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Abstract
The replacement of a nonlinear parameter-to-observable mapping with a lin-
ear (affine) approximation is often carried out to reduce the computational
costs associated with solving large-scale inverse problems governed by partial
differential equations (PDEs). In the case of a linear parameter-to-observable
mapping with normally distributed additive noise and a Gaussian prior measure
on the parameters, the posterior is Gaussian. However, substituting an accurate
model for a (possibly well justified) linear surrogate model can give mislead-
ing results if the induced model approximation error is not accounted for.
To account for the errors, the Bayesian approximation error (BAE) approach
can be utilised, in which the first and second order statistics of the errors are
computed via sampling. The most common linear approximation is carried
out via linear Taylor expansion, which requires the computation of (Fréchet)
derivatives of the parameter-to-observable mapping with respect to the para-
meters of interest. In this paper, we prove that the (approximate) posterior
measure obtained by replacing the nonlinear parameter-to-observable mapping
with a linear approximation is in fact independent of the choice of the linear
approximation when the BAE approach is employed. Thus, somewhat non-
intuitively, employing the zero-model as the linear approximation gives the
same approximate posterior as any other choice of linear approximations of the
parameter-to-observable model. The independence of the linear approximation
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is demonstrated mathematically and illustrated with two numerical PDE-based
problems: an inverse scattering type problem and an inverse conductivity type
problem.

Keywords: Bayesian inference, inverse problems governed by PDEs,
linear approximation, model errors, Bayesian approximation errors,
uncertainty quantification

(Some figures may appear in colour only in the online journal)

1. Introduction

Solving large-scale inverse problems can become computationally challenging, particularly
in the case of nonlinear parameter-to-observable maps. The computational challenges can be
alleviated, however, by using an approximate forward model, see, for example, [1, 2]. A par-
ticularly obvious example is to replace the accurate (high-fidelity) nonlinear parameter-to-
observable map with a linear (low-fidelity) approximation. Replacing an accurate parameter-
to-observable mapping with an approximate one, even if seemingly well justified, will lead to
model errors and uncertainties. It is well understood that if these uncertainties are not accoun-
ted for, the inversion results can be misleading, see for example [3, 4].

There are a variety of ways to account for model errors, e.g. machine learning-based
approaches [5–7], employing Gaussian processes [3, 8, 9], and the Bayesian approximation
error (BAE) approach [4, 10, 11]. In this paper we focus on the latter, which typically relies on
posing the inverse problem in the Bayesian framework [10, 12]. Broadly speaking, the BAE
approach propagates all modelling and measurement uncertainties into a single additive total
error term which is then approximately (pre)marginalised over the prior model. The robust-
ness and applicability of the approach has been demonstrated in a variety of settings, see for
example [13–19].

Of specific relevance to the current study are the works [20–24], in which the accurate non-
linear parameter-to-observable map is replaced by an approximate linear counterpart while
accounting for the model error using the BAE approach. Specifically, in [24] the inverse prob-
lem governed by the acoustic wave equation (modelling photoacoustic tomography) is formu-
lated and solved for the initial pressure. An (approximate) linear parameter-to-observable map
is introduced by ignoring the additional uncertainty in the speed of sound. The induced addi-
tional uncertainties are accounted for by the BAE approach. On the other hand, in [22, 23],
the linear Born approximation is used to solve inverse scattering problems with high contrast
materials, while in [20, 21] nonlinear parameter-to-observable maps related to diffuse optical
tomography and electrical impedance tomography (EIT), respectively, are replaced with their
respective Fréchet derivatives.

In the current paper we prove, and also illustrate with numerical examples, that when
replacing a nonlinear parameter-to-observable map with a linear approximation, as long as
the model errors are accounted for using the full Bayesian approximation error (full BAE)
approach, the results are independent of the choice of linearisation. With the full BAE
approach, we mean that (i) the measurement errors are modelled as additive and Gaussian,
and that (ii) the primary unknown (parameter) is not approximated to be uncorrelated with the
approximation errors.

How well the resulting approximate posterior represents the true posterior, is often a ques-
tion of interest, and we refer to [12, 25, 26] for several results in this direction. However, in the
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current paper we only concern ourselves with the independence of the approximate posterior
to the choice of linearisation.

The remainder of the paper is organised as follows. In section 2 we briefly review the solu-
tion of linear(-ised) inverse problems within the Bayesian framework. In section 3 we provide
a formal proof of the invariance of the resulting approximate posterior to the choice of lin-
earisation. We illustrate this invariance through two numerical examples and investigate the
convergence of the posterior models in sections 4.1 and 4.2. The implications of the results
are discussed in section 5.

2. Global linear Gaussian approximations

After introducing the required notation in section 2.1, we outline the setup and solution of
infinite-dimensional Bayesian linear inverse problems with additional auxiliary (random) vari-
ables. For an in-depth discussion of infinite-dimensional Bayesian inverse problems see [12],
while for computational considerations, including discretisation details, see [27, 28].

2.1. Notation

The notation used in the current paper is based mostly on that provided in [12]. First, consider
twoHilbert spacesH1 andH2. Then for any v1 ∈H1 and v2 ∈H2, we define the (outer product)
operator v1 ⊗ v2 by (v1 ⊗ v2)u= ⟨v2,u⟩H2v1 for any u ∈H2. We use µ to denote probability
measures over infinite-dimensional Hilbert spaces and let E denote expectation. Taking H to
be an infinite-dimensional Hilbert space, for v ∈H with associated measure µ(v) we define
the mean and covariance operator by

v0 = Ev, Cvv = E(v− v0)⊗ (v− v0),

respectively. We will assume throughout that all covariance operators are trace class (see,
for example, [12, 29] for details on trace class covariance operators). This ensures that the
squared L2-norm of v− v0 is bounded in expectation, that is E∥v− v0∥2 <+∞. Furthermore,
we denote byN (v0,Cvv) a Gaussian measure on v that has mean value v0 = Ev and covariance
operator Cvv. In the case of a joint measure µ(v1,v2) for v1 ∈H1 and v2 ∈H2 (both possibly
infinite-dimensional), we denote the marginal measure of v1 (resp. v2) by µv1 (resp. µv2).

For a finite dimensional random variable w ∈ Rp we denote by N (w0,Γww) a Gaussian
distribution on w with mean w0 and covariance matrix Γww. The cross-covariance operators
between v and w are defined as

Cvw = E(v− v0)⊗ (w−w0), Cwv = E(w−w0)⊗ (v− v0) = C∗
vw.

Furthermore, for finite dimensional Hilbert spaces we use πw(w) to denote probability density
function of w. Moreover, for w1,w2 ∈ Rp, we denote by πw1(w2) the probability density func-
tion of w1 evaluated at w2. Finally, we use L(H,Rd) to denote the space of bounded linear
operators fromH to Rd.

2.2. Linear(-ised) Bayesian inverse problems

We consider a set up where d ∈ Rq is the measurement, e ∈ Rq is an additive (measurement)
error term and m ∈H and z ∈ Z are the primary (interesting) and the auxiliary (uninterest-
ing) unknowns, respectively, with H and Z denoting Hilbert spaces. These are related by the
measurement (observation) model

d= G(m,z)+ e, (2.1)

where G :H×Z → Rq is the parameter-to-observable mapping.
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One of the main motivation behind taking a (global) linear approximation is to avoid
MCMC type algorithms to compute conditional mean estimates and/or iterative methods (suc-
cessive linearisations) to compute maximum a posteriori estimates, and the related posterior
error estimates.

Linearisation (affine approximation) involves writing

d= Fm+ e+ ε(m,z), (2.2)

where ε(m,z) = G(m,z)−Fm is a random variable (the approximation/modelling error)
induced by the joint distribution µ(m,z,e), and F ∈ L(H,Rq) is the linear map of the approx-
imation. We also note that for nonadditive measurement errors, one can identify such errors
as belonging to the auxiliary unknowns z [30]. Most commonly with linear approximations,
ε(m,z) is further approximated by a random variable independent of (m, z) or a fixed constant,
and F is the derivative operator, i.e. F = DmG, evaluated at (m0,z0). However, as discussed
below, other choices are also possible.

Below, we review the BAE approach in which ε is treated as a further additive error term. In
particular, the full BAE approach considered in this work approximates the joint distribution
of (m,e,ε) as Gaussian and premarginalise over (e,ε) [4]. The idea of premarginalisation can
be understood by considering the ‘ordinary additive error’ measurement model: d= G(m)+ e,
wherem and e are mutually independent. Then, straightforward derivation gives the likelihood
model πd|m(d |m) = πe(d−G(m)). While the likelihood depends on the distribution of e, it
does not include the random variable e itself: it has been premarginalised. Consider next the
measurement model: d= Fm+ e+ ε(m,z), where ε is clearly not mutually independent with
m. This leads to

πd|m(d |m) = πe+ε|m(d−Fm |m).

In general, the density πe+ε|m(· |m) does not have an analytical form and, furthermore, its
implementation involves intractable integrals. The second order statistics (and thus the Gaus-
sian approximation) for the joint distribution of (m,ε) are induced by µ(m,z) as well as G and
F , and can be estimated using draws from µ(m,z) and computing the related sample means
and covariances.

Approximating π(e) as Gaussian, takingF as the linear approximation of G and approxim-
ating the joint distribution µ(m,ε) as Gaussian, we obtain an analytic form for the likelihood

πd|m(d |m)∝ exp

{
−1
2

∥∥∥Lν|m(d̃−F̃m)
∥∥∥2
2

}
, (2.3)

where (formally)

ν = e+ ε (2.4)

Γν|m = Γee+Γεε −CεmC−1
mmCmε (2.5)

Γ−1
ν|m = LTν|mLν|m (2.6)

F̃ = F + CεmC−1
mm (2.7)

d̃= d− e0 − ε0 + CεmC−1
mmm0. (2.8)

Above Cεm = C∗
mε is the cross-covariance operator between ε and m (see section 2.1), Γεε is

the covariance of ε, and ε0 = Eε. With (a Gaussian approximation for) the prior model µm =
N (m0,Cmm), (2.3)–(2.8) and using the Bayes’ theorem, we get the following approximations
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for the conditional mean estimate m̂≈ E(m|d) and the posterior covariance operator
Ĉ ≈ Cm|d,

Ĉ =
(
F̃∗Γ−1

ν|mF̃ + C−1
mm

)−1
(2.9)

m̂= Ĉ
(
F̃∗Γ−1

ν|md̃+ C−1
mmm0

)
= ĈF̃∗Γ−1

ν|md+ ĈF̃∗Γ−1
ν|m(CεmC

−1
mmm0 − e0 − ε0)+ ĈC−1

mmm0, (2.10)

= Bd+ b,

with B = ĈF̃∗Γ−1
ν|m and b= ĈF̃∗Γ−1

ν|m(CεmC
−1
mmm0 − e0 − ε0)+ ĈC−1

mmm0. Note that while the
linearisation F formally appears in (2.3), in section 3 we show that (2.3), and thus the triplet
(Ĉ,B,b), is in fact independent of the choice of F .

It is worth noting that the variational Bayesian approach (see for example [31–33] or the ref-
erences therein) could also be used as an alternative approach to compute a Gaussian approx-
imation to the posterior. However, when using the BAE approach the triplet (Ĉ,B,b) can be
precomputed before the collection of data (see section 3.1), making computation of the pos-
terior a linear algebra task only. On the other hand the variational Bayesian approach typically
requires the measured data and relies on sample-based iterative methods.

3. Invariance of the Posterior to the linear approximations with BAE

Here we present our main result.

Theorem 1 (Invariance of the likelihood). LetH andZ beHilbert spaces, and assumem ∈H
and z ∈ Z have a joint prior measure µ(m,z). Furthermore, let m0 and Cmm be the prior mean
and trace class covariance operator of the random variable m. Suppose

d= G(m,z)+ e, (3.1)

where G :H×Z → Rq is a nonlinear bounded parameter-to-observable map and e ∈ Rq has
mean e0 and covariance matrix Γee. Then the approximate likelihood model involving F ∈
L(H,Rq),

πd|m(d|m)∝ exp

{
−1
2
∥Lν|m(d−Fm− ε̄)∥22

}
,

where LTν|mLν|m = Γ−1
ν|m, and

ε̄= e0 + ε0 + CεmC−1
mm(m−m0), Γν|m = Γee+Γεε −CεmC−1

mmCεm
is independent of the choice of F .

Proof. First, we introduce the notation g0 = EG(m,z) and ḡ= g0 + CGmC−1
mm(m−m0) with

CGm = E(G(m,z)− g0)⊗ (m−m0) and CmG = C∗
Gm. Then, letting F ∈ L(H,Rd) be arbitrary

with adjoint F∗ ∈ L(Rd,H) and setting f0 = EFm= Fm0, we have

CFm = E(Fm− f0)⊗ (m−m0) = FE(m−m0)⊗ (m−m0) = FCmm.

Then, noting that

ε0 = EG(m,z)−EFm= g0 −Fm0,

Cεm = E(ε− ε0)⊗ (m−m0) = E(G(m,z)− g0 −Fm+Fm0)⊗ (m−m0)

= CGm−CFm,
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we have

d−Fm− ε̄= d−Fm− ε0 −CεmC−1
mm(m−m0)

= d−Fm− g0 +Fm0 −CεmC−1
mm(m−m0)

= d− g0 −F(m−m0)− (CGm−CFm)C−1
mm(m−m0)

= d− g0 −F(m−m0)−CGmC−1
mm(m−m0)+F(m−m0)

= d− g0 −CGmC−1
mm(m−m0)

= d− ḡ,

which is independent of F .
On the other hand, setting ΓGG = E(G(m,z)− g0)⊗ (G(m,z)− g0), and ΓGF =

E(G(m,z)− g0)⊗ (Fm− f0) = Γ∗
FG and noting that

CFF = FCmmF∗, CmF = CmmF∗, Γεε = ΓGG −ΓGF −ΓFG +ΓFF ,

we have

Γν|m = Γee+Γεε −CεmC−1
mmCmε

= Γee+ΓGG −ΓGF −ΓFG +ΓFF −CεmC−1
mmCmε

= Γee+ΓGG −ΓGF −ΓFG +ΓFF − (CGm−CFm)C−1
mm(CmG −CmF )

= Γee+ΓGG −ΓGF −ΓFG +ΓFF −CGmC−1
mmCmG +ΓGF +ΓFG −ΓFF

= Γee+ΓGG −CGmC−1
mmCmG ,

which is also independent of F . That is to say, the likelihood is invariant to the choice of the
specific linearisation, F .

Three remarks are now in order.

Remark 1 (Invariance of the posterior). In infinite dimensions, Bayes’ rule (see [12, the-
orem 6.2]) is expressed using the Radon–Nikodym derivative of the posterior measure µd with
respect to the prior measure µm,

dµd

dµm
(m)∝ πlike(d|m). (3.2)

Thus as the (approximate) likelihood πlike(d|m) is independent of the choice of F , so is the
(approximate) posterior measure µd.

Remark 2. The zero operatorO defined byOm= 0 ∈ Rd for all m ∈H, is in L(H,Rd). Thus
choosing O as the linearised model results in the same approximate likelihood (and thus pos-
terior) as taking any other F ∈ L(H,Rd) as the linearised model.

Remark 3. If the correlation between the approximation errors and the unknown are ignored
(set to 0), i.e. the enhanced error model [4, 17], theorem 1 does not hold.

3.1. Convergence of the approximate joint second order statistics

Theorem 1 refers to the actual joint (second order) statistics (i.e. the actual means and covari-
ances) and, thus, the result has to be taken as an asymptotic one with respect to the sample size
N used to compute the sample statistics. In practice, all covariances in (2.3)–(2.8) except for
Γee, namely Cmm, Γεε, Cεm, and Cmε, and the mean of the approximation error ε0, are computed
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Algorithm 3.1. Algorithm for computing the approximate likelihood (2.3). Note steps 1--9 require
no measured data, i.e., can be carried out offline.

Input: Joint prior distribution µ(m,z), covariance matrix of noise Γe, mean of noise e0, data d,
accurate forward model G(m,z), linear(-sed) model F(m,z)

Output: Approximate likelihood πd|m(d |m).
1: for i= 1 to N do
2: Sample (m(i),z(i))∼ µ(m,z)
3: Compute ε(i) = G(m(i),z(i))−Fm(i)

 parallelisable

4: Compute m0 ≈ 1
N

∑N
i=1m

(i), Cmm ≈ 1
N−1

∑N
i=1(m

(i) −m0)(m
(i) −m0)

∗

5: Compute ε0 ≈ 1
N

∑N
i=1 ε

(i), Γεε ≈ 1
N−1

∑N
i=1(ε

(i) − ε0)(ε
(i) − ε0)

T

6: Compute Cmε = C∗
εm ≈ 1

N−1

∑N
i=1(m

(i) −m0)(ε
(i) − ε0)

T

7: Set Γν|m = Γee+Γεε −CεmC−1
mmCmε = (LTν|mLν|m)

−1

8: Set F̃ = F + CεmC−1
mm

9: Set d̃= d− e0 − ε0 + CεmC−1
mmm0

10: Set πd|m(d |m)∝ exp

{
− 1

2

∥∥∥Lν|m(d̃−F̃m)
∥∥∥2

2

}

as sample statistics based on draws from the joint prior µ(m,z) and the ε(m,z) computed from
these draws.

Specifically, for an ensemble of samples from the joint prior, (m(i),z(i))∼ µ(m,z) with
i = 1,2, . . . ,N, each sample of the approximation error is computed as

ε(i) = ε(m(i),z(i)) = G(m(i),z(i))−Fm(i).

The mean and covariance of ε are then approximated using the corresponding sample mean
and sample covariance;

Eε= ε0 ≈
1
N

N∑
i=1

ε(i), Γεε ≈
1

N− 1

N∑
i=1

(ε(i) − ε0)(ε
(i) − ε0)

T.

All means and (cross-)covariance matrices other than those of e are computed in a similar
manner.We remark that all sampling can be carried out prior to the acquisition or consideration
of any data, and is often referred to as being carried out offline.

For any µ(m,z) with finite variances, a bounded G and any bounded F , each of the sample
means and covariances converge as N→∞. The linear approximation does, however, change
the statistics of the approximation error and, in particular, the small sample approximations.
These (statistics) are a complicated (intractable) function of the fourth order statistics and are,
in practice, estimated with Monte Carlo simulations. Thus, the choice of F can have an effect
on the (small sample) performance of the global linear approximation. More specifically, the
particular F chosen can be seen as a control variate [1, 34] for estimating the statistics of G.
As such, choosing an F that is (strongly) correlated with G can improve the performance (see
section 4.2 and figure 8). However, it should be pointed out that asymptotically, the conver-
gence rate of the Monte Carlo estimates of each of the means and covariance matrices remains
of order N− 1

2 [34].
We summarise quantities required and the steps used for computing the approximate

likelihood (2.3) in algorithm 3.1. Approximations for the conditional mean estimate m̂
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and the posterior covariance operator Ĉ can then be readily evaluated from the outputs of
algorithm 3.1. using (2.9) and (2.10).

We also note that the typical sample sizes N are considerably less than the dimension of
the discretised unknown, implying the sample covariance estimate of Cmm that occurs in the
conditional covariance Γν|m is not full rank and thus not invertible. While there are several
approaches to handle this problem such as pseudoinverse and (Tikhonov type) ridge regression,
we confine ourselves to the pseudoinverse in this paper. Naturally, it can be assumed that the
point estimates get better as the covariance estimates get better. The catch here is, however,
that the posterior error estimates are underestimated when the pseudoinverse is employed, and
the underestimation is greatest with smallest sample sizes.

To show this, we compute statistics of the estimates as functions of the sample size N in
sections 4.1 and 4.2. In particular, we compute the actual estimation errors as well as the
posterior error estimates to illustrate this.

4. Numerical examples

In this section we consider two PDE-based inverse problems: an inverse scattering type
problem and an inverse conductivity type problem. In both cases the forward problem is
approximated computationally using the finite element method (FEM) with piece-wise lin-
ear continuous Lagrange basis functions. The parameter of interest m is also discretised
using the finite element basis functions when we solve the forward problems. See [27, 28]
for more details on discretisation of infinite dimensional Bayesian inverse problems using
FEM.

We stress that the contribution of the present paper is that the choice of the approximative
linear model does not play (asymptotically) a role when the full BAE approach is used. The
focus is not on the performance of the full BAE versus neglectingmodelling and approximation
errors as such. For this reason, we do not compare results with those found when neglecting
the approximation errors.

4.1. Example 1: inverse medium scattering

The first example we consider is a variation of an acoustic scattering problem that arises
in a variety of applications, see, for example, [35, 36]. In particular, we consider the two-
dimensional time harmonic acoustic scattering from a bounded penetrable obstacle. Almost
the same problem was considered in [22] in which the linear Born (single scattering) approx-
imation was used and the BAEwas employed, although in the present paper we have near-field
data instead of far-field data.

In this section, we do not have auxiliary unknowns z that would be premarginalized over.
Thus, the only approximation/modelling errors are due to the linearisation. Furthermore, the
idea is to investigate the use of a linearisation, as such, we do not consider different discret-
isations here (to avoid an inverse crime). In this section, we focus on the convergence of the
estimates with the number of samples used to estimate the associated covariances. Section 4.2
considers a more elaborate example with auxiliary variables, and a comparison of the con-
vergences of estimates with different linearisations, as well as the associated computational
costs.

Specifically, let ω be the angular frequency, so that the wave number can be written as
k= ω/c0, where c0 is the background (i.e. outside any inhomogeneity) speed of sound. Then,

8
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given an incident plane wave ui(x;v) = exp(ikx · v) propagating in direction v (with ∥v∥= 1),
and the speed of sound c(x) inside the inhomogeneity, the total wave field, u(x;v), and the
scattered field, us(x;v) satisfy

∆u+ k2mu= 0 in R2,

u= ui+ us,

lim
|r|→∞

r1/2
(
∂us

∂r
− ikus

)
= 0,

(4.1)

wherem= c20/c
2(x) denotes the refractive index. As is standard [35, 36] we assume the refract-

ive index is positive with m(x) = 1 for x ∈ Ω \D. Defining q(x) := 1−m(x) (which is com-
pactly supported in D), in the case of a penetrable inhomogeneous medium, the scattered field
satisfies

∆us+ k2mus = k2qui in Ω

lim
|r|→∞

(
∂us

∂r
− ikus

)
= 0.

(4.2)

We consider the so-called multistatic set up of the scattering problem in which the goal
is to estimate m based on data consisting of point-wise measurements of (the real and ima-
ginary parts of) the scattered field at fixed locations based on several different incident plane
waves. That is, the (noiseless) data can be written as dℓj = (Re[us(xℓ;vj)], Im[us(xℓ;vj)]) for
ℓ= 1,2 . . . ,Nm and j = 1,2 . . . ,Ns with Re[·] and Im[·] denoting real and imaginary parts, and
Nm,Ns denoting the number of measurement locations and number of different incident wave
directions, respectively. Here, however, in contrast to [22], we consider near-field data at
(finite) locations xℓ rather than in the respective directions.

The BAE approach was used to compensate for the linearisation of the forward problem
in [22, 23], both of which employed the Born approximation

us(x)≈−k2
ˆ
D

i
4
H(1)

0 (k|x− s|)q(s)ui(s) ds= Fm, (4.3)

where H(1)
0 denotes the Hankel function of first kind and order zero. The Born approximation

in (4.3) can be derived taking the first term in the Neumann series for solving the Lippmann-
Schwinger equation, see, for example, [36, 37].

In this paper, we take the computational domain Ω to be a circle of radius 1.5, with D being
the concentric unit circle of unit radius. We pose the Sommerfeld radiation condition on ∂Ω
as an absorbing boundary condition [38, 39], i.e. we take

∂us

∂r
− ikus = 0, on ∂Ω (4.4)

rather than at |r| →∞. We note that this is a mock-up of the standard scattering setup (that
typically employs far-field data), and posing Sommerfeld conditions on ∂Ω is typically not
justifiable as a physical model.

The finite element mesh used has a total of 7294 nodes with 3920 in D. We take 61 equally
spaced measurements around the boundary of the domain for 61 uniformly spaced directions
on the unit circle, that is,Nm = Ns = 61.We use this approach to provide the accurate nonlinear
parameter-to-observable mapping G(m). The noise level is set at 3% of the peak value of
the noiseless measurements, that is, δe = 3× 10−2dmax, where dmax is (the modulus of) the
maximum noiseless measurement.
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Figure 1. Four samples drawn form the prior distribution of refractive index. The white
dashed line indicates the boundary of D.

The prior distribution on the refractive index used to compute the approximation error and
the true resonator type refractive index are chosen to be similar to those used in [22]. Spe-
cifically, the sampled refractive indices consist of one to three high contrast (m= 1 to m= 2)
ellipses with randomised shape and location. The number, the orientation, and the centre of
the ellipses are each chosen uniformly, while the radius is chosen from a normal distribution
of mean 0.25 and standard deviation of 0.07. In figure 1 we show four samples from the prior.
Note that ellipses can partially overlap (occlude) each other.

Rather than employing the Born approximation, here, we employ the zero-map as the lin-
ear approximation, that is, we write d= e+ ε with G(m)−Om having been absorbed in ε.
Furthermore, we compute the associated joint covariances and approximated likelihood using
algorithm 3.1 with N= 10, N= 100, N= 1000, N= 5000, N= 7500, and N= 10000. The
(true) resonator and the estimated posterior means corresponding to different N are shown in
figure 2. The reconstructions obtained with high sample numbers are similar to the resonator
example in [22].

Naturally, both the estimate (reconstruction) as well as the error estimates can be assumed
to increase in quality with increasing number of samples N. In figure 3, the true cross section
of the target as well as the ±1σ and ±2σ error intervals are shown for different sample sizes
N, where the posterior standard deviation is given by σ(x) = (Cm|d(x,x))

1
2 for x ∈ Ω. It is evid-

ent that using the pseudoinverse in the computation the conditional covariance Γε|m can yield
severely underestimated posterior error estimates when small sample sized are used to approx-
imate the covariances. This suggests to compute a large enough sample set or to use some other
approach to estimate Γε|m.

4.2. Example 2: inverse conductivity problem

We now consider an inverse conductivity type problem, which arises in a range of settings such
as EIT [40, 41], and ground water flow [42, 43]. In particular, we consider a set up similar to the
so-called continuum boundary condition version of the problem, see, for example, [41, 44, 45].

The data consists of (noisy) boundary measurements of the potentials uj on ∂Ω for j =
1,2, . . . ,Ns, which satisfy

−∇ · (exp(m)∇uj) = 0 in Ω

exp(m)∇uj · n= gj on ∂Ω \ S,
exp(m)∇uj · n+ u= 0 on S.

(4.5)
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Figure 2. The true refractive index (far left) and the reconstructed (approximate con-
ditional mean) refractive index using the zero-map as the linear approximation with
N= 10 (a), N= 100 (b), N= 1000 (c), N= 5000 (d), N= 7500 (e), and N= 10000 (f).
The wavelength λ is indicated at the top left corner of the true model.

Figure 3. The approximate conditional mean along the cross-section p− q (see
figure 2). The red line is the true refractive index along the cross-section while the
black lines show the conditional means found using the zero-map as the linear approx-
imation. The darker grey and lighter grey show the (approximate) marginal posterior
±1 and ±2 standard deviations, respectively. The results are computed using N= 10
(a), N= 100 (b), N= 1000 (c), N= 5000 (d), N= 7500 (e), and N= 10000 (f).

In the context of EIT the above can be referred to as the continuum model [40, 41], where
exp(m) represents the electrical conductivity, uj the voltage, and gj the applied boundary cur-
rent. The (noiseless) data can be written as dℓj = uj(sℓ) for ℓ= 1,2 . . . ,Nm with Nm,Ns denot-
ing the number of measurement points on the boundary and number of different applied cur-
rents, respectively. The domain Ω is modelled as starlike, meaning that its boundary can be
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Figure 4. Four samples drawn form the joint prior distribution of the domain geometry
and conductivity.

written using polar coordinates in the form r= r(θ) for θ ∈ [0,2π]. We set S= {(θ,r(θ))|θ ∈
[4.5,4.9]} and take Nm = 16 evenly spaced (in terms of θ) point measurements in ∂Ω \ S.
We apply Ns = 15 different currents of the form gi(θ) = exp(−∥θ− i2π/Ns−π∥2/16)−
exp(−∥θ− i2π/Ns∥2/16) for j = 1,2, . . .Ns. Equation (4.5) is solved using 4027 FEM nodes
with linear basis functions for both the potential u and the (discretised) conductivity m.

In this example, we have an auxiliary parameter z that represents the (unknown, uninter-
esting) boundary geometry of the domain and write Ω(z) to underline the dependence of the
domain shape on the parameterization z. As the domain is modelled as starlike it is represented
numerically using a truncated Fourier series. The Fourier series is truncated after the first 25
Fourier basis functions, while the distribution of the Fourier coefficients is such that the coeffi-
cients are independent and identically distributed (iid) with normal distributions havingmean 0
and standard deviation 0.005, other than the first coefficient, which hasmean 1.5 The parameter
m of the conductivity distribution taken as (conditionally-)Gaussian so that for a given set of
Fourier coefficients z (i.e. a given domain shape) the prior is of the formm|z∼N (m0,Cmm(z)).
We take a prior mean of zero, i.e. m0 = 0, and define the prior covariance operator using the
inverse of an elliptic PDE operator [46, 47]. Specifically, we take

Cmm(z) =A(z)−2, A(z) =

{
γ (κI−∆) , in Ω(z)
∇n, on ∂Ω(z),

(4.6)

where ∆ is the Laplacian operator, ∇n is the directional derivative along the unit normal to
the boundary, and γ= 40, κ= 10 control the marginal variance and correlation length of the
random field respectively. The operatorA(z) is discretised using FEM on the same mesh used
for the forward problem. Four draws from the distribution of the geometry and conductiv-
ity are shown in figure 4. Solving (4.5) in the starlike domain (parametrised by the Fourier
coefficients z) provides the accurate nonlinear parameter-to-observable mapping G(m,z).

We will only estimate the conductivity parameter m and premarginalise over both the use
of the linearised model and the uncertain geometry (parametrized by the Fourier coefficients
z). Here, we compute the approximate posterior mean and covariance estimates for both the
zero map and the discretised Fréchet derivative linearisations. The Fréchet derivative is com-
puted at m= m0, with the boundary shape fixed to a unit circle which results from setting z

5 Sampling from the joint prior is done by sampling the Fourier coefficients first and then the conductivity. Thus we
can can ensure positivity of the radius of the domain before sampling for the conductivity or running the forward
models. More specifically, any sample of the Fourier coefficients leading to a not strictly positive domain radius is
resampled.

12



Inverse Problems 39 (2023) 054001 R Nicholson et al

Figure 5. The actual conductivity inside the true geometry (a), the actual conductiv-
ity inside the geometry resulting for the (prior) expected value of all Fourier coef-
ficients (b), the reconstructed (approximate conditional mean) conductivity using the
(Fréchet) derivative linearisation with N= 10000 (c), and the reconstructed (approxim-
ate conditional mean) conductivity using the zero-map as the linear approximation with
N= 10000 (d).

to its prior expected value. For details of the Fréchet derivative associated with (4.5) see, for
example, [48]. Each linearisation induces different second order statistics for the approxim-
ation error ε. The true target and the estimates for both linearisations are shown in figure 5.
With N= 10000 sample size, the estimates have essentially converged which is also sugges-
ted by the L2 errors of the two estimates as shown below in figure 8. These computational res-
ults demonstrate the asymptotic convergence of the linearisations also in the case of auxiliary
parameters.

The second main question of this example is whether the different linearisations yield sig-
nificantly different convergence behaviour for the posterior error estimates. The convergence
of the cross sections and the respective posterior error estimates for the zero and Fréchet lin-
earisations (as N increases) are shown in figures 6 and 7, respectively. These figures show
trends in agreement to those observed for the inverse scattering problem in section 4.1. For
small numbers of samples (N= 10 and N= 100), the approximation posteriors (conditional
means and posterior variances) found using either of the linearisations are essentially infeas-
ible; the actual conductivity lies well outside the essential support of the approximate posteri-
ors. It’s worth noting, however, that the approximate posterior uncertainty for small numbers
of samples appears significantly less underestimated when using the Fréchet linearisations
than when using the zero map. For larger numbers of samples we see the posteriors begin to
coincide.

To further investigate the convergence using different linearisations, in figure 8 we show
the convergence (as N increases from 10 to 50 000) for both of the linearisations of the mean
of the approximation errors ε0, the L2 error in the approximate conditional mean estimates,
and the trace of the approximate posterior covariance matrices. The trace of the (approximate)
posterior covariance matrix is one of several standard measure of the (approximate) posterior
uncertainty [49]. These results were computed for five different random seeds and, further-
more, the reference mean of the approximation errors, denoted ε∗0 , and the reference approx-
imate conditional mean estimate, denoted m̂∗, are computed using 100 000 samples and the
Fréchet derivative as the linearisation.

As seen in figure 8(a), for both choices of linearisation the mean of the approximation error
essentially coincide and converge at the expected Monte Carlo rate of N− 1

2 [34]. The error in
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Figure 6. The approximate conditional mean along the cross-section p− q
(see figure 2). The red line is the true conductivity along the cross-section while
the black lines show the conditional mean found using the zero-map as the linear
approximation. The darker grey and lighter grey show the (approximate) marginal
posterior ±1 and ±2 standard deviations, respectively. The results are computed using
N= 10 (a), N= 100 (b), N= 1000 (c), N= 5000 (d), N= 7500 (e), and N= 10000 (f).

Figure 7. The approximate conditional mean along the cross-section p− q
(see figure 5). The red line is the true conductivity along the cross-section while the
black lines show the conditional mean found using the Fréchet derivative as the linear
approximation. The darker grey and lighter grey show the (approximate) marginal
posterior ±1 and ±2 standard deviations, respectively. The results are computed using
N= 10 (a), N= 100 (b), N= 1000 (c), N= 5000 (d), N= 7500 (e), and N= 10000 (f).

the approximate conditional mean estimates shown in figure 8(b) essentially coincide over the
whole range of N, though there are some very small differences for N= 10 (these small dif-
ferences for N= 10 can also be seen by comparing figures 6(a) and 7(a)). Lastly, in figure 8(c)
we see that the trace of the approximate posterior covariance matrix using the zero map as
the linearisation significantly under estimates the posterior uncertainty for smaller numbers
of samples, while using the Fréchet derivative as the linearisation the posterior uncertainty
is over estimated for smaller numbers of samples, though for N⩾ 10000 we see the trace
of the approximate posterior covariance matrices coincide for both choices of linearisation.
We also note that across the five random seeds the qualitative behaviour is essentially the
same.
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Figure 8. Convergence of the errors in the mean of the approximation error with the
expected Monte Carlo convergence rate of N− 1

2 [34] shown as black dashed line (a).
Convergence of the L2 error in the MAP estimate (b). Convergence of the trace of the
posterior covariance matrix (c). In all plots the blue lines show the convergence using
the Fréchet derivative as the linear approximation while the red dashed lines show the
convergence using the zero-map as the linear approximation. The results are computed
using 5 different batches (with different random seeds) for the number of samples N
increasing from 10 to 50 000. The estimates ε∗0 and m̂∗ are computed using 100 000
samples.

5. Discussion and conclusions

In this paper, we considered inverse problems with nonlinear forward maps and the respective
global linearisations (global affine approximations). In addition to the global linearisation,
we assume that the measurement noise model and the prior model used in the inversion are
Gaussian models. These approximations are common in resource-limited applications since
they result in affine data-to-estimate maps as well as data-independent posterior covariance
models.

We showed that when the full BAE approach is employed to compensate for the approxima-
tion error that arises due to the linearisation, measurement error and prior models, the approx-
imate posterior model does asymptotically not depend on the choice of the linear approx-
imation. We also illustrated numerically the result with inverse scattering and conductivity
problems.

The result implies, in particular, that the asymptotic posterior models given by using the
Fréchet derivative or the zero-map models as the linearisation are equal. While several works
have used the full BAE with an approximate linearised solver, our result indicates that the
Fréchet derivative (or any other linearisation) does not need to be constructed since the zero-
map approximation yields the same posterior. That is to say, the approach could be used in a
black-box manner, i.e. by simply running the accurate forward problem to compute the stat-
istics of the approximation errors.

The result is, however, an asymptotic one since it relies on the actual second order joint
statistics of the unknown and the approximation errors. We demonstrated that, when a large
enough number of sample is used, the use of the zero-map approximation yields feasible estim-
ates of the posterior mean and covariance. However, results also showed that the use of a too
small sample size leads to both poor estimates and underestimated posterior error estimates
when the pseudoinverse is used in the computation of the related conditional covariances. The
latter can lead to severely misleading posterior estimates and interpretations.

The dependence of the convergence of the posterior models on the choice of linearisation
was investigated for the inverse conductivity case. In this example, although the approximate
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conditionalmean estimates computed using the Fréchet derivative and the zero-mapwere fairly
similar, the respective covariances were significantly different. Specifically, use of the Fréchet
derivative resulted in a fairly accurate approximation of the trace of the posterior covariance
matrix even for small numbers of samples, while use of the zero-map resulted in significantly
under approximated posterior covariance matrix trace for small numbers of samples. For larger
numbers of samples the two covariance matrices coincided as expected.

It should be pointed out, that as stated in the introduction, the results provided here do no
give any immediate insight into how well the resulting approximate posterior compares to the
true posterior. This of course is an interesting research question in itself.
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