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In Liquid Composite Molding (LCM), fabric draping determines the local fiber orientation 
which significantly affects the fabric permeability in the subsequent resin infusion and curing 
processes. This study aims to predict the deformation of multi-ply textile woven fabrics and 
the punch force during the fabric draping process through a hyper-viscoelastic constitutive 
modeling approach. Each ply of fabric is treated as a homogeneous anisotropic solid whose 
strain energy density function is developed based on a unit woven cell. The proposed 
constitutive model integrates fabric relaxation responses which have been clearly observed in 
the experiment. A generalized Maxwell model is used to simulate the evolution of 
nonequilibrium stresses generated during in-plane shear, transverse shear, and through-
thickness compaction deformation. The proposed novel constitutive model was implemented 
in the commercial Finite Element Analysis (FEA) software Abaqus as a user-defined material 
subroutine, UMAT. Experiments including picture frame shear, cantilever beam bending, and 
through-thickness compaction tests were carried out to characterize the material properties 
of a sheet of fabric. The modeling approach was applied to simulate the fabric deformation 
response during a hemisphere draping process to demonstrate the predictive capability. 

I. Introduction 
Liquid Composite Molding (LCM) is widely recognized as a low-cost technology to produce complex-shaped 

fiber-reinforced polymer matrix composite products. In the beginning of the LCM, dry fiber preforms are draped over 
a mold, where the fabrics mainly undergo shearing and bending to conform to the surface of the mold. This draping 
process of textile preforms is critical to the subsequent resin infusion and curing processes and the resulting structural 
performance, since the local fiber orientation significantly affects the fabric permeability [1–4]. In addition, wrinkling 
can occur due to improperly designed mold geometry and the weak textile bending stiffness [5–8]. Hence, an efficient 
numerical model is needed to accurately capture the constitutive responses of textile woven fabrics and predict the 
fabric deformation during the draping process. 

Diverse modeling approaches have been put forward in the literature to study the constitutive behavior of textile 
fibrous preforms. They can be classified into three main categories: discrete models, semi-discrete models, and 
continuum mechanics-based models. The discrete models describe the fabric textile architecture explicitly. A 
prevailing approach is Digital Fabric Mechanics Analyzer (DFMA) developed by Wang et al. [9,10], in which each 
fiber tow was simulated as a collection of digital chains. Each digital chain consists of multiple rod elements connected 
by frictionless pin-joints. The contact pairs between two nodes on the chains could be identified and an elastic element 
was assigned at each pair with its stiffness matrix controlling the sticking and sliding of the chains. Another popular 
approach is to model a fabric preform as a woven Unit Cell (UC) consisting of individual continuous yarns with 
circular, elliptical, or lenticular cross-sections [11–13]. The measuring of geometric parameters usually requires 
mesoscale images taken by a Scanning Electron Microscope. Commonly, the contact between the adjacent tows can 
be modeled through master/slave contact pairs and Coulomb friction using Finite Element Analysis (FEA). However, 
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the vast degrees of freedom in FEA due to the complex textile fabric architecture limit the analysis of fabrics to small 
modeling domains, such as those to obtaining the effective properties of fabrics under periodic boundary conditions. 
To alleviate the problem, simplified geometries of fiber tows were invented in the literature[14–16]. For example, 
Gatouillat et al. [14] modeled each yarn as a series of flat shells whose geometric properties were characterized by 
fabric bending, shear, and tensile tests. In addition, the fiber tows can be modeled as beams [15,16]. Despite the 
simplified fabric architectures in FEA, the complex inter-tow contacts can still lead to high computational costs and 
possible convergence issues.  

Semi-discrete models typically incorporate the fiber tow structures into user-defined elements in an FEA setting. 
Nguyen-Trong et al. [17] developed a user-defined four-node shell element based on the Mindlin plate theory, 
assuming that the material is orthotropic elastic. However, Bai et al. reported [18] that neither the Kirchhoff nor the 
Mindlin assumptions are appropriate for fibrous preforms since the assumptions relate the bending stiffness to the in-
plane elastic properties and the thickness of the material, which causes an overestimation of the bending stiffness. In 
Bai’s approach, a triangular shell element was developed, whose virtual work includes terms for fiber tension, bending, 
and in-plane shear. Each term was computed by integrating the resultant, which is a polynomial function of its 
corresponding strain, with respect to the strain. Without the Kirchhoff or Mindlin assumptions, the displacement field 
was computed by nodal displacement increments, increments of nodal rotational angles, material normal, and material 
thickness. The curvature was calculated from the positions of neighboring elements. This approach worked well in 
predicting the fabric deformation, especially in tracking the material normal of thick fabrics. However, it is challenging 
to account for the through-thickness deformation in shell elements, limiting their use in flow-compaction analysis 
during the infusion and curing processes. Moreover, the implementation of user-defined elements can be burdensome, 
since it requires the generation of node lists, the mapping function, nodal forces and displacements, etc., leading to 
high barrier of entry. 

Continuum mechanics-based models can alleviate the above-mentioned limitations of the discrete and semi-
discrete methods. One or multiple layers of textile woven fabrics are modeled as a homogeneous ply whose 
constitutive law is determined from a UC. Hyperelastic models have been widely adopted based on the formation of 
strain energy density functions (SEDFs). A series of pseudo-invariants was defined as the double dot product of the 
right Cauchy-Green deformation tensor and a tensor that represents fiber directions [19,20]. In Charmetant’s approach 
[19], the total SEDF was decomposed into the energy terms for some basic deformation modes: uniaxial tension, in-
plane shear, through-thickness compression, and transverse shear. Here, the fabric bending energy can be 
approximated by the effective tensile and transverse shear energy. The approach worked well in predicting the 
deformation of thin sheets of fabrics. When it comes to thick fabrics and the material normal is of interest, as discussed 
by Mathieu et al. [21], the bending energy should be formulated as a function of the second-order gradient of the 
displacement like the curvature.  

As the textile fabrics are draped on a curved mold, axial forces result in the stretching and axial translation of fiber 
tows. Transverse forces can cause the bending, rotation, and transverse translation of the fiber tows. Sliding of fibers 
within a tow is also possible. At the macroscale, the displacement of the fiber tows is reflected as the bending, in-
plane shear, and the axial and transverse tension/compression of textile woven fabrics. Since the stiffness of fibers is 
considerably larger than the resistance to their movements, the axial deformation of fibers is limited. It is widely 
accepted that the in-plane shear and out-of-plane bending of fabrics dominate during the hemisphere draping process 
[22–24]. The through-thickness compaction should also be studied when the thickness change is important [25], 
especially for multi-ply fabrics. Therefore, the inter-tow and intra-tow frictions, which affect the relative movements 
of fibers, cause the time-dependent responses of dry fabrics during the in-plane shear, bending, and through-thickness 
compaction processes. More details of the experimental results can be found in Sec. III. However, these time-
dependent responses have been seldomly considered in semi-discrete or continuum mechanics-based models.  

In this paper, a novel anisotropic hyper-viscoelastic model is developed for dry textile fabrics based on the 
formation of an SEDF. The model features incorporation of the relaxation responses during the in-plane shear, 
transverse shear, and through-thickness compaction deformations through adding the nonequilibrium stresses of a 
Maxwell model to the total stresses. The predicted time-dependent deformation or force responses were compared to 
the results from the cantilever beam bending, picture frame shear, and through-thickness compaction experiments. 
Moreover, the proposed approach can be easily implemented in a commercial FEA software and the predictions can 
be completed accurately and efficiently (in three hours with one CPU). 

The rest of the paper is organized as follows. The SEDF and the stresses are formulated in Sec. 2. Then, the 
experimental characterization of material properties is shown in Sec. 3, along with the details of the relaxation 
behaviors. Finally, the model is validated by a hemisphere draping simulation in FEA, which is shown in Sec. 4. 
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II. Modeling Approach for Woven Fabrics 
In this section, an anisotropic hyper-viscoelastic model is developed for textile woven fabrics considering the 

energy dissipation during the in-plane shear, bending, and through-thickness compaction deformations. The focus is 
to add the nonequilibrium stresses, due to the energy dissipation, to the total stresses based on a Maxwell model. 

A. Hyper-Viscoelastic Modeling Framework 
A mesoscale UC of woven fabrics shown in Fig. 1 is homogenized as a continuous transversely isotropic 

hyperelastic material whose SEDF, denoted as 𝑊𝑊, can be divided into two parts: an elastic part 𝑊𝑊𝑒𝑒 and a viscous part 
𝑊𝑊𝑣𝑣 as 

𝑊𝑊 = 𝑊𝑊𝑒𝑒 + 𝑊𝑊𝑣𝑣 (1) 

 

Fig. 1 A UC of woven fabrics. 

It is assumed that any complex deformation can be decomposed into six basic modes: tension/compression in the 
1-, 2-, and 3-directions, as well as the shear in the 1-2, 1-3, and 2-3 planes. Define the pseudo-invariants to represent 
the large deformation as 

𝐼𝐼4
𝑖𝑖𝑖𝑖 = (𝐴𝐴𝑖𝑖)𝑇𝑇 ∙ 𝑪𝑪 ∙ 𝐴𝐴𝑖𝑖 (2) 

where 𝑖𝑖 and 𝑖𝑖 are both 3 in a three-dimensional analysis. 𝑪𝑪 is the right Cauchy-Green deformation tensor computed 
from 𝐂𝐂 = 𝐅𝐅T𝐅𝐅. The deformation gradient matrix 𝐅𝐅 is defined as 𝐅𝐅 = 𝝏𝝏𝝏𝝏

𝝏𝝏𝝏𝝏
, where 𝝏𝝏 is the position in the deformed 

configuration and 𝝏𝝏 is the position in the reference configuration. 𝐴𝐴𝑖𝑖  are the vectors pointing in the directions of 
interest. Here, 𝐴𝐴1 and 𝐴𝐴2 represent the orientations of the warp and weft tows, and 𝐴𝐴3 dictates the through-thickness 
direction. Due to the symmetry of 𝑪𝑪, there are only six independent pseudo-invariants: 𝐼𝐼411, 𝐼𝐼422, 𝐼𝐼433, 𝐼𝐼412, 𝐼𝐼413, and 𝐼𝐼423. 
The elastic part of the SEDF for normal behaviors can be related to 𝐼𝐼411, 𝐼𝐼422, and 𝐼𝐼433, since they are the square of the 
stretch 𝜆𝜆𝑖𝑖 along each direction of interest, expressed as  

𝐼𝐼4
𝑖𝑖𝑖𝑖 = �𝐴𝐴(𝑖𝑖)�

𝑇𝑇
∙ 𝑪𝑪 ∙ 𝐴𝐴(𝑖𝑖) = 𝜆𝜆𝑖𝑖

2    ignoring the dummy index (3) 

The SEDF for shear deformations can be related to the sinusoidal function of the shear angles 𝛾𝛾 as 

𝑠𝑠𝑖𝑖𝑠𝑠 𝛾𝛾𝑖𝑖𝑖𝑖 =
𝐼𝐼4
𝑖𝑖𝑖𝑖

�𝐼𝐼4
𝑖𝑖𝑖𝑖𝐼𝐼4
𝑖𝑖𝑖𝑖

    ignoring the dummy index (4)
 

Therefore, the expression of 𝑊𝑊𝑒𝑒 can be developed as 

𝑊𝑊𝑒𝑒 = 𝑊𝑊𝑓𝑓
𝑒𝑒 + 𝑊𝑊𝑡𝑡

𝑒𝑒 + 𝑊𝑊𝑡𝑡𝑠𝑠
𝑒𝑒 + 𝑊𝑊𝑠𝑠

𝑒𝑒 (5) 
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where 𝑊𝑊𝑓𝑓
𝑒𝑒 represents the SEDF due to the stretch of fibers, 𝑊𝑊𝑡𝑡

𝑒𝑒 is the SEDF caused by the tension or compaction 
along the thickness direction, 𝑊𝑊𝑡𝑡𝑡𝑡

𝑒𝑒  is the SEDF for transverse shear, and 𝑊𝑊𝑡𝑡
𝑒𝑒 is the SEDF for in-plane shear. They can 

be expressed in Eqs. 6-9. 

𝑊𝑊𝑓𝑓
𝑒𝑒 =

𝐸𝐸𝑓𝑓1

2
(𝐼𝐼4

11 − 1)2 +
𝐸𝐸𝑓𝑓2

2
(𝐼𝐼4

22 − 1)2 (6) 

𝑊𝑊𝑡𝑡
𝑒𝑒 =

𝐸𝐸𝑡𝑡
2

(𝐼𝐼4
33 − 1)2 (7) 

𝑊𝑊𝑡𝑡𝑠𝑠
𝑒𝑒 =

𝐸𝐸𝑡𝑡𝑠𝑠
2
�

𝐼𝐼4
13

�𝐼𝐼4
11𝐼𝐼4

33
− 𝜉𝜉13�

2

+
𝐸𝐸𝑡𝑡𝑠𝑠
2
�

𝐼𝐼4
23

�𝐼𝐼4
22𝐼𝐼4

33
− 𝜉𝜉23�

2

(8) 

𝑊𝑊𝑠𝑠
𝑒𝑒 =

𝐸𝐸𝑠𝑠
2
�

𝐼𝐼4
12

�𝐼𝐼4
11𝐼𝐼4

22
− 𝜉𝜉12�

𝑠𝑠

(9) 

where 𝐸𝐸𝑓𝑓1 and 𝐸𝐸𝑓𝑓2 are the moduli controlling the fiber tension. For a transversely isotropic material, 𝐸𝐸𝑓𝑓1 = 𝐸𝐸𝑓𝑓2 = 𝐸𝐸𝑓𝑓. 
Different values for 𝐸𝐸𝑓𝑓 can be assigned when the material is under tension and compression as 

𝐸𝐸𝑓𝑓 = �
𝐸𝐸𝑡𝑡𝑒𝑒𝑠𝑠             if 𝐼𝐼4

11 or 𝐼𝐼4
22 ≥ 1 

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐         if 𝐼𝐼4
11 or 𝐼𝐼4

22 < 1
(10) 

𝐸𝐸𝑡𝑡𝑡𝑡 is the modulus that controls the transverse shear behavior. 𝜉𝜉𝑖𝑖𝑖𝑖  is the initial value of sin 𝛾𝛾𝑖𝑖𝑖𝑖 . The bending energy is 
approximated by the axial tension energy 𝑊𝑊𝑓𝑓

𝑒𝑒  and transverse shear energy 𝑊𝑊𝑡𝑡𝑡𝑡
𝑒𝑒 . Since the out-of-plane bending 

behavior is more critical than the stretch of fibers during the draping process, 𝐸𝐸𝑓𝑓 and 𝐸𝐸𝑡𝑡𝑡𝑡 are determined by the bending 
responses. 𝐸𝐸𝑡𝑡  is the modulus that controls the through-thickness tension and compression. 𝐸𝐸𝑡𝑡  is the modulus that 
controls the in-plane shear behavior. Note that the power of the in-plane shear term in Eq. 9 is also a variable 𝑠𝑠 due 
to the highly nonlinear characteristic of the in-plane shear behavior of textile fabrics. Then, the equilibrium second 
Piola-Kirchhoff stress can be computed as 

𝑺𝑺 
𝛼𝛼 = 2

𝜕𝜕𝑊𝑊𝛼𝛼
𝑒𝑒

𝜕𝜕𝑪𝑪
, 𝛼𝛼 = 𝑓𝑓, 𝑡𝑡, 𝑡𝑡𝑠𝑠, 𝑠𝑠 (11) 

where 𝛼𝛼 represents the deformation mode.  

 

Fig. 2 Illustration of the linear Maxwell model. 

The viscous energy includes the energy for the in-plane shear 𝑊𝑊𝑡𝑡
𝑣𝑣, transverse shear 𝑊𝑊𝑡𝑡𝑡𝑡

𝑣𝑣 , and through-thickness 
compaction 𝑊𝑊𝑡𝑡

𝑣𝑣. 

𝑊𝑊𝑣𝑣 = 𝑊𝑊𝑠𝑠
𝑣𝑣 + 𝑊𝑊𝑡𝑡𝑠𝑠

𝑣𝑣 + 𝑊𝑊𝑡𝑡
𝑣𝑣 (12) 
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Since this only describes the energy that can be fully dissipated after relaxation and no time-dependent characteristic 
is included, an extra model is needed to simulate the evolution of nonequilibrium stresses 𝑸𝑸𝛼𝛼. Here, a linear Maxwell 
model incorporating one elastic element and one Maxwell element, shown in Fig. 2, is adopted to capture the evolution 
of 𝑸𝑸𝛼𝛼 as 

𝑸𝑸𝛼̇𝛼 +
𝑸𝑸𝛼𝛼

𝜏𝜏𝛼𝛼
= 𝑷𝑷𝛼̇𝛼 (13) 

where 𝑷𝑷𝛼𝛼 is the second Piola-Kirchhoff stress carried by the spring in the Maxwell arm; the relaxation time 𝜏𝜏𝛼𝛼 = 𝜂𝜂1
𝛼𝛼

𝐸𝐸1
𝛼𝛼; 

𝑸𝑸𝛼̇𝛼 =
𝑑𝑑𝑸𝑸𝛼𝛼

𝑑𝑑𝑡𝑡
; 𝑷𝑷𝛼̇𝛼 = 𝑑𝑑𝑷𝑷𝛼𝛼

𝑑𝑑𝑡𝑡
; and 𝛼𝛼 can be 𝑡𝑡, 𝑡𝑡𝑠𝑠, and 𝑠𝑠. Further, assume that 𝑷𝑷𝛼𝛼 is proportional to 𝑺𝑺 

𝛼𝛼  and the ratio is denoted 
as a constant 𝛽𝛽𝛼𝛼. It also depicts the ratio of the viscous energy to the elastic energy. 

𝑷𝑷𝛼𝛼

𝑺𝑺 
𝛼𝛼 =

𝐸𝐸1
𝛼𝛼

 𝐸𝐸𝑒𝑒𝛼𝛼
=
𝑊𝑊𝛼𝛼

𝑣𝑣

 𝑊𝑊𝛼𝛼
𝑒𝑒 = 𝛽𝛽𝛼𝛼 (14) 

Then, the evolution of 𝑸𝑸𝛼𝛼 can be computed by solving the ordinary differential equation.  

𝑸𝑸𝛼̇𝛼 +
𝑸𝑸𝛼𝛼

𝜏𝜏𝛼𝛼
= 𝛽𝛽𝛼𝛼𝑺𝑺 

𝛼̇𝛼 (15) 

The total second Piola-Kirchhoff stress is, 

𝑺𝑺 = 𝑺𝑺 
𝑓𝑓 + 𝑺𝑺 

𝑠𝑠 + 𝑺𝑺 
𝑡𝑡𝑠𝑠 + 𝑺𝑺 

𝑡𝑡 + 𝑸𝑸𝑠𝑠 + 𝑸𝑸𝑡𝑡𝑠𝑠 + 𝑸𝑸𝑡𝑡 (16) 

and the total Cauchy stress is 

𝝈𝝈 =
1

𝐽𝐽
𝐹𝐹𝑺𝑺𝐹𝐹𝑇𝑇 (17) 

More details regarding the derivation can be found in Sec. B. 

B. Numerical Implementation 
The model was implemented in Abaqus via UMAT user-subroutine. This section shows the derivations of the 

Cauchy stresses and the consistent Jacobian which are required to be updated in the UMAT. 
1. Stresses 
In order to compute the Cauchy stresses, the equilibrium and nonequilibrium second order Piola-Kirchhoff stresses 

are needed according to Eq. 16. The equilibrium second order Piola-Kirchhoff stress for the tension/compression is 
derived as 

𝑺𝑺 
𝑓𝑓 = 2

𝜕𝜕𝑊𝑊𝑓𝑓
𝑒𝑒

𝜕𝜕𝑪𝑪
= 2𝐸𝐸𝑓𝑓1(𝐼𝐼411 − 1)

𝜕𝜕𝐼𝐼411

𝜕𝜕𝑪𝑪
+ 2𝐸𝐸𝑓𝑓2(𝐼𝐼422 − 1)

𝜕𝜕𝐼𝐼422

𝜕𝜕𝑪𝑪
(18) 

The equilibrium second order Piola-Kirchhoff stress for the through-thickness behavior is related to 𝐼𝐼433. 

𝑺𝑺 
𝑡𝑡 = 2

𝜕𝜕𝑊𝑊𝑡𝑡
𝑒𝑒

𝜕𝜕𝑪𝑪
= 2

𝜕𝜕 �𝐸𝐸𝑡𝑡2 (𝐼𝐼433 − 1)2�

𝜕𝜕𝐼𝐼433
𝜕𝜕𝐼𝐼433

𝜕𝜕𝑪𝑪
= 2𝐸𝐸𝑡𝑡(𝐼𝐼433 − 1)

𝜕𝜕𝐼𝐼433

𝜕𝜕𝑪𝑪
(19) 

The equilibrium second order Piola-Kirchhoff stress for the in-plane shear is 
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𝑺𝑺 
𝑡𝑡 = 2

𝜕𝜕𝑊𝑊𝑡𝑡
𝑒𝑒

𝜕𝜕𝑪𝑪
= 2�

𝜕𝜕𝑊𝑊𝑡𝑡
𝑒𝑒

𝜕𝜕𝐼𝐼411
𝜕𝜕𝐼𝐼411

𝜕𝜕𝑪𝑪
+
𝜕𝜕𝑊𝑊𝑡𝑡

𝑒𝑒

𝜕𝜕𝐼𝐼422
𝜕𝜕𝐼𝐼422

𝜕𝜕𝑪𝑪
+
𝜕𝜕𝑊𝑊𝑡𝑡

𝑒𝑒

𝜕𝜕𝐼𝐼412
𝜕𝜕𝐼𝐼412

𝜕𝜕𝑪𝑪
�

                                = �
𝑠𝑠𝐸𝐸𝑡𝑡

�𝐼𝐼411𝐼𝐼422
∙
𝜕𝜕𝐼𝐼412

𝜕𝜕𝑪𝑪
−
𝑠𝑠𝐸𝐸𝑡𝑡𝐼𝐼412𝐼𝐼422

2(𝐼𝐼411𝐼𝐼422)
3
2
∙
𝜕𝜕𝐼𝐼411

𝜕𝜕𝑪𝑪
−
𝑠𝑠𝐸𝐸𝑡𝑡𝐼𝐼412𝐼𝐼411

2(𝐼𝐼411𝐼𝐼422)
3
2
∙
𝜕𝜕𝐼𝐼422

𝜕𝜕𝑪𝑪
� 𝑟𝑟1𝑛𝑛−1 (20)

 

𝑟𝑟1 =
𝐼𝐼412

�𝐼𝐼411𝐼𝐼422
− 𝜉𝜉12 (21) 

The equilibrium second order Piola-Kirchhoff stress for the transverse shear is 

𝑺𝑺 
𝑡𝑡𝑡𝑡 = 2

𝜕𝜕𝑊𝑊𝑡𝑡𝑡𝑡
𝑒𝑒

𝜕𝜕𝑪𝑪
= 2�

𝜕𝜕𝑊𝑊𝑡𝑡𝑡𝑡
𝑒𝑒

𝜕𝜕𝐼𝐼411
𝜕𝜕𝐼𝐼411

𝜕𝜕𝑪𝑪
+
𝜕𝜕𝑊𝑊𝑡𝑡𝑡𝑡

𝑒𝑒

𝜕𝜕𝐼𝐼422
𝜕𝜕𝐼𝐼422

𝜕𝜕𝑪𝑪
+
𝜕𝜕𝑊𝑊𝑡𝑡𝑡𝑡

𝑒𝑒

𝜕𝜕𝐼𝐼433
𝜕𝜕𝐼𝐼433

𝜕𝜕𝑪𝑪
+
𝜕𝜕𝑊𝑊𝑡𝑡𝑡𝑡

𝑒𝑒

𝜕𝜕𝐼𝐼413
𝜕𝜕𝐼𝐼413

𝜕𝜕𝑪𝑪
+
𝜕𝜕𝑊𝑊𝑡𝑡𝑡𝑡

𝑒𝑒

𝜕𝜕𝐼𝐼423
𝜕𝜕𝐼𝐼423

𝜕𝜕𝑪𝑪
�

  = �2
𝐸𝐸𝑡𝑡𝑡𝑡

�𝐼𝐼411𝐼𝐼433
𝜕𝜕𝐼𝐼413

𝜕𝜕𝑪𝑪
−
𝐸𝐸𝑡𝑡𝑡𝑡𝐼𝐼413𝐼𝐼433

(𝐼𝐼411𝐼𝐼433)
3
2

𝜕𝜕𝐼𝐼411

𝜕𝜕𝑪𝑪
−
𝐸𝐸𝑡𝑡𝑡𝑡𝐼𝐼413𝐼𝐼411

(𝐼𝐼411𝐼𝐼433)
3
2

𝜕𝜕𝐼𝐼433

𝜕𝜕𝑪𝑪
� 𝑟𝑟2

  + �2
𝐸𝐸𝑡𝑡𝑡𝑡

�𝐼𝐼422𝐼𝐼433
𝜕𝜕𝐼𝐼423

𝜕𝜕𝑪𝑪
−
𝐸𝐸𝑡𝑡𝑡𝑡𝐼𝐼423𝐼𝐼433

(𝐼𝐼422𝐼𝐼433)
3
2

𝜕𝜕𝐼𝐼422

𝜕𝜕𝑪𝑪
−
𝐸𝐸𝑡𝑡𝑡𝑡𝐼𝐼423𝐼𝐼422

(𝐼𝐼422𝐼𝐼433)
3
2

𝜕𝜕𝐼𝐼433

𝜕𝜕𝑪𝑪
� 𝑟𝑟3 (22)

 

𝑟𝑟2 =
𝐼𝐼413

�𝐼𝐼411𝐼𝐼433
− 𝜉𝜉13 (23) 

𝑟𝑟3 =
𝐼𝐼423

�𝐼𝐼422𝐼𝐼433
− 𝜉𝜉23 (24) 

In Eqs. 18-24, 𝜕𝜕𝐼𝐼4
𝑖𝑖𝑖𝑖

𝜕𝜕𝑪𝑪
= 1

2
�𝐴𝐴𝑖𝑖⨂𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖⨂𝐴𝐴𝑖𝑖� = 𝑴𝑴𝑘𝑘, where 𝑘𝑘 = 𝑖𝑖, if 𝑖𝑖 = 𝑖𝑖; and 𝑘𝑘 = 𝑖𝑖 + 𝑖𝑖 + 1, if 𝑖𝑖 ≠ 𝑖𝑖. This tensor will 

be further used in the derivation of the consistent Jacobian. 
Next, the nonequilibrium second Piola-Kirchhoff stresses are derived in an incremental form. The central 

difference scheme is used. 

𝑓𝑓̇
𝑡𝑡+12∆𝑡𝑡

=
∆𝑓𝑓
∆𝑡𝑡

(25) 

𝑓𝑓
𝑡𝑡+12∆𝑡𝑡

= 𝑓𝑓𝑡𝑡 +
∆𝑓𝑓
2

(26) 

where 𝑓𝑓 represents a variable and 𝑡𝑡 is time. Then, the ordinary differential equations for the nonequilibrium stresses 
become 

𝑸𝑸𝛼̇𝛼 +
𝑸𝑸𝛼𝛼

𝜏𝜏𝛼𝛼
= 𝛽𝛽𝛼𝛼𝑺𝑺 

𝛼̇𝛼 (27) 

𝑸𝑸𝛼𝛼|𝑡𝑡+∆𝑡𝑡 − 𝑸𝑸𝛼𝛼|𝑡𝑡
∆𝑡𝑡

+
𝑸𝑸𝛼𝛼|𝑡𝑡 + 𝑸𝑸𝛼𝛼|𝑡𝑡+∆𝑡𝑡 − 𝑸𝑸𝛼𝛼|𝑡𝑡

2
𝜏𝜏𝛼𝛼

= 𝛽𝛽𝛼𝛼
𝑺𝑺 
𝛼𝛼|𝑡𝑡+∆𝑡𝑡 − 𝑺𝑺 

𝛼𝛼|𝑡𝑡
∆𝑡𝑡

(28) 

where 𝛼𝛼 can be 𝑠𝑠, 𝑡𝑡𝑠𝑠, and 𝑡𝑡. 𝑸𝑸𝛼𝛼|𝑡𝑡+∆𝑡𝑡 can be solved as 
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𝑸𝑸𝛼𝛼|𝑡𝑡+∆𝑡𝑡 = �1 −
2∆𝑡𝑡

2𝜏𝜏𝛼𝛼 + ∆𝑡𝑡
�𝑸𝑸𝛼𝛼|𝑡𝑡 +

2𝜏𝜏𝛼𝛼
2𝜏𝜏𝛼𝛼 + ∆𝑡𝑡

 𝛽𝛽𝛼𝛼(𝑺𝑺 
𝛼𝛼|𝑡𝑡+∆𝑡𝑡 − 𝑺𝑺 

𝛼𝛼|𝑡𝑡) (29) 

2. The Consistent Jacobian 
In the UMAT, the consistent Jacobian also needs to be provided, which is defined as the derivative of the Jaumann 

rate of the Kirchhoff stress with respect to the deformation rate 𝐷𝐷𝐼𝐼𝐼𝐼. The consistent Jacobian without the consideration 

of viscous effects is related to the Jaumann rate of the elastic Kirchhoff stress 𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕

 and it can be simplified into [26]: 

ℂ𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼𝑒𝑒 =
𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖

𝜕𝜕

𝜕𝜕𝐷𝐷𝐼𝐼𝐼𝐼
=

1
2
�𝛿𝛿𝑖𝑖𝐼𝐼𝜎𝜎𝐼𝐼𝑖𝑖𝑒𝑒 + 𝛿𝛿𝑖𝑖𝐼𝐼𝜎𝜎𝑖𝑖𝐼𝐼𝑒𝑒 + 𝜎𝜎𝑖𝑖𝐼𝐼𝑒𝑒𝛿𝛿𝑖𝑖𝐼𝐼 + 𝜎𝜎𝑖𝑖𝐼𝐼𝑒𝑒 𝛿𝛿𝑖𝑖𝐼𝐼� +

1
𝐽𝐽
�𝛿𝛿𝑙𝑙𝐼𝐼𝛿𝛿ℎ𝐼𝐼 + 𝛿𝛿𝑙𝑙𝐼𝐼𝛿𝛿ℎ𝐼𝐼�𝐹𝐹𝑖𝑖𝑖𝑖𝐹𝐹𝑖𝑖𝑛𝑛𝐹𝐹ℎ𝑝𝑝𝐹𝐹𝑙𝑙𝑙𝑙

𝜕𝜕𝑆𝑆𝑖𝑖𝑛𝑛 

𝜕𝜕𝐶𝐶𝑝𝑝𝑙𝑙
(30) 

The Cauchy stresses in the first part of ℂ𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼𝑒𝑒  are derived in Sec. B.1., so the key component of the second part 𝜕𝜕𝑆𝑆𝑚𝑚𝑚𝑚
 

𝜕𝜕𝐶𝐶𝑝𝑝𝑝𝑝
 is 

provided here, where 𝑴𝑴𝑘𝑘 is the tensor mentioned in Sec. B.1. 

𝜕𝜕𝑆𝑆𝑖𝑖𝑛𝑛 

𝜕𝜕𝐶𝐶𝑝𝑝𝑙𝑙
= 2𝐸𝐸𝑓𝑓1𝑀𝑀𝑖𝑖𝑛𝑛

1 𝑀𝑀𝑝𝑝𝑙𝑙
1 + 2𝐸𝐸𝑓𝑓2𝑀𝑀𝑖𝑖𝑛𝑛

2 𝑀𝑀𝑝𝑝𝑙𝑙
2 +

𝜕𝜕𝑆𝑆𝑖𝑖𝑛𝑛𝑡𝑡

𝜕𝜕𝐶𝐶𝑝𝑝𝑙𝑙
+
𝜕𝜕𝑆𝑆𝑖𝑖𝑛𝑛𝑡𝑡𝑡𝑡

𝜕𝜕𝐶𝐶𝑝𝑝𝑙𝑙
+
𝜕𝜕𝑆𝑆𝑖𝑖𝑛𝑛𝑡𝑡

𝜕𝜕𝐶𝐶𝑝𝑝𝑙𝑙
(31) 

Here, the term 𝜕𝜕𝑆𝑆𝑚𝑚𝑚𝑚
𝑠𝑠

𝜕𝜕𝐶𝐶𝑝𝑝𝑝𝑝
 is for the in-plane shear behavior, expressed as 

𝜕𝜕𝑆𝑆𝑖𝑖𝑛𝑛𝑡𝑡

𝜕𝜕𝐶𝐶𝑝𝑝𝑙𝑙
= 𝑀𝑀𝑖𝑖𝑛𝑛

4 𝑇𝑇𝑝𝑝𝑙𝑙1 + 𝑀𝑀𝑖𝑖𝑛𝑛
1 𝑇𝑇𝑝𝑝𝑙𝑙2 + 𝑀𝑀𝑖𝑖𝑛𝑛

2 𝑇𝑇𝑝𝑝𝑙𝑙3 (32) 

where 

𝑻𝑻1 =
𝐸𝐸𝑡𝑡𝑠𝑠(𝑠𝑠 − 1)𝑟𝑟1𝑛𝑛−2

�𝐼𝐼411𝐼𝐼422
𝑯𝑯1 −

𝐸𝐸𝑡𝑡𝑠𝑠 𝑟𝑟1𝑛𝑛−1

2�𝐼𝐼411𝐼𝐼422
�
𝑴𝑴1

𝐼𝐼411
+
𝑴𝑴2

𝐼𝐼422
� (33) 

𝑻𝑻2 = 𝐸𝐸𝑡𝑡𝑠𝑠 𝑟𝑟1𝑛𝑛−1 �
3𝐼𝐼412𝑴𝑴1

4(𝐼𝐼411)2�𝐼𝐼411𝐼𝐼422
+

𝐼𝐼412𝑴𝑴2

4(𝐼𝐼411𝐼𝐼422)
3
2
−

𝑴𝑴4

2𝐼𝐼411�𝐼𝐼411𝐼𝐼422
� −

𝐸𝐸𝑡𝑡𝑠𝑠(𝑠𝑠 − 1)𝐼𝐼412𝑟𝑟1𝑛𝑛−2

2𝐼𝐼411�𝐼𝐼411𝐼𝐼422
𝑯𝑯1 (34) 

𝑻𝑻3 = 𝐸𝐸𝑡𝑡𝑠𝑠 𝑟𝑟1𝑛𝑛−1 �
3𝐼𝐼412𝑴𝑴2

4(𝐼𝐼422)2�𝐼𝐼411𝐼𝐼422
+

𝐼𝐼412𝑴𝑴1

4(𝐼𝐼411𝐼𝐼422)
3
2
−

𝑴𝑴4

2𝐼𝐼422�𝐼𝐼411𝐼𝐼422
� −

𝐸𝐸𝑡𝑡𝑠𝑠(𝑠𝑠 − 1)𝐼𝐼412𝑟𝑟1𝑛𝑛−2

2𝐼𝐼422�𝐼𝐼411𝐼𝐼422
𝑯𝑯1 (35) 

𝑯𝑯1 =
𝑴𝑴4

�𝐼𝐼411𝐼𝐼422
−

𝐼𝐼412

2�𝐼𝐼411𝐼𝐼422
�
𝑴𝑴1

𝐼𝐼411
+
𝑴𝑴2

𝐼𝐼422
� (36) 

The term 𝜕𝜕𝑆𝑆𝑚𝑚𝑚𝑚
𝑡𝑡𝑠𝑠

𝜕𝜕𝐶𝐶𝑝𝑝𝑝𝑝
 is for the transverse shear behavior, and written as 

𝜕𝜕𝑆𝑆𝑖𝑖𝑛𝑛𝑡𝑡𝑡𝑡

𝜕𝜕𝐶𝐶𝑝𝑝𝑙𝑙
= 𝑀𝑀𝑖𝑖𝑛𝑛

5 𝑇𝑇𝑝𝑝𝑙𝑙4 + 𝑀𝑀𝑖𝑖𝑛𝑛
1 𝑇𝑇𝑝𝑝𝑙𝑙5 + 𝑀𝑀𝑖𝑖𝑛𝑛

3 𝑇𝑇𝑝𝑝𝑙𝑙6 + 𝑀𝑀𝑖𝑖𝑛𝑛
6 𝑇𝑇𝑝𝑝𝑙𝑙7 + 𝑀𝑀𝑖𝑖𝑛𝑛

2 𝑇𝑇𝑝𝑝𝑙𝑙8 + 𝑀𝑀𝑖𝑖𝑛𝑛
3 𝑇𝑇𝑝𝑝𝑙𝑙9 (37) 

𝑻𝑻4 = 2𝐸𝐸𝑡𝑡𝑡𝑡 �
𝑯𝑯2

�𝐼𝐼411𝐼𝐼433
−

𝑟𝑟2
2�𝐼𝐼411𝐼𝐼433

�
𝑴𝑴1

𝐼𝐼411
+
𝑴𝑴3

𝐼𝐼433
�� (38) 
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𝑻𝑻5 = 2𝐸𝐸𝑡𝑡𝑡𝑡𝑟𝑟2 �
3𝐼𝐼413𝑴𝑴1

4(𝐼𝐼411)2�𝐼𝐼411𝐼𝐼433
+

𝐼𝐼413𝑴𝑴3

4(𝐼𝐼411𝐼𝐼433)
3
2
−

𝑴𝑴5

2𝐼𝐼411�𝐼𝐼411𝐼𝐼433
� −

𝐸𝐸𝑡𝑡𝑡𝑡𝐼𝐼413

𝐼𝐼411�𝐼𝐼411𝐼𝐼433
𝑯𝑯2 (39) 

𝑻𝑻6 = 2𝐸𝐸𝑡𝑡𝑡𝑡𝑟𝑟2 �
3𝐼𝐼413𝑴𝑴3

4(𝐼𝐼433)2�𝐼𝐼411𝐼𝐼433
+

𝐼𝐼413𝑴𝑴1

4(𝐼𝐼411𝐼𝐼433)
3
2
−

𝑴𝑴5

2𝐼𝐼433�𝐼𝐼411𝐼𝐼433
� −

𝐸𝐸𝑡𝑡𝑡𝑡𝐼𝐼413

𝐼𝐼433�𝐼𝐼411𝐼𝐼433
𝑯𝑯2 (40) 

𝑻𝑻7 = 2𝐸𝐸𝑡𝑡𝑡𝑡 �
𝑯𝑯3

�𝐼𝐼422𝐼𝐼433
−

𝑟𝑟3
2�𝐼𝐼422𝐼𝐼433

�
𝑴𝑴2

𝐼𝐼422
+
𝑴𝑴3

𝐼𝐼433
�� (41) 

𝑻𝑻8 = 2𝐸𝐸𝑡𝑡𝑡𝑡𝑟𝑟3 �
3𝐼𝐼423𝑴𝑴2

4(𝐼𝐼422)2�𝐼𝐼422𝐼𝐼433
+

𝐼𝐼423𝑴𝑴3

4(𝐼𝐼422𝐼𝐼433)
3
2
−

𝑴𝑴6

2𝐼𝐼422�𝐼𝐼422𝐼𝐼433
� −

𝐸𝐸𝑡𝑡𝑡𝑡𝐼𝐼423

𝐼𝐼422�𝐼𝐼422𝐼𝐼433
𝑯𝑯3 (42) 

𝑻𝑻9 = 2𝐸𝐸𝑡𝑡𝑡𝑡𝑟𝑟3 �
3𝐼𝐼423𝑴𝑴3

4(𝐼𝐼433)2�𝐼𝐼422𝐼𝐼433
+

𝐼𝐼423𝑴𝑴2

4(𝐼𝐼422𝐼𝐼433)
3
2
−

𝑴𝑴6

2𝐼𝐼433�𝐼𝐼422𝐼𝐼433
� −

𝐸𝐸𝑡𝑡𝑡𝑡𝐼𝐼423

𝐼𝐼433�𝐼𝐼422𝐼𝐼433
𝑯𝑯2 (43) 

𝑯𝑯2 =
𝑴𝑴5

�𝐼𝐼411𝐼𝐼433
−

𝐼𝐼413

2�𝐼𝐼411𝐼𝐼433
�
𝑴𝑴1

𝐼𝐼411
+
𝑴𝑴3

𝐼𝐼433
� (44) 

𝑯𝑯3 =
𝑴𝑴6

�𝐼𝐼422𝐼𝐼433
−

𝐼𝐼423

2�𝐼𝐼422𝐼𝐼433
�
𝑴𝑴2

𝐼𝐼422
+
𝑴𝑴3

𝐼𝐼433
� (45) 

Since the viscous energy has been linked to the elastic energy by an energy ratio 𝛽𝛽𝛼𝛼, the viscous part of the consistent 
Jacobian can also be added through another non-dimensional ratio 𝛿𝛿𝛼𝛼 as [27] 

ℂ𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼 = ℂ𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼𝑒𝑒 + �𝛿𝛿𝛼𝛼ℂ𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼𝛼𝛼
 

𝛼𝛼

(46) 

𝛿𝛿𝛼𝛼 =
2𝜏𝜏𝛼𝛼

2𝜏𝜏𝛼𝛼 + ∆𝑡𝑡
𝛽𝛽𝛼𝛼 (47) 

ℂ𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼𝛼𝛼  is the elastic part of the consistent Jacobian for the deformation mode 𝛼𝛼, and 𝛼𝛼 can be 𝑡𝑡, 𝑡𝑡𝑠𝑠, and 𝑠𝑠. ℂ𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼𝛼𝛼   is 
expressed as 

ℂ𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼𝛼𝛼 =
1
2
�𝛿𝛿𝑖𝑖𝐼𝐼𝜎𝜎𝐼𝐼𝑖𝑖𝛼𝛼 + 𝛿𝛿𝑖𝑖𝐼𝐼𝜎𝜎𝑖𝑖𝐼𝐼𝛼𝛼 + 𝜎𝜎𝑖𝑖𝐼𝐼𝛼𝛼𝛿𝛿𝑖𝑖𝐼𝐼 + 𝜎𝜎𝑖𝑖𝐼𝐼𝛼𝛼𝛿𝛿𝑖𝑖𝐼𝐼� +

1
𝐽𝐽
�𝛿𝛿𝑙𝑙𝐼𝐼𝛿𝛿ℎ𝐼𝐼 + 𝛿𝛿𝑙𝑙𝐼𝐼𝛿𝛿ℎ𝐼𝐼�𝐹𝐹𝑖𝑖𝑖𝑖𝐹𝐹𝑖𝑖𝑛𝑛𝐹𝐹ℎ𝑝𝑝𝐹𝐹𝑙𝑙𝑙𝑙

𝜕𝜕𝑆𝑆𝑖𝑖𝑛𝑛𝛼𝛼

𝜕𝜕𝐶𝐶𝑝𝑝𝑙𝑙
(48) 

In this equation, 𝜕𝜕𝑆𝑆𝑚𝑚𝑚𝑚
𝛼𝛼

𝜕𝜕𝐶𝐶𝑝𝑝𝑝𝑝
 is already provided and 𝜎𝜎 

𝛼𝛼 = 1
𝐼𝐼
𝐹𝐹𝑆𝑆 

𝛼𝛼𝐹𝐹𝑇𝑇.  

 

III. Material Properties Characterization 
The characterization of mechanical properties of a single layer of T300 carbon fiber plain weave fabric is presented 

in this section. The out-of-plane bending, and in-plane shear properties were characterized by cantilever beam bending 
and picture frame tests on a layer of fabric. Through-thickness compaction tests were conducted for multi-ply fabrics 
to obtain the compaction properties. Fabric relaxation behaviors show up distinctly in the history of deflections or 
reaction forces during these tests. 
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A. Bending Behaviors 
Fabrics of 7.62 × 12 cm and 7.62 × 15 cm were clamped at the left end and suspended at the right end (see Fig. 

3 (a)). A 5 cm grid was drawn at the background plate. Deformed shapes at different times were recorded by a camera. 
The deflections in the photos were measured using image analysis software, ImageJ, using the background gridlines 
as the references. Three tests for each specimen were conducted, and the average deflection was obtained and plotted 
in Fig. 4. 

  

Fig. 3 The bended fabrics of the (a) 150 mm fabric before relaxation, (b) 150 mm fabric after relaxation, 
(c) 120 mm fabric before relaxation, (d) 120 mm fabric after relaxation in the cantilever bending tests; (e) the 

bending model in Abaqus consisting of a fabric fixed at one end and hanging at the other end under the 
gravity along -z direction. 

The area density, 𝜌𝜌𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎, and thickness, ℎ, of a single ply of the carbon fabric were measured. The results were: 
𝜌𝜌𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎 = 0.219 kg/m2 and ℎ = 0.250 mm. The fabric density can be computed as 

𝜌𝜌 =
𝜌𝜌𝑎𝑎𝑟𝑟𝑒𝑒𝑎𝑎
ℎ

= 0.876 kg/m3 (49) 

The density was inputted into a corresponding bending model built in Abaqus (Fig. 3 (e)). Single plies of fabrics were 
created in size to the specimens in the experiments. One end of the ply was fixed, and the other end was draped by the 
materials’ own weight. The deflection of the fabrics vs. time responses in the model are shown in Fig. 4. The bending 
properties in Table 1 were tuned until the predicted deflection curves closely approximated the experimentally 
measured ones.  

Table 1. Material properties that control the bending behavior 

𝝆𝝆 (kg/m3) 𝑬𝑬𝒕𝒕𝒕𝒕𝒕𝒕 (MPa) 𝑬𝑬𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 (MPa) 𝑬𝑬𝒕𝒕𝒕𝒕 (MPa) 𝜷𝜷𝒕𝒕𝒕𝒕 𝝉𝝉𝒕𝒕𝒕𝒕 (min) 

0.87576 80 10 1.8 0.75 40 
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Fig. 4 The deflection vs. time responses from experiments and simulations. 

B. In-plane Shear Behaviors 
This section summarizes the characterization of the in-plane shear properties of woven fabrics. Picture frame tests 

were conducted to capture the shear force vs. shear angle responses, and a picture frame test model was built in 
Abaqus. The experimental and numerical results were compared to obtain the proper values of in-plane shear 
properties. 

 
1. Picture frame tests 

The picture frame test is a common approach to study the behavior of fabrics subject to in-plane shear loading. A 
sample of carbon fabric was clamped in a metal picture frame as shown in Fig. 5 (a), which is made of four pairs of 
metal bars pinned at the ends. The metal frame was mounted on a tension test machine. Initially, the angle between 
the warp and weft tows was set to 90° using a square. As the test started, the top crosshead was fixed, and the bottom 
crosshead moved downwards at 35 mm/min for 96 mm. Then, the bottom crosshead rested for 3 minutes before 
moving back at 35 mm/min to the initial position. Time, as well as the force and displacements of the bottom crosshead 
were recorded during the tests. The initial force and displacement were both set to zero. The shear angle 𝛾𝛾 is an 
important parameter that describes the in-plane shear behavior which is commonly defined as the change of the angle 
between the warp and weft yarns [28–37]. As illustrated in Fig. 5 (b), 𝛾𝛾 can be computed from the displacement of 
the crosshead 𝑑𝑑 and the length of the frame 𝐿𝐿𝑓𝑓𝑎𝑎𝑎𝑎𝑖𝑖𝑒𝑒  according to Eqs. 50 - 51 [36]. 

𝛾𝛾 =
𝜋𝜋

2
− 2𝜃𝜃 (50) 

𝜃𝜃 = 𝑎𝑎𝑐𝑐𝑐𝑐𝑠𝑠 �
√2𝐿𝐿𝑓𝑓𝑟𝑟𝑎𝑎𝑐𝑐𝑒𝑒 + 𝑑𝑑

2𝐿𝐿𝑓𝑓𝑟𝑟𝑎𝑎𝑐𝑐𝑒𝑒
� (𝑅𝑅𝑒𝑒𝑓𝑓. [3]) (51) 
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Fig. 5 (a) The setup of picture frame test and the deformed real fabric when shear angle 𝜸𝜸 = 𝟓𝟓𝟓𝟓°; (b) an 
illustration of the movement of the frame; (c) the deformed fabric from the picture frame test simulation. 

The sheared fabric from the picture frame test is shown in Fig. 5 (a), which is not strictly consistent for all the 
samples. Wrinkles may appear at the arm regions of some samples, but the center region always stays flat. The 
phenomenon is consistent with the simulation results shown in Fig. 5 (c). Note that the wrinkling at the arm region 
predicted from simulation is still in small magnitude. The shear responses during the picture frame tests are 
demonstrated in Fig. 6 and 7. The shear force was normalized, and it can be computed from the measured force 
𝐹𝐹𝑖𝑖𝑒𝑒𝑎𝑎𝑡𝑡𝑚𝑚𝑎𝑎𝑒𝑒𝑑𝑑  and half of the angle between the weft and warp tows 𝜃𝜃, according to Eqs. 52-53. The normalization 
excludes the effect of the frame and fabric sizes as indicated in Cao’s work and makes the responses more 
representative for the carbon fabric materials [36,38]. 

𝐹𝐹𝑠𝑠𝑐𝑐𝑟𝑟𝑐𝑐𝑎𝑎𝑛𝑛𝑖𝑖𝑛𝑛𝑒𝑒𝑑𝑑 = 𝐹𝐹𝑠𝑠ℎ𝑒𝑒𝑎𝑎𝑟𝑟 ∙
𝐿𝐿𝑓𝑓𝑟𝑟𝑎𝑎𝑐𝑐𝑒𝑒
𝐿𝐿𝑓𝑓𝑎𝑎𝑓𝑓𝑟𝑟𝑖𝑖𝑐𝑐

2 (52) 

𝐹𝐹𝑠𝑠ℎ𝑒𝑒𝑎𝑎𝑟𝑟 =
𝐹𝐹𝑐𝑐𝑒𝑒𝑎𝑎𝑠𝑠𝑚𝑚𝑟𝑟𝑒𝑒𝑑𝑑
2 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃

(53) 

At the initial stage of Fig. 6, the normalized shear force is increasing almost linearly with the shear angle at a small 
slope. This is because when the shear angle is small, there are large channels between fiber tows, and the rotation of 
the warp and weft yarns dominates the deformation. The inter-tow friction mainly contributes to the shear force while 
the intra-tow friction can also be involved. Then, as the channels gradually close, the inter-tow rotation is limited and 
the compaction from neighboring yarns causes a sudden growth in the shear force near a shear locking angle. In this 
study, the locking angle is around 55°. After the locking, the shear force increases linearly again with the shear angle 
with larger stiffness. When the crosshead stops moving, the normalized shear force first decreases drastically from its 
maxima within several seconds (see Fig. 7). Then, as most of the viscous energy has been dissipated, the normalized 
shear force tends to stabilize.  
 
2. An in-plane shear model 

A picture frame test model was implemented in Abaqus. The model consists of a rigid frame and a piece of fabric 
identical in size to the real ones. Each frame bar was created as a 5 mm wide plate with an elastic modulus of 109 
MPa. which is much larger than the modulus of fibers to prevent the deformation of the frame. The frame bars were 
pinned at the ends. The fabric was created as a solid plate of 0.25 mm thick, and it was pinned to the frame. The 
bottom left corner of the frame was fixed. The top right corner was moved at 35 mm/min at 45° with respect to 𝑥𝑥-axis 
for 96mm in 2.75 minutes. The deformed fabric predicted by the simulation is shown in Fig. 5(c). The material 
properties were characterized by comparing the normalized shear force vs. shear angle responses and the history of 
the normalized shear force obtained from the simulations and the experiments as shown in Fig. 6 and 7. Generally, 
the in-plane shear properties shown in Table 2 have managed to achieve predicted shear responses close to the 
experimental results.  

  
Fig. 6 The normalized shear force vs. shear angle responses obtained from the picture frame shear 

experiment and simulation. 
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Fig. 7 The normalized shear force vs. time responses obtained from the picture frame shear experiment 
and simulation. 

 

Table 2. Material properties that control the in-plane shear behavior 

𝑬𝑬𝒕𝒕 (MPa) 𝒕𝒕 𝜷𝜷𝒕𝒕 𝝉𝝉𝒕𝒕 (min) 

0.185 6 1.7 0.6 
 

C. Through-Thickness Compaction Behaviors 
To characterize the through-thickness compaction properties, compaction tests were conducted, and a 

corresponding model was built in Abaqus. Again, the material properties were calibrated to match the reaction force 
response measured from the experiments.  

 
1. Through-thickness compaction experiments 

The setup for the compression tests is shown in Fig. 8 (a). The area of the tool plates is 2.8′′ × 2.8′′. Four plies of 
fabrics in 2.5′′ × 2.5′′ were cut and stacked together. Before the test, the upper and lower molds were around 6.5 mm 
away from one another. As the test started, the lower grip moved towards the upper grip at 0.5mm/s for 6mm. After 
the ramp, the position of the grip was held constant for 10 minutes. Again, force, displacements, and time were 
recorded from the very beginning and are plotted in Fig. 9 (a). Clearly, the process is divided into three stages by the 
positions where the force starts to increase, 𝑑𝑑1, and where the increase stops, 𝑑𝑑2, as marked by dash lines: (1) the no-
contact stage, (2) the increased compression stage, and (3) the relaxation stage. At first, the mold is not in contact with 
the fabrics, leading to zero reaction force. Then, the force grows linearly with time (also with displacements) as the 
compression happens. Finally, it drops due to stress relaxation. The duration of the second stage was measured to be 
1.006 s. The displacement of the crosshead during this stage is computed as 

𝑑𝑑 = 𝑑𝑑2 − 𝑑𝑑1 = 0.493 𝑐𝑐𝑐𝑐 (54) 

The data will be used as the boundary conditions of the compaction simulation. 
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Fig. 8 (a) The compaction test setup; (b) the compaction model in Abaqus. 

2. A through-thickness compaction model 
A compaction model was built in Abaqus shown in Fig. 8 (b). Two tool plates were created as analytical rigid 

shells controlled by reference points. Each fabric layer was modelled as a 0.25mm thick solid plate, and four layers 
were stacked together. Contact pairs were assigned between two adjacent fabric sheets as well as between fabrics and 
tools. The contact properties include the “hard” normal interaction behavior and the penalty friction transverse 
interaction behavior with a commonly used friction coefficient of 0.3 [14]. Initially, the upper tool plate was in contact 
with the upper-most surface of fabrics and the lower tool plate touched the lower-most surface of fabrics without 
compression. In the first step, the upper plate moved towards the lower plate at a constant speed for 0.493mm in one 
second, followed by a dwell time of one minute. The material properties that control the compaction behaviors were 
tuned until the reaction force RF3 vs. time responses output from Abaqus showed good agreement with the 
experimental curve, as shown in Fig. 9 (b). The characterized properties are shown in Table 3.  

 

 

Fig. 9 (a) The force vs. time and displacement vs. time responses obtained from the compaction 
experiment; (b) the force vs. time responses from the compaction experiment and simulation. 

 
 
 

Table 3. Material properties that control the through-thickness compaction behavior 

𝑬𝑬𝒕𝒕 (MPa) 𝜷𝜷𝒕𝒕 𝝉𝝉𝒕𝒕 (min) 

0.85 0.33 0.05 
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IV. Model Validation 
The proposed hyper-viscoelastic modeling approach is validated in this section. A hemisphere draping test was 

carried out and a corresponding model was implemented in Abaqus. The deformed shape, shear angles, and force 
responses predicted from the simulation were compared to those from the draping experiments.  

A. Draping Experiment 
The setup of hemisphere draping tools is shown diagrammatically in Fig. 10. A set of aluminum frame and die 

support were connected to the upper grip of a test machine. A metal punch of diameter 152.4 mm (6’’) was connected 
to the lower grip of the tension machine. One acrylic blank holder was placed on top of the die support. Holes of 
diameter 160 mm were cut in the center of the die support and blank holder to enable the punch to go though. All the 
surfaces that would be in contact with fabrics were polished and treated with lubricant to reduce friction.  

 

  

Fig. 10 The setup of hemisphere draping test. 

Before the test began, four plies of T300 carbon fiber reinforced plain-weave fabric samples were stacked one 
upon another to form a four-ply assembly. Take the directions along the edges of the frame as x-y-z coordinates. The 
fiber directions are along 0° and 90°, denoted as 1 and 2 directions. A 3 cm grid was drawn on the top layer. Then, 
the fabrics were placed on the die support and pressed by the blank holder. Translucent tape was applied to connect 
the blank holder and die support. The punch was raised to touch the bottom of the fabrics. Then, the fabric was draped 
upwards for 65 mm in one minute with a constant speed. Pictures were taken from the top view through the transparent 
blank holder to record the deformed shapes of fabrics. Three tests were conducted for each type. 

The deformed fabrics are shown in Fig. 11. No wrinkling was clearly observed in most cases. Fiber sliding did not 
occur in the center area but only slightly at the edges where fiber tows can be easily peeled away by friction. Shear 
angles are large along the diagonal line (±45°) and are almost zero along the midlines (0° and 90°). The angle reaches 
maximum near the end of the dome and decreases along the diagonal line from the apex to the end of the dome. 
Moreover, the shear angle also decreases from the end of the dome to the corner of the fabrics. Angles between the 
warp and weft tows at six points were measured from the pictures and recorded in Table 4.  

The force vs. time response is shown in Fig. 12. The reaction force has similar magnitude and trend. The force 
first grows nonlinearly with time and decreases when the punch stops moving.  
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Fig. 11 (a) The deformed 𝟎𝟎/𝟗𝟗𝟎𝟎° fabrics after the hemisphere draping test; (b) the six points where the 
angles between the warp and weft tows were measured. 

  

Fig. 12 The reaction force vs. time responses from the draping experiments for 𝟎𝟎/𝟗𝟗𝟎𝟎° fabrics. The 
experimental results are obtained from three hemisphere draping tests.  

B. Draping Simulation 
A hemisphere draping simulation was implemented in Abaqus using the dynamic implicit solver for T300 carbon 

plain-weave fabrics. Fig. 13 shows the setup in the model. The blank holder and die support were created as one rigid 
part (called as BHDS hereinafter). The punch was also modeled as a rigid body mastered by a reference point. Four 
layers of identical fabric plies were stacked along the 𝑛𝑛-direction but only a quarter of the assembly was included in 
the model (150mm×150mm) with symmetric boundary conditions imposed at two edges. Initially, the BHDS is in 
contact with the upper and lower surfaces of the fabrics without compression. The BHDS is fixed during the whole 
process, and the punch moves down for 65 mm in one minute, followed by dwell for five minutes. The mesh size was 
3 mm. Contact pairs were identified between the surfaces that could be in contact, and the penalty method was used 
for tangential interaction behavior. The friction coefficient between fabric-fabric surfaces is 0.3. The authors have 
tested the inter-ply friction from 0.1 to 0.5, but the results are consistent, indicating that the inter-ply sliding is not a 
major deformation mode during the draping process. The friction coefficient of the fabric-tool contact is reduced to 
0.044 [39], since the oil-based lubricant was thoroughly applied to the tool surfaces. 
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Fig. 13 The hemisphere draping model in Abaqus. 

The deformed shape and Lagrangian shear strain (LE12) are shown in Fig. 14. Similar to the draped fabrics in the 
experiments, no out-of-plane wrinkle shows up. The fabrics deform the most along the midlines. The draping force 
exerted by the punch compels the fabrics that sit on the die support to move radially towards the center of the hole. 
Therefore, the moving directions of the inextensible fiber tows at the midlines align with their axial directions, 
resulting in large translation rather than in-plane rotation of fiber tows. The predicted shear angles show a very similar 
trend to those in the experiments. Along the diagonal line, the shear angle first increases from zero and then decreases 
back to zero from the bottom-left corner to the top-right corner of the fabrics in Fig. 14. The deformed shapes before 
and after the relaxation indicate that the energy dissipation only exerts distinct influence on the compaction force, 
rather than fabric deformation during the hemisphere draping process. 

The angles between the warp and weft tows from the same points as those in experiments were measured and 
shown in Table 4. The relative error between simulation results and experiment results were calculated as 

Relative error =
𝛾𝛾𝑠𝑠𝑖𝑖𝑐𝑐𝑚𝑚𝑛𝑛𝑎𝑎𝑡𝑡𝑖𝑖𝑐𝑐𝑠𝑠 − 𝛾𝛾𝑒𝑒𝑥𝑥𝑐𝑐𝑒𝑒𝑟𝑟𝑖𝑖𝑐𝑐𝑒𝑒𝑠𝑠𝑡𝑡

𝛾𝛾𝑒𝑒𝑥𝑥𝑐𝑐𝑒𝑒𝑟𝑟𝑖𝑖𝑐𝑐𝑒𝑒𝑠𝑠𝑡𝑡
(54) 

Generally speaking, the predicted shear angles are in a good agreement with experiment results with small errors 
(<5%). Possibly, the errors come from the measurements and the uncertainty involved in the real experiments. 
 

 

Fig. 14 The shear strain (LE12) distribution of the fabrics predicted by the hemisphere draping model 
after the process is fully completed 
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Table 4. The angles between the warp and weft tows from the experiment results and simulation results 
together with their relative errors for 𝟎𝟎/𝟗𝟗𝟎𝟎° fabric 

Point 1 2 3 4 5 6 

Experiment 51.71° 71.43° 86.60° 71.78° 68.85° 76.23° 

Simulation 53.67° 70.99° 87.47° 75.20° 69.39° 73.54° 

Relative error 3.79% -0.62% 1.00% 4.76% 0.78% -3.53% 
 
The reaction force of the BHDS vs. time response from the simulations is shown in Fig. 12. Generally, it is close 

to the experimental curves. The largest deviation shows up at the start of the draping process. This is mainly caused 
by the error from the characterization of in-plane shear properties. The shear modulus was underestimated in the initial 
shearing stage to maintain the good accuracy of fitting during the whole shearing process. The bending and compaction 
properties exert less influence on the reaction force, compared to shear properties, since the distance between the blank 
holder and die support is fixed during the simulation, which is slightly different from the real boundary conditions in 
the experiments. In addition, the uncertainties of the fabric samples and the boundary conditions during the shear, 
bending, compaction, and draping experiments can also affect the experimental results. In conclusion, the good 
agreement between the experimental and simulation results demonstrates that the proposed modeling methodology 
works well in the prediction of the fabric deformations and the applied force. 

V. Conclusion 
This paper puts forward a new hyper-viscoelastic model for textile woven dry fabrics based on the development 

of an SEDF. Nonequilibrium stresses are considered and updated according to a Maxwell model made of one elastic 
arm and one Maxwell arm. The bending, in-plane shear, and through-thickness normal behaviors were characterized 
by cantilever beam bending, picture frame shear and compaction tests, respectively. The relaxation behaviors of 
fabrics were successfully captured by having dwell periods in experiments and adjusting 𝛽𝛽𝛼𝛼  and 𝜏𝜏𝛼𝛼  in the 
corresponding models to make the predicted and measured responses coincident. The proposed method was applied to 
examples of the hemisphere draping simulation in Abaqus. The good agreement between the experiment results and 
simulation results validates the capability of the proposed method to capture the fabric deformations and applied force 
when the fabrics are draped by a mold with complex geometry in LCM.  
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