of velocity separation. In general, A ± overestimates the velocity 

separation by more than one order of magnitude. In other words, 

the self-consistent deceleration profiles create a velocity separation 

ū ± for combinations of multiplicity M and radiative force F rad 

incompatible with equation ( 26 ). A closer analysis of the separation 

of scales shows that during the deceleration phase, we find ξ ≈ 1. This 

regime of rapidly changing coupling properties naturally renders the 

amplitude estimate A ± inaccurate, and we require an adapted limit 

to the critical magnetization. 

We use equation ( 31 ) to constrain a critical magnetization σ c that 

discriminates between coupled profiles and those with significant 

velocity separation. A conserv ati ve estimate can be developed by 

(a)

(b)

(c)

Figure 5. Multifluid integration (implicit–explicit) with varying magnetiza- 

tion for χ = 10 11 and ω −0 � t = 10.0. We extract characteristic properties 

of the deceleration profiles at two different locations: for a fixed velocity 

separation of ū + = 0 . 1, and the location of decoupling, ε = λ±/ λR = 1. This 

figure displays the multiplicity (panel a), the radiative force (panel b), as well 

as the baryon deceleration (panel c). 

assuming that the multiplicity saturates at maximum downstream 

values of M ≈ γu / (3 μ) ≫ 1 (Ito, Levinson & Nagataki 2020 ), that 

the magnetic field remains ˜ B u ≈ ˜ B z , and that ˜ n p ≈ 1. For species 

decoupling at ε ≈ 1, equation ( 31 ) can be written as 

σc ( γd ) ≈ 9 . 7 × 10 −23 γ 4 
d M 

4 h 
2 
± ˜ σγ γ

(

1 + 4 η
γ 2 
d 

γu 

)

. (32) 

For a decoupling velocity of γ d = 1.15 and γ u ≫ 1 we find 

σc ( γd = 1 . 15 , γu ≫ 1 ) ≈ 10 −7 
( γu 

10 

)4 
. (33) 

Vanthieghem et al. ( 2022 ) estimate the turbulence coupling time 

required for the microturbulence to grow up to a level that can 

balance the radiation drag as ω̄ pu ̄τc = 10 
√ 
M h ±μ/ F rad . We obtain 

the time-scale ω̄ pu ̄τ± for the magnetic coupling from equation ( 25 ), 

and requiring τ̄c / ̄τ± = 1 yields a separate threshold for σ c : 

σc ( γd ) ≈ 4 . 3 × 10 −13 γ 2 
u γ

2 
d M h ±. (34) 

For a decoupling velocity of γ d = 1.15 and γ u ≫ 1 we find 

σc ( γd = 1 . 15 , γu ≫ 1 ) ≈ 10 −6 
( γu 

10 

)3 
. (35) 

The critical magnetization constrained by equation ( 32 ) assumes 

that the decoupling happens close to the immediate downstream. 

Ho we ver, merely reaching ε = 1 does not imply a sufficient velocity 
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(a)

(b)

Figure 6. Selected properties of the deceleration profiles shown in Fig. 5 . 

Panel (a) shows the two positions where the measurements are taken and how 

they approach each other for increasing magnetization. We then compare 

the measured velocity separation to the linear-theory amplitude estimate of 

equation ( 26 ) in panel (b). Evaluating the expression for A ± o v erestimates 

the velocity separation throughout all tests, with the relative error increasing 

for higher magnetizations. 

separation of the different species to trigger plasma instabilities and 

microturbulence. The system needs time to develop a significant 

velocity spread in the decoupled state. Specifically, when ε ≫ 1, 

the action of the radiative force becomes dominant and the system 

ef fecti v ely behav es like the unmagnetized one. The growth of the 

velocity separation is then proportional to the radiative force F rad 

and develops on a fraction of the radiative length scale. While the 

e xact v elocity during the decoupling phase is unknown, we repeat 

our previous analysis for conditions where the effective one-fluid 

system has not fully decelerated. Granot et al. ( 2018 ) estimate the 

number of quanta for a mildly relativistic RMS profile as 

M ≈
˜ n l 

3 
≈

1 

12 μη

γu 

γ 2 
. (36) 

For an arbitrarily chosen value of γ = 2 to allow for a velocity 

separation before full deceleration of all species, equation ( 32 ) 

becomes 

σc ( γ = 2 ) ≈ 1 . 9 × 10 −13 γ 4 
u . (37) 

The thresholds for decoupling at different locations in the de- 

celeration profiles derived in equations ( 32 ) and ( 37 ) are highly 

sensitive to the velocity during decoupling (with a dependence on 

the fourth power on the flow Lorentz factor). They differ by more 

than two orders of magnitude. Fig. 7 gives a visual account of 

the various estimates of σ c presented in this section. The shaded 

region enclosed by blue lines is the main novelty of this paper, 

fixing σ c by e v aluating when the multispecies beam decouples for 

γ � 2 at ε = 1. Contrasting this conserv ati ve estimate that is 

validated by the self-consistent deceleration profiles presented in 

Section 3.2 , the linear theory threshold derived from the coupling 

amplitude ( 26 ) o v erestimates σ c by sev eral orders of magnitude (grey 

shaded region). Finally, magnetization thresholds from demanding 

Figure 7. Different estimates of the critical magnetization for varying 

injection velocities γ u . We visualize, which combinations of γ u and σ c 

potentially lead us to sufficient velocity separation and the development of 

microturbulence (Vanthieghem et al. 2022 ). The conserv ati ve limit gi ven by 

the turbulent coupling τ̄c / ̄τ± = 1 in equation ( 32 ) is displayed by blue lines. 

Conserv ati ve limits given by the growth rate of the instability (equation 34 ) 

are shown by magenta lines. The grey lines denote the previously employed 

but invalid linear theory estimate (equation 26 ). 

suf ficiently fast gro wth of the seed instabilities of the microturbulence 

discussed in Vanthieghem et al. ( 2022 , see fig. 2) are indicated by 

magenta-coloured bands. 

4.2 Magnetization of astrophysical environments 

Relativistic RMS may take place in different astrophysical environ- 

ments with very different magnetization levels. One such environ- 

ment is the ejecta from binary neutron star or black hole–neutron star 

mergers, where the shock driven by the GRB jet and the cocoon is 

mildly relativistic and possibly ultrarelativistic. The magnetic field 

in the ejecta is unknown, but we can get a rough estimated lower 

limit as follows. The expectation is that at the launching site of the 

ejecta, at radii r ∼ 10 6 − 10 7 cm, the magnetic field is not very far 

from equipartition. As the ejecta expand the density of each fluid 

element drops as r −3 while the magnetic field energy density drops 

at most as r −4 . This implies that σ drops at most as r −1 , so we can 

estimate σ � (10 6 cm)/ r . Therefore, any shock that takes place at r 

� 10 13 cm (i.e. within ∼1000 s of the merger) will have a magnetic 

field that is strong enough for full coupling. 

Relativistic shocks can also occur in e xtreme superno vae of 

stripped-envelope progenitors. Such shocks can be driven by a highly 

energetic explosion or by a jet and its cocoon, such as a long GRB 

jet (Nakar & Sari 2012 ). These shocks can propagate either within 

the stellar envelope or in the wind. The magnetization level is 

σ ∼ 10 −8 

(

B 

100 G 

)2 (
ρ

10 −10 g cm −3 

)−1 

γ −2 
u . (38) 

The magnetic field in these progenitors is unknown, but we can use 

observations of Wolf–Rayet stars to get an idea of possible values. 

These observations suggest that the magnetic field on the surface can 
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be as high as a few hundred Gauss (e.g. de la Chevroti ̀ere et al. 2014 ; 

Hubrig et al. 2016 ). The upstream density depends on whether the 

shock travels in the envelope or the wind. The density in the envelope 

drops near its edge and at an optical depth of unity (to infinity) it 

is of the order of 10 −7 g cm 
−3 for a star with a mass of 10 M ⊙ and 

radius of 10 11 cm (e.g. Nakar & Sari 2010 ). Therefore, a relativistic 

shock that propagates near the edge of the envelope of a compact 

Wolf–Rayet star probably does not have full coupling between the 

various plasma constituents. In the wind, the density is expected to 

be of the order of 10 −10 g cm 
−3 near the stellar edge at a radius of 

∼10 11 cm, implying that the magnetic fields are more likely to induce 

full coupling. Finally, in low-luminosity GRBs, the shock seems to 

break out of the progenitor at a radius of ∼10 13 cm (Nakar 2015 ). In 

these progenitors, there is no information about the magnetic fields. 

4.3 Limitations 

In this paper, we study the coupling of electron–positron pairs to 

a single species of heavy ions during the formation of relativistic 

radiation-mediated shocks in the presence of a magnetic field 

perpendicular to the initial propagation direction of the plasma flow. 

In particular, we provide critical magnetizations σ c that ef fecti vely 

prevent the radiation drag from decoupling pairs and ions for different 

upstream velocities γ u (Fig. 7 ). Relativistic shocks ( γ u ≫ 1) have 

magnetic fields oriented quasi-perpendicular to the flow direction 

expansion (Gallant et al. 1992 , see also discussion in Plotnikov, 

Grassi & Grech 2018 ), for which the 1D models shown in this work 

are a viable approximation. Mildly relativistic flows can show a 

significant longitudinal magnetic field component with B � along 

F rad . Parallel magnetic fields do not affect the longitudinal fluid 

velocities of different species, and as such, they do not contribute to 

the coupling of different species examined in this paper. Ho we ver, the 

additional transverse currents they induce can change the nature and 

growth of the micro-instabilities described by Vanthieghem et al. 

( 2022 ). How the radiation-drag-induced microturbulence reacts to 

magnetic fields for various obliquities can be treated as an isolated 

question in future work. We predict the excitation of microturbulence 

due to plasma instabilities for low magnetization. In this regime, 

the effect of transverse magnetic fields on the growth of the 

micro-instabilities is negligible. In the regime of strong coupling, 

transverse instabilities can develop in addition to magnetically driven 

oscillations. The growth of such modes cannot be captured in our 

reduced 1D description and poses a clear limitation. Ho we ver, 

their saturation level is likely constrained by the absolute velocity 

separation between species for a given external magnetic field. In this 

work, we find that the velocity separation is small for large parts of the 

deceleration region and only becomes rele v ant close to the immediate 

downstream. The critical magnetization lev els deriv ed in Section 4.1 

are conserv ati ve estimates of the conditions during decoupling that 

likely occur for small velocity separations (see Fig. 4 ). Studying 

the feedback of additional transverse modes on the shock dynamics 

is left for further studies with consistent shock (micro)physics and 

higher dimensionality. 

Our deri v ations (and those by Vanthieghem et al. 2022 ) consider 

the dynamics of a baryon-pair plasma with a single ion species. As 

visualized in Fig. 1 (panels d/e), such a three-component plasma 

efficiently re-accelerates pairs in the presence of transverse magnetic 

fields and counteracts the radiation drag. Such a well-coupled three- 

component plasma can be treated in a single fluid approximation and 

will likely suppress kinetic instabilities due to negligible velocity 

spreads. This simple picture becomes more complicated when ion 

species with different charge-to-mass ratios are present. Mediated by 

the lepton deceleration, the various ion species will quickly develop a 

velocity separation, and pairs will no longer be coupled to the single 

stream of heavy ions. Velocity separations will likely develop even in 

the presence of transverse magnetic fields. Ho we ver, the dynamics of 

these magnetized multi-ion systems as well as their unstable modes 

are not yet explored. 

5  C O N C L U S I O N  

The main result of this paper provides critical magnetizations for 

which the growth of kinetic instabilities in a photon-rich three- 

species pair-ion plasma becomes increasingly difficult. Consistently 

derived limits on σ c (blue band in Fig. 7 ) are lower than our previous 

simplistic estimates (Vanthieghem et al. 2022 , Section 5 ). In the 

presence of a transversal magnetic field, especially for relativistic 

systems with upstream velocities of γ u ≈ 10, a mild magnetization 

of σ c ≈ 10 −7 is sufficient to prevent velocity spreads and the 

growth of kinetic instabilities. The magnetization in different RMS 

environments is not sufficiently constrained by theory or observation. 

Still, the presence of at least small magnetic fields is very likely, such 

that plasma components may decouple only in the late phase of their 

deceleration, close to the sub-shock in the downstream transition. 

There, the growth of microturbulence would induce high-energy 

tails in the particle distribution with a possible imprint on the signal 

observed during the shock breakout. While we do not know what an 

imprint of microturbulence in the shock breakout signal would look 

like, its occurrence, or lack thereof, can now be used to constrain the 

ambient magnetic field strength. 
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APPENDIX  A :  LINEAR  ANALYSIS  O F  T H E  

MULTISPECIES  PLASMA  RESPONSE  

This section re vie ws the linear analysis of the characteristic response 

of a magnetized multispecies plasma vastly used in this work and 

parts of Vanthieghem et al. ( 2022 ). As shown below, the allowed 

Figure A1. Validation of the linear analysis for the amplitude A ± of the 

velocity spread (top panel) and coupling frequency ω ± (bottom panel). For 

different multiplicities M , we show measurements from a direct (explicit) 

integration of the multifluid system (data points) for γ u = 10, ω̄ p0 = 0 . 1, and 

χ = 10 7 . The data points are compared to the analytic estimates (solid lines) 

given by equations ( 25 ) and ( 26 ). 

plasma oscillations are independent of the radiative force ˜ F rad , 

assumed to be constant in this section. We further assume that the 

system is uniform ( k x = 0), that the plasma is cold ( h ± = 1), and 

that the mass ratio is infinite, μ → 0. Without loss of generality, we 

can reduce the system of equations ( 6 ) to ( 19 ) and assume that all 

quantities are given in the plasma rest frame: 

∂ ̃ t u 
x 
s = 

˜ q s 

˜ m s 

(

˜ E x + βy 
s 

˜ B z 

)

− δs 
˜ F rad , (A1) 

∂ ̃ t u 
y 
s = 

˜ q s 
˜ m s 

(

˜ E y − βx 
s 

˜ B z 

)

, (A2) 

∂ ̃ t ˜ E x = −χ
∑ 

s 

˜ q s ̄n s β
x 
s , (A3) 

∂ ̃ t ˜ E y = −χ
∑ 

s 

˜ q s ̄n s β
y 
s . (A4) 

Here, we used the normalization ˜ q s = q s /e and ˜ m s = m s /m e for 

the different species s . We define δp = 0 and δ± = 1 to study the 

allowed perturbations of the equilibrium flow of γ 0 . We exploit 

a linearization of velocities u s = γs βs , namely δu 
x 
s = γ 3 

0 δβ
x 
s and 

δu 
y 
s = γ0 δβ

y 
s . Since in the limit μ → 0 the change in the ion velocity 

vanishes, δu 
i 
p = 0, only s ∈ [ + , −] is considered and in frequency 

space, where we use ∂ ̃ t → −iω, equations ( A1 ) to ( A4 ) become 

− i ̄ω δu 
x 
s = 

˜ q s 

˜ m s 

(

δ ˜ E x + 
δu 

y 
s 

γ 2 
0 

λ̄

ρ̄

)

− ˜ F rad , (A5) 

− i ̄ω δu 
y 
s = 

˜ q s 

˜ m s 

(

δ ˜ E y −
δu 

x 
s 

γ 4 
0 

λ̄

ρ̄

)

, (A6) 

− i ̄ω δ ˜ E x = −
χ

γ0 

∑ 

s 

˜ q s ̄n s δu 
x 
s , (A7) 

− i ̄ω δ ˜ E y = −
χ

γ0 

∑ 

s 

˜ q s ̄n s δu 
y 
s . (A8) 

This inhomogeneous system of equations admits a particular solution 

for which all time deri v ati ves v anish: 

δu 
y 
− = 

n̄ −

n̄ + 
δu 

y 
+ = 

M 

M + 1 
δu 

y 
+ , (A9) 

δu 
y 
+ = 2 γ 2 

0 ( M + 1 ) 
ρ̄

λ̄
˜ F rad , (A10) 

δ ˜ E x = − ( 2 M + 1 ) ˜ F rad . (A11) 

Here we use δu 
x 
s = δ ˜ E y = 0, with the plasma multiplicity M = n̄ + . 

This particular solution dictates the amplitude of the oscillations of 

the general solutions (see below). The appearance of the constant 

longitudinal electric field δ ˜ E x is imposed by requiring a vanishing 

mean transverse current (i.e. no constant current) in equation ( A8 ). 

In reality, when the ion mass is finite, this mean electric field is 

responsible for the deceleration of the ions (and hence the entire 

plasma) inside the shock transition layer. The general solution is 

the sum of the particular and the homogeneous solutions, where the 

homogeneous solution is 

− i ̄ω δu 
x 
s = 

˜ q s 

˜ m s 

(

δ ˜ E x + 
δu 

y 
s 

γ 2 
0 

λ̄

ρ̄

)

, (A12) 

− i ̄ω δu 
y 
s = 

˜ q s 

˜ m s 

(

δ ˜ E y −
δu 

x 
s 

γ 4 
0 

λ̄

ρ̄

)

, (A13) 

− i ̄ω δ ˜ E x = −
χ

γ0 

∑ 

s 

˜ q s ̄n s δu 
x 
s , (A14) 

− i ̄ω δ ˜ E y = −
χ

γ0 

∑ 

s 

˜ q s ̄n s δu 
y 
s . (A15) 
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The linearized momentum equations ( A12 ) and ( A13 ) can be cast in 

matrix form 
(

δ ˜ E x 

δ ˜ E y 

)

= 

(

−i ̄ω ( ̃  m s / ̃  q s ) − 1 /γ 2 
0 × λ̄/ ̄ρ

1 /γ 4 
0 × λ̄/ ̄ρ − i ̄ω ( ̃  m s / ̃  q s ) 

)(

δu 
x 
s 

δu 
y 
s 

)

≡ M s 

(

δu 
x 
s 

δu 
y 
s 

)

, 

(A16) 

with the inverse 

M 
−1 
s = 

γ0 

ω 2 − �2 
s 

˜ q s 

˜ m s 

(

iω −�s γ0 

�s /γ0 iω 

)

. (A17) 

Here, we introduced the lab-frame quantities ω = γ0 ̄ω and γ 2 
0 �s = 

( ̃  q s / ̃  m s ) ̄λ/ ̄ρ. We can now write δu s = M 
−1 
s · δ ˜ E , such that equa- 

tions ( A14 ) and ( A15 ) become 

− iωδ ˜ E = −χ
∑ 

s 

n̄ s ̃  q s δu s = −χ
∑ 

s 

n̄ s ̃  q s M 
−1 
s · δ ˜ E . (A18) 

Rearranging this expression yields 
[ 

1 + i 
∑ 

s 

χn̄ s ̃  q s 

ω 
M 

−1 
s 

] 

· δ ˜ E ≡ ξ · δ ˜ E = 0 . (A19) 

Non-trivial solutions to this equation require det ξ = 0. We exploit a 

simpler representation of ξ , namely 

ξ = 

(

S −iDγ0 

iD/γ0 S 

)

det ξ = S 2 − D 
2 . (A20) 

Here, we use ω 
2 
s = χγ0 ̃  q 

2 
s n̄ s / ̃  m s to express the variables S and D : 

S = 1 −
∑ 

s 

ω 
2 
s 

ω 2 − �2 
s 

, (A21) 

D = 

∑ 

s 

�s 

ω 

ω 
2 
s 

ω 2 − �2 
s 

. (A22) 

We approximate this to first order by Taylor expansion around �s / ω 

≈ 0. Hence, we consider the regime in which the frequency of the 

instability exceeds the gyration frequency of all species. 

S ≈ 1 −
∑ 

s 

ω 
2 
s 

ω 2 
, (A23) 

D ≈
∑ 

s 

ω 
2 
s 

ω 2 

�s 

ω 
. (A24) 

From det ξ = ( S − D )( S + D ), it is straightforward to find 

D = ±S . This equation has three roots for the system defined in 

equations ( A23 ) and ( A24 ). First, we explore the limit of ω ≈ ω 0 . At 

zeroth order in �s / ω ≈ 0 one has D 0 ≈ 0, such that 

S 0 = 1 −
∑ 

s 

ω 
2 
s 

ω 
2 
0 

≈ 0 . (A25) 

At this point, we recall that we assume a plasma of multiplicity 

M = ˜ n + , and ˜ n − = M + 1. Equation ( A25 ), thus, reduces to the 

pair plasma frequency 

ω 
2 
0 = 

∑ 

s 

ω 
2 
s = χγ0 ( 1 + 2 M ) . (A26) 

In the same way, we can generalize the first-order expression in 

equation ( A24 ): 

D ≈ −
1 

γ0 

χ

ω 3 

λ̄

ρ̄
. (A27) 

We now aim at obtaining an expression for ω at first order and we 

tackle this deri v ation by a perturbation approach. We are looking to 

find the perturbation δω in the decomposition ω ≈ ω 0 + δω. A Taylor 

expansion of the variables S and D to first order and recalling �s / ω 

≈ 0 yields 

δω 

ω p0 
= ±

1 

2 
γ −2 

0 μ−1 σ̄
1 / 2 
0 

1 + 2 M 
. (A28) 

Secondly, we explore the limit ω ≪ ω 0 as defined in equation ( A26 ). 

With ω 
2 
0 /ω 

2 ≫ 1, equation ( A23 ) is approximated as 

S ≈ −
∑ 

s 

ω 
2 
s 

ω 2 
. (A29) 

It is now straightforward to solve for the frequency and to recover 

ω 

ω p0 
= γ −2 

0 μ−1 σ̄
1 / 2 
0 

1 + 2 M 
= 2 

| δω| 
ω p0 

≡
ω ±

ω p0 
. (A30) 

Leptons are coupled to heavy ions via an oscillation of low frequency 

(compared to ω 0 ). We derived the separation between species during 

this oscillation in a semi-analytic analysis for a constant radiative 

force ( ˜ F rad = const. ) and a finite mass ratio μ. The mean amplitude 

of the lepton oscillation (around the slowly decelerating ions) was 

also obtained by Vanthieghem et al. ( 2022 , Section 5) and can be 

rewritten in the radiative units: 

A ± = ( 1 + 2 M ) | F rad | σ̄−1 / 2 
0 

= ( 1 + 2 M ) ˜ F rad σ̄
−1 / 2 
0 μ1 / 2 χ−1 / 2 γ 1 / 2 

u 

= ( 1 + 2 M ) ˜ F rad ˜ n 1 / 2 p 

(

˜ B u 

˜ B z 

)

ρ̄

λ
. (A31) 

Fig. A1 compares equations ( A30 ) and ( A31 ) to direct integration 

of the underlying equations for the basic cold plasma setup in 

Section 3.1 , with varying magnetizations σ̄u . We find an excellent 

agreement between the linear theory estimates and measurements in 

a multifluid integration. 

APPENDI X  B:  I MPLI CI T–EXPLI CI T  TIME  

STEPPING  

The various time-scales resolved by equations ( 6 ) to ( 19 ) can 

differ by orders of magnitude, specifically the inverse of the fast 

electromagnetic (plasma) frequency and the long radiative time- 

scale λ̄/ ̄d = γu χμ1 / 2 ≈ 10 12 . Thus, multifluid systems have tight 

constraints on the integration time-step. This issue is well-known 

throughout the literature (e.g. Amano 2016 ; Balsara et al. 2016 ), 

and we address it by treating the high-frequency ( H) components 

implicitly: 

∂ ̃ t u 
x 
p = μ

(

˜ E x + βy 
p 

˜ B z 

)

, (B1) 

∂ ̃ t 
(

h ±u 
x 
±
)

= ±
(

˜ E x + β
y 
± ˜ B z 

)

, (B2) 

∂ ̃ t u 
y 
p = μ

(

˜ E y − βx 
p 

˜ B z 

)

, (B3) 

∂ ̃ t 
(

h ±u 
y 
±
)

= ±
(

˜ E y − βx 
±

˜ B z 

)

, (B4) 

∂ ̃ t ˜ E x = −χ
[

˜ n p β
x 
p + ˜ n + β

x 
+ − ˜ n −βx 

−
]

, (B5) 

∂ ̃ t ˜ E y = −χ
[

˜ n p β
y 
p + ˜ n + β

y 
+ − ˜ n −β

y 
−
]

. (B6) 

First, we write equations ( B1 ) to ( B6 ) as a second-order Crank–

Nicolson scheme of the form 

f i = v n i − v n + 1 
i + 

�t 

2 

[

S i 
(

v n 
)

+ S i 
(

v n + 1 
)]

, (B7) 
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where n denotes a specific time-step and i is a mesh index of the 1D 

domain. Furthermore, we use 

v = 
{

u 
x 
p , u 

x 
+ , u 

x 
−, u 

y 
p , u 

y 
+ , u 

y 
−, E x , E y 

}

, (B8) 

and an appropriately chosen vector of source terms S i . For each i , 

we solve the system f i = 0 by optimizing the vector v n + 1 
i with an 

iterati ve Ne wton–Raphson method (cf. Section 9.6 in Press et al. 

2007 ). The low-frequency ( L ) components of the system are given 

by equations ( 6 ) to ( 9 ), as well as: 

(

∂ ̃ t + βx 
p ∂ ̃ x 

)

u 
x 
p = μ ˜ g , (B9) 

(

∂ ̃ t + βx 
±∂ ̃ x 

) (

h ±u 
x 
±
)

= −2 ̃  σ±h ±u 
x 
± ˜ n γ→ u + ˜ g , (B10) 

∂ ̃ t ˜ E y = −∂ ̃ x ˜ B z , (B11) 

∂ ̃ t ˜ B z = −∂ ̃ x ˜ E y . (B12) 

We integrate the low-frequency system L with an explicit iterative 

Crank–Nicolson method (Teukolsky 2000 ). The full decomposed 

system (implicit high-frequency H versus explicit low-frequency 

L ) is assembled by an operator splitting technique (Strang 1968 ; 

LeVeque 2007 ) for each time-step, such that 

v n + 1 
i = exp 

[

�t 

2 
H 

]

· exp [ �tL ] · exp 

[

�t 

2 
H 

]

· v n i . (B13) 

The benefits of this implicit–explicit multifluid integration are best 

e x emplified by modelling the plasma oscillation of a standing 

Langmuir wave in a pair plasma. For time-steps with ω ±0 � t > 1, 

our method conserves the total energy of the system, while losing 

the exact phase of the oscillation. As expected, numerical diffusion 

errors are substituted by inaccuracies in the dispersive properties of 

the solver. To increase the numerical stability of the finite-difference 

scheme, we include a hyperdif fusi vity term proportional to the fourth 

deri v ati ve, D/�t × f (4) ( x), to the momentum equations ( 10 ) to ( 13 ). 

For all the results shown throughout this w ork, we emplo y ε = 10 −2 . 

APPENDIX  C :  C A L I B R AT I O N  A N D  

C O N V E R G E N C E  

We benchmark the method described in Sections 2 and Appendix B 

against independently derived results with σ̄u = 0 (Section 3.B, 

Levinson 2020 ). As in Section 3 , we choose the seed photon 

density of ˜ n γ→ u ( x u ) = 10 −2 and γ u = 10. Throughout this set of 

tests, we vary the numerical parameter χ ∈ [10 3 , 10 15 ] and the 

resolution � x to probe the convergence of our method. Specifically, 

we change the number of grid points N x per lab-frame radiation 

length scale λ, where N x / λ ∈ [1, 1000]. With the CFL factor 

(Courant, Friedrichs & Lewy 1928 ) f CFL = 0.1, and the upstream 

electron plasma frequency ω −0 (adapting equation 5 ) the plasma 

scale is resolved with ω −0 � t ∈ { 0.1, 1, 10, 100 } . First, Fig. C1 

shows an e x emplary solution for the enthalpy closure and boundaries 

according to Levinson ( 2020 ). Our results are directly comparable 

to their fig. 1, where we note a difference of f actor tw o on the 

x -axis due to another definition of τ ∗. The analysis presented in 

this paper relies on relations between the multiplicity M and the 

radiation force F rad for a specific velocity separation ū ± between 

ions and pairs. As a second test, we measure the convergence of these 

observables with resolution in Fig. C2 by displaying the difference of 

individual solutions to the converged result (assumed as the average 

between the solutions for the highest resolution reference cases). 

Overall, the method produces an approximate scaling with second- 

order (grey lines in Fig. C2 ), while some features emerge for high 

(b)
(a)

(c)

(d)

Figure C1. As Fig. 3 , but for fully uncoupled conditions in the unmagnetized 

case (see Levinson 2020 ) at the time t̄ = 42 . 0. In the bottom panel, we 

show the electric field in addition to the multiplicity for an implicit–explicit 

integration. The inset panel (b) extends over the interval τ ∗ ∈ [0, 60]. 

Figur e C2. Conver gence test for the unmagnetized reference case shown in 

Fig. C1 . We show the relative errors of the multiplicity � M / M and radiative 

force � F rad / F rad measured at a velocity separation of ̄u ± = 0 . 25 for varying 

temporal and spatial resolutions. We compare the e xplicit inte gration (left- 

hand column) to an implicit–explicit time-stepping (right-hand column, cf. 

Appendix B ). The grey line scales in second order. 
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Figure C3. Relative errors of the multiplicity � M / M and radiative force 

� F rad / F rad for the implicit–explicit integration, measured at a velocity 

separation of ū ± = 0 . 05. We vary the scale separation in the magnetized 

case with a constant product χσ̄u = 10 5 . The grey line scales with first order. 

resolutions. The implicit–explicit time-stepping with the operator 

splitting introduced in Appendix B shows convergence properties that 

are comparable to a fully e xplicit inte gration. Notably, the implicit–

explicit scheme is capable of o v erstepping the time-scale set by 

the upstream electron plasma frequency ω −0 by several orders of 

magnitude. Our method passes this convergence and, especially, is 

capable of producing accurate results while implicitly underresolving 

the plasma frequency. 

Adding a background magnetization introduces the additional 

scale of the Larmor radius (see equation 4 ). With the product σ̄u χ as 

well as the remaining upstream conditions fixed, both the radiative 

length scale ̄λ and the Larmor radius ρ̄ are determined. A variation of 

the scale separation factor χ and the resolution ω −0 � t then merely 

changes the number of grid points (or resolved skin depths) per 

radiative/electromagnetic length. In Fig. C3 , we demonstrate the 

convergence of the key observables ( M , F rad ) for varying resolutions 

and linearly increasing χ . For marginally resolved plasma scales 

( ω −0 � t = 1 − 10), the stationary solutions converge for fixed 

σ̄u χ with decreasing scale separation. Already for the numerically 

accessible regime of χ ∼ 10 10 , the presented solutions are well 

converged with � M / M � 10 −3 . More importantly, our results 

suggest that the stationary solutions can be modelled with significant 

scale separation and then extrapolated to realistic values of χ and 

σ̄u while keeping σ̄u χ constant. We note that the accuracy of our 

method for magnetized setups deteriorates for ω −0 � t ≫ 10. 

APPENDI X  D :  L O C A L  PLASMA  QUANTITIES  

D1 General plasma characteristics 

In an arbitrary frame boosted along the x -direction with a velocity 

γ , we can define the magnetization as 

σγ = 

(

1 

˜ n p 

)(

B z 

B u 

)2 

σ̄u . (D1) 

As before, the magnetic field B z is measured in the shock front frame . 

Equally, the Larmor radius can be written for a general boost: 

ργ = 

(

γ

γu 

)(

B u 

B z 

)

ρ̄. (D2) 

The plasma skin depth can be rescaled as follows: 

d γ = 

(

γ

γu 

)(

1 

˜ n p 

)1 / 2 

d̄ . (D3) 

D2 Units of the radiati v e force 

To calculate the radiative force acting on leptons in commonly used 

units ( m p ̄ω p0 c, see Vanthieghem et al. 2022 ), we write equation ( 11 ) 

without normalizations: 

λ

m e c 2 

(

∂ t + v x ±∂ x 
) (

h ±m e cu 
x 
±
)

(D4) 

= ±
λe 

m e c 2 

(

E x + β
y 
±B z 

)

− 2 ̃  σ±h ±u 
x 
± ˜ n γ→ u . 

This expression can be recast into the following familiar form, 

d 
(

h ±m e cu 
x 
±
)

d t 
= ±e 

(

E x + β
y 
±B z 

)

−
m e c 

2 

λ
2 ̃  σ±h ±u 

x 
± ˜ n γ→ u , (D5) 

where we can identify the radiative force (using equation 5 ): 

f ±, rad = 
m e c 

2 

λ
2 ̃  σ±h ±u 

x 
± ˜ n γ→ u 

= 
m e c ̄ω p0 γ

1 / 2 
u 

χ1 / 2 μ1 / 2 
2 ̃  σ±h ±u 

x 
± ˜ n γ→ u 

= 2 ̃  σ±h ±u 
x 
± ˜ n γ→ u μ

1 / 2 χ−1 / 2 γ 1 / 2 
u m p ̄ω p0 c. (D6) 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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