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of-the arts U-Net.
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Recently, the design of grid composites with superior mechanical properties has gained significant atten-
tion as a testbed for deep neural network (DNN)-based optimization methods. However, current designed
DNN architectures are not specifically tailored for grid composites and thus showweak generalizability in
exploring unseen configurations that stem away from the training datasets. Here, a multiscale kernel
neural network (MNet) is proposed that can efficiently predict the strain field within a grid composite
subject to an external loading. Predicting the strain field of a composite is especially important when
it comes to understanding how the material will behave under loading. MNet enables accurate predic-
tions of the strain field for completely new configurations in unseen domain, with a reduced mean abso-
lute percentage error (MAPE) by 50% compared to a benchmark, U-Net as current state-of-the arts DNN
architectures. In addition, results showed that MNet maintained superb performances with less than one-
third of dataset, and can be applied to grid composites larger than the composite configurations used for
the initial training. By investigating the inference mechanisms from the kernels of multiple sizes, our
work revealed that the MNet can efficiently extract various spatial correlations from the material
distribution.
� 2022 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license
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1. Introduction

Developing composite materials with superior mechanical
properties is key to solve the challenges in various applications
in material science, medical engineering and automotive engineer-
ing [1–5]. Conventionally, particulate-reinforced or laminated
composites with relatively simple configurations were widely
used, which led to the development of analysis and design meth-
ods relavant to those configurations [6–8]. However, the advance-
ment of multimaterial 3D printing methods opens a completely
new design space for composite materials [9–11]. In order to fully
exploit the advantage of multimaterial 3D printing, one needs to
consider an astronomically large number of configurations. Hence,
various optimization frameworks leveraging the superior inference
of deep learning models have been proposed to handle such a large
design space [12–15]. Furthermore, the two-dimensional grid com-
posite design problems have served as a testbed for deep neural
network (DNN)-based design methods paired with finite element
method (FEM) [16–21]. FEM has been used for data generation
for many deep learning based predictive modeling tasks, because
FEM analyses match well with experimental results quantitatively
in the elastic regime and qualitatively beyond the elastic regime
[16]. Recently, the relationship between vast design parameters
and objective functions in various engineering fields as well as in
the material field has been investigated by directly learning
through DNN methods [20,22,23].

However, there exist two major challenges in handling a grid
composite design problem with deep learning, (i) large design
space, and (ii) weak predictive power of a DNN in unseen domain.
For example, a two-constituent composite with a 16x16 grid has a
total 1077 distinct available combinations. Even if one generates
one million different grid configurations for the training of a
DNN, the fraction of training set in the design space is negligible
(less than 1/1071 of all possible combinations). Still, the superior
performance of DNN inference led to an efficient and accurate pre-
diction of the properties for new grid configurations (located rela-
tively close to the training set), when a convolutional neural
network (CNN) architecture is adapted or an appropriate dimen-
sion reduction method is integrated.

However, in search for the optimal configuration far from the
initial training set, relatively weak predictive power of a DNN in
unseen domain limits the application of DNN-based optimization
frameworks. For instance, the initial training set typically consists
of random arrangements of two constituents, while the configura-
tion with optimal stiffness or strength is likely to be a more
ordered and symmetric structure [16,24]. As a solution, our previ-
ous study suggested a DNN-based optimization framework using
active-learning to gradually expand the reliable prediction range
of a DNN in search for the optimal configuration [24,25]. Moreover,
if the configurations in the training set have a limited range of vol-
ume fraction ratio between two constituents, a DNN often does not
accurately predict the properties of a grid composite with a very
different ratio [24]. Furthermore, existing studies concerning the
mechanical properties of grid composites only utilized publicly
available DNN architectures so far that were not specifically devel-
oped for the grid composites. The weak generalization of a DNN in
exploring unseen domain may not be overcome by just tuning the
architecture of the neural network [24].

Predicting the strain field of a composite is especially important
when it comes to understanding how the material will behave
under loading. A new DNN architecture may have superior gener-
alization performance if it can efficiently capture the correlation
between the strain field and the configuration. Because of the
mathematical similarity between elasticity and other physical phe-
nomena (thermal conductivity, piezoelectricity, thermoelectricity,
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and etc) [26], such an architecture can be beneficial for the grid
composite design problems concerning various physical proper-
ties. U-Net, which was originally developed for biomedical image
segmentation, has shown a superior performance in predicting
local fields over the composite problems because U-Net [18,27]
has an architecture that efficiently compresses and recovers the
spatial information between constituents compared to conven-
tional DNNs [16] which cause information loss during the convolu-
tion operation. However, U-Net architecture has limitations in
learning the grid composite properties. For example, the architec-
ture drops the information generated in layer of neural network.
In addition, the fixed kernel size has been used to capture the
strain field despite the importance of diverse information obtain-
able from various convolution kernel sizes [28,29]. As a result,
the U-Net does not provide satisfactory predictive power to predict
the configuration in unseen domain [23]. Although the U-Net using
data augmentation and transfer learning is a solution of predicting
local fields over the unseen domain and large system, these still
bring out generating extra simulations/experiments and training
an extra deep learning model.

Therefore, in this study, a novel multiscale kernel neural net-
work architecture, named as MNet, is proposed to tackle these
challenges, as shown in the schematic in Fig. 1. MNet is a single-
shot training neural network architecture for grid composite
designing tasks without relying on iterative active-learning and
data augmentation. While the existing DNN models (U-Net) have
employed a single-scale kernels, the MNet employs a multi-scale
kernel method with reduced feature maps to efficiently extract
the correlation between input (configuration) and output (strain
fields). The extension of kernel size obtainable from various effec-
tive convolution kernel sizes can compensate the information loss
caused by reduction in numbers of feature maps [28,29]. Also, the
extracted feature maps are fused and complemented each other. In
addition, MNet employs a feature reuse method to minimize the
information loss during the neural network operation (explained
as follow ‘‘method” chapter in detail). The superior performance
of MNet is demonstrated in terms of three aspects; generalization
performance (prediction accuracy over the configurations outside
the training set), training efficiency (prediction error for a given
dataset size), and applicability (prediction to larger grid compos-
ites using MNet trained for small grid composites without re-
training). Finally, we delve into the mechanism of MNet behind
the superior generalization performance over the configurations
within the unseen design space. Hyperparameters of MNet are
tuned by manually experimenting with different sets of hyperpa-
rameters using trial and error methods. The training results from
the U-Net architecture, which have shown the best performance
over the grid composite problem so far, are used as a benchmark.
In this work, we focus only on the local elastic strain distribution
over the linear response regime; an interesting future work direc-
tion is applying to the plastic regime.
2. Method

2.1. Data collection for showing deep learning model’s generalizability.

In general, a deep learning model is developed using data sets
which are divided into training and test sets. The training and test
sets are used to develop deep learning model and to evaluate the
predictive performance of the model, respectively. Input of the
each training/test set is a 2D matrix composed of 0 and 1 repre-
senting two constituent materials in the configuration, and the
output is the normal strain component along x-direction (exx) at
each block, respectively (Fig. 2a).



Fig. 1. Schematic of a novel deep learning method (MNet) to predict strain fields from configurations of composites within unseen design space. (a) The deep learning
model is trained from random configurations having 3 discrete volume fractions (VF) of 30%, 50%, and 70%. To investigate the generalizability of deep learning model, the
trained model is evaluated using test set which has the extensive VF space (1–99%) compared to training set. The model mechanism are investigated via the interpretation of
kernels/feature maps at final layer to validate the superb predictive performance for the unseen design space. (b) The trained model is investigated to the further challenge
problem of unseen domain (ordered and symmetric configurations) and prediction on strain field of large grid composites (256 � 256) using MNet trained with small grid
composites (16 � 16).
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To ensure the generalizability of deep learning model over the
unseen domain, the test set should include the vast design space
of a grid composite in terms of randomness in their distribution
and VF of stiff material, as shown in Fig. 2b. We then train the
MNet and benchmark model with the initial training set from ran-
dom configurations having 3 discrete VFs of 30, 50, and 70%
(Fig. 2c). To make a reasonable comparison between the bench-
mark model and the MNet model, we examine the hyperparame-
ters of the benchmark model. The learning hyperparameters of
MNet are the same as the benchmark, but employing the novel
architecture modeling methods. See the details of hyperparameter
optimization in Figs. S1 and S2. Two different test sets are pre-
pared; ‘‘test set i” consists of random configurations having VFs
ranging from 1% to 99% (Fig. 2d), and ‘‘test set ii” contains ordered
configurations (Fig. 2e). One can test the generalization perfor-
mance of the MNet in terms of unseen VF range or unseen config-
uration symmetry.

2.2. Data sets generation using finite element method (FEM)

Grid composites can have a variety of configurations depending
on their arrangement. A microscopic image can be considered a
grid composite and converted to a binary image for FEM [30,31].
FEM with rational accuracy is an efficient alternative to time-
consuming and expensive experiments. Therefore, we developed
the deep learning model based on FEM data to explore the
configuration-strain field relation.

Once the data sets representing the aforementioned seen/un-
seen design space are generated, the corresponding 2-D strain
fields are obtained from SfePy package (simple finite elements in
3

Python), which is a software for solving various kinds of problems
described by patial diffenerential equation by FEM method [32].
The FEM simulation was performed in the elastic regime. Two elas-
tic contrast ratio are tested to show the predictive performance of
deep learning model. Young’s modulus of soft and stiff phases for
two materials were 10/120 GPa and 100/120 GPa, respectively,
and Poisson’s ratios for both phases were 0.3. The periodic bound-
ary conditions (PBC) are applied for FEM, which enables reasonable
prediction for macro behavior from the unit cell [33,34].

For analysis of 16x16 grid composite system, 256 CPS8 ele-
ments are used, and strain values are averaged for each element.
For the FEM, macro strain of 2% in x-direction (e11) is applied to
the composites and the rest of macro strain (eij, where i, j = 1,2)
are set to zero. Since multi-axial deformation can be considered
by the superposition of uniaxial deformation, there is no need to
create a deep learning model for multi-axial deformation. There-
fore, we simply apply the macro strain in x-direction (e11) for train-
ing deep learning model.

2.3. Deep learning neural network (multi-scale kernels network,
MNet)

MNet has a novel convolution method and network architec-
ture, which efficiently extracts the relation between the composite
configuration and corresponding strain fields. The detail of MNet,
named as ‘‘Multi-scale kernels network”, is as follows;

(i) MNet first takes the 2D grid composite (16 by 16 elements)
as input. The encoder section of MNet on the left of Fig. 3a
extracts the spatial-interactive information between the



Fig. 2. Data set generation to reasonably represent the design space problem. (a) Schematic of 16 � 16 grid composite composed of stiff and soft materials, the applied
boundary conditions and corresponding strain field by FEM and corresponding strain field by FEM. (b) An example of design space due to an astronomical combination of
constituents. The dots represent configurations ditrtibuted by numerous two-constituents. (c) Training set with random configuration within limited volume fraction (30%,
50% and 70% VFs). (d) Test set i with random configuration within the completely different ratio of constituents from the training set (1–99% VFs). (e) Test set ii with ordered
and symmetric configurations.
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constituents, which correlate with the strain field. The con-
volution operation is carried out to extract the spatial infor-
mation of constituents by simultaneously moving multi-
dimensional kernels (2 � 2, 4 � 4 and 8 � 8 size) as shown
Fig. 3b.

(ii) The kernel size of the convolution is related to the local
receptive field, which extracts the various spatial relation-
ship between the composite constituents depending on
dimension of kernels. More specifically, the correlations
between adjacent constituents are extracted using a low-
level kernel, and effects between distant constituents are
captured using a high-level kernel (Fig. 3b). The composite
constituents-strain field relation extracted by multiple ker-
nels is verified in the results section.

(iii) However, since the multi-scale kernels method causes a
problem in that the number of feature maps increases, we
divide the number of convolutional feature maps by the
number of multi-kernels (Fig. 3c). Because three-scale ker-
nels are used in this study, N feature maps were evenly
divided to N/3 feature maps to prevent increase of trainable
parameters of deep learning model (when N is not divisible
by 3, we round down N/3).

(iv) Next, the convolution operation is calculated with same-
padding to preserve the spatial dimension by the following
equation.

SðkÞij ¼
X½m2 �

a¼½�m
2 �

X½n2�

b¼½n2�
Ii�a;j�bKm

2þa;n2þb ð1Þ
4

where SðkÞij ; Ii�a;j�b and Km
2þa;n2þb are the calculated feature map, the

input matrix and kernels, respectively. m and n is slide size. The
results of multi-scale kernels transfer to batch normalization (BN)
layer. It accelerates the training process by controlling a parameter
scale [35]. The BN results have the non-linearity characteristic by
converting an activation function (ReLu). The convoluted feature
maps are fused through ‘‘feature fusion layers” because the multi-
kernel results contain meaningful information for configuration-
strain field relations in the various viewpoints (Fig. 3c). The feature
fusion layer is represented as the following equation:

Slm ¼ Sð1Þij � Sð2Þij � Sð3Þij ð2Þ

Where Slm; S
ð1Þ
ij ; S 2ð Þ

ij and S 3ð Þ
ij are the fused feature maps, feature maps

by first kernel, feature maps by second kernel and feature maps by
third kernel, respectively.

(v) Then, the merged feature maps are used as input in next
layer. Here, each of feature maps calculated from all previ-
ous sub-layers are concatenated as next inputs as shown
in Fig. 3c. Reusing all information from previously calculated
feature can minimize information loss during convolution
process. In addition, the feature reuse method contributed
to the effect of fast convergence of the learning error by min-
imizing overfitting and reducing effects such as gradient
exploding [36]. These learning effects are represented in
Fig. S1. Next, the 1x1 convolution, which is a pointwise
method [37], reduces the learning weight and maintains
meaningful information, as shown in Fig. 3d. The down-



Fig. 3. Multiscale kernel neural network (MNet). (a) The architecture is based on U-Net backbone. Wemodified the general U-Net backbone using our advanced method. (b)
Multi-feature extraction method with multi-dimensional kernels. (c) Multi-dense block with multi-feature extraction method, dense layer method and (d) pointwise method
(bottleneck layer) to squeeze the increased feature maps. The final feature maps are finally connected to max-pooling layer.

D. Park, J. Jung, G.X. Gu et al. Materials & Design 223 (2022) 111192
sampling layer (max-pooling, m � m size) leads to the
reduction of the feature map’s dimension preserving the
important information. It extends the receptive field size
which increases the robustness for the distant composite
constituents and decreases the computation load.

(vi) The multi-kernels dense block in encoder section is repeated
two times to extract the interaction between composite con-
stituents. Next, we use the decoder section using the trans-
pose convolution operation on right of Fig. 3a. The decoder
section increases the dimension of final feature maps
reduced in encode section by the FEM spatial dimension
and predicts the FEM results by optimizing the CNN weight.
The transposed convolution operation is used to restore the
squeezed feature maps by moving multiple learned CNN fil-
ters (3 � 3 size, 2 stride).

(vii) Then, the transposed convolution feature maps are linked
with the corresponding feature maps in each of last layers
in encoder section (e.g. concatenate layer) to complement
5

the spatial-interactive information between the constituents
(Fig. 3a). Then, the multi-scale feature maps connected from
encoder section and the transposed feature maps are con-
catenated and transferred to the multi-dense block without
down-sampling layer. This process is repeated to restore the
output dimension (FEM results). We use the linear activation
function in the final output layer for the regression problem.

Here, the benchmark algorithm (U-Net) only uses the general
single-kernel without feature reuse. Although MNet and U-Net
have the same number of feature maps, MNet has 4,796,494
learning weights. U-Net has 12,724,737 weights. That is, the MNet
can be effectively trained using only 37% of the benchmark
weights.

The learning weights between input and output are repeatedly
optimized by with the gradient of the loss function backpropaga-
tion algorithm. MNet is updated by backpropagation of Adam opti-
mizer [38]. We use the mean square error as loss function. In this
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study, MNet and U-Net is implemented using Keras with Ten-
sorFlow backend.
3. Results

3.1. Deep learning model’s generalizability test for extensive design
space: Unseen volume fraction range.

Fig. 4 shows the results predicted by the MNet and the bench-
mark U-Net over the ‘‘test set i” containing 1,980 random configu-
rations with VFs ranging from 1% to 99%. We test the two different
ratios of elastic constants to show generalizability over different
constituent materials. The two models are sufficiently converged
after 5 training iterations, indicating that they can be reasonably
compared with each other (see the details of repeatability test of
deep learning models in Fig. S3). In the interpolation range within
30 to 70% VF, MNet outperforms the benchmark notably. Still, the
performance of the U-Net turns out to be reasonably good within
the range. However, in the unseen VF domain outside the training
set, the performance of the U-Net starts to degrade significantly
especially in the VF ranges located farther, as depicted in the R2

(Fig. 4a,c) and mean absolute percentage error (Fig. 4b,d). On the
contrary, the performance of MNet persists beyond the VF range
of the training set, and a notable drop in the prediction accuracy
is found only near to the limiting cases of 1 or 99 % VFs. In addition,
the superb predictive performance of MNet is maintained regard-
less of change in elasticity ratios.
Fig. 4. Results of model generalizability test over extensive design space for two elas
baseline) are evaluated using the aforementioned test set i. Performance of MNet is com
shows the superb generalizability of predicting strain fields with seen and unseen volu
performance in unseen VF domain (VF 1–30% and 70–99%).
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Additionally, in Fig. 5, we visualize the error distribution, scat-
ter, and heatmap for the strain fields where predictions of the deep
learning models are compared to FEM results for randomly
selected two configurations in the ‘‘test set i” in the interpolation
(VF = 52 %, Fig. 5a–c) and extrapolation (VF = 10%, Fig. 5d–f) ranges.
At a first glance, both MNet and benchmark seem to successfully
predict the local strain distribution, because strain field predictions
from both looks similar to that of FEM as shown in Fig. 5c and f.
However, the error distribution histograms (Fig. 5a and d) and
MAPE heat maps (Fig. 5c and f) more clearly visualize the superior
performance of the MNet over the benchmark. MNet shows narrow
error distribution with small errors for both interpolation and
extrapolation tasks, while the benchmark leads to relatively wider
error distribution with relatively higher errors for extrapolation
tasks. Our results imply that the MNet is able to learn the
configuration-strain field relationship over a wide VF range, even
if it was trained with a training set with limited VF ranges. In addi-
tion, because of the superior inference of MNet, MNet requires only
less-than one-third of training dataset to achieve the same level of
error compared to the benchmark (see the details of results of deep
learning training efficiency test in Fig. S4).

3.2. Deep learning model’s generalizability test for unseen domain:
Ordered configuration.

Next, we test the generalization performance of the MNet over a
more challenging interference task of predicting the strain field of
ordered configurations. In pattern or shape optimization tasks via
tic constrast ratio (E1/E2 = 120/10 and 120/100). Deep learning models (MNet and
pared with that of U-Net in terms of (a, c) R2 and (b, d) MAPE, respectively. MNet
me fraction compared to the baseline. However, baseline degrades the predictive



Fig. 5. Analysis on the strain fields predicted by deep learning models (MNet, baseline) and FEM. Composites are randomly selected in interpolation (VF 52 %) and
extrapolation (VF 10%). Two configuration in interpolation and extraploration are shown in a, d, respectively. Absolute error histogram of strain fields by the deep learning
models and FEM are illustrated in a, d. The error histograms are calculated separately for stiff and soft phases. Also, their strain fields of all elements by deep learning models
are compared to the FEM results (ground truth) using scatter plot in b, e. The variation of baseline are increasesd for configuration within unseen volume fraction. However,
MNet shows superb generalizability which is similar ideal fitting line. Heat maps about the composite within interpolation and extrapolation are shown by FEM, deep
learning models in c, f. Baseline shows non-uniform MAPE heatmap compared to MNet.
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deep learning, DNN trained over a training set consisting of ran-
dom configurations has weak predictive power over the optimal
configuration (typically, ordered and symmetric configuration),
limiting the applicability of DNN-based inverse design method
7

[18,20]. To overcome the problem, our previous study proposed a
neural network-based forward design framework in which the reli-
able prediction range gradually expands via active learning and
data augmentation [24]. Hence, in the ‘‘test set ii”, we construct
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multiple ordered configurations motivated by the KAIST logo to
test the generalization performance of the MNet trained over ran-
dom configurations, as depicted in Fig. 6.

The strain fields predicted from MNet matches very well with
those obtained from FEM, i.e. the ground truth. On the contrary,
the strain fields predicted from the benchmark deviate from the
ground truth for the unseen ordered configurations. Here, the
MNet reduces the MAPE for the strain distribution by 55%, when
compared with benchmark results. The generalization perfor-
mance over two test sets implies that the MNet may serve as an
efficient single-shot training surrogate model for grid composite
designing tasks without relying on iterative active-learning based
optimization approaches.

3.3. Application of deep learning model to predict large composite

Having tested the generalization performance of the MNet over
unseen domain involving grid composites of the same size, we test
its ability to predict the strain field of larger grid composites. It is
desirable to have such a capability because the FEM analyses of lar-
ger grid composites require expensive computational cost and
longer computation time. Also, if it becomes feasible, we do not
need to train an extra deep learning model when designing grid
composites whose size is larger than the grid composites used in
the original training set.

In the literature, a divide and conquer (DaC) algorithm has been
suggested to apply the deep learning model with the small input
Fig. 6. Further complex model generalizability test results using ordered configurat
using totally disparate geometric pattern from the training set. The evaluation is condu
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dimension to the larger system [39,40] and utilized to date, of
which schematic is shown in Fig. 7a. The general DaC algorithm
breaks down a large composite into many sub-composite parts,
until their dimensions become identical to the input dimensions
of the deep learning model trained with a small composite system.
The sub-composites are fed into to the model, and the prediction
results for strain fields of sub-composites are rearranged by the
large composite dimension as shown Fig. 7a. However, the general
DaC scheme may cause informative loss because the spatial corre-
lation is not shared among the divided small composites (Fig. 7b).
This may lead to a decrease in the prediction accuracy of the strain
field of large composite systems.

Therefore, a novel overlapping DaC method is proposed to min-
imize the information loss. The overlapping DaC divides the large
composite by mimicking the CNN stride method that controls
how filter convolves over the input image. More specifically, our
method first splits the large composite into small domains, as well
as overlapping domains to include the boundary region between
them as shown Fig. 7c. Then, all divided composites including
the rest of the red and green box in Fig. 7c are fed into the model.
All predicted strain fields are rearranged using only the 8x8 region
from the center, excluding region where information is likely to be
lost at the boundary. We compare the strain error distributions of
the 256x256 size composites predicted by the general DaC and our
novel overlapping DaC system, as shown in Fig. 7d. To compare the
two methods, we identically use a MNet trained with a 16x16 grid,
and use a large composite and the strain fields of FEM in Fig. 7a.
ion far away from the training configuration. Generalizability test are performed
cted in terms of MAPE.



Fig. 7. (a) Deep learning model application to predict the large composite (256x256) using 16x16 MNet and custom-divide-and-conquer (DaC) method. (b) General DaC
method and (c) Overlapping DaC method (d) Comparison of the general DaC with the overlapping DaC for the large composite. (e) Prediction results of the two large
composites (VF = 52% and 82%, respectively) by MNet and U-Net with overlapping DaC.
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Compared to the general DaC, the overlapping DaC efficienctly
increases the prediction accuracy for strain fields of large compos-
ite because the spatial correlation information is shared via the
overlapping patches.

Additionally, the overlapping DaC is applied to the the bench-
mark model and the MNet model to test their ability to predict
the strain field of larger grid composites, as shown in Fig. 7e. We
use two large composites with the random configurations
(VF = 52% and 82%). Benchmark model with the low generalizabil-
ity have significant error variations in predicting the strain fields of
the two large composites compared to MNet with high generaliz-
ability for an unseen domain. The applicability of MNet with the
overlapping DaC implies that the combined methods may serve
as an efficient approach that does not require re-training a deep
learning model when designing larger grid composites.
3.4. Interpretation of inference mechanism of the learned MNet and
benchmark model

Next, the mechanism behind the superior generalization perfor-
mance on unseen design space is analyzed. Kernels/feature maps at
the last block of learnt deep learning model have the most highly
task-relevant features and have provided the learning mechanism
of DNN models applied to various science and engineering disci-
plines [41-43]. Based on the methods, we investigate the charac-
teristics of multi-kernels and corresponding feature maps of
9

MNet and benchmark model by visualizing the inference process
of unseen configuration at the final block as shown Fig. 8.

A single configuration containing square-shape stiff phase
embedded in a soft phase is fed into MNet and benchmark trained
with the random configurations (Fig. 8a). To facilitate the mecha-
nism interpretation, four kernels in MNet and benchmark are ran-
domly selected and analyzed. The multiple kernels of MNet
efficiently extract the significant strain information between the
constituents depending on the receptive field of kernels (see the
details of results of kernels/feature maps at final layer of the
trained models in Fig. S5e-g). These extracted information are all
relevant in predicting the strain field of unseen configurations.
Therefore, one can conclude that all feature maps complement
each other through the fusion layer and 1d-pointwise convolution
(a detailed explanation on the architecture is provided in the
‘‘Method” section). The complemented feature maps are illustrated
in Fig. 8b. These feature maps of MNet extract the explainable
strain information compared to the results of strain fields by
FEM (Fig. 8d). The comprehensible feature maps are passed
through the final activation function (Fig. 8c) and the resulting pre-
diction turns out to be very similar to the ground truth (Fig. 8d).

It is of note that the learnt kernels of benchmark model are
irregular compared to the kernels of MNet (Fig. S5). These bench-
mark kernels extract the corresponding non-uniform strain infor-
mation of unseen configuration as shown Fig. 8e. Some feature
maps do not reflect the ordered and symmetric strain distribution
and look rather irregular. These irregular feature maps cause the



Fig. 8. Interpretation on kernels/feature maps at final block through visualizing inference process of unseen configuration to reveal inference mechanism of
MNet algorithm with superb generalizability. (a) Configuration that is completely different from the training space. (b) Feature maps of MNet through multi-feature
extraction method, fusion layer and pointwise method at final layer. The orange box and blue box represents the strain field information of stiff phase and the strain field
information of soft phase, respectively. These can be explained by comparing with results of FEM. (c) Results of strain field predicted by MNet. (d) Strain field distribution by
FEM simulation. (e) Feature maps through single kernel by benchmark (U-Net). (f) Results of strain field predicted from benchmark (U-Net). The benchmark model extract the
non-uniform strain information, which bring outs the degradation of generalizability for predicting strain field of unseen configuration.
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degradation of generalizability of predicting unseen configurations
as shown Fig. 8f. In addition, even when a configuration containing
a larger square-shaped rigid phase included in the soft phase is fed,
MNet outperforms the benchmark model results with various sin-
gle kernel size and generalizes the results of interpretation of deep
learming model mechanism (Fig. S6). In other words, multiple-
kernel method combining feature reuse and pointwise method is
key to predict the configuration-strain field relation the unseen
design space.
4. Discussion

In this study, we propose a novel DNN architecture called MNet
to predict the strain field of grid composite within large and
unseen design space in the elastic regime. We verify the perfor-
mance MNet in terms of three aspects: generalization perfor-
mance, training efficiency, and interpretability. The MNet trained
with random 16x16 configurations shows excellent predictive per-
formance even for unseen configurations. AlthoughMNet is trained
with random configurations with limited VFs (30%, 50%, and 70%),
it successfully predicts strain field for a wide range of VF as well as
ordered symmetric configurations. Although iterative learning
frameworks based on active learning and data augmentation may
provide solutions to the problem of weak-predictive performance
in unseen configurations [24,25], MNet can be an efficient alterna-
tive for vast design space problem as a single-shot training model
without data-augmentation and re-training. In addition, we show
MNet trained with small grid composite (16 � 16) can predict
strain field of large grid composites (256 � 256). We propose the
so-called overlapping DaC method inspired by the convolution
10
stride method to minimize the information loss occurring in the
existing DaC method. The MNet combined with the efficient over-
lapping DaC outperforms the U-Net with overlapping DaC to pre-
dict the large composite system.

The inference process of multiple-kernls/feature maps at the
final block is investigated to understand the generalizability per-
formance of MNet over the unseen design space. In the prediction
task on unseen domain (order and symmetric configuration), the
MNet can extract meaningful features concerning the correlation
between the configuration and the strain field. The feature maps
containing strain field information complement each other,
enabling the clear prediction of strain field for the unseen configu-
rations. Opening the black box model allows domain experts in
various engineering disciplines to provide insight into deep learn-
ing models. It is envisioned that MNet can be readily applied to a
wide range of design problems with image-based input data in a
variety of science and engineering disciplines.
5. Conclusion

In conclusion, we proposed multiscale kernel neural network
(MNet) that accurately predict the strain field of composites far
away from the VF domain of training dataset. Moreover, the MNet
can predict strain fields for the symmetric and ordered configura-
tions. It is of note that the benchmark (UNet) as the existing state-
of-the-arts algorithm significantly degraded in predicting the
unseen domain. MNet reduced mean absolute percentage error
(MAPE) by 50% compared to a benchmark architecture (UNet).
MNet maintained superb performances with less than one-third
of dataset, and can be applied to grid composites larger than the



D. Park, J. Jung, G.X. Gu et al. Materials & Design 223 (2022) 111192
composite configurations used for the initial training. Furthermore,
we revealed that the MNet efficiently extracted various meaning
spatial correlations (feature maps) from the spatial distribution
of constituents. Here, the benchmark generated irregular feature
maps that cause the degradation of generalizability of predicting
unseen configurations. In order to further explore materials with
superior properties from deep learning model, it is necessary to
extend deep learning capabilities beyond the elastic regime. We
plan to apply the network architecture proposed in this study to
tackle more complex material behaviors in a future study.
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upon reasonable request.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This research was supported by National Research Foundation
of Korea (NRF) (Fund Number: 2022R1A2B5B02002365), KAIST
Global Singularity Research Program for 2022 (Fund Number:
1711100689), KAIST UP Program (Fund Number: N10220003),
the Office of Naval Research (Fund Number: N00014-21-1-2604),
and National Science Foundation (Fund Number: DMREF-
2119276).
Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.matdes.2022.111192.

References

[1] K.I. Jang, H.U. Chung, S. Xu, C.H. Lee, H. Luan, J. Jeong, H. Cheng, G.T. Kim, S.Y.
Han, J.W. Lee, J. Kim, M. Cho, F. Miao, Y. Yang, H.N. Jung, M. Flavin, H. Liu, G.W.
Kong, K.J. Yu, S. Il Rhee, J. Chung, B. Kim, J.W. Kwak, M.H. Yun, J.Y. Kim, Y.M.
Song, U. Paik, Y. Zhang, Y. Huang, J.A. Rogers, Soft network composite materials
with deterministic and bio-inspired designs, Nat. Commun. 6 (2015) 1–11,
https://doi.org/10.1038/ncomms7566.

[2] L.K. Grunenfelder, N. Suksangpanya, C. Salinas, G. Milliron, N. Yaraghi, S.
Herrera, K. Evans-Lutterodt, S.R. Nutt, P. Zavattieri, D. Kisailus, Bio-inspired
impact-resistant composites, Acta Biomat. 10 (9) (2014) 3997–4008.

[3] J.J. Martin, B.E. Fiore, R.M. Erb, Designing bioinspired composite reinforcement
architectures via 3D magnetic printing, Nat. Commun. 6 (2015) 1–7, https://
doi.org/10.1038/ncomms9641.

[4] F. Ahmad, H.S. Choi, M.K. Park, A review: Natural fiber composites selection in
view of mechanical, light weight, and economic properties, Macromol. Mater.
Eng. 300 (2015) 10–24, https://doi.org/10.1002/mame.201400089.

[5] M. Zhang, N. Zhao, Q. Yu, D. Ren, F. Berto, Z. Zhang, Z. Liu, R. Qu, J. Zhang, S. Li, R.
O. Ritchie, On the damage tolerance of 3-D printed Mg-Ti interpenetrating-
phase composites with bioinspired, Nat. Commun. 13 (2022) 1–13, https://doi.
org/10.1038/s41467-022-30873-9.

[6] J. Jung, S. Lee, B. Ryu, S. Ryu, Investigation of effective thermoelectric properties
of composite with interfacial resistance using micromechanics-based
homogenisation, Int. J. Heat Mass Transf. 144 (2019) 118620, https://doi.org/
10.1016/j.ijheatmasstransfer.2019.118620.

[7] J. Jung, S.H. Jeong, K. Hjort, S. Ryu, Investigation of thermal conductivity for
liquid metal composites using the micromechanics-based mean-field
homogenization theory, Soft Matter. 16 (2020) 5840–5847, https://doi.org/
10.1039/d0sm00279h.

[8] Y. Kim, J. Jung, S. Lee, I. Doghri, S. Ryu, Adaptive affine homogenization method
for Visco-hyperelastic composites with imperfect interface, Appl. Math. Model.
107 (2022) 72–84, https://doi.org/10.1016/j.apm.2022.02.007.

[9] M.A. Skylar-Scott, J. Mueller, C.W. Visser, J.A. Lewis, Voxelated soft matter via
multimaterial multinozzle 3D printing, Nature. 575 (2019) 330–335, https://
doi.org/10.1038/s41586-019-1736-8.
11
[10] C. Coulais, E. Teomy, K. De Reus, Y. Shokef, M. Van Hecke, Combinatorial design
of textured mechanical metamaterials, Nature. 535 (2016) 529–532, https://
doi.org/10.1038/nature18960.

[11] J.O. Hardin, T.J. Ober, A.D. Valentine, J.A. Lewis, Microfluidic printheads for
multimaterial 3D printing of viscoelastic inks, Adv. Mater. 27 (2015) 3279–
3284, https://doi.org/10.1002/adma.201500222.

[12] X. Chen, H. Zhou, Y. Li, Effective design space exploration of gradient
nanostructured materials using active learning based surrogate models,
Mater. Des. 183 (2019) 108085, https://doi.org/10.1016/
j.matdes.2019.108085.

[13] C.T. Chen, D.C. Chrzan, G.X. Gu, Nano-topology optimization for materials
design with atom-by-atom control, Nat. Commun. 11 (2020) 1–9, https://doi.
org/10.1038/s41467-020-17570-1.

[14] M. Osanov, J.K. Guest, Topology optimization for architected materials design,
Annu. Rev. Mater. Res. 46 (2016) 211–233, https://doi.org/10.1146/annurev-
matsci-070115-031826.

[15] Z. Yang, Y.C. Yabansu, D. Jha, W.-K. Liao, A.N. Choudhary, S.R. Kalidindi, A.
Agrawal, Establishing structure-property localization linkages for elastic
deformation of three-dimensional high contrast composites using deep
learning approaches, Acta Mater. 166 (2019) 335–345.

[16] C. Yang, Y. Kim, S. Ryu, G.X. Gu, Prediction of composite microstructure stress-
strain curves using convolutional neural networks, Mater. Des. 189 (2020)
108509, https://doi.org/10.1016/j.matdes.2020.108509.

[17] Z. Yang, C.H. Yu, M.J. Buehler, Deep learning model to predict complex stress
and strain fields in hierarchical composites, Sci. Adv. 7 (2021), https://doi.org/
10.1126/SCIADV.ABD7416.

[18] M. Raj, S. Thakre, R.K. Annabattula, A.K. Kanjarla, Estimation of local strain
fields in two-phase elastic composite materials using UNet-based deep
learning, Integr. Mater. Manuf. Innov. 10 (2021) 444–460, https://doi.org/
10.1007/s40192-021-00227-2.

[19] D. Montes de Oca Zapiain, E. Popova, S.R. Kalidindi, Prediction of microscale
plastic strain rate fields in two-phase composites subjected to an arbitrary
macroscale strain rate using the materials knowledge system framework, Acta
Mater. 141 (2017) 230–240.

[20] M.I. Latypov, L.S. Toth, S.R. Kalidindi, Materials knowledge system for
nonlinear composites, Comput. Methods Appl. Mech. Eng. 346 (2019) 180–
196, https://doi.org/10.1016/j.cma.2018.11.034.

[21] Y.C. Yabansu, A. Iskakov, A. Kapustina, S. Rajagopalan, S.R. Kalidindi,
Application of Gaussian process regression models for capturing the
evolution of microstructure statistics in aging of nickel-based superalloys,
Acta Mater. 178 (2019) 45–58, https://doi.org/10.1016/j.actamat.2019.07.048.

[22] E. Samaniego, C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Hamdia,
X. Zhuang, T. Rabczuk, An energy approach to the solution of partial
differential equations in computational mechanics via machine learning:
Concepts, implementation and applications, Comput. Methods Appl. Mech.
Eng. 362 (2020) 112790.

[23] X. Zhuang, H. Guo, N. Alajlan, H. Zhu, T. Rabczuk, Deep autoencoder based
energy method for the bending, vibration, and buckling analysis of Kirchhoff
plates with transfer learning, Eur. J. Mech. A/Solids. 87 (2021) 104225, https://
doi.org/10.1016/j.euromechsol.2021.104225.

[24] Y. Kim, Y. Kim, C. Yang, K. Park, G.X. Gu, S. Ryu, Deep learning framework for
material design space exploration using active transfer learning and data
augmentation, NPJ Comput. Mater. 7 (1) (2021), https://doi.org/10.1038/
s41524-021-00609-2.

[25] W. Demeke, Y. Kim, J. Jung, J. Chung, B. Ryu, S. Ryu, Neural network-assisted
optimization of segmented thermoelectric power generators using active
learning based on a genetic optimization algorithm, Energy Rep. 8 (2022)
6633–6644, https://doi.org/10.1016/j.egyr.2022.04.065.

[26] S. Ryu, S. Lee, J. Jung, J. Lee, Y. Kim, Micromechanics-based homogenization of
the effective physical properties of composites with an anisotropic matrix and
interfacial imperfections, Front. Mater. 6 (2019) 1–17, https://doi.org/10.3389/
fmats.2019.00021.

[27] J.R. Mianroodi, N.H. Siboni, D. Raabe, Teaching solid mechanics to artificial
intelligence—a fast solver for heterogeneous materials, NPJ Comput. Mater. 7
(2021) 1–10, https://doi.org/10.1038/s41524-021-00571-z.

[28] X. Ding, X. Zhang, Y. Zhou, J. Han, G. Ding, J. Sun, Scaling Up Your Kernels to
31x31, Revisiting Large Kernel Design in CNNs (2022). http://arxiv.org/abs/
2203.06717.

[29] M. Li, X. Li, W. Sun, X. Wang, S. Wang, Efficient convolutional neural network
with multi-kernel enhancement features for real-time facial expression
recognition, J. Real-Time Image Process. 18 (2021) 2111–2122, https://doi.
org/10.1007/s11554-021-01088-w.

[30] P.G. Young, T.B.H. Beresford-West, S.R.L. Coward, B. Notarberardino, B. Walker,
A. Abdul-Aziz, An efficient approach to converting three-dimensional image
data into highly accurate computational models, Philos. Trans. R. Soc. A Math.
Phys. Eng. Sci. 366 (2008) 3155–3173, https://doi.org/10.1098/rsta.2008.0090.

[31] F.L. Palombini, E.L. Lautert, J.E.d.A. Mariath, B.F. de Oliveira, Combining
numerical models and discretizing methods in the analysis of bamboo
parenchyma using finite element analysis based on X-ray microtomography,
Wood Sci. Technol. 54 (1) (2020) 161–186.

[32] R. Cimrman, V. Lukeš, E. Rohan, Multiscale finite element calculations in
python using sfepy, ArXiv. 45 (4) (2019) 1897–1921.

[33] A. Taliercio, Generalized plane strain finite element model for the analysis of
elastoplastic composites, Int. J. Solids Struct. 42 (2005) 2361–2379, https://doi.
org/10.1016/j.ijsolstr.2004.09.030.

https://doi.org/10.1016/j.matdes.2022.111192?_ga=2.6137712.256811911.1664158688-378153303.1663898438
https://doi.org/10.1038/ncomms7566
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0010
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0010
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0010
https://doi.org/10.1038/ncomms9641
https://doi.org/10.1038/ncomms9641
https://doi.org/10.1002/mame.201400089
https://doi.org/10.1038/s41467-022-30873-9
https://doi.org/10.1038/s41467-022-30873-9
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118620
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118620
https://doi.org/10.1039/d0sm00279h
https://doi.org/10.1039/d0sm00279h
https://doi.org/10.1016/j.apm.2022.02.007
https://doi.org/10.1038/s41586-019-1736-8
https://doi.org/10.1038/s41586-019-1736-8
https://doi.org/10.1038/nature18960
https://doi.org/10.1038/nature18960
https://doi.org/10.1002/adma.201500222
https://doi.org/10.1016/j.matdes.2019.108085
https://doi.org/10.1016/j.matdes.2019.108085
https://doi.org/10.1038/s41467-020-17570-1
https://doi.org/10.1038/s41467-020-17570-1
https://doi.org/10.1146/annurev-matsci-070115-031826
https://doi.org/10.1146/annurev-matsci-070115-031826
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0075
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0075
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0075
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0075
https://doi.org/10.1016/j.matdes.2020.108509
https://doi.org/10.1126/SCIADV.ABD7416
https://doi.org/10.1126/SCIADV.ABD7416
https://doi.org/10.1007/s40192-021-00227-2
https://doi.org/10.1007/s40192-021-00227-2
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0095
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0095
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0095
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0095
https://doi.org/10.1016/j.cma.2018.11.034
https://doi.org/10.1016/j.actamat.2019.07.048
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0110
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0110
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0110
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0110
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0110
https://doi.org/10.1016/j.euromechsol.2021.104225
https://doi.org/10.1016/j.euromechsol.2021.104225
https://doi.org/10.1038/s41524-021-00609-2
https://doi.org/10.1038/s41524-021-00609-2
https://doi.org/10.1016/j.egyr.2022.04.065
https://doi.org/10.3389/fmats.2019.00021
https://doi.org/10.3389/fmats.2019.00021
https://doi.org/10.1038/s41524-021-00571-z
http://arxiv.org/abs/2203.06717
http://arxiv.org/abs/2203.06717
https://doi.org/10.1007/s11554-021-01088-w
https://doi.org/10.1007/s11554-021-01088-w
https://doi.org/10.1098/rsta.2008.0090
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0155
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0155
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0155
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0155
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0160
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0160
https://doi.org/10.1016/j.ijsolstr.2004.09.030
https://doi.org/10.1016/j.ijsolstr.2004.09.030


D. Park, J. Jung, G.X. Gu et al. Materials & Design 223 (2022) 111192
[34] Y. Zhang, Z. Xia, F. Ellyin, Two-scale analysis of a filament-wound cylindrical
structure and application of periodic boundary conditions, Int. J. Solids Struct.
45 (2008) 5322–5336, https://doi.org/10.1016/j.ijsolstr.2008.05.026.

[35] S. Santurkar, D. Tsipras, A. Ilyas, A. Madry, How does batch normalization help
optimization?, Adv Neural Inf. Process. Syst. (2018) 2483–2493.

[36] F. Ren, W. Liu, G. Wu, Feature reuse residual networks for insect pest
recognition, IEEE Access. 7 (2019) 122758–122768, https://doi.org/10.1109/
ACCESS.2019.2938194.

[37] S. Kriman, S. Beliaev, B. Ginsburg, J. Huang, O. Kuchaiev, V. Lavrukhin, R. Leary,
J. Li, Y. Zhang, Quartznet: deep automatic speech recognition with 1D time-
channel separable convolutions, in: ICASSP IEEE Int. Conf. Acoust. Speech
Signal Process. - Proc. 2020-May, 2020, pp. 6124–6128, https://doi.org/
10.1109/ICASSP40776.2020.9053889.

[38] D.P. Kingma, J.L. Ba, Adam: a method for stochastic optimization, in: 3rd Int.
Conf. Learn. Represent ICLR 2015 Conf. Track Proc., 2015, pp. 1–15.

[39] A.S. Rao, T. Nguyen, M. Palaniswami, T. Ngo, Vision-based automated crack
detection using convolutional neural networks for condition assessment of
12
infrastructure, Struct. Heal. Monit. 20 (2021) 2124–2142, https://doi.org/
10.1177/1475921720965445.

[40] S. Yang, C. Zhao, J. Ren, K. Zheng, Z. Shao, S. Ling, Acquiring structural and
mechanical information of a fibrous network through deep learning,
Nanoscale. 14 (2022) 5044–5053, https://doi.org/10.1039/d2nr00372d.

[41] T.R. Hayes, J.M. Henderson, Deep saliency models learn low-, mid-, and high-
level features to predict scene attention, Sci. Rep. 11 (2021) 1–13, https://doi.
org/10.1038/s41598-021-97879-z.

[42] S. Ghosal, D. Blystone, A.K. Singh, B. Ganapathysubramanian, A. Singh, S.
Sarkar, An explainable deep machine vision framework for plant stress
phenotyping, Proc. Natl. Acad. Sci. U.S.A. 115 (2018) 4613–4618, https://doi.
org/10.1073/pnas.1716999115.

[43] B.S.S. Pokuri, S. Ghosal, A. Kokate, S. Sarkar, B. Ganapathysubramanian,
Interpretable deep learning for guided microstructure-property explorations
in photovoltaics, NPJ Comput. Mater. 5 (2019) 1–11, https://doi.org/10.1038/
s41524-019-0231-y.

https://doi.org/10.1016/j.ijsolstr.2008.05.026
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0175
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0175
https://doi.org/10.1109/ACCESS.2019.2938194
https://doi.org/10.1109/ACCESS.2019.2938194
https://doi.org/10.1109/ICASSP40776.2020.9053889
https://doi.org/10.1109/ICASSP40776.2020.9053889
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0190
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0190
http://refhub.elsevier.com/S0264-1275(22)00814-0/h0190
https://doi.org/10.1177/1475921720965445
https://doi.org/10.1177/1475921720965445
https://doi.org/10.1039/d2nr00372d
https://doi.org/10.1038/s41598-021-97879-z
https://doi.org/10.1038/s41598-021-97879-z
https://doi.org/10.1073/pnas.1716999115
https://doi.org/10.1073/pnas.1716999115
https://doi.org/10.1038/s41524-019-0231-y
https://doi.org/10.1038/s41524-019-0231-y

	A generalizable and interpretable deep learning model to improve the prediction accuracy of strain fields in grid composites
	1 Introduction
	2 Method
	2.1 Data collection for showing deep learning model’s generalizability.
	2.2 Data sets generation using finite element method (FEM)
	2.3 Deep learning neural network (multi-scale kernels network, MNet)

	3 Results
	3.1 Deep learning model’s generalizability test for extensive design space: Unseen volume fraction range.
	3.2 Deep learning model’s generalizability test for unseen domain: Ordered configuration.
	3.3 Application of deep learning model to predict large composite
	3.4 Interpretation of inference mechanism of the learned MNet and benchmark model

	4 Discussion
	5 Conclusion
	6 Data availability
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary material
	References


