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Abstract
Obtaining lightweight and accurate approximations of discretized object-
ive functional Hessians in inverse problems governed by partial differential
equations (PDEs) is essential to make both deterministic and Bayesian statist-
ical large-scale inverse problems computationally tractable. The cubic compu-
tational complexity of dense linear algebraic tasks, such as Cholesky factor-
ization, that provide a means to sample Gaussian distributions and determine
solutions of Newton linear systems is a computational bottleneck at large-scale.
These tasks can be reduced to log-linear complexity by utilizing hierarchical
off-diagonal low-rank (HODLR)matrix approximations. In this work, we show
that a class of Hessians that arise from inverse problems governed by PDEs
are well approximated by the HODLR matrix format. In particular, we study
inverse problems governed by PDEs that model the instantaneous viscous flow
of ice sheets. In these problems, we seek a spatially distributed basal sliding
parameter field such that the flow predicted by the ice sheet model is con-
sistent with ice sheet surface velocity observations. We demonstrate the use
of HODLR Hessian approximation to efficiently sample the Laplace approx-
imation of the posterior distribution with covariance further approximated
by HODLR matrix compression. Computational studies are performed which
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illustrate ice sheet problem regimes for which the Gauss–Newton data-misfit
Hessian is more efficiently approximated by the HODLR matrix format than
the low-rank (LR) format. We then demonstrate that HODLR approximations
can be favorable, when compared to global LR approximations, for large-scale
problems by studying the data-misfit Hessian associated with inverse problems
governed by the first-order Stokes flow model on the Humboldt glacier and
Greenland ice sheet.

Supplementary material for this article is available online

Keywords: Hessians, inverse problems, hierarchical matrices,
HODLR matrices, ice-sheet models, large-scale

(Some figures may appear in colour only in the online journal)

1. Introduction

Model-based simulations of complex physical systems play an essential role in understanding
real world phenomena. These models are often characterized by partial differential equations
(PDEs), and are typically subject to uncertainties stemming from unknown coefficient fields,
constitutive laws, source terms, initial and/or boundary conditions, geometries, etc. When
observation data exist, these parameters can be estimated by solving an inverse problem gov-
erned by the underlying model (e.g. PDE). It is well known that uncertainty is a fundamental
feature of inverse problems, therefore in addition to inferring the parameters of interest, we
need to quantify the uncertainty associated with this inference. This uncertainty quantification
can be done via Bayesian inference. Solving Bayesian inverse problems governed by com-
plex PDEs can be extremely challenging due to high-dimensional parameter spaces that stem
from discretization of infinite-dimensional parameter fields and the need to repeatedly solve
the underlying PDEs. To overcome these computational challenges, it is essential to exploit
problem structure, when possible. For example, the underlying PDE solution operator is often
diffusive, that observation data may be sparse or only contain limited information about the
parameter field. These particularities give rise to a low-rank (LR) structure in the second deriv-
ative of the data-misfit component of the inverse problem objective (or of the negative log like-
lihood), hereafter referred to as the data-misfit Hessian. In previous work [1, 2] we exploited
this LR structure in the context of inverse ice sheet flow problems. However, for cases when
this ‘low-rank’ is in fact large, as is the case for many inverse problems of practical interest,
where the observation data are highly informative, LR approximation is insufficient. In this art-
icle, we exploit the local sensitivity of model predictions to parameters, which gives rise to an
off-diagonal LR structure. We do so by invoking hierarchical off-diagonal low-rank (HODLR)
matrix approximations and detail how they can be used to reduce the computational cost to
solve large-scale PDE-based inverse problems.

1.1. Related work

Global LR approximation of Hessians in inverse problems have been successfully utilized
in [1, 3–6], with deterministic and randomized methods [5, 7] being available to generate said
approximations. However, some problems, specifically those with highly informative obser-
vation data, are not amenable to global LR approximation, and thus other structure-exploiting
strategies are needed such as those based on local translation invariance and localized
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sensitivities [8–10]. Here, we focus on hierarchical LR methods for which convenient ran-
domized methods are available [11, 12].

Hierarchical matrices have been demonstrated e.g. in [13, 14] to be an effective means
to approximate covariance matrices associated to large-scale Gaussian processes. In [15],
hierarchical matrix approximations with general hierarchical partitioning patterns are utilized
for the construction of explicit representations of Hessian inverses. In one of the examples stud-
ied, the authors find that the diffusivity of the parameter-to-observable map and the inform-
ativeness of the observation data impact whether the data-misfit Hessian is more suited for
compression with hierarchical or global LR formats. Here, we build on this study and focus
on a specific inverse problem arising in land ice modeling.

1.2. Contributions

The main contributions of this work are as follows. (1) We motivate the use of HODLR
compression for data-misfit Hessians in inverse problems governed by PDEs, and present a
detailed study for large-scale ice sheet inverse problems, such as the Greenland ice sheet. (2)
We describe a strategy that leverages the fast manipulation of HODLR matrices to efficiently
generate samples from a Gaussian distribution for posterior uncertainty quantification. (3) We
numerically study the influence of various problem setups on the off-diagonal LR structure of
the data-misfit Hessian. The results show the effectiveness of the HODLR approximation for
various problem sizes including a Greenland ice sheet inverse problem, which has a discretized
parameter dimension of 3.2× 105.

2. Preliminaries

In section 2.1, we summarize background material regarding the solution of discretizations of
infinite-dimensional inverse problems. We also briefly review HODLR matrices. Specifically,
in section 2.2 we define HODLR matrices, list some of their properties and summarize the
computational complexities of computing symmetric HODLR matrix approximations of sym-
metric matrices that are only available through a means to compute its action on vectors. We
refer to [16, 17] for a more thorough discussion of hierarchical matrices and to [12] for more
detail on HODLR matrices.

2.1. Bayesian inverse problems

Ameans to account for uncertainty in parameter inference is to employ the Bayesian approach
to inverse problems [18–20], which takes as input observation data d, prior knowledge of the
parameter and a model for the likelihood of observation data conditional to β. Prior knowledge
of the discretized parameterβ is typically determined by the expertise of domain scientists and
is mathematically encoded in a probability density function πprior (β). The likelihood π (d|β)
involves the data uncertainty and the mathematical model for the parameter-to-observable
process. The solution of a Bayesian inverse problem is a probability density function for
the discretized parameter β, that is conditioned on the observation data according to Bayes
formula

πpost (β) = π (β|d)∝ πprior (β)π (d|β) ,
which provides a formal expression for the posterior distribution. Here, ‘∝’ means equal up
to a normalization constant. For a problem with Gaussian prior N

(
β,Γprior

)
, i.e. a Gaussian
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centered at β with covariance matrix Γprior, and additive data error ξ described by the zero
mean Gaussian N (0,Γnoise), the Bayes formula for πpost(·) has the following form [19]

πpost (β)∝ exp

(
−1
2
∥F(β)− d∥2

Γ−1
noise

− 1
2
∥β−β∥2

Γ−1
prior

)
, (1)

where F is the parameter-to-observable map. The notation ∥ · ∥A means that the norm is
weighted by the positive-definite matrix A, i.e. ∥v∥A :=

√
v⊤Av. The parameter-to-observable

map is typically nonlinear, and consequently the posterior distribution (1) is non-Gaussian.
Thus, typically no closed-form expressions for its moments are available. One characteristic of
the posterior distribution is the point at which it is maximized, or equivalently the point which
minimizes the negative log-posterior, the so-called maximum a posteriori (MAP) point,

β⋆ := argminβ J(β) :=
1
2
∥F(β)− d∥2

Γ−1
noise

+
1
2
∥β−β∥2

Γ−1
prior
. (2)

A means to compute the MAP point is to employ a Newton-type descent method for optimiz-
ation [21], which critically relies on the availability of second derivatives. Since J is defined
implicitly in terms of the parameter-to-observable map, which involves a PDE solution oper-
ator, we utilize the adjoint method [22–24] to compute its gradient and the application of its
Hessian to vectors.

To explore posterior distributions beyond the MAP point, Markov chain Monte-Carlo
(MCMC) techniques [25, 26] can be used. Such techniques require a proposal distribution
that is easy to sample and that at least locally should reflect some of the behavior of the tar-
get posterior density. Satisfying these two requirements becomes challenging with increasing
parameter dimension. One way to construct such proposals is to use Gaussian approximations
of the posterior, either around a current parameter βk or the MAP point β⋆ as a proposal. We
denote such a proposal by π̃post, given by

π̃post (β,βk)∝ exp

(
−1
2
(β−µk)

⊤Hk(β−µk)

)
, (3)

where gk,Hk are the gradient and Hessian of the log-posterior J(β) at βk, and we use the nota-
tion µk = βk−H−1

k gk. Note that if βk is chosen as the MAP point β⋆, then µk = β⋆ since
the gradient vanishes at the MAP point. Thus, (3) reduces to the Laplace approximation at
the MAP point. Another class of MCMC sampling approaches are generalized preconditioned
Crank–Nicholson methods [27, 28]. These methods are derived through a discretization of the
Langevin equation, and they require a preconditioner that is equivalent to the prior covari-
ance matrix. An attractive choice for this required preconditioner is the Hessian at the MAP
point [29].

For the above discussed (and other) MCMC samplers, one typically needs to apply the
inverse Hessian H−1

k or its square root H−1/2
k to vectors. These operations are needed

repeatedly to either compute µk defined above, or to draw samples [2, 29]. The requirement to
perform these operations efficiently motivates the study presented in this paper. In particular,
in section 3.2 we discuss how HODLR approximations can be used for the fast application of
the Hessian square root.

2.2. Symmetric HODLR Matrices

A HODLR matrix A ∈ RN×N, is a matrix equipped with a depth L ∈ N, hierarchical partition-
ings of the index set I = {1,2, . . . ,N} into contiguous subsets and LR off-diagonal blocks
defined by the partition, which is described in greater detail in e.g. [12]. The block rank-
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Figure 1. Rank-structure of a matrix A with hierarchical depths L= 1 (left), L= 2
(middle) and L= 3 (right). Off-diagonal blocks are assumed to be low-rank.

structure of a HODLR matrix for various hierarchical depths is illustrated in figure 1. An
HODLR matrix must satisfy two additional properties.

(i) The depth of the hierarchical partitioning scales with the logarithm of the size of thematrix,
i.e.

L=O (log N) .

(ii) The maximum rank of each hierarchical level ℓ off-diagonal block, rℓ, is bounded above
by a number r that is independent of the problem size N, for each level ℓ

max
1⩽ℓ⩽L

rℓ ⩽ r=O (1) .

Such matrices are referred to as data-sparse since the LR blocks allow for them to be
represented with less than O

(
N2
)
floating point numbers. In particular, the storage of an

HODLR matrix is O (N log N), O(N log N) flops are needed to compute a HODLR matrix-
vector product [7], andO(N log2 N) flops are required for direct methods to compute an inverse
HODLR matrix-vector product [30], as well as square root and inverse square root matrix-
vector products [31].

2.2.1. Compression. We aim to generate HODLR approximations of data-misfit Hessians in
inverse problems. For large-scale problems, the data-misfit Hessian is typically not available
explicitly, but only as an operator that can be applied to vectors. Each such Hessian-vector
product requires the solution of two, potentially large-scale, PDE model solves, the first being
a linearized forward model and the second a linear adjoint model. Due to the complex com-
putational procedure required of each Hessian-vector product, these products dominate the
overall computation for large-scale problems and we thus use their number throughout this
work as a measure of computational cost. In order to construct HODLR approximations of
symmetric matrix-free operators, we employ previously developed randomized linear algeb-
raic routines which only require the matrix-free action on a limited number of random vectors
with specified null entries, referred to as structured random vectors. The Hessian action on
these structured random vectors is used to sample row and column spaces of off-diagonal
Hessian submatrices and allow for randomized approximate truncated singular value decom-
positions of the aforementioned off-diagonal submatrices. More details can be found in the
appendix; see algorithm 2.

For the results that we present in section 5 a rank-adaptive symmetric matrix-free [32, 33]
hierarchical compression algorithm is utilized, that is based on [12]. A similar algorithm is
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presented in [34], wherein the hierarchical partitioning is more general and the LR blocks
have nested bases. The rank-adaptivity provides a high probability means of resolving the off-
diagonal blocks to a desired level of accuracy. By utilizing available matrix–vector product
information and the Rayleigh quotient, a rank adaptive relative tolerance algorithm is made
possible. More computationally efficient rank-adaptive stopping criteria are detailed in [35].

2.2.2. Computational cost of generating HODLR approximations. The number of matrix–
vector products ζ, needed to compress a symmetric matrix using q oversampling vectors, into
a level L HODLR matrix with off-diagonal ranks {rℓ}Lℓ=1 is given by

ζ = 2(⟨r⟩+ q)L+N/2L, where ⟨r⟩ := 1
L

L∑
ℓ=1

rℓ. (4)

Equation (4) can be understood from algorithm 2 in appendix ‘Randomized compression
algorithms’, as for each level ℓ one needs to compute rℓ + q Hessian-vector products, in order
to compute Y (line 7 of algorithm 2) and rℓ + q Hessian-vector products to compute Z (line 14
of algorithm 2). The remaining N/2L Hessian-vector products arise from the need to determ-
ine the diagonal sub-blocks, which is detailed in [7]. We note that an adaptive procedure to
determine an approximate basis Q, such as that in [33], for a block matrix column space,
reduces the number of matrix–vector products to ζadaptive = 2(⟨r⟩+ q/2)L+N/2L but with
the additional computational burden of extra orthogonalization routine calls. We note that
ζ =O(log N) matrix–vector products are needed to generate an HODLR approximation of
a matrix with HODLR structure. For sufficiently large problems HODLR compression is not
expected to be more computationally efficient than global LR compression, as the number
of Hessian-vector products to generate a LR approximation by the randomized single-pass
algorithm [12] is independent of the problems size. However, for problems of substantial size,
we observe that the HODLR format does offer computational savings (see section 6).

3. HODLR matrices in inverse problems governed by PDEs

Here, we illustrate why data-misfit Hessians in inverse problems governed by PDEs may con-
tain numerically LR off-diagonal blocks, describe how one can permute parameters to expose
this HODLR structure, and show how HODLR approximations can be leveraged to draw
samples from Gaussian approximations of Bayesian posterior distributions.

3.1. Motivation

Consider the following data-misfit cost functional

Jmisfit (β) :=
1
2
∥F(β)− d∥2

Γ−1
noise
, with F(β) =Bu,

whereB linearly maps the PDE solution u= u(β), for the spatially-distributed parameter field
β, to the model predictions associated to the data d. Moreover, Γnoise is the covariance matrix
describing the Gaussian noise of the observational data. For illustration purposes, we assume
that the parameter function β is defined on a region Γ1 and the data d is observed on a region
Γ2, which may or may not be distinct. These quantities are related through the solution of the
governing PDE and the measurement operator B. The characteristics of this relation depends
on properties of the governing PDE. In the following, we assume that a spatially (or tempor-
ally) localized perturbation in the β field leads to a predominantly localized effect in the PDE
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Figure 2. Sketch illustrating a case where the influence of changes in the parameter β
on the PDE solution u in Γ2 is focused in a small area. To illustrate this, we show a
sensitivity cone, i.e. the PDE solution u is predominantly impacted in a cone about the
support of the localized parameter perturbation.

solution u, and thus the model predictions Bu. This property is illustrated in figure 2, where a
sensitivity cone depicts the influence of a local perturbation in β, defined over Γ1, on the PDE
solution u in Γ2. It is well known that for an elliptic PDE, local perturbations influence the
solution globally, but depending on the geometry of the domain and the equation, this global
effect may rapidly decay outside a subset of Γ2 that captures the main effects of the perturba-
tion. For instance, in a problem as in figure 2, the influence of perturbations in β on u is likely
to become more localized when the distance between Γ1 and Γ2 decreases.

We next discuss the relationship between properties of the PDE as discussed above and off-
diagonal blocks in the Hessian matrix (or its Gauss–Newton variant). The data-misfit Hessian
can be derived using the adjoint method [22–24], but we find the HODLR structure of the
data-misfit Hessian to be most easily understood by studying a formal expression in terms of
the first and second order sensitivities δu/δβ, δ2u/δβ2. Said expression is given by

δ2

δβ2
Jmisfit (β)(β1,β2) = (Bu− d)⊤Γ−1

noise

(
B δ2u
δβ2

(β)(β1,β2)

)

+

(
B δu
δβ

(β)(β1)

)⊤

Γ−1
noise

(
B δu
δβ

(β)(β2)

)
,

where δu/δβ (β)(β1) is the first variation [36] of u with respect to β in direction β1, and
δ2u/δβ2 (β)(β1,β2) is the second variation of u with respect to β in directions β1,β2, that is,

δu
δβ

(β)(β1) :=

[
d
dϵ
u(β+ ϵβ1)

]
ϵ=0

,

δ2u
δβ2

(β)(β1,β2) :=

[
d
dϵ
δu
δβ

(β+ ϵβ2)(β1)

]
ϵ=0

.

Upon discretizing β with finite elements we obtain the following formal expression for the
(i, j)-entry of the data-misfit Hessian Hmisfit and of the Gauss–Newton data-misfit Hessian
HGN

misfit

(Hmisfit)i,j =
δ2

δβ2

(
Jmisfit (β)

)
(ψi,ψj) , (5)
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(
HGN

misfit

)
i,j

=

(
B δu
δβ

(β)(ψi)

)⊤

Γ−1
noise

(
B δu
δβ

(β)(ψj)

)
, (6)

where {ψj}Nj=1 is a basis for the nodal finite-element space, which is used to approximate β.
When sensitivities are predominantly local as discussed above and when the support of two

finite element basis functions ψi,ψj are well separated, the terms(
B δu
δβ

(β)(ψi)

)⊤

Γ−1
noise

(
B δu
δβ

(β)(ψj)
)

and B
( δ2u
δβ2

(β)(ψi,ψj)
)
,

are rather small (assuming diagonally dominant noise covariance matrices). This is, e.g. due to
Bδu/δβ(β)(ψi) having small values when Bδu/δβ(β)(ψj) is large. Now, let I,J be disjoint
index subsets of {1,2, . . . ,N}, then the entries in thematrix block {(Hmisfit)i∈I,j∈J } of the data-
misfit Hessian are relatively small whenever ∪i∈Isupp(ψi) and ∪j∈J supp(ψj) are well separ-
ated. Such Hessian blocks are well suited for approximation by LRmatrices.When the degrees
of freedom (dofs) corresponding to the finite element basis functions ψi are ordered such that
I,J are contiguous, (Hmisfit)I,J is an off-diagonal sub-block of Hmisfit and Hmisfit tends to
have HODLR structure as defined in section 2.2. The Gauss–Newton data-misfit Hessian may
have HODLR structure for the same reasons. In both cases, the order of the basis functions
and thus the dofs influence this structure. An ordering that maintains locality, i.e. consecutive
indices correspond to basis functions with supports that are near one another, is ideal. As a
consequence of such ordering, basis function supports with significantly different indices are
far from each other such that the corresponding off-diagonal blocks have small entries and
can be well approximated using a LR matrix approximation. We defer to section 6.2 for a
discussion of methods and numerical experiments regarding the order of the dofs.

3.2. Exploiting HODLR structure for fast sampling of Gaussian approximations of the
posterior distribution

In [2], the following expressions for the covariance of the Laplace approximation of the pos-
terior distribution are provided,

Γpost =
(
Hmisfit +Γ−1

prior

)−1
= Γ

1/2
prior

(
H′

misfit + I
)−1

Γ
⊤/2
prior,

H′
misfit := Γ

⊤/2
priorHmisfitΓ

1/2
prior,

Γ
1/2
post = Γ

1/2
prior

(
H′

misfit + I
)−1/2

,

where the matrix square-root A1/2 is such that A= A1/2
(
A1/2

)⊤
. For Bayesian inverse prob-

lems with a parameter field that is distributed spatially over a bounded subset of Rm, m= 2,3,
a reasonable choice is to use the square of an inverse elliptic PDE operator, whose action is
given by twice applying an inverse elliptic PDE operator, to define the prior covariance [20].
Furthermore, this choice permits a relatively simple means of obtaining a symmetric square
root ofΓprior, as an inverse elliptic PDE operator. Multigrid solvers for linear systems that arise

from discretized elliptic PDEs [37], provide a scalable means to compute Γ1/2
priorx. In previous

works such as [1, 3–6], the prior-preconditioned data-misfit HessianH ′
misfit, was approximated

by means of a global LR compression. This strategy provides an efficient means of approxim-
ating the posterior covariance matrix in inverse problems with sufficiently small amounts of
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observation data. Here, we exploit HODLR problem structure and generate approximations of
the posterior covariancematrix, that comes from the Laplace approximation of the posterior, by
HODLR approximations of the prior-preconditioned data-misfit H̃

′
misfit. We term the resulting

Gaussian distribution as the HODLR Laplace approximation of the posterior. Appendix ‘Error
of the Laplace posterior covariance due to approximation of the prior-preconditioned data-
misfit Hessian’ provides an analysis on how such an approximation impacts the accuracy of
the approximate posterior covariance

Γ̃post = Γ
1/2
prior

(
H̃

′
misfit + I

)−1
Γ
⊤/2
prior.

A symmetric square-root factorization of H̃
′
misfit + I is then generated with O

(
N log2 N

)
flops [31]. The symmetric factorization allows for a O (N log N) means of computing square
root and inverse square root matrix-vector products.

4. Bayesian inverse ice sheet problems

The simulation of the dynamics of ice sheets (e.g. the Greenland or Antarctic ice sheets) is
an important component of coupled climate simulations. Such simulations require estimation
of a present state of the ice that is consistent with available observations, a process some-
times referred to as model initialization. This estimation problem can be formulated either
as a deterministic inverse problem (i.e. as nonlinear least squares optimization governed by
PDEs) or as a Bayesian inverse problem (i.e. as a statistical problem which aims to character-
ize a distribution of states). The latter approach, while more expensive, provides uncertainty
estimates in addition to determining a best parameter fit.

Ice sheet dynamics [38] is typically governed by nonlinear Stokes equations or simplific-
ations thereof, such as the first-order equations (see e.g. [39]). Generally, the most uncertain
component in ice sheet simulations is the basal boundary condition, i.e. how the ice sheet inter-
acts with the rock, sand, water or a mix thereof at its base. Estimating an ice sheet’s effective
boundary condition from velocity observations on the top surface, the ice sheet’s geometry and
a model for its dynamics is thus an important problem that can be mathematically formulated
as an inverse problem [1, 40–43].

We summarize the formulation of this inverse problem next. As common in the literature,
we use a snapshot optimization approach, where all the data are assumed to be collected over
a short period of time during which changes in the ice geometry are negligible. We denote the
bounded domain covered by ice by Ω⊂ Rm, m ∈ {2,3}, and the basal, lateral and top parts of
the domain boundary ∂Ω by Γb, Γl, and Γt, as illustrated in figure 3.

The governing equations are nonlinear incompressible Stokes equations whose solution is
the ice flow velocity u : Ω→ Rm and the pressure p : Ω→ R given as follows:

−∇ ·σu = ρg in Ω, (7a)

∇· u= 0 in Ω, (7b)

σun= 0 on Γt, (7c)

u · n= 0 and T(σun+ exp(β)u) = 0 on Γb, (7d)

along with additional lateral boundary conditions. Here, β is a basal sliding parameter field,
ρg the body force density, where ρ is the mass density of the ice and g the acceleration due
to gravity. Equation (7a) describes the conservation of momentum, (7b) the conservation of
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Figure 3. Schematic of two-dimensional slab of ice used for Example I in section 5.
The blue circles show representative (uniformly-distributed) measurement locations.
The angle θ is the slope of the ice slab.

mass, and (7c) are stress-free boundary conditions for the top surface (the ice–air interface). In
normal direction, equation (7d) states a non-penetration condition, i.e. the ice cannot flow into
the rock/sand layer which supports it (here n denotes the outward unit normal to the boundary
∂Ω and T the tangential operator, Tv= v− n(n⊤v)). In tangential direction, equation (7d) spe-
cifies a tangential sliding condition that relates the fraction of tangential sliding and tangential
stress through the (logarithmic) basal sliding field β = β(x), x ∈ Γb. We employ Glen’s flow
law [44], a constitutive law for ice that relates the stress tensor σu and the strain rate tensor
ε̇u =

1
2

(
∇u+∇u⊤

)
,

σu = 2η (u) ε̇u− Ip,with η (u) =
1
2
A−1/nε̇

1−n
2n

II , (8)

where η is the effective viscosity, I is the unit matrix, ε̇II = tr(ε̇2u) is the second invariant
of the strain rate tensor, A is a flow rate factor, and n is Glen’s exponent. Ice is typically
modeled using n≈ 3, which corresponds to a shear-thinning constitutive relation, here we use
n= 3.

As discussed above, the parameter containing the largest uncertainty is the (logarithmic)
basal sliding field β = β(x). Thus, it is usually the parameter inferred from (typically, satellite)
observation data d, here in the form of surface velocity measurements. Using an appropriate
point observation operator B that extracts point data from the solution u of the governing
equation (7), and assuming additive observation errors ξ, the relationship between model and
data is now of the typical form

d=Bu+ ξ. (9)

Assuming that the observation errors ξ and the prior for the parameter field β follow Gaussian
distributions, we are in the framework of Bayesian inverse problems summarized in section 2.1.

5. Example I: two-dimensional ISMIP-HOM benchmark

We first study the prospects of compressing Gauss–Newton data-misfit Hessians in a problem
inspired by the ISMIP-HOM collection of ice sheet simulation benchmark problems [45]. This
problem set was used to explore inverse ice sheet problems in e.g. [42, 43]. After a short
description of the problem setup, we present results such as the MAP point estimate β⋆ and
samples from the HODLRLaplace approximation of the posterior distribution. Then, we study
the impact that various problem features have on the suitability of the Gauss–Newton data-
misfit Hessian for compression to the HODLR and global LR formats.

10
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5.1. Problem setup

This problem setup consists of a rectangular piece of ice on a slope, as sketched in figure 3.
This simple example allows us to study the influence of the domain aspect ratio, the number
of observations and the level of mesh refinement on the properties of the Gauss–Newton data-
misfit Hessian matrix. The domain has a width of W= 104 (m) and a height of H= 102 (m).
Periodic boundary conditions are employed along the lateral boundaries such that the setup
models an infinite slab of ice on a slope. The governing equations and other boundary condi-
tions are as discussed in equation (7).

The Stokes equations are discretized using Taylor–Hood finite elements on a mesh of 256×
10 rectangles, each subdivided into two triangles, for the domain length [0,W) and height
[0,H]. To compute a MAP point estimate, we generate synthetic surface velocity observation
data using the ‘true’ logarithmic basal sliding field, βtrue (x) := log

(
1200+ 1100sin

(
2π x
W

))
.

Given this basal sliding field, we solve equation (7), extract the tangential velocity component
at 100 uniformly distributed points on the top boundary Γt. The synthetic observation data
d is obtained by corrupting each component of the extracted tangential velocity by adding
random noise ξi to its ith component di. The random noise ξi are independent and identically
distributed according to a Gaussian with zero mean and standard deviation equal to 1% of the
maximum absolute value of the extracted tangential velocity field.

It remains to define the prior distribution for the parameter field β. The average value of
βtrue is used as constant prior mean β (x) = 6.73315≈ 1

W

´ W
0 βtrue (s)ds. The prior covariance

matrix Γprior is a discretization of the covariance PDE operator C := (δI− γ∆)
−1, with γ =

6× 102 and δ = 2.4× 10−3, with Robin boundary conditions [46]. These values are chosen in
order to provide a relatively large prior correlation length of 103 (m) [47]. After discretizing
β by finite elements, the resultant dofs define β as in equation (2). Next, we summarize the
computation of the MAP point and the compression of the Gauss–Newton data-misfit Hessian
matrix at the MAP point.

5.2. MAP point and HODLR Laplace approximation of the posterior

The nonlinear optimization problem for finding the MAP estimate is solved using an inex-
act Gauss–Newton minimization method with backtracking linesearch [21], where the linear
systems are iteratively solved by the conjugate gradient method. The resulting MAP point
is shown in figure 4. The MAP parameter field β⋆, closely resembles the true parameter
βtrue, which is a consequence of the large amount of available data and relatively small noise
level.

Next, we sample the HODLR Laplace approximation of the posterior distribution with a
HODLR compressed prior-preconditioned data-misfit HessianH ′

misfit (details and comparisons
can be found below in section 5.3), as outlined in section 3.2. In figure 5, we compare the
mean, pointwise standard deviation and samples from the prior and the posterior distributions.
As expected, we find that the data updates our belief about the spatially distributed parameter
field and reduces the uncertainty. In particular, the 2σ bounds on the one-dimensional point
marginals σ (x), σi = [Γi,i]

−1/2 of the Laplace approximation of the posterior and the prior
distributions are shown, in order to verify that the samples are largely contained within two
standard deviations of their respective means. The prior-preconditioned data-misfit Hessian
H ′

misfit, is compressed using a relative tolerance of 10−6, so that with high probability ∥H ′
misfit −

H̃
′
misfit∥2/∥H ′

misfit∥2 ⩽ 10−6.
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Figure 4. Shown for Example I are on the left the MAP point β⋆ (red) and the truth
basal sliding parameter βtrue (black) used to generate synthetic observations of the tan-
gential velocity component on the upper surface Γt. Shown on the right are noisy syn-
thetic observations (black dots) used for computing the MAP point and the associated
tangential surface velocity reconstruction (red).

Figure 5. Results for Example I: two random samples (red), mean β (blue) and bound-
aries of the region R= {(x,y)such that 0⩽ x⩽W and β(x)− 2σ(x)⩽ y⩽ β(x)+
2σ(x)} (dashed black) are shown for the prior (left) and a HODLR Laplace approx-
imation of the posterior using the methodology described in section 3.2 (right).

5.3. Dependence of Hessian block spectra on problem setting

Next, we study how problem features impact the numerical suitability of using global LR
and HODLR compressions to approximate the Gauss–Newton data-misfit Hessian. In this
and subsequent sections we measure the cost to generate the matrix compression in terms
of Hessian-vector products, which we also describe as Hessian applies, as each said vec-
tor product requires two linearized PDE solves and thus dominates the computational cost.
We use the result of appendix ‘HODLR approximation error due to the accumulation of LR
approximations of off-diagonal blocks’, to claim ε absolute error in a level L HODLR approx-
imation, when there is no more than ε/L absolute error in each off-diagonal block. What is
particular to this section, is that adaptive single-pass and HODLR algorithms are used to
generate global LR and HODLR approximations, based on absolute tolerance criteria. The
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Figure 6. Comparison of HODLR and global LR compression costs of the Gauss–
Newton data-misfit Hessian HGN

misfit, for Example I with ice sheet aspect ratio ϕ. This
figure shows that for low aspect ratios, HODLR becomes more efficient than global LR
for medium levels of target accuracy.

absolute tolerance algorithmic input is scaled by the largest global LR singular value in order to
report relative approximation errors. We note that additional errors are neglected in the repor-
ted approximation error such as that incurred in the peeling process [11, 12] and additional
approximation assumptions in the single-pass algorithm, both of which are not expected to be
significant.

5.3.1. Influence of aspect ratio. Here, we vary the aspect ratio of the domain ϕ = H/W,
where H and W are the domain height and width respectively, in order to study how it influ-
ences the block spectra of the Gauss–Newton data-misfit Hessian and ultimately the com-
putational cost. Figure 6 shows that the global spectrum is more sensitive to changes in the
relative length scale ϕ than the spectra of the off-diagonal blocks. LR approximations of the
off-diagonal blocks become computationally cheaper as ϕ decreases as a result of the sensit-
ivity cones becoming increasingly localized as the ice sheet thickness decreases. Global LR
approximations becomemore expensive as ϕ decreases, a result of the data being more inform-
ative.We note that realistic problems, such as the Humboldt glacier and the Greenland ice sheet
studied later in section 6, have small aspect ratios and are thus expected to have data-misfit
Hessians that are less amenable to global LR approximation.

5.3.2. Influence of the parameter dimension. We now vary the level of mesh refinement in
order to study the influence of observation data informativeness, through the discretized para-
meter dimension N= dim(β), on the computational cost to generate HODLR and global LR
approximations of the Gauss–Newton data-misfit Hessian. The hierarchical depth L is incre-
mented for every doubling of the discretized parameter dimension, in order that the hierarch-
ical depth scales with the logarithm of the size of the Hessian matrix, a condition described in
section 2.2. Figure 7 provides computational evidence of the claim made in section 2.2, that
the number of applies needed to hierarchically compress an operator with HODLR structure
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Figure 7. Dependence of HODLR and global LR compression costs of the Gauss–
Newton data-misfit Hessian on dim(β), the dimension of the discretized logarithmic
basal sliding field for Example I. The cost of global LR compression is insensitive to
dim(β), while the cost of HODLR compression increases as the mesh is refined.

Figure 8. Dependence of HODLR and global LR compression costs of the Gauss–
Newton data-misfit Hessian on dim(d), the data dimension, for Example I. The com-
putational cost for global LR approximation increases with the amount of observation
data, while the cost for HODLR compression is rather insensitive.

is O (log N). On the contrary, the number of applies to generate the global LR approximation
is rather insensitive to the level of mesh refinement.

5.3.3. Influence of the data dimension. Figure 8 shows that the global rank grows with
the amount of observation data and thus global LR compression tends to be less effi-
cient for problems with strongly informative observation data. The rate of spectral decay
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of the (Gauss–Newton) data-misfit Hessian is related to the degree of ill-posedness of the
unregularized inverse problem. As the number of observations increases, these associated
model predictions are increasingly sensitive to small scale variations in the basal sliding field.
Thus, more data generally makes the data set more informative about the parameter and the
(Gauss–Newton) data-misfit Hessian have a weaker rate of spectral decay.

6. Example II: Humboldt glacier and Greenland ice sheet

Here, we study the scalability of the proposed methods using large-scale ice sheet problems
which are typically used in climate simulations. Namely, we focus on the Humboldt glacier
in North-West Greenland, and the entire Greenland ice sheet. For these simulations, we use
the ice sheet model MALI [48], which relies on Albany [49], a C++ multi-physics library
for the implementation of the first-order approximation of Stokes equations. This first-order
approximation is based on scaling arguments motivated by the shallow nature of ice sheets
and uses the incompressibility condition to reduce the unknowns to the horizontal velocities.
We use PyAlbany [50] a convenient Python interface to the Albany package, which in turn
builds upon Trilinos [51]. Albany is designed to support parallel and scalable finite-element
discretized PDE solvers and various analysis capabilities. Details about the parameter, state,
data dimensions as well as the number of cores and hierarchical levels used in the computations
is provided in table 1.

The following study is partially motivated by findings made in the section 5, namely that
the role of the aspect ratio between the vertical and horizontal directions (see section 5.3)
influences the ability to use global LR compression and favors HODLR compression. We
generate HODLR and global LR approximations and then based on the computed spectra,
equation (4) and ζLR = r+ q, we estimate the computational cost. Additionally, we demon-
strate that the ordering of the dofs impacts the spectral decay for off-diagonal blocks of the
data-misfit Hessian. We present results for both, the Humboldt glacier, which expands about
4× 102 (km) laterally, and the Greenland ice sheet, which expands about 1.8× 103 (km). The
ice is at most 3.4 (km) thick, resulting in approximate aspect ratios of 8.5× 10−3 for Hum-
boldt and 1.9× 10−3 for Greenland. We use a nonuniform triangulation of the Greenland ice
sheet, with mesh size ranging from 1 to 10 (km), and we then extrude it in the vertical direc-
tion, obtaining a 3D mesh having ten layers of prismatic elements. The velocity observations
at the top surface of the Greenland ice sheet are obtained from satellite observations [52]. The
MAP basal sliding field and the temperature fields are obtained as part of the initialization
process, using a numerical optimization approach to match the ice velocity observations and
constrained by the first-order flow model coupled with a temperature model [53]. Additional
details about the mesh geometries and data, in particular regarding the Humboldt glacier, can
be found in [54].

In figure 9, we show the surface velocity observation data d in (m yr−1), the MAP point
estimate of the logarithmic basal sliding field β⋆ (exp(β⋆) is in (kPa yrm−1)) and surface
velocity in (m yr−1) generated by the model.

6.1. HODLR compressibility

We next generate global LR approximations of a Greenland and Humboldt data-misfit Hes-
sian as well as LR approximations of various off-diagonal blocks. Plots of the estimated sin-
gular values are provided in figure 10. We observe that the spectrum of the Greenland ice
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Table 1. Problem specifications for the Humboldt glacier and Greenland ice-sheet prob-
lems (Example II). Dimension of the discretized basal sliding field dim(β), dimension
of the discretized velocity field dim(u), dimension of the observation data dim(d), pro-
cessors employed for computations and depth of theHODLRhierarchical partitioning L.

Humboldt Greenland

dim(β) 11608 320116
dim(u) 255376 7042552
dim(d) 23216 640232
# of cores 120 2048
L 8 10

Figure 9. Data andMAP estimates for Example II. Shown are the surface velocity obser-
vation data (left), and the reconstructed surface velocity field (middle) that is based on
the MAP point estimate of the logarithmic basal sliding field (right). Top row is for the
Humboldt glacier and bottom row for the Greenland ice sheet.

sheet decays substantially slower than the one for the Humboldt glacier. Besides the different
sizes of these two discretized problems, this is also due to the different aspect ratios. Having
estimated singular values of the data-misfit Hessians and the appropriate off-diagonal blocks,
one is able to estimate computational costs to compress them into the global LR and HODLR
matrix formats. The computational cost as a function of Hessian approximation target accur-
acy is given in figure 11, wherein it is demonstrated that the HODLR compression format can
offer a favorable means to approximate data-misfit Hessians for large-scale inverse problems
governed by complex ice-sheet models.
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Figure 10. Singular values of the data-misfit Hessian (left figure) and various off-
diagonal blocks of the data-misfit Hessian (right figure) for Example II. The color-
scheme in the right most figure is consistent with figure 1. On the left, the singular
values of the Humboldt and Greenland data-misfit Hessians are shown using a solid and
dash-dotted line, respectively. On the right, we show the singular values of the upper
most blocks, that is A(ℓ)

1,2 as defined in appendix ‘HODLR approximation error due to
the accumulation of LR approximations of off-diagonal blocks’.

Figure 11. Estimated computational costs (measured by the number of Hessian applies)
to compress the Humboldt glacier (left) and Greenland ice-sheet (right) data-misfit Hes-
sians into the global LR and HODLR formats as a function of the approximation error
∥Hmisfit − H̃misfit∥2/∥Hmisfit∥2.

6.2. Impact of parameter degree of freedom ordering

We seek to ensure that the off-diagonal blocks, determined by the hierarchical partitioning
described in section 2.2, of the data-misfit Hessian are LR. For this reason, the nodes {xi}i
associated to the dofs are ordered according to a kd-tree, i.e. a recursive hyperplane splitting.
The ordering provided by the kd-tree is such that the (i, j)-entry of the distance matrix Di,j =
∥xi− xj∥2, is typically small whenever |i− j| is small, that is the dof ordering preserves some
notion of locality (see section 3.1). In particular, a sparse permutation matrix B, is determ-
ined, whose action reorders the dofs from the default ordering provided by the finite element
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Figure 12. Singular values of the hierarchical level 1 off-diagonal block, A(1)
1,2 , of the

Humboldt glacier data-misfit Hessian, when expressed in a kd-tree basis and the default
basis. Shown also are heat maps of the distance matrices Di,j = ∥xi− xj∥2, wherein
the nodes {xi}i associated to the finite element degrees of freedom have been ordered
according to a default standard and a kd-tree.

discretization to that specified by the kd-tree. The data-misfit Hessian with respect to the kd-
tree ordering, Hkd

misfit := BHmisfitB
⊤, is then amenable to HODLR compression. Subsequently,

B⊤H̃
kd
misfitB is an approximation of the data-misfit Hessian with respect to the default ordering.

The dof ordering has no impact on a matrix’s global numerical rank but does indeed impact
the numerical rank of its numerous submatrices that are defined by a fixed partitioning scheme,
such as the off-diagonal blocks of an HODLR matrix (see section 2.2). Here, we study the
HODLR compressibility of the Humboldt glacier data-misfit Hessian by comparing the rate
of decay of an off-diagonal block’s singular values using the default ordering provided by
Albany and the ordering obtained by a kd-tree recursive hyperplane splitting. As observed in
figure 12, the rate at which the singular values of the level-1 off-diagonal block decay, strongly
depends on the dof ordering. This is because the ordering given by the kd-tree better preserves
locality, and as a consequence, by the argument provided in section 3.1, the singular values
decay much faster when using the kd-tree ordering. The kd-tree ordering therefore provides
a substantially computationally cheaper means to generate an HODLR approximation of the
data-misfit Hessian. Figure 12 also shows distance matrices for the default and kd-tree bases.
These show the improved locality for the kd-orderings. Note that data-misfit Hessian matrices
are expected to follow a similar structure as these distance matrices, which explains why the
former’s off-diagonal blocks can be compressed more effectively in the kd-order than in the
default order of dofs.

7. Conclusion

In this work, we motivated why data-misfit Hessians which arise from a class of inverse prob-
lems governed by PDEs have HODLR matrix structure. HODLR matrices can efficiently be
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inverted and factorized, operations needed for solving inverse problems governed by PDEs by
Newton’s method and for MCMC sampling methods. We study inverse ice sheet problems,
for which, under certain regimes, HODLR matrices provide a more computationally efficient
approximation format than the global LR matrix format. These problems are those with highly
informative data and small aspect ratio ice sheets. While global LR matrices are favorable
for large discretized parameter dimension and small data dimension, we find that HODLR
matrices can offer computational savings for large-scale inverse problems such as a Green-
land ice sheet inverse problem with satellite observational data and a discretized parameter
dimension that exceeds 105.

The computational cost of each Hessian-vector product increases with the size of the prob-
lem and is a computational challenge that must be considered for larger-scale problems. How-
ever, HODLR remains a potential means to approximate the Hessian as the number of required
Hessian-vector products has only mild logarithmic growth with respect to the problem size.
For future work, we believe that the computational cost can be reduced further by utilizing
hierarchical matrix partitionings that satisfy a strong admissibility condition [17], as they are
better suited to exploit the data-misfit Hessian structure described in section 3.1. However,
generating a hierarchical matrix approximation with such a partitioning, e.g. by the peeling
method [11, 12], requires substantially more Hessian-vector products. Ultimately, to further
reduce the computational cost of Hessian approximations in large-scale inverse problems gov-
erned by PDEs, exploiting further problem structure will be essential.
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Appendix

Randomized compression algorithms

Here, for completeness we outline the matrix-free randomized double-pass global LR [32] and
HODLR compression algorithms [12]. For conciseness we omit the single-pass algorithm,
which exploits symmetry and that was used to compute global LR compressions for each
example presented in this work. A description of the double-pass algorithm is included as it
is an essential component of the HODLR compression algorithm. The essential ideas of the
randomized double-pass global LR algorithm are

(i) the application of a vector ω with random entries to a matrix A, yields a vector y= Aω,
which is likely aligned with the dominant left singular vectors of A;

(ii) a matrix Q, whose columns are nearly aligned with the dominant left singular vectors of
A, can be used to construct an accurate LR approximation Ã= QQ⊤A of A.

The double-pass randomized singular value decomposition (SVD) algorithm is presented
in algorithm 1 and does not significantly differ from that in [32], specifically it is lines 7,8
and 9 that are distinct. This minor modification frees us from the need to compute a (parallel)
SVD of a (distributed) N× k matrix, such as Z. Here, we only need to compute an SVD of
the smaller k× k matrix RZ. In the distributed memory parallelism setting of section 6, this
algorithmic modification allows us to only require the invocation of serial SVD routines, on
RZ, which is typically small and available on each processor.

Algorithm 1. Double-pass randomized SVD.
Input: A ∈ RN×N, r ∈ N desired rank and oversampling parameter q ∈ N.
Output: low-rank approximation Ã of A

1: k= r+ q
2:Ω= randn (N, k) {Initiate random matrix}
3: Y= AΩ {Sample column space}
4: QY = orthog (Y) {Orthogonalize column samples}
5: Z= A⊤QY {Sample row space}
6: QZ = orthog (Z) {Orthogonalize row samples}
7: RZ = Q⊤

Z Z {Compress row samples}
8: RZ = V̂ΣÛ

⊤ {SVD of k× k compressed row sample matrix}
9: V= QZV̂ {Project row space information}

10: U= QYÛ {Project column space information}
11: Ã= UΣV⊤ {Form low-rank approximation}

The randomized HODLR algorithm proceeds by compressing off-diagonal blocks by the
double-pass algorithm. The off-diagonal blocks are defined in terms of hierarchical partitions
of the index set I(1)

1 = {1,2, . . . ,N}, that is I(ℓ)
j = { N

2ℓ ( j− 1)+ 1, N2ℓ ( j− 1)+ 2, . . . , N2ℓ j}, for
1⩽ j⩽ 2ℓ and 1⩽ ℓ⩽ L. The larger off-diagonal blocks are compressed before the compres-
sion of the smaller off-diagonal blocks, via a peeling procedure [11]. Here, both A and Ã are
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assumed to be symmetric as we seek compression of symmetric operators and computation of
symmetric approximants. There are means to adaptively choose the desired ranks r1, . . . ,rL in
algorithm 2 as discussed in section 2.2 and references within. The authors are not aware of an
adaptive means to choose the hierarchical depth L. Such means could leverage the structure
of the peeling algorithm in which the compression is done serially from the hierarchical level
ℓ= 1 to ℓ= L and balance the HODLR compression cost as detailed in (4) and the approxim-
ation error as detailed in appendix ‘HODLR approximation error due to the accumulation of
LR approximations of off-diagonal blocks’.

Algorithm 2. Symmetric matrix-free randomized HODLR.
Input: symmetric A ∈ RN×N, hierarchical depth L ∈ N, r1, . . . , rL desired ranks of the off-diagonal
blocks at each hierarchical depth and oversampling parameter q.
Output: symmetric HODLR approximation Ã of A

1: for ℓ= 1,2, . . . ,L do
2: kℓ = rℓ + q
3: Ω= zeros(N,kℓ)
4: for j = 1, . . . ,2ℓ−1 do
5: Ω(I(ℓ)

2j , :) = randn (|I(ℓ)
2j |,kℓ) {Initiate structured random matrix}

6: end for

7: Y=
(
A−

∑ℓ−1
j=1 A

( j)
)
Ω {Sample off-diagonal block column spaces}

8: for j = 1, . . . ,2ℓ−1 do
9: Y( j) = zeros(N,kℓ)

10: Y( j)(I(ℓ)
2j−1, :) = Y(I(ℓ)

2j−1, :)

11: QY
( j) = orthog (Y( j)) {Orthogonalize column samples of the level ℓ off-diagonal

blocks}
12: end for

13: QY =
∑2ℓ−1

j=1 QY
( j) {Row space sampling matrix}

14: Z=
(
A−

∑ℓ−1
j=1 A

( j)
)
QY {Sample off-diagonal block row spaces}

15: for j = 1, . . . ,2ℓ−1 do

16: Z( j) = Z(I(ℓ)
2j , :)

17: Q( j)
Z = orthog (Z( j)) {Orthogonalize row samples of the level ℓ off-diagonal blocks}

18: R( j)
Z =

(
Q( j)
Z

)⊤
Z( j) {Compress level ℓ off-diagonal block row samples}

19: R( j)
Z = V̂

(ℓ)
2j−1Σ

(ℓ)
2j−1Û

(ℓ)
2j−1 {SVD of kℓ × kℓ compressed row sample matrix}

20: V(ℓ)
2j−1 = QZ

( j)V̂
(ℓ)
2j−1 {Project row space information}

21: U(ℓ)
2j−1 = QY

( j)Û
(ℓ)
2j−1 {Project column space information}

22: V(ℓ)
2j = U(ℓ)

2j−1

23: U(ℓ)
2j = V(ℓ)

2j−1

24: Σ
(ℓ)
2j =Σ

(ℓ)
2j−1

25: end for

26: A(ℓ) =
∑2ℓ

j=1U
(ℓ)
j Σ

(ℓ)
j

(
V(ℓ)
j

)⊤

27: end for
28: obtain block diagonal D of A by sampling A−

∑L
j=1A

( j)

29: Ã= D+
∑L

ℓ=1A
(ℓ)
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HODLR approximation error due to the accumulation of LR approximations of off-diagonal
blocks

Let A be a N×N matrix and consider the following partitioning

A(1) =

(
0 A(1)

1,2

A(1)
2,1 0

)
,

A(2) =


0 A(2)

1,2 0 0

A(2)
2,1 0 0 0

0 0 0 A(2)
3,4

0 0 A(2)
4,3 0

 ,

D=


A(2)
1,1 0 0 0

0 A(2)
2,2 0 0

0 0 A(2)
3,3 0

0 0 0 A(2)
4,4

 ,
where A(ℓ)

i,j is the (i, j) block of a 2ℓ × 2ℓ block partitioning of A, where 1⩽ ℓ⩽ L. A(ℓ) con-

tains all blocks A(ℓ)
i,j such that |i− j|= 1 and D contains the diagonal blocks A(L)

i,i . Above, we

show the decomposition A=
∑L

ℓ=1A
(ℓ) +D for L= 2 hierarchical depth but in the following

analysis L is a arbitrary. Let x ∈ RN, then

Ax=
L∑
j=1

A(j)x+Dx,

A(1)x=

A(1)
1,2x

(1)
2

A(1)
2,1x

(1)
1

 , x=(x(1)1

x(2)2

)
,

A(j)x=



A(j)
1,2x

(j)
2

A(j)
2,1x

(j)
1

...

A(j)
2j−1,2jx

(j)
2j

A(j)
2j,2j−1x2j−1


, x=


x(j)1
x(j)2
...

x(j)2j−1

x(j)2j

 ,

from which we obtain the following expression

∥A(j)x∥22 =
2j−1∑
k=1

(
∥A(j)

2k−1,2kx
(j)
2k∥

2
2 + ∥A(j)

2k,2k−1x
(j)
2k−1∥

2
2

)
.

Now assume that Ã is an HODLR approximation of A, whose diagonal D is equal to the
diagonal of A so that(

A− Ã
)
=

L∑
j=1

∆A(j),

∆A(j) :=
(
A(j) − Ã

(j)
)
.

22



Inverse Problems 39 (2023) 085006 T Hartland et al

Here, it is assumed that each off-diagonal block at level j = 1,2, . . . ,L has been approx-
imated to some absolute tolerance εj > 0, so that ∥∆A( j)

2k−1,2k∥2,∥∆A
( j)
2k,2k−1∥⩽ εj for each

k= 1,2, . . . ,2j−1. For x ∈ RN we have

∥
(
A− Ã

)
x∥2 ⩽

L∑
j=1

∥∆A(j) x∥2,

∥∆A(j) x∥2 =

√√√√2j−1∑
k=1

(
∥∆A(j)

2k−1,2k x
(j)
2k∥22 + ∥∆A(j)

2k,2k−1 x
(j)
2k−1∥22

)

⩽

√√√√2j−1∑
k=1

(
ε2j ∥x

(j)
2k∥22 + ε2j ∥x

(j)
2k−1∥22

)
,

∥∆A(j) x∥2 ⩽ εj

√√√√2j−1∑
k=1

(
∥x(j)2k∥22 + ∥x(j)2k−1∥22

)
= εj∥x∥2,

∥
(
A− Ã

)
x∥2 ⩽ ∥x∥2

L∑
j=1

εj,

∥A− Ã∥2 := sup
x̸=0

∥
(
A− Ã

)
x∥2

∥x∥2

⩽
L∑
j=1

εj.

Error of the Laplace posterior covariance due to approximation of the prior-preconditioned
data-misfit Hessian

Consider a symmetric matrix A ∈ RN×N, whose eigenvalues are bounded below by a num-
ber greater than −1 and a symmetric approximant Ã, with discrepancy ∆A= A− Ã. We sig-
nify a generic eigenvalue of S by λ(S) so that s1 ⩽ λ(S)⩽ s2 indicates that all eigenval-
ues of S are bounded below by s1 and above by s2. Next we provide an upper bound for the
error of (I+A)−1 − (I+ Ã)−1, given that ∥∆A∥2 = ε. When, as in section 3.2, A is the prior-
preconditioned data-misfit Hessian ∥(I+A)−1 − (I+ Ã)−1∥2 quantifies the error of the cov-
ariance of the Laplace approximation of the posterior distribution that is introduced through
HODLR compression

(I+A)−1 − (I+ Ã)−1 = (I+A)−1 − (I+A−∆A)−1

= (I+A)−1 −
(
(I+A)

(
I− (I+A)−1

∆A
))−1

= (I+A)−1 −
(
I− (I+A)−1

∆A
)−1

(I+A)−1

=

(
I−
(
I− (I+A)−1

∆A
)−1

)
(I+A)−1

.
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Given that ∥∆A∥2 = ε, we have

−ε⩽ λ(∆A)⩽ ε,

−ε∗ ⩽ λ
(
(I+A)−1

∆A
)
⩽ ε∗,

ε∗ := ε(1+λmin(A))−1,

1+ ε∗ ⩾ λ
(
I− (I+A)−1

∆A
)
⩾ 1− ε∗,

we next assume ε∗ < 1, so that the eigenvalues of I− (I+A)−1
∆A are necessarily positive

and

(1+ ε∗)
−1 ⩽ λ

((
I− (I+A)−1

∆A
)−1

)
⩽ (1− ε∗)

−1
.

With this it follows that

∥(I+A)−1 −
(
I+ Ã

)−1
∥2/∥(I+A)−1 ∥2 ⩽

(
1− (1+ ε∗)

−1
)

∥(I+A)−1 −
(
I+ Ã

)−1
∥2/∥(I+A)−1 ∥2 ⩽

ε∗

1+ ε∗
,

where, as before ε∗ = ∥∆A∥2/(1+λmin (A)).

ORCID iDs

Tucker Hartland https://orcid.org/0000-0002-4638-3209
Georg Stadler https://orcid.org/0000-0001-7762-6544
Mauro Perego https://orcid.org/0000-0002-2671-8032
Kim Liegeois https://orcid.org/0000-0002-1182-4078
Noémi Petra https://orcid.org/0000-0002-9491-0034

References

[1] Isaac T, Petra N, Stadler G and Ghattas O 2015 Scalable and efficient algorithms for the propagation
of uncertainty from data through inference to prediction for large-scale problems, with applica-
tion to flow of the Antarctic ice sheet J. Comput. Phys. 296 348–68

[2] Petra N, Martin J, Stadler G and Ghattas O 2014 A computational framework for infinite-
dimensional Bayesian inverse problems: part II. Stochastic Newton MCMC with application
to ice sheet flow inverse problems SIAM J. Sci. Comput. 36 A1525–55

[3] Spantini A, Solonen A, Cui T, Martin J, Tenorio L and Marzouk Y 2015 Optimal low-rank approx-
imations of Bayesian linear inverse problems SIAM J. Sci. Comput. 37 A2451–87

[4] Flath H P, Wilcox L C, Akçelik V, Hill J, van Bloemen Waanders B and Ghattas O 2011 Fast
algorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based
on low-rank partial Hessian approximations SIAM J. Sci. Comput. 33 407–32

[5] Bui-Thanh T, Ghattas O, Martin J and Stadler G 2013 A computational framework for infinite-
dimensional Bayesian inverse problems: part I. The linearized case, with application to global
seismic inversion SIAM J. Sci. Comput. 35 A2494–523

[6] Saibaba A K and Kitanidis P K 2015 Fast computation of uncertainty quantification measures in
the geostatistical approach to solve inverse problems Adv. Water Resour. 82 124–38

[7] Martinsson P-G 2011 A fast randomized algorithm for computing a hierarchically semiseparable
representation of a matrix SIAM J. Matrix Anal. Appl. 32 1251–74

[8] Alger N, Rao V, Meyers A, Bui-Thanh T and Ghattas O 2019 Scalable matrix-free adaptive
product-convolution approximation for locally translation-invariant operators SIAM J. Sci. Com-
put. 41 A2296–328

24

https://orcid.org/0000-0002-4638-3209
https://orcid.org/0000-0002-4638-3209
https://orcid.org/0000-0001-7762-6544
https://orcid.org/0000-0001-7762-6544
https://orcid.org/0000-0002-2671-8032
https://orcid.org/0000-0002-2671-8032
https://orcid.org/0000-0002-1182-4078
https://orcid.org/0000-0002-1182-4078
https://orcid.org/0000-0002-9491-0034
https://orcid.org/0000-0002-9491-0034
https://doi.org/10.1016/j.jcp.2015.04.047
https://doi.org/10.1016/j.jcp.2015.04.047
https://doi.org/10.1137/130934805
https://doi.org/10.1137/130934805
https://doi.org/10.1137/140977308
https://doi.org/10.1137/140977308
https://doi.org/10.1137/090780717
https://doi.org/10.1137/090780717
https://doi.org/10.1137/12089586X
https://doi.org/10.1137/12089586X
https://doi.org/10.1016/j.advwatres.2015.04.012
https://doi.org/10.1016/j.advwatres.2015.04.012
https://doi.org/10.1137/100786617
https://doi.org/10.1137/100786617
https://doi.org/10.1137/18M1189324
https://doi.org/10.1137/18M1189324


Inverse Problems 39 (2023) 085006 T Hartland et al

[9] Zhu H, Li S, Fomel S, Stadler G and Ghattas O 2016 A Bayesian approach to estimate uncer-
tainty for full waveform inversion with a priori information from depth migration Geophysics
81 R307–23

[10] Alger N, Hartland T, Petra N and Ghattas O 2023 Point spread function approximation of high rank
Hessians with locally supported non-negative integral kernels (in preparation)

[11] Lin L, Lu J and Ying L 2011 Fast construction of hierarchical matrix representation from matrix–
vector multiplication J. Comput. Phys. 230 4071–87

[12] Martinsson P-G 2016 Compressing rank-structured matrices via randomized sampling SIAM J. Sci.
Comput. 38 A1959–86

[13] Geoga C J, Anitescu M and Stein M L 2020 Scalable Gaussian process computations using hier-
archical matrices J. Comput. Graph. Stat. 29 227–37

[14] Litvinenko A, Sun Y, GentonMG and Keyes D E 2019 Likelihood approximation with hierarchical
matrices for large spatial datasets Comput. Stat. Data Anal. 137 115–32

[15] Ambartsumyan I, Boukaram W, Bui-Thanh T, Ghattas O, Keyes D, Stadler G, Turkiyyah G and
Zampini S 2020 Hierarchical matrix approximations of Hessians arising in inverse problems
governed by PDEs SIAM J. Sci. Comput. 42 A3397–426

[16] Hackbusch W 1999 A sparse matrix arithmetic based on H-matrices. Part I: introduction to H-
matrices Computing 62 89–108

[17] Hackbusch W and Börm S 2002 Data-sparse approximation by adaptive H2-matrices Computing
69 1–35

[18] Tarantola A 2005 Inverse Problem Theory and Methods for Model Parameter Estimation (Phil-
adelphia, PA: SIAM)

[19] Kaipio J and Somersalo E 2006 Statistical and Computational Inverse Problems vol 160 (Berlin:
Springer)

[20] Stuart A M 2010 Inverse problems: a Bayesian perspective Acta Numer. 19 451–559
[21] Nocedal J and Wright S J 2006 Numerical Optimization 2nd edn (Berlin: Springer)
[22] Borz̀ı A and Schulz V 2011 Computational Optimization of Systems Governed by Partial Differ-

ential Equations (Philadelphia, PA: SIAM)
[23] Gunzburger M D 2002 Perspectives in Flow Control and Optimization (Philadelphia, PA: SIAM)
[24] Petra Nemi and Sachs E W 2021 Second order adjoints in optimization Numerical Analysis and

Optimization ed M Al-Baali, A Purnama and L Grandinetti (Cham: Springer) pp 209–30
[25] Keith HastingsW 1970Monte Carlo sampling methods using Markov chains and their applications

Biometrika 57 97–109
[26] Robert C P and Casella G 1999Monte Carlo Statistical Methods vol 2 (Berlin: Springer)
[27] Rudolf D and Sprungk Born 2018 On a generalization of the preconditioned Crank–Nicolson Met-

ropolis algorithm Found. Comput. Math. 18 309–43
[28] Pinski F J, Simpson G, Stuart A M and Weber H 2015 Algorithms for Kullback–Leibler approx-

imation of probability measures in infinite dimensions SIAM J. Sci. Comput. 37 A2733–57
[29] Kim K-T, Villa U, Parno M, Marzouk Y, Ghattas O and Petra N 2023 hIPPYlib-MUQ: a Bayesian

inference software framework for integration of data with complex predictive models under
uncertainty ACM Trans. Math. Softw. 49 17

[30] Ambikasaran S and Darve E 2013 An O(n log n) fast direct solver for partial hierarchically semi-
separable matrices J. Sci. Comput. 57 477–501

[31] Ambikasaran S, O’Neil M and Singh K R 2014 Fast symmetric factorization of hierarchical
matrices with applications (arXiv:1405.0223)

[32] Halko N, Martinsson P G and Tropp J A 2011 Finding structure with randomness: probabilistic
algorithms for constructing approximate matrix decompositions SIAM Rev. 53 217–88

[33] Xi Y, Xia J and Chan R 2014 A fast randomized eigensolver with structured LDL factorization
update SIAM J. Matrix Anal. Appl. 35 974–96

[34] Boukaram W, Turkiyyah G and Keyes D 2019 Randomized GPU algorithms for the construction
of hierarchical matrices from matrix-vector operations SIAM J. Sci. Comput. 41 C339–66

[35] Gorman C, Chávez G, Ghysels P, Mary T, Rouet Fçois-H and Li X S 2019 Robust and accurate
stopping criteria for adaptive randomized sampling in matrix-free hierarchically semiseparable
construction SIAM J. Sci. Comput. 41 S61–S85

[36] Gelfand I M and Fomin S V 1963 Calculus of Variations (New York: Dover)
[37] Bramble J H 1993 Multigrid Methods vol 294 (Boca Raton, FL: CRC Press)
[38] Cuffey K M and Paterson W S B 2010 The Physics of Glaciers (New York: Academic)

25

https://doi.org/10.1190/geo2015-0641.1
https://doi.org/10.1190/geo2015-0641.1
https://doi.org/10.1016/j.jcp.2011.02.033
https://doi.org/10.1016/j.jcp.2011.02.033
https://doi.org/10.1137/15M1016679
https://doi.org/10.1137/15M1016679
https://doi.org/10.1080/10618600.2019.1652616
https://doi.org/10.1080/10618600.2019.1652616
https://doi.org/10.1016/j.csda.2019.02.002
https://doi.org/10.1016/j.csda.2019.02.002
https://doi.org/10.1137/19M1270367
https://doi.org/10.1137/19M1270367
https://doi.org/10.1007/s006070050015
https://doi.org/10.1007/s006070050015
https://doi.org/10.1007/s00607-002-1450-4
https://doi.org/10.1007/s00607-002-1450-4
https://doi.org/10.1017/S0962492910000061
https://doi.org/10.1017/S0962492910000061
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1007/s10208-016-9340-x
https://doi.org/10.1007/s10208-016-9340-x
https://doi.org/10.1137/14098171X
https://doi.org/10.1137/14098171X
https://doi.org/10.1145/3580278
https://doi.org/10.1145/3580278
https://doi.org/10.1007/s10915-013-9714-z
https://doi.org/10.1007/s10915-013-9714-z
https://arxiv.org/abs/1405.0223
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.1137/130914966
https://doi.org/10.1137/130914966
https://doi.org/10.1137/18M1210101
https://doi.org/10.1137/18M1210101
https://doi.org/10.1137/18M1194961
https://doi.org/10.1137/18M1194961


Inverse Problems 39 (2023) 085006 T Hartland et al

[39] Dukowicz J K, Price S F and Lipscomb W H 2010 Consistent approximations and boundary con-
ditions for ice-sheet dynamics from a principle of least action J. Glaciol. 56 480–96

[40] Larour E, Seroussi H, Morlighem M and Rignot E 2012 Continental scale, high order, high spatial
resolution, ice sheet modeling using the Ice Sheet SystemModel (ISSM) J. Geophys. Res. Earth
Surf. 117 F01022

[41] Morlighem M, Rignot E, Seroussi H, Larour E, Ben Dhia H and Aubry D 2010 Spatial patterns of
basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island
Glacier, West Antarctica Geophys. Res. Lett. 37 L14502

[42] Perego M, Price S and Stadler G 2014 Optimal initial conditions for coupling ice sheet models to
Earth system models J. Geophys. Res. Earth Surf. 119 1894–917

[43] Petra N, Zhu H, Stadler G, Hughes T J R and Ghattas O 2012 An inexact Gauss–Newton method
for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model
J. Glaciol. 58 889–903

[44] Glen J W 1955 The creep of polycrystalline ice Proc. R. Soc. A 228 519–38
[45] Pattyn F et al 2008 Benchmark experiments for higher-order and full-Stokes ice sheet models

(ISMIP-HOM) Cryosphere 2 95–108
[46] DaonY and Stadler G 2018Mitigating the influence of boundary conditions on covariance operators

derived from elliptic PDEs Inverse Problems Imaging 12 1083–102
[47] Lindgren F, Rue Håvard and Lindström J 2011 An explicit link between Gaussian fields and Gaus-

sian Markov random fields: the stochastic partial differential equation approach J. R. Stat. Soc.
B 73 423–98

[48] Hoffman M J, Perego M, Price S F, Lipscomb W H, Zhang T, Jacobsen D, Tezaur I, Salinger A G,
Tuminaro R and Bertagna L 2018MPAS-Albany land ice (MALI): a variable-resolution ice sheet
model for Earth system modeling using Voronoi grids Geosci. Model Dev. 11 3747–80

[49] Tezaur I K, Perego M, Salinger A G, Tuminaro R S and Price S F 2015 Albany/FELIX: a parallel,
scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for
advanced analysis Geosci. Model Dev. 8 1197–220

[50] Liegeois K, Perego M and Hartland T 2023 PyAlbany: a Python interface to the C++multiphysics
solver Albany J. Comput. Appl. Math. 425 115037

[51] The Trilinos Project Team 2020 The Trilinos Project Website (available at: https://trilinos.
github.io)

[52] Joughin I, Smith B, Howat I and Scambos T 2015 MEaSUREs Greenland ice sheet velocity map
from InSAR data, version 2

[53] Perego M 2022 Large-scale PDE-constrained optimization for ice sheet model initialization SIAM
News Online

[54] Hillebrand T R, Hoffman M J, Perego M, Price S F and Howat I M 2022 The contribution of Hum-
boldt Glacier, North Greenland, to sea-level rise through 2100 constrained by recent observations
of speedup and retreat Cryosphere Discuss. 2022 1–33

26

https://doi.org/10.3189/002214310792447851
https://doi.org/10.3189/002214310792447851
https://doi.org/10.1029/2011JF002140
https://doi.org/10.1029/2011JF002140
https://doi.org/10.1029/2010GL043853
https://doi.org/10.1029/2010GL043853
https://doi.org/10.1002/2014JF003181
https://doi.org/10.1002/2014JF003181
https://doi.org/10.3189/2012JoG11J182
https://doi.org/10.3189/2012JoG11J182
https://doi.org/10.1098/rspa.1955.0066
https://doi.org/10.1098/rspa.1955.0066
https://doi.org/10.5194/tc-2-95-2008
https://doi.org/10.5194/tc-2-95-2008
https://doi.org/10.3934/ipi.2018045
https://doi.org/10.3934/ipi.2018045
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.5194/gmd-11-3747-2018
https://doi.org/10.5194/gmd-11-3747-2018
https://doi.org/10.5194/gmd-8-1197-2015
https://doi.org/10.5194/gmd-8-1197-2015
https://doi.org/10.1016/j.cam.2022.115037
https://doi.org/10.1016/j.cam.2022.115037
https://trilinos.github.io
https://trilinos.github.io
https://doi.org/10.5194/tc-2022-20
https://doi.org/10.5194/tc-2022-20

	Hierarchical off-diagonal low-rank approximation of Hessians in inverse problems, with application to ice sheet model initialization
	1. Introduction
	1.1. Related work
	1.2. Contributions

	2. Preliminaries
	2.1. Bayesian inverse problems
	2.2. Symmetric HODLR Matrices
	2.2.1. Compression.
	2.2.2. Computational cost of generating HODLR approximations.


	3. HODLR matrices in inverse problems governed by PDEs
	3.1. Motivation
	3.2. Exploiting HODLR structure for fast sampling of Gaussian approximations of the posterior distribution

	4. Bayesian inverse ice sheet problems
	5. Example I: two-dimensional ISMIP-HOM benchmark
	5.1. Problem setup
	5.2. MAP point and HODLR Laplace approximation of the posterior
	5.3. Dependence of Hessian block spectra on problem setting
	5.3.1. Influence of aspect ratio.
	5.3.2. Influence of the parameter dimension.
	5.3.3. Influence of the data dimension.


	6. Example II: Humboldt glacier and Greenland ice sheet
	6.1. HODLR compressibility
	6.2. Impact of parameter degree of freedom ordering

	7. Conclusion
	Appendix
	Randomized compression algorithms
	HODLR approximation error due to the accumulation of LR approximations of off-diagonal blocks
	Error of the Laplace posterior covariance due to approximation of the prior-preconditioned data-misfit Hessian

	References


