
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=goms20

Optimization Methods and Software

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/goms20

On the implementation of a quasi-Newton
interior-point method for PDE-constrained
optimization using finite element discretizations

Cosmin G. Petra, Miguel Salazar De Troya, Noemi Petra, Youngsoo Choi,
Geoffrey M. Oxberry & Daniel Tortorelli

To cite this article: Cosmin G. Petra, Miguel Salazar De Troya, Noemi Petra, Youngsoo Choi,
Geoffrey M. Oxberry & Daniel Tortorelli (2023) On the implementation of a quasi-Newton
interior-point method for PDE-constrained optimization using finite element discretizations,
Optimization Methods and Software, 38:1, 59-90, DOI: 10.1080/10556788.2022.2117354

To link to this article: https://doi.org/10.1080/10556788.2022.2117354

Published online: 21 Nov 2022.

Submit your article to this journal

Article views: 300

View related articles

View Crossmark data

OPTIMIZATION METHODS & SOFTWARE

2023, VOL. 38, NO. 1, 59–90

https://doi.org/10.1080/10556788.2022.2117354

On the implementation of a quasi-Newton interior-point
method for PDE-constrained optimization using finite
element discretizations

Cosmin G. Petra a, Miguel Salazar De Troya a, Noemi Petra b, Youngsoo Choi a,
Geoffrey M. Oxberry a and Daniel Tortorelli a

aLawrence Livermore National Laboratory (LLNL), Livermore, CA, USA; bApplied Mathematics Department,
University of California, Merced, Merced, CA, USA

ABSTRACT

We present a quasi-Newton interior-point method appropriate for
optimization problems with pointwise inequality constraints in
Hilbert function spaces. Among others, our methodology applies
to optimization problems constrained by partial differential equa-
tions (PDEs) that are posed in a reduced-space formulation and have
bounds or inequality constraints on the optimized parameter func-
tion. We first introduce the formalization of an infinite-dimensional
quasi-Newton interior-point algorithm using secant BFGS updates
and then proceed to derive a discretized interior-pointmethod capa-
ble of working with a wide range of finite element discretization
schemes. We also discuss and address mathematical and software
interface issues that are pervasive when existing off-the-shelf PDE
solvers are to be used with off-the-shelf nonlinear programming
solvers. Finally, we elaborate on the numerical and parallel com-
puting strengths and limitations of the proposed methodology on
several classes of PDE-constrained problems.

ARTICLE HISTORY

Received 28 November 2020
Accepted 19 August 2022

KEYWORDS

Quasi-Newton interior-point
method; constrained
optimization in function
spaces; mesh independent
optimization

AMS SUBJECT

CLASSIFICATIONS

49M15; 49M37; 65K10;
90C26; 35Q93

1. Introduction

Many scientific and engineering applications result in optimization problems described by

means of differential equations (DEs). Efficient numerical evaluation of the objective and

constraints functions derivatives needed by the optimization method generally requires

setting up and solving adjoint sensitivity DEs [2,11,23,36], which have a considerable

human development cost, sometimes comparable to developing a solver for the underlying

DEs. For this reason, many applications only provide first-order derivatives as the compu-

tation of second-order derivatives has considerable additional development cost and is not

routinely provided.

In these circumstances, quasi-Newton algorithms [15] are a pragmatic and convenient

choice since they internally build andmaintain approximations of the second-order deriva-

tives using only gradient evaluations. One popular class of such approximations consists

of the so-called secant updates, which are also very appropriate for large-scale problems

CONTACT Cosmin G. Petra petra1@llnl.gov

© 2022 Informa UK Limited, trading as Taylor & Francis Group

60 C. G. PETRA ET AL.

if equipped with a limited-memory (or low-rank updates) mechanism [10]. In general,

quasi-Newton algorithms do not have the convergence properties ofNewton-likemethods,

but they can achieve Newton-like superlinear convergence for some classes of prob-

lems [14,35,41]; also, they have convergence properties and practical performance superior

to gradient-based or derivative-free algorithms [35]. It is also possible that quasi-Newton

methods can equal and even outperform Newton-like methods in practice, even in the

cases where the second-order derivatives are available and cheap to evaluate. While the

iteration count is generally lower for Newton than for quasi-Newton, Newtonmethods can

have a considerably larger cost per iteration than quasi Newton methods, which is enough

to offset the benefits of low iteration count. This situation is particularly likely when good

preconditioners for the Newton linearization systems are not available.

In [39], the first author showed that a limited memory BFGS interior-point method has

great parallelization potential since it scales to thousands of cores of a parallel computer;

the present work can be viewed as a further step aimed at ensuring that the BFGS interior-

point method performs efficiently and in a mesh independent manner for a few types of

PDE-constrained optimization problems. More specifically, the present work addresses a

couple of discretization peculiarities of quasi-Newton and interior-point methods in infi-

nite dimensions that stem from the use of incorrect Riesz representers for dual variables

and are pervasive when nonuniform discretization meshes are used with a finite element

method.

This paper proposes a quasi-Newton optimization method using concepts from

interior-point algorithms for optimization problems posed in Hilbert function spaces with

complicating infinite-dimensional inequality constraints. Recently, interior-point algo-

rithms in function spaces have been proposed and analysed theoretically both from

the angle of well-posedness, iteration complexity, and local rate of convergence on one

hand, for example in [5,27,48,53–55,62], and from a discretization consistency and order

of convergence perspective on the other hand, for example, in [63]. We mention that

our methodology only covers PDE-constrained optimization with control or design con-

straints; optimization problems with state constraints [52,62] have analytical properties

(typically more restrictive than control-constrained problems, e.g. Lagrange multipliers

are measures) that require different algorithmic approaches than the one we take in this

work; we refer the reader to [25,27,48] for some recent algorithmic developments for

PDE state-constrained optimization problems. Practical computational methods based

on interior-point methods have been also in the attention of the community, for exam-

ple, see [21,37,38]. The present work is in line with these latter works as it focuses on

computational aspects; however, it differs in that it focuses on quasi-Newton optimization

methods for reasons discussed in the previous paragraphs. Our specific goal in this work

is to provide a unified quasi-Newton computational setup and a numerical solver capa-

ble of working with various finite element discretization schemes in a manner consistent

with the underlying infinite-dimensional space. In our opinion this is a very important first

step towards ensuringmesh independence and scalability to large problems of the solution

methodology.

A comprehensive list of algorithms and software packages available for PDE-

constrained problems is compiled by Funke and Farrell in [18]. Thiswork lists two algorith-

mic approaches (i.e. [32,45]) as available for the general optimization in infinite dimensions

with general inequalities that we consider in this paper, however, these algorithms are only

OPTIMIZATION METHODS & SOFTWARE 61

first-order, gradient-based. PETSc’s TAO optimization package is also mentioned, how-

ever its module for PDE-constrained optimization currently does not support inequality

constraints [13]. In addition, we mention hIPPYlib [56] that implements state-of-the-art

scalable first- and second-order adjoint-based algorithms for PDE-based deterministic

and Bayesian inverse problems. However this library does not treat general optimiza-

tion constraints. Finally, we mention the Rapid Optimization Library (ROL) of Trilinos

that provides an extensive collection of algorithms for PDE-constrained optimization. For

infinite-dimensional inequality constraints, ROL uses a combination of matrix-free trust-

region methods, projection methods, and primal-dual active set methods according to

the user documentation, without a reference to quasi-Newton IPMs [31]. Therefore, we

find that the present work adds to existing capabilities of the community of computational

optimization.

A reader with background in nonlinear programming (NLP) in finite-dimensional

Euclidean spaces may disagree with our choice of considering a complicating infinite-

dimensional setup. Since the infinite-dimensional optimization problems we consider

are invariably discretized, one may suggest instead to pose the discretizations as ‘finite-

dimensional’ problems and to solve them using NLP solvers over the Euclidean space.

However, using the Euclidean inner product instead of the inner product of the underly-

ing Hilbert space causes incorrect representers to be used for certain derivative functionals

and introduces discretization inconsistencies (e.g. mesh dependence) in the discretized

optimality conditions. These discrepancies cause convergence behaviour dependent on

the underlying discretization or meshing of the domain (see [49] and Section 3.6.1 for

examples of simple problems and Section 6 for more complex problems where this issue

is pervasive). Such mesh dependent behaviour is not necessarily specific to optimization

and has been previously identified and addressed in the context of linear systems arising

in PDE discretizations (for example, see [24,30]).

In addition, in many cases, NLP solvers over the Euclidean space provide solutions that

are mesh dependent, as we show for topology optimization in Section 6.2, or are non-

physical, as we illustrate in Figure 1. The lack of spatial symmetry of the right design

of Figure 1 is likely caused by numerical round-off errors that are exacerbated by the

nonsymmetric mesh and the use of the (unweighted) l2 inner product by the Euclidean

NLP solver1 used to obtain this design. All the aforementioned deficiencies of the NLP

solvers are pervasively exacerbated when the mesh is distorted, which is a common occur-

rence in mesh adaptation and refinement techniques used by state-of-the-art solvers for

PDEs. In this regard, the present paper lays out all the necessary mathematical and

computational components needed by a mesh independent numerical quasi-Newton IPM

algorithm.

1.1. Notation

Since the paper goes back and forth between optimization, functional analysis, finite-

element spaces, and computational engineering, it is difficult to use a notation that

transcends all these communities. For this reason, the notation conventions below are a

compromise and it is our hope that they are intelligible. Given two normed spaces U and

V, we denote the metric space of all linear operators from U to V by L(U,V). The symbol

U refers to an Hilbert space of scalar valued functions defined over a bounded, open, and

62 C. G. PETRA ET AL.

Figure 1. Shown are two designs for a commercial quad-motor drone body obtained by solving a struc-
tural topology optimization with a slightly distorted mesh. The valid left design was optimized with the
proposed infinite-dimensional algorithm while the right design was obtained using an Euclidean NLP
solver and is nonphysical since it lacks spatial symmetry.

connected set �, of Rd (d ∈ {1, 2, 3}). The dual L(U,R) of the Hilbert space U is denoted

by U∗.
Normal math italic font is used for elements of U and for functions, functionals, and

operators that act on U. In general, we use lower cases for functions and functionals and

upper cases for linear operators. For a linear functional g ∈ U∗ we use the shorthand gu to
refer to g(u), i.e. the application of g to an u ∈ U. When an operator E : U → V is linear,

we also use Ev to denote E(v). For a linear operator B : U → U∗, Bv1v2 denotes [Bv1](v2).
In some circumstances, the operator depends on some u ∈ U, in which case we express this

dependence by E(u), and E(u)v denotes the application of the operator to v ∈ U. For u, v ∈
U, uv denotes the pointwise multiplication of u and v, that is w = uv is defined by w(x) =
u(x)v(x). Similarly, we use v

u for pointwise division and
µ
u withµ ∈ R for the functionwith

values µ
u(x) .

Roman fonts are used to denote discretized quantities. For vectors we use lower cases

and for matrices and tensors we use upper cases. The compact, MATLAB-like notation

[v1; v2; . . . ; vn] refers to v ∈ R
n with components vi. The symbol e denotes the vector with

all components equal to 1. The multiplication of vectors u and v from R
n is understood

pointwise, i.e. uv = [u1v1; . . . ; unvn].

Our formal derivation below will explicitly use dual spaces of Hilbert spaces to ‘type

check’ various quantities employed by the infinite-dimensional algorithm and to leave no

room for guessing which inner products to use and the form of finite-dimensional repre-

sentations when the discretization is performed. For a functional f : U → R, Df (u) ∈ U∗

denotes the Fréchet derivative at u, while D2f (u) ∈ L(U,U∗) denotes the second deriva-

tive. The derivative of a : U → R
m at u ∈ U is denoted by Da(u) and is in L(U,Rm); its

adjoint Da(u)∗ is in L(Rm∗,U∗). We will use linear functionals defined over Euclidean

spaces, e.g. λ ∈ R
m∗ = L(Rm,R).

1.2. The optimization paradigm

We consider general problems of the form

min
u∈U

f (u) (1a)

s.t. a(u) = 0, u ≤ u ≤ u. (1b)

OPTIMIZATION METHODS & SOFTWARE 63

Here U is a real Hilbert space of functions u : � → R at least square-integrable over a

bounded domain� ofRd (d = {1, 2, 3}). Also, f : U → R and a : U → R
m are twice con-

tinuously differentiable functions. We assume throughout that the Fréchet derivative Da

is surjective and that m is relatively small, i.e. m = O(1). The bound constraints on the

optimization variable u are enforced pointwise almost everywhere and u, u ∈ L∞(�). We

consider only bound and equality constraints for the sake of a compact presentation, but

we remark that general inequality constraints can be accommodated by expressing them

as a combination of equality constraints and slack variables with bound constraints. We do

so in our numerical implementation.

The present work is motivated by PDE-constrained optimization problems with bounds

and equality constraints on the controls or designs u in the form of

min
u∈U,y∈Y

J(u, y)

s.t. c(y, u) = 0,

a(u) = 0, u ≤ u ≤ u,

where c : Y × U → W represents the PDE state equation parametrized by the optimiza-

tion variable u and Y and W are also real Hilbert spaces. Many such PDE-constrained

problems allow solving for y = y(u) for any given u, which allows formulating the above

problem as a so-called reduced-space problem of the form (1a)–(1b) by taking f (u) =
J(u, y(u)). We refer the reader to [26,28,52] for a thorough discussion of reduced-space

PDE-constrained optimization. A frequent issue in this context is the efficient computa-

tion of the derivative Df, which almost invariably is done by using the so-called adjoint

sensitivity approach. Namely, one can show under mild conditions (for example, see [28,

Chapter 5]) thatDJ(u) = cu(y, u)
∗λ + Ju(u, y), where λ ∈ W∗ is computed as the solution

to the adjoint system cy(y, u)
∗λ + Jy(y, u) = 0 2. The adjoint sensitivity methods used for

the inverse and structural topology optimization problems of Section 6 are covered, for

example, in [44,51], respectively.

Characterizing solvability of (1a)–(1b) can be involving and needs to be done on a

per-problem basis. A general condition of solvability of (1a)–(1b), namely, lower semicon-

tinuity of f with respect to sequential L∞(�) − weak∗ convergence, can be found in [54]. It
is important to mention that the methodology of this paper focuses on pragmatic compu-

tational solutions and omits key analyses such as well posedness outside the assumptions

of [54], convergence, and discretization error estimates.

1.3. Paper contributions

The paper proposes a comprehensive numerical quasi-Newton IPM algorithm for solving

the optimization problem (1a)–(1b) in a Hilbert function space U of at least square-

integrable functions. First, we provide a mathematically sound formalization of an IPM in

an infinite-dimensional setup with emphasis on its quasi-Newton specifics, such as quasi-

Newton search direction linear systems, quasi-Newton secant update formulas, and dual

variables updating. We also derive the optimization-specific convergence mechanisms,

such as the line search and the stopping criteria required by our infinite-dimensional setup.

Many constituents of our algorithm are inspired from previously published works: the IPM

relies on the theoretical work of [54], the secant quasi-Newton formulas are well known

64 C. G. PETRA ET AL.

in the literature (e.g. see [3,15,35,41]), and the convergence mechanisms follow [59,60]).

However, the assembly of our quasi-Newton IPM algorithm for the general optimiza-

tion paradigm (1a)–(1b) posed over generic Hilbert function spaces is, to the best of our

knowledge, novel. The closest quasi-Newton algorithm is that from [49, Chapter 1.5]. The

limitation of this work is that it only considers a finite number of inequalities as opposed

to the infinite dimensional constraints (1b). This is an important difference since the treat-

ment of the (discretization of the) inequalities (1b) without consideration of the underlying

Hilbert space and the corresponding finite element discretization space misses a so-called

mass weighting matrix in the representation of the dual variables and in the log-barrier

term that results in amesh dependent algorithm. This is further illustrated in Section 3.6.1.

Another salient contribution consists of the algorithm’s capability to work generically

with various finite element discretization schemes for the underlying Hilbert space. We

achieve this by judiciously identifying the optimization- and IPM-related discretization

issues and by proposing computationally efficient, yet mathematically sound and gen-

eral numerical resolutions to these issues. These developments are presented in detail in

Section 3 for finite element discretization spaces.

We also discuss problem specification considerations and propose a unified solver

interface that accommodates optimization over generic Hilbert function spaces with min-

imal user input and without requiring extensive knowledge of the underlying infinite-

dimensional and discretization spaces. Central to our approach is the suitability to mas-

sively parallel computations. In regard to this aspect, the paper revisits the decomposition

technique proposed by the first author in [39] and discusses its parallelization limitations

under the infinite-dimensional setup of this paper.

2. Formal derivation of a primal-dual interior-point method in a function

space

Specific to interior-point methods is the use of the log-barrier problem associated with the

bound- and equality-constrained problem (1a)–(1b):

min
u∈U

ψµ(u) := f (u) − µ

∫

�

ln(u(x) − u(x)) dx − µ

∫

�

ln(u(x) − u(x)) dx

s.t. a(u) = 0,
(2)

where the barrier parameter μ is positive. The integral logarithm terms above correspond

to inequalities (1b) and are such that the minimizer of (2) converges to the minimizer

of (1a)–(1b) in the limit, as µ → 0. Under our assumptions for (1a)–(1b), there exist a

local solution uµ to the above log-barrier problem and a dual multiplier λµ ∈ R
m∗ that

satisfy

Df (uµ)v + [Da(uµ)∗λµ]v − µ

∫

�

v(x)

uµ(x) − u(x)
dx + µ

∫

�

v(x)

u(x) − uµ(x)
dx = 0

a(uµ) = 0

(3)

for all variations v in a dense subset of U [54, Lemma 1].

In order to derive a primal-dual interior-point method, we introduce the artificial vari-

ables zµ = µ
uµ−u ∈ U and zµ = µ

uµ−u ∈ U. Furthermore, we define the linear operator

OPTIMIZATION METHODS & SOFTWARE 65

E : U → U∗ such that for any given u ∈ U we have E(u)v =
∫
�
u(x)v(x) dx for all v ∈ U;

we remark that the derivative DE(u) of E(u) satisfies DE(u)v = E(v) for all u, v ∈ U. As a

result, the optimality conditions (3) can bewritten compactly in the following ‘primal-dual’

form:

l(uµ, λµ, zµ, zµ) := Df (uµ) + Da(uµ)∗λµ − E(zµ) + E(zµ) = 0, (4a)

a(uµ) = 0, (4b)

(uµ − u)zµ = µ, and (u − uµ)zµ = µ, a.e. in �. (4c)

Equation (4a) can be safely posed in U∗ whenever the operators E(zµ) and E(zµ) are

bounded (thus, in U∗). For U = L2(�) and U = H1(�), the boundedness follows from

the Cauchy–Schwarz inequality

The solution to the systemof Equations (4a)–(4c) is known as the central path and under

appropriate assumptions is regular enough to allow the use of Newton’s method [54]. The

main idea of primal-dual interior-point methods is to approximately compute a solution

(uµ, λµ, zµ, zµ) of (4a)–(4c) for a decreasing sequence of µ > 0 that converges to 0. For

a given value of the barrier parameter μ, the numerical algorithm computes the Newton

search direction (�u,�λ,�z,�z) by solving a linearization of (4a)–(4c) in the form of

H(uµ)�u + Da(uµ)∗�λ − DE(zµ)�z + DE(zµ)�z = −l(uµ, λµ, zµ, zµ), (5a)

Da(uµ)�u = −a(uµ), (5b)

zµ�u + (uµ − u)�z = µ − (uµ − u)zµ, (5c)

−zµ�u + (u − uµ)�z = µ − (u − uµ)zµ. (5d)

Above in (5a), H(u) ∈ L(U,U∗) is the partial derivative of l(u, λ, z, z) with respect to

u, namely H(u) = D2f (u) + D(Da(u)∗λ). We observe that (5a) can be simplified since

DE(zµ)�z = E(�z) and DE(zµ)�z = E(�z). We also use the compact, operator-like

notation G(u) for pointwise product of functions: for a given u ∈ U, G(u)v = uv for any

v ∈ U. The linear system (5a)–(5d) becomes

H(uµ)�u + Da(uµ)∗�λ − E(�z) + E(�z) = −l(uµ, λµ, zµ, zµ), (6a)

Da(uµ)�u = −a(uµ), (6b)

G(zµ)�u + G(uµ − u)�z = µ − (uµ − u)zµ, (6c)

−G(zµ)�u + G(u − uµ)�z = µ − (u − uµ)zµ. (6d)

Once the search direction (�u,�λ,�z,�z) is computed from (6a)–(6d), the primal-

dual variables are updated using a linesearch over this direction that ensures certain ‘filter’

conditions and the barrier parameter μ is decreased. These are further discussed in the

remainder of this section.

2.1. Secant quasi-Newton Hessian approximations

The interior-point algorithm we propose uses secant approximations B ∈ L(U,U∗) for

the second-derivative H(u) as a way to circumvent the unavailability of the HessianH(u).

66 C. G. PETRA ET AL.

Namely, assuming that the algorithm finished iteration k and updated the primal-dual iter-

ation variables to (uk+1, λk+1, zk+1, zk+1), the operator Bk+1 approximates H at iteration

k+ 1 by satisfying (i) a secant equation of the form B(uk+1)sk = gk, where sk = uk+1 −
uk ∈ U and gk = l(uk+1, λk+1, zk+1, zk+1) − l(uk, λk+1, zk+1, zk+1) ∈ U∗, (ii) a symmetry

condition, and (iii) a minimum departure from the previous operator approximation. We

refer the reader to [58] for a judicious derivation of various quasi-Newton formulas in

Hilbert spaces. Here we use the BFGS operator formula for the Hessian in the following

pointwise expression:

Bk+1v1v2 = Bkv1v2 −
Bkskv1 · Bkskv2

Bksksk
+

gkv1 · gkv2
gksk

, ∀ v1, v2 ∈ U. (7)

As pointed out in Section 1.1, Bkv1v2 and gkv1 denote (the real number) Bk(v1)v2 and

gk(v1), respectively; also ‘·’ denotes the multiplication of real numbers. The recursion (7)

can be also given in terms of dyadic products (e.g. see [3]), however, we prefer the pointwise

expression for compactness.

Limited-memory secant BFGS formulas are used in computational practice since full-

memory counterparts such as (7) require solving large dense linear systems and thus, may

quickly become computationally intractable for large-scale problems. We use a limited-

memory BFGS formula that generalizes the compact representation of Byrd et. al. [10]

for Hilbert spaces. Namely we store only the last l pairs (s, g), where the approximation

‘memory’ l is a positive integer 6 ≤ l ≤ 24, and use the compact operator representation

Bk = B0 + F∗
kQ

−1
k Fk, (8)

where B0 ∈ L(U,U∗) is an initial approximation for the second-derivative H, usually a

multiple of the identity, and Fk ∈ L(U,R2l) is such that

Fku =
[
B0sk−l+1u; . . . ; B0sku; gk−l+1u; . . . ; gku

]
∈ R

2l. (9)

Also the matrix Qk =
[

Nk Lk
Ltk −Dk

]
∈ R

2l×2l has the blocks

Dk = diag(gk−l+1sk−l+1, . . . , gksk) ∈ R
l×l,

Lk =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 0

gk−l+1sk−l+2 0 0 . . . 0 0
...

...
...

. . .
...

...

gk−l+1sk−1 gk−l+2sk−1 gk−l+3sk−1 . . . 0 0

gk−l+1sk gk−l+2sk gk−l+3sk . . . gk−1sk 0

⎤
⎥⎥⎥⎥⎥⎦

∈ R
l×l, and

Nk =

⎡
⎢⎢⎢⎣

B0sk−l+1sk−l+1 B0sk−l+1sk−l+2 . . . B0sk−l+1sk
B0sk−l+2sk−l+1 B0sk−l+2sk−l+2 . . . B0sk−l+2sk

...
...

. . .
...

B0sksk−l+1 B0sksk−l+2 . . . B0sksk

⎤
⎥⎥⎥⎦ ∈ R

l×l.

OPTIMIZATION METHODS & SOFTWARE 67

2.2. Conceptual primal-dual linesearch IPMmethod

To facilitate the presentation and the derivation of the proposed method, we present

the skeleton of the infinite-dimensional conceptual primal-dual IPM algorithm in

Algorithm 1. The remainder of this section elaborates on the constituents of the algorithm,

while the following section provides the discretization details that are needed to derive a

‘discrete’ numerical algorithm that is suitable to a computer implementation.

Algorithm 1 Skeleton of a linesearch IPM method that uses BFGS approximations of the

second-derivatives
1: Input: An initial point u0 strictly feasible with respect to the bound constraints, ini-

tial barrier parameter µ0, initial multiple σ0 of the identity operator I, and stopping

tolerance εtol.

2: Let µ = µ0, B0 = σ0I.

3: Initialize the initial ‘dual’ variables: z0 = u0 − ulow, z0 = uupp − u0, and λ0 as the

solution to the least-square problem (11).

4: for k = 0, 1, . . . do

5: If err(uk, λk, z, z; 0) < εtol, then return optimal solution.

6: If err(uk, λk, z, z;µ) < 10 εtol, reduce µ to 0.4µ and continue the loop 4.

7: Compute search direction (�u,�λ,�z,�z) by solving linear system (6a) at incum-

bent iteration (uk, λk, zk, zk) with Bk given by (8) as an approximation for H at

iteration k.

8: Perform backtracking filter linesearch to find primal steplengths αp and αd.

9: Update: uk+1 = uk + αp�u, zk+1 = zk + αd�z, and zk+1 = zk + αd�z.

10: If errfeas(uk) < 10−6, take λk+1 as the solution to the least-squares problem (11), else

λk+1 = λk + αd�λ.

11: Compute sk+1 and gk+1 and update the compact representation (8) for Bk + 1.

12: end for

2.3. Stopping criteria

The stopping criteria of Algorithm 1 are based on the norms of the residuals of the opti-

mality system (4a)–(4c). This system has three components: (i) stationary Equations (4a)

(also known as dual feasibility equations) posed inU∗, (ii) primal feasibility Equations (4b)

posed in R
m, and (iii) complementarity Equations from (4c) posed pointwise (almost

everywhere). Obviously, the errors/residuals for (i) and (ii) should be measured using

‖ · ‖U∗ and one of the finite-dimensional norms (we choose ‖ · ‖∞), respectively. On

the other hand, the pointwise nature of (4c) requires the use of one of the Lp norms

(1 ≤ p ≤ ∞). Using ‖ · ‖L∞ would be ideal for these pointwise equations; however, we

remark that without additional regularity assumptions, the product of two functions from

U ⊆ L2(�) for bounded� generally lies in L1(�) and not in any of themore regular Lp(�)

for 2 ≤ p ≤ ∞. Therefore we use the weaker but mathematically rigorous ‖ · ‖L1 for (4c).
Based on the above considerations, we propose the following error measures:

errstat(u, λ, z, z) =
‖Df (u) + Da(u)∗λ − E(z) + E(z)‖U∗

sd
, (10a)

68 C. G. PETRA ET AL.

errfeas(u) = ‖a(u)‖∞, and (10b)

errcompl(u, λ, z, z;µ) = max{‖µ − (u − u)z‖L1 , ‖µ − (u − u)z‖L1}/sc. (10c)

The scalars sc and sd above are defined by

sc = max

{
1

2
‖z‖L2 +

1

2
‖z‖L2 , smax

}
/smax,

sd = max

{
1

3
‖λ‖∞ +

1

3
‖z‖L2 +

1

3
‖z‖L2 , smax

}
/smax.

They have the role of ‘relaxing’ the accuracy of the optimality conditions when the dual

variables are large in magnitude [61]. The threshold smax is taken to be 100 in our

implementation. The overall optimality error is defined as

err(u, λ, z, z;µ) = max
{
errstat(u, λ, z, z), e

rr
feas(u), e

rr
compl(u, λ, z, z;µ)

}
.

In particular, err(u, λ, z, z; 0) is an appropriate measure of the optimality3 of (u, λ, z, z)with

respect to the original problem (1a)–(1b).

2.4. Least-squares-based (LSQ) computation of the duals

The dual variables λk are computed as the solution of a linear least-squares problem in

step 1 (k = 0) and in step 1 (k>0) of Algorithm 1. More specifically, λk is chosen to

minimize the norm of the residual of (4a) for given variables (uk, zk, zk), i.e.

λk = argmin
λ

‖Df (uk) + Da(uk)
∗λ − E(zk) + E(zk)‖2U∗ . (11)

This LSQ updating strategy for λ is known to increase the performance of quasi-Newton

methods over the Newton-like alternative update from step 1 of Algorithm 1, especially

when the feasibility error errfeas(uk) is small [61].

2.5. Linesearch procedure

To enforce convergence from arbitrary remote points for general problems (1a)–(1b) (e.g.

possibly nonconvex and nonlinear), we use the Wächter–Biegler filter linesearch [59,60].

This linesearch algorithm has the combined goal of reducing the log-barrier objective

ψµ(uk) and the infeasibility θ(uk) = ‖a(uk)‖∞ at each iteration k of Algorithm 1. It may

happen that onlyψµ(uk) or θ(uk) decrease along the search direction at iteration k; to pre-

vent cycling between such points a filter set is maintained and updated to contain pairs of

(θ ,ψ) values that are prohibited for any subsequent updates of the u variables in step 1

of Algorithm 1. We refer the reader to [61] for details of the linesearch algorithms; here

we focus on the nontrivial issues that arise in the generalization of this filter linesearch

algorithm to the infinite-dimensional problem (1a)–(1b). Such issues occur in formaliz-

ing the sufficient-decrease Armijo rule for ψµ because the log-barrier terms of ψµ are

not differentiable (Fréchet and even Gâteaux) for the most common functional spaces

OPTIMIZATION METHODS & SOFTWARE 69

(e.g. U = L2 or U = H1) [52]. For this reason, we work with directional variations of the

log-barrier objective of (2).

By denoting ρ(u) =
∫
�
ln(u(x)) dx, the variation of ρ at u along the direction d ∈ U

is δρ(u; d) = limh→0(ρ(u + hd) − ρ(u))/h. Similarly to obtaining (3), one can show that

δρ(u; d) =
∫
�

d(x)
u(x) dx. Since f is Fréchet differentiable, the directional variation of ψµ is

given by

δψµ(u; d) = Df (u)d − µ

∫

�

d(x)

u(x) − u(x)
dx − µ

∫

�

d(x)

u(x) − u(x)
dx. (12)

Consequently, the Armijo rule in our setup requires that the steplength α satisfies the

sufficient decrease condition

ψµ(uk + α�u) ≤ ψµ(uk) + ηψα · δψµ(uk;�u)

in order to be acceptable, where the algorithm parameter ηψ is taken 0.001.

3. Discretization using finite element spaces

In this section, we derive a computer implementable variant based on finite element dis-

cretizations of the infinite-dimensional quasi-Newton IPM introduced in the previous

section. Broadly speaking, we follow an optimize-then-discretize approach (see [26, Chapter

3]) and provide discretizations for the algorithm’s constituents parts (e.g. variables, vector-

and matrix-based formulas for BFGS updates, linearizations, stopping criteria, etc.) in line

with previous works in PDE-constrained optimization (e.g. in [8,9,22,42,49]). A notable

exception is the discretization of the smoothed complementarity equations from (4c),

which poses some difficulties and, to the best of our knowledge, has not been addressed

before. In particular, in Section 3.2.1 we derive an ‘economy’ discretized form for (4c) that

is effective computationally and non-intrusive from an implementation perspective. The

salient idea of our tedious yet simple derivation is to ensure consistency of the discretized

algorithm with the inner products of U and U∗ (and their dual pairing) as a first neces-

sary step towards mesh independence. Notably, in Section 3.6 we point out that incorrect

discretizations of the dual variables are likely to appear when off-the-shelf NLP solvers are

used as-is directly on discretized PDE-constrained problems. In this respect, the current

work can be regarded as a generalization of the discretization approach in [49] to certain

problems with inequality constraints (on the control/design variables) in the context of

primal-dual IPMs.

3.1. Discretization representations

The finite-dimensional discretization Hilbert spaceUh forU can consist of piecewise con-

stant or continuous functions defined over a mesh of �, as is often the case of the finite

element method. Then a finite-dimensional approximation uh ∈ Uh of u ∈ U is

uh(x) =
n∑

i=1

uiφi(x), (13)

where φi ∈ Uh for all i ∈ {1, . . . , n}, the set {φi}ni=1 form a function basis ofUh, and {ui}ni=1

are the expansion coefficients that completely and uniquely determine uh [7].

70 C. G. PETRA ET AL.

Common choices for the finite element basis functions are so that φi are defined piece-

wise over the elements �i that partition the domain �, as it is the case for Lagrange

shape polynomials of various degrees [19]. The form of the basis functions depends

on U. For example, they can be piecewise constant over the elements �i for L2 and

must be piecewise continuous for H1 and other Sobolev spaces. The discretized form

of the infinite-dimensional quasi-Newton IPM described in the previous section can be

drastically simplified when the basis functions satisfy

P1: a Kronecker delta property, namely φi(xj) = δij
4 whenever xj ∈ �j for piecewise con-

stant basis functions or xj is a vertex (node) coordinate of�j for piecewise continuous

basis functions, and

P2:
∑n

i=1 φi(x) = 1 for all x ∈ �.

The consequence of P1 is that ui = u(xi) = uh(xi) for all i ∈ {1, . . . , n}, which is used

by our algorithm to reduce computational cost and simplify software interfacing.

In a numerical algorithm, the vector u = [u1; u2; . . . ; un] serves as a computer encoding

(or representation) of uh ∈ Uh and, by extension, as a discretization representation of u ∈
U. Similarly, finite-dimensional vector encodings or representations are available for func-

tionals from the dual spaceU∗
h ; a typical vector representation ofwh ∈ U∗

h is in the form of

the R
n vector w = [w1; w2; . . . ; wn], where wi = wh(φi) [30]. We remind the reader that

symbols in roman font denote the vector and matrices discretization representations. of

the

The finite-element space Uh and its dual U∗
h equipped with the restriction of the inner

products of U and U∗ are Hilbert spaces [30]. Furthermore, these inner products have

‘finite-dimensional’ expressions in terms of the discretization representations [30] in the

form

〈uh, vh〉Uh
= utHv and 〈wh, zh〉U∗

h
= wtH−1z, (14)

where the symmetric positive definite matrix H ∈ R
n×n is the so-called ‘weight’ matrix

that depends on the spaces U and Uh and the basis functions used in discretization. For

example, for our U = L2 case, one can write that

〈uh, vh〉Uh
=

∫

�

uh(x)vh(x) dx

=
∫

�

(
n∑

i=1

uiφi(x)

) ⎛
⎝

n∑

j=1

vjφj(x)

⎞
⎠ dx

=
n∑

i=1

n∑

j=1

uivj

∫

�

φi(x)φj(x) dx = utHv,

and, therefore, H equals the ‘mass’ matrix M with entries Mij =
∫
�

φi(x)φj(x) dx, i, j ∈
{1, . . . , n}.When piecewise constant basis functions are used, we remark thatM is diagonal.

OPTIMIZATION METHODS & SOFTWARE 71

Similarly, for U = H1 using piecewise continuous basis functions,

〈uh, vh〉Uh
=

∫

�

(uh(x)vh(x) + ∇uh(x) · ∇vh(x)) dx

=
∫

�

(
n∑

i=1

uiφi(x)

) ⎛
⎝

n∑

j=1

vjφj(x)

⎞
⎠ +

(
n∑

i=1

ui∇φi(x)

) ⎛
⎝

n∑

j=1

vj∇φj(x)

⎞
⎠ dx

=
n∑

i=1

n∑

j=1

uivj

∫

�

(
φi(x)φj(x) + ∇φi(x) · ∇φj(x)

)
dx = utHv,

showing that H = M + K, where the ‘stiffness’ matrix K has entries Kij =
∫
�

∇φi(x) ·
∇φj(x) dx, for all i, j ∈ {1, . . . , n}.

In many places we will use vector representations of constant functions. We denote the

vector representation of the function identically equal to 1 by ẽ and remark that (13) can

be used to show that, in general, ẽ = M−1
[∫

�
φ1(x) dx;

∫
�

φ2(x) dx; . . . ;
∫
�

φn(x) dx
]
.

In particular, when P1 and P2 hold, it can be easily proved that ẽ = e, where e denotes the

vector of all ones.

Hereafter we will work with a generic Hilbert spaceU and a generic discretization space

Uh and (only)make use of the inner product weightmatrixH and themassmatrixM in the

derivation of the discretized quasi-Newton IPMmethod. Properties P1 andP2 are generally

not assumed for Uh unless stated otherwise in text.

Similarly to the representations of elements of U∗, the Euclidean linear functionals λ ∈
R
m∗ have vector representations in the formofλ = [λ(e1), λ(e2), . . . , λ(em)], where {ej}mj=1

is the standard orthonormal basis of R
m (i.e. the ith entry of vector ej is given by δij); also,

we remark that λ(v) = λtv for any v ∈ R
m. The discretized counterparts of the objective f

and the constraints a are f : Rn → R and a : Rn → R
m such that f(u) = f (uh) and a(u) =

a(uh). We next state some basic results regarding the discretization of integral forms and

of linear functionals from U∗.

Lemma 3.1: Given uh, vh ∈ Uh, the integral form 〈uh, vh〉L2 =
∫
�
uh(x)vh(x) dx equals

utMv. As an immediate consequence,
∫
�
uh(x) dx = ẽ tMu.

Proof: We write that
∫
�
uh(x)vh(x) dx =

∑n
i=1

∑n
j=1 uivj

∫
�

φi(x)φj(x) dx = utMv. �

Lemma 3.2: For any wh ∈ U∗
h and u ∈ U, wh(uh) = utw.

Proof: We observe that wh(uh) = wh(
∑n

i=1 uiφi) =
∑n

i=1 uiwh(φi) =
∑n

i=1 uiwi = utw.

�

3.2. Vector representations for functionals and derivatives

For a function f : U → R with derivative Df (u) ∈ U∗, we will use Df(u) to denote the

vector representation of Df (uh). As a consequence of Lemma 3.2, we have that

Df (uh)vh = Df(u)tv, (15)

72 C. G. PETRA ET AL.

where v is the representation of vh. For example, when f (u) =
∫
�
u(x) dx, it can be eas-

ily proved that Df (u) is such that Df (u)v =
∫
�
v(x) dx for all v ∈ U; therefore, since

Df(u)tv = Df (uh)vh = ẽtMv by Lemma 3.1, we obtain that Df(u) = M̃e.

Similarly to Df(u), we introduce the (matrix) representation of the derivative Da(u) of

a : U → R
m as

Da(u) =

⎡
⎢⎣

Da1(u)
t

...

Dam(u)t

⎤
⎥⎦ ,

where Daj(u) is the representation of the derivative of the jth function component aj of a

(j ∈ {1, . . . ,m}) defined as in (15).

The following lemmas derive discretization representations for various quantities

employed by the algorithm that are consistent with the inner products of U and U∗.

Lemma 3.3: We have that Da(uh)vh = Da(u)v. Also, the vector representation of

Da(uh)
∗λ ∈ U∗

h from the optimality conditions (4a) is given by Da(u)tλ.

Proof: The first relation follows from (15) and the above expression of Da(u).

To prove the second statement we remark that the representation of Da(uh)
∗λ, which

we denote by w, should satisfy wtv = [Da(uh)
∗λ](vh) for all vh ∈ Uh. On the other hand,

for any vh ∈ Uh one can write

(Da(u)tλ)tv = λtDa(u)v = λ(Da(uh)vh) = [Da(uh)
∗λ](vh),

where the last equality is given by the definition of an adjoint operator. This shows that

w = Da(u)tλ and concludes the proof. �

Lemma 3.4: The vector representation of E(zh) from (4a) isMz.

Proof: To prove the statement we write E(zh)vh =
∫
�
zh(x)vh(x) dx = ztMv, for all vh ∈

Uh, where the last equality follows from Lemma 3.1. �

Lemma3.5: Given uh, vh ∈ Uh, the vector representation of G(uh)vh ∈ Uh appearing in (6c)

and (6d) is M−1[utC1v; . . . ; utCnv], where C denotes the mass tensor given by Cijk =∫
�

φi(x)φj(x)φk(x) dx and the matrix Ck is the kth frontal slice of C, namely (Ck)ij = Cijk,

k ∈ {1, . . . , n}.

Proof: Let z ∈ R
n be the vector representation of [G(uh)vh] = uhvh. We remark that

uh(x)vh(x) =
∑n

i=1 ziφi(x) and take the L2 product of the two sides of this identity with

OPTIMIZATION METHODS & SOFTWARE 73

basis functions φk for each k ∈ {1, . . . , n} to obtain

∫

�

(
n∑

i=1

uiφi(x)

) ⎛
⎝

n∑

j=1

vjφj(x)

⎞
⎠ φk(x) dx =

∫

�

n∑

i=1

ziφi(x)φk(x) dx, ∀ k ∈ {1, . . . , n }.

Furthermore, this can be also written equivalently as

n∑

i=1

n∑

j=1

uivj

∫

�

φi(x)φj(x)φk(x) dx =
n∑

i=1

zi

∫

�

φi(x)φk(x) dx, ∀ k ∈ {1, . . . , n },

which in matrix form is exactly utCkv = Mz for all k ∈ {1, . . . , n }. This proves the

conclusion. �

3.2.1. Discretization of optimality conditions

Lemmas 3.3 and 3.4, and Equation (15) allows to write the infinite-dimensional optimality

Equations (4a) and (4b) as the discretized Equations (16a) and (16b) below. Further-

more, since the other two infinite-dimensional optimality equations from (4c) can be

written as G(u − u)z = µ and G(u − u)z = µ, Lemma 3.5 implies that the discretization

of these two equations is given by (16c) below.We have obtained the followingmatrix-form

discretization of optimality conditions:

Df(u) + Da(u)tλ − Mz + Mz = 0, (16a)

a(u) = 0, (16b)

M−1

⎡
⎢⎣

(u − u)tC1z
...

(u − u)tCnz

⎤
⎥⎦ = µ̃e, M−1

⎡
⎢⎣

(u − u)tC1z
...

(u − u)tCnz

⎤
⎥⎦ = µ̃e. (16c)

A couple of remarks are in order. When piecewise constant elements are used, i.e. our L2

case, one can easily prove that the tensor C has a simple form, namely, the frontal slices Ck

are equal to the (diagonal) mass matrix M. As a result, the Equations (16c) have a simpli-

fied form (see (17c) below) that requires only pointwise vectormultiplications. This is ideal

both computationally and from a software interface perspective since the optimization

solver does not need the application of C.

For more general finite element discretizations, the tensor C has a more onerous

form [12], which leads to nontrivial complications. For example, C would appear in

the Newton linearizations (i.e. the correspondent of Equation (21c)) of (16c) and, as a

result, the quasi-Newton linearization system (i.e. the correspondent of (21a)–(21c)) would

become much more cumbersome to solve, especially in parallel; in contrast, the lineariza-

tion (21a)–(21c) that we derive later in the paper involve only diagonal matrices. Another

complication consists of the fact that C is not routinely formed for the PDE state and adjoint

solves as these only require the mass and stiffness matrices; as a result, requiring C in the

optimization phase may impede the use of the optimization solver since the practitioners

need to dedicate additional effort for making the tensor C available for optimization.

All the aforementioned complications can be circumvented by using a projection-

based discretization of the infinite-dimensional complementarity equations from (4c).

74 C. G. PETRA ET AL.

First let use consider the prototype infinite-dimensional equation v1(x)v2(x) = µ a.e. on

�, where v1, v2 ∈ U and µ ∈ R, which is the form present in (4c). Assuming the Kro-

necker property P1, we then define the projection PUh
: U → Uh such that for any u ∈ U,

the function wh := PUh
(u) is the (unique) element of Uh for which wh(xj) = u(xj), for all

j ∈ {1, . . . , n}. Furthermore, let us consider the projection of prototype equation, namely

PUh
(v1v2) = µ. Not only the projected equation is inUh but also one can equivalently write

v1h(xj)v2h(xj) = µ for all j ∈ {1, . . . , n} and, as a result, obtain the discretization v1v2 = µe

for the prototype equation. Consequently, we propose and use throughout the paper the

following ‘economy’ discretization of the infinite-dimensional optimality conditions:

Df(u) + Da(u)tλ − Mz + Mz = 0, (17a)

a(u) = 0, (17b)

(u − u)z = µe, (u − u)z = µe. (17c)

3.3. Stopping criteria discretization

The discretizations of the errormeasures from (10a) are obtained by replacing the elements

in U and U∗ with their vector representations and the norms U and U∗ with their finite-

dimensional algebraic expressions given by (14). In particular, the stationary error is given

by

errstat =
1

sd

[(
Df(u) + Da(u)tλ − Mz + Mz

)t
H−1

(
Df(u) + Da(u)tλ − Mz + Mz

)]1/2

and we remark that its computation requires the application of H−1 and M.

The computation of errcompl from (10c) requires evaluating terms in the form of ‖v1hv2h −
µ‖L1 for v1h, v2h ∈ Uh, which is not necessarily straightforward for general approximation

spaces Uh. Our general approach is based on the observation that one can write formally

that ‖v1hv2h − µ‖L1 = 〈|v1hv2h − µ|, 1〉L2 where the left operand in the last inner product

denotes the absolute value function and the right operand denotes the function of all ones.

Since |v1hv2h − µ| is not necessarily in Uh, a convenient and yet consistent error estima-

tor can be obtained under P1 and P2 properties by projecting this term in Uh based on

the considerations said before the economy discretization (17a)–(17c). More specifically,

we propose to use 〈PUh
(|v1hv2h − µ|), 1〉L2 = etM|v1v2 − µe| := ‖v1v2 − µ‖1M, where

|v1v2 − µe| is the vector of absolute values of the vector v1v2 − µe. This estimator is essen-

tially the finite-dimensional norm ‖ · ‖1 weighted by themassmatrixM. As a consequence,

an economy expression for errcompl is

errcompl = max{‖µe − (u − u)z‖1M, ‖µe − (u − u)z‖1M}/sc.

Finally, we mention that the weighted two-norm ‖v‖2M =
√
vtMv worked as well as ‖ ·

‖1M in all of our numerical experiments.

OPTIMIZATION METHODS & SOFTWARE 75

3.3.1. Matrix representations for BFGS formulas

Since for f : U → R, D2f (u) is in L(U,U∗), we target a matrix representation D2f(u) of

D2f (uh) such that D2f (uh)vh = D2f(u)v for all vh ∈ Uh. As before, u and v are represen-

tations of uh and vh, respectively. The Hessian application D2f(u)v can be computed effi-

ciently in general by using second-order adjoint sensitivities (see, for example, [43,44,51]).

However, the Hessian computation requires nontrivial additional development effort,

which can be circumvented by using secant approximations formulas, such as the BFGS

formula derived below.

We observe that D2f (uh)vhwh = (D2f(u)v)tw = vtD2f(u)tw and similarly, that D2

f (uh)whvh = wtD2f(u)tv. Since D2f (uh) is symmetric, we have that vtD2f(u)tw =
wtD2f(u)tv for all v and w, which shows that the matrix D2f(u) is symmetric. It is

illustrative to compute the representation ofD2f (u) for f (u) = 1
2‖u‖

2
L2
. Since one can eas-

ily verify that D2f (u)vw = 〈v,w〉L2 = E(v)w, Lemma 3.4 implies that D2f(u) = M; also,

D2f(u) = Hwhen f (u) = 1
2‖u‖

2
H1 . Similarly, the representations B of the secant operators

B ∈ L(U,U∗) from (7) and (8) should satisfy for all vh ∈ Uh that

Bv = Bvh. (18)

For a representation (uk, λk, zk, zk) of the primal-dual variables, let sk = uk+1 − uk; also,

let gk = l(uk+1, λk, zk, zk) − l(uk, λk, zk, zk) be the representation of gk from Section 2.1,

where l is the discretization of l from (4a), namely, l(uk, λk, zk, zk) = l(uk, λk, zk, zk).

Lemma 3.6: The matrix representation Bk of Bk given by the recursion (7) is

Bk+1 = Bk −
Bksks

t
kB

t
k

stkBksk
+

gkg
t
k

gtksk
. (19)

Furthermore, the representation Bk of Bk from (8) has the compact representation

Bk = B0 + FtkQ
−1
k Fk, (20)

where Ftk = [B0sk−l+1 . . . B0sk gk−l+1 . . . gk] ∈ R
n×2l and Qk is given by (9), with the

blocks Dk being the diagonal matrix with entries gtk−l+1sk−l+1, . . . , g
t
ksk,

Lk =

⎡
⎢⎢⎢⎣

0 0 . . . 0 0

gtk−l+1sk−l+2 0 . . . 0 0
...

...
. . .

...
...

gtk−l+1sk gtk−l+2sk . . . gtk−1sk 0

⎤
⎥⎥⎥⎦ ,

and

Nk =

⎡
⎢⎢⎢⎣

stk−l+1B0sk−l+1 stk−l+1B0sk−l+2 . . . stk−l+1B0sk
stk−l+2B0sk−l+1 stk−l+2B0sk−l+2 . . . stk−l+2B0sk

...
...

. . .
...

stkB0sk−l+1 stkB0sk−l+2 . . . stkB0sk

⎤
⎥⎥⎥⎦ .

Proof: Equation (19) follows from applying the infinite-dimensional counterpart (7) to

functions vh in Uh and by using the definition (18) and that gksk = gtksk and Bksksk =

76 C. G. PETRA ET AL.

stkBksk. It is also relatively easy to prove that Fk in (20) is the matrix representation of Fk
from (8). Furthermore, Nk in (20) is simply the matrix Nk in (8) computed overUh instead

of U. Identity (20) follows immediately. �

We remark that the above discretized BFGS formulas are identical to the formulas

derived and used for optimization over finite-dimensional spaces [10,35]. However, as

we discuss later, a typical choice for the initial approximation B0 is a multiple of M or H

(which are the matrix representations in L2 and H1 of the identity operator), while in the

finite-dimensional case B0 is typically a multiple of the identity matrix.

3.3.2. The BFGS linear systems for IPM search directions

With the matrix compact representation (20) as the approximation for the second deriva-

tive H from (6a), the discretized, matrix-form quasi-Newton search direction equations

(compare with (6a)) at iteration k are given by

(B0 − FtkQ
−1
k Fk)�u + Da(uk)

t�λ − M�z + M�z = −l(uk, λk, zk, zk), (21a)

Da(uk)�u = −a(uk), (21b)

−Zk�u + Uk�z = µe − (u − uk)zk, Zk�u + Uk�z = µe − (uk − u)zk, (21c)

The matrices Uk, Uk, Zk, and Zk above are diagonal with positive diagonal entries given

by vectors uk − u, u − uk, zk, and zk, respectively. The last two linear equations represent

formal linearizations of the economy complementarity Equation (17c), but they can be also

derived directly from the infinite-dimensional linear Equation (6a) under the Kronecker

property. Finally, we mention that linearizations of the mass tensor-based optimality sys-

tem from the beginning of Section 3.2.1 could be also derived and would be valid should

this be of interest to the reader.

3.3.3. The discretization of the log-barrier terms

The discretization of the log-barrier functionψµ(u) and its directional variation δψµ(u; d)

poses some nontrivial difficulties because of the use of the logarithm function as a barrier

function and the presence of rational functions in the expression (12) of δρ(u; d).We layout

one possible discretization that is convenient because it is general, however, we do not

exclude the possibility of more accurate discretizations forψµ(u) and δψµ(u; d), especially

when specialized for a particular choice of basis functions.

We discretize log-barrier terms of the form ρ(u) =
∫
�
ln(u(x)) dx using a projection

approach. Intuitively, discretizing
∫
�
ln(u(x)) dx is the same as discretizing

∫
�
v(x) dx for

v(x) = ln(u(x)) with vh(x) =
∑n

i=1 viφi(x), i.e. vh is the projection of ln uh in Uh. When

properties P1 and P2 hold for Uh, we have vi = ln ui and thus write

ρ(u) =
∫

�

v(x) dx ≈
∫

�

vh(x) dx = etMv = etMln u := ρ(u),

where ln u denotes [ln u1; . . . ; ln un]. Similarly, δρ(u; d) =
∫
�
d(x)/u(x) dx can be viewed

as
∫
�
d(x)v(x) dx with v(x) = 1/u(x), and, therefore, one can write

δρ(u; d) =
∫

�

d(x)v(x) dx ≈
∫

�

dh(x)vh(x) dx = dtMv = dtM
1

u
:= δρ(u, d),

OPTIMIZATION METHODS & SOFTWARE 77

where 1
u denotes the vector with entries 1

u1
, . . . , 1

un
and d and v are the vector representa-

tions of dh and of vh, respectively. We observe that the representation δρ(u; d) is gradient

of ρ(u) with respect to u along the direction d, namely dρ(u)
du d = δρ(u, d). This is impor-

tant since a discrepancy between the two would indicate inconsistent discretizations and

likely cause convergence issues.We have obtained the following discretization form for the

log-barrier objective and its directional variation.

Lemma3.7: Given the vector representations u and�u of the variable u and search direction

�u, the log-barrier objective from (2) has the discretization

ψµ(u) = f(u) − µetMln(u − u) + µetMln(u − u)

and its variation (12) along direction �u can be discretized as

δψµ(uk;�u) = Df(uk)
t�u − µ�utM

1

u − u
+ µ�utM

1

u − u
.

3.4. Discretization of the LSQ-based computation of the duals

The discretization λ of the solution λ of the least-squares problem (11) is

λk = argmin
λ

‖Da(uk)tλ + Df(uk) − Mz + Mz)‖2U∗
h
,

where the norm ‖v‖U∗
h
:= ‖vh‖U∗

h
=

√
vtH−1v accordingly to (14). Consequently,

λk =
[
Da(uk)H

−1Da(uk)
t
]−1

Da(uk)H
−1

(
−Df(uk) + Mzk − Mzk

)
.

We remark thatm+ 1 applications of the inverse of H are needed to compute λk, which is

computationally tractable in general sincem is relatively small.

3.5. The discretized quasi-Newton BFGS linesearch IPM algorithm based on

derivative representations (QIpmDDe)

At this point we have all the discretization ingredients needed for the discretization of

Algorithm 1 using the vector representations for the functional derivatives introduced

in Section 3.2. The numerical QIpmDDe algorithm corresponds to substituting the con-

stituent parts of Algorithm 1 (i.e. primal-dual variables, search directions, linesearch pro-

cedure, update of dual variables, error measures, quasi-Newton limited-memory formula)

with their discretized counterparts that were introduced in this section. The implementa-

tion details, such as various parameters of the algorithm, strategies for constructing starting

points, and others, are described in [39,61].

78 C. G. PETRA ET AL.

3.6. Comparisonwith Euclidean NLP solvers

Here, we make a couple of observations on the use of NLP solvers equipped with the

Euclidean inner product for solving the discretization of (1a)–(1b) in the form

min
u∈Rn

f(u) s.t. a(u) = 0 ∈ R
m, u ≤ u ≤ u.

For illustration purposes, we consider the state-of-the-art solver Ipopt and the similar

Euclidean solver from HiOp. The log-barrier problem used by these solvers is

min
u

ψµ(u) := f(u) − µ

n∑

i=1

ln(ui − ui) − µ

n∑

i=1

ln(ui − ui) s.t. a(u) = 0,

for which the following optimality conditions are used:

∇f(uµ) + Ja(uµ)tλµ − zµ + zµ = 0,

a(uµ) = 0,

(uµ − u)zµ = µ, (u − uµ)zµ = µ.

Here, ∇f(u) ∈ R
n denotes the gradient of f : Rn → R and Ja(u) ∈ R

m×n the Jacobian of

a : Rn → R
m at some u ∈ R

n, which coincide with the vector representations Df(u) and

Da(u) used by our discretized QIpmDDe algorithm.

A quick look at the above optimality conditions and the discretized optimality condi-

tions (17a)–(17c) reveals that the former does not employ the correct dual representer for

linear operator E(z) defined in Section 2 after Equation (3). We believe this inconsistency

is one of the causes of the mesh dependent behaviour of the Euclidean solver(s) that we

report in Section 6.

Another severe limitation of the Euclidean NLP solvers comes from the use of the

Euclidean norms in the stopping criteria, which results in premature termination at inac-

curate solution and in an iteration count that changes drastically as the mesh is refined

and/or distorted. Intuitively, the Euclidean, inner-product-oblivious approach to treating

NLPs defined in Hilbert spaces divorces the space of decision variables from the finite ele-

ment mesh. As a result, the decision variables become a tuple of real numbers – without a

mesh, operations like refinement and coarsening do not make much sense. Furthermore,

the inner-product-oblivious approach treats every component e.g. of the stationarity error

vector, as equally important, when onewould expect that error components corresponding

to larger elements on nonuniform finite element meshes should be weighted more heav-

ily than error components corresponding to smaller elements. The inner-product-aware

approach of this paper corrects these deficiencies through the incorporation of the correct

inner product.

Finally, Euclidean NLP solvers using secant updates generally hard-code B0 as a mul-

tiple of the identity matrix. This choice results in mesh dependent convergence even for

elementary problems such as the unconstrained convex quadratic problem

min
u∈U

1

2
〈u, u〉U + 〈c, u〉U ,

posed in a generic Hilbert space U with c ∈ U. The discretized problem would consist of

minimizing 1
2u

tHu + ctHu. A BFGS quasi-Newton algorithm applied to the discretized

OPTIMIZATION METHODS & SOFTWARE 79

Table 1. Discretized input problem and internal discretizations for QIpmDDe and a generic Euclidean
NLP solver for (22) is illustrated for U = L2(�) and U = H1(�).

input problem internal discretizations

Algorithm f(u) a(u) 1st order derivatives Df/∇f and Da/Ja E(z) B0 inner products

U = L2(�)

QIpmDDe 1
2
utMu etMu Mu etM Mz M wt

1M
−1w2

vt1Mv2
Euclidean —"— —"— Mu etM z I vt1v2
U = H1(�)

QIpmDDe 1
2
utHu etMu Hu etM Mz H wt

1H
−1w2

vt1Mv2
Euclidean —"— —"— Hu etM z I vt1v2

Note:We highlight in red discretizations used by the Euclidean solver that are inconsistent with the underlying Hilbert space
U.

problem is identical in exact arithmetic with the preconditioned conjugate gradient

method for Hu = −Hc using the preconditioner B−1
0 [35, Theorem 6.4]. When B0 = I,

as it is the case for Euclidean solvers, the iteration count of the quasi-Newton method is

determined by the number of distinct eigenvalues of B−1
0 H = H, which can be large for

distorted meshes, for example; on the other hand, QIpmDDe using B0 = H converges in

one iteration since B−1
0 H = I.

We remark that QIpmDDe works as an Euclidean solver by taking M = H = I.

3.6.1. An illustrative example

Let us consider the quadratic problem

min
u∈U

f (u) :=
1

2
‖u‖2U s.t. a(u) :=

∫

�

u(x) dx = 0, u ≤ u ≤ u. (22)

Table 1 shows the discretizations of the objective and constraints for U = L2(�) and

U = H1(�) as well as the internal representations for E(z) and the initial BFGS opera-

tor B0 and the discretized form of the inner product(s) used by QIpmDDe and Euclidean

NLP solvers. We assume for simplicity that properties P1 and P2 hold for the underlying

discretization space Uh. The cells highlighted in red indicate discretization inconsistent

with the underlying Hilbert space as per the discussion of the previous subsection.

4. Parallelization considerations

A parallelization technique for Euclidean quasi-Newton IPMs equipped with limited-

memory BFGS updates was proposed in [39] based on a specialized symmetric Guassian

elimination to solve the IPM linear systems. Essentially (21a)–(21c) can be manipulated to

a system that is more amenable to parallel computations, namely to

B̃k�u + Da(uk)
t�λ = rk,

Da(uk)�u = −a(uk),
(23)

where B̃k = B0 + MU−1
k Zk + MU

−1
k Zk − FtkQ

−1Fk, and rk = −l(uk, λk, zk, zk) + U−1
k

[µe − (uk − u)zk] + U
−1
k [µe − (uk − u)zk]. Furthermore, assuming the linear sys-

tem (23) is solved, the rest of the unknowns of (21a)–(21c) are obtained from �z =

80 C. G. PETRA ET AL.

−U−1
k Zk�uk + U−1

k [µe − (uk − u)zk], and �z = U
−1
k Zk�uk + U

−1
k [µe − (u − uk)zk],

both operations involving only basic vector-vector computations that parallelize well.

The parallelization difficulty occurs in solving the linear system (23). The original

approach of [39] exploits that B̃k is a low-rank update of the invertible matrix B0 +
MU−1

k Zk + MU
−1
k Zk and uses the Sherman–Morrison–Woodbury formula to compute

B̃−1
k explicitly. This requires solving with B0 + MU−1

k Zk + MU
−1
k Zk for multiple right-

hand sides (required by the presence of the low rank term FtkQ
−1Fk) and matrix-matrix

multiplications. As a result, this approach parallelizes efficiently as long as the solves with

B0 + MU−1
k Zk + MU

−1
k Zk parallelizewell. Once the inverse of B̃

−1
k is computed, the Schur

complement Da(uk)̃B
−1
k Da(uk)

t ∈ R
m×m of B̃k in (23) can be computed using parallel

matrix-matrix operations and used to solve [Da(uk)̃B
−1
k Da(uk)

t]�λ = a(uk) + B̃−1
k rk for

λ; this solve is done in serial and has negligible computational footprint because its size

is small (being the number of contraints, not including the bounds). Finally, one only

needs to solve B̃k�u = rk − Da(uk)
t�λ to compute �u in (23), which requires another

multiplication with the inverse of B̃k.

This approach extends readily to QIpmDDe since the limited-memory update (20) and

the IPM linear system (21a)–(21c) are structurally identically to their Euclidean counter-

parts. In the Euclidean case (B0 = M = I) this matrix is diagonal and the solves are trivial.

Obviously, this approach readily extends to QIpmDDe as long as M and B0 are diagonal

matrices. For example, M is diagonal for piecewise constant elements and B0 can be taken

to be a positive definite diagonal matrix. The diagonality of M can also be ensured by

using special quadrature formulas, for example see [27], or by employing mass lumping

techniques [27,64]. For non-diagonal matrices B0 and M, the aforementioned technique

is efficient as long as solving linear systems involving B0 + MU−1
k Zk + MU

−1
k Zk can be

parallelized efficiently. We expect that this is possible since M is sparse even for higher

order finite elements and B0 can be chosen freely. Our current parallel implementation

of QIpmDDe from HiOp only supports diagonal matrices M and B0 and we defer the

development of a more general implementation to future work.

5. Problem specification

It should be apparent from Section 3 that QIpmDDe needs minimal knowledge of the

underlying discretized optimization space Uh, namely, it only requires the application (to

vectors) of the mass matrix M, the inner product weight matrix H, and the inverse H−1.

This characteristic is of great practical value since it allows to use QIpmDDe for problems

posed over Hilbert spaces with generic inner products. For a complete specification of (the

discretization of) the infinite-dimensional problem (1a)–(1b), the following are needed:

(I1) the size n of the representation u and the numberm of equality constraints;

(I2) routines for evaluating discretized functions f(u) and a(u);

(I3) routines for evaluating derivative representations Df(u) and Da(u);

(I4) representations u and u for the function bounds u and u, respectively;

(I5) routines for applying M, H, and H−1 to vectors from R
n;

(I6) a routine for applying B0 to vectors from R
n, which is evaluated at each iteration;

OPTIMIZATION METHODS & SOFTWARE 81

(I7) a routine returning the distribution of n-dimensional vector andmatrices acrossMPI

ranks, as per the discussion of data parallelism in Section 4

We remark that I5, I6, and I7 above are optional. If I5 is not provided, QIpmDDe uses

M = H = I, and thus acts as an Euclidean solver. If I6 is not provided, the solver uses B0 =
M. If I7 is not provided, the parallel computations are switched off. HiOp’s C++ abstract

class for problem specification encapsulates I1–I7 above. We refer the interested reader to

HiOp user manual for more software details [40].

6. Strengths and weaknesses of QIpmDDe on practical problems

We discuss the numerical performance of QIpmDDe by solving two classes of PDE-

constrained problems for which the optimization variable u appears as coefficient in the

PDE state equation. For all problems, the optimization derivatives are obtained via an

adjoint-based approach and calculus of variations, for example, see [44].

6.1. Inverse problem governed by an elliptic PDE

As a first example, we consider the estimation of a coefficient field in a prototype elliptic

PDE. Depending on the interpretation of the inputs and the type of measurements, this

problem arises, for instance, in inversion for the permeability field in a subsurface flow

problem, for the conductivity field in a heat transfer problem, or the stiffness parameter

field in a membrane deformation problem. We formulate the inverse problem over � =
[0, 1] × [0, 1] as follows: given (possibly noisy) observations d ∈ R

q of the state solution

y in �, a volume force f ∈ H−1(�), and lower and upper bounds u, u ∈ L∞(�), we infer

the coefficient field u that best reproduces the observations by solving

min
u∈L2(�)

J (u) :=
1

2

〈
Oy(u) − d,Oy(u) − d

〉
Rq +

γ

2
〈∇u,∇u〉L2 , s.t. u ≤ u ≤ u, (24)

where y(u) is the solution of the state problem −∇ · (u∇y) = f in � and y = 0 on ∂�.

Above,O : L2(�) → R
q is a linear observation operator that extracts measurements from

y. The second term in the objective of (24) is the regularization termwith parameter γ > 0

added to render the inverse problem well-posed [16,57].

For the numerical experiments, we used f = 25, u = 1.0, andu = 3.5. The ‘true’ param-

eter field is a Gaussian cut flat at 3.5 in the centre as shown in Figure 2 (bottom left). To

synthesize the observations, we add 1% noise to the state solution y corresponding to the

‘true’ parameter field to lessen the inverse crime [29] (see Figure 2 top right). The obser-

vations d are then obtained by extracting the values of the noisy state solution at the points

shown in red in Figure 2 (top left). The state and adjoint variables are discretized with

quadratic finite element basis functions, while the parameter is discretized with linear ele-

ments. We used the COMSOL Multiphysics library for finite element discretizations and

MATLAB’s sparse backsolve to solve the discretized state and adjoint linear systems [44].

The optimization problem (24) is solved on uniform meshes of various sizes and on a

nonuniform mesh, as shown in Figure 2 (top left). For the latter, the dimensions of the

state/adjoint and parameter are 5227 and 1328, respectively. The solution of the inverse

82 C. G. PETRA ET AL.

Figure 2. Results for the elliptic coefficient field inversion model (24). Top: The nonuniform mesh and
the observation locations represented by the red dots (left) and the noisy observable y (right). Bottom:
The ‘true’ coefficient field u (left), and the reconstructed coefficient field (right).

problem 24 with regularization parameter γ = 1.5 × 10−3 is shown in Figure 2 (bottom

right).

We solve the above inverse problem with a MATLAB implementation of QIpmDDe

method and with MATLAB’s fmincon BFGS solver with full-memory secant approxima-

tion for theHessian (l = ∞). The convergence tolerances were set to 10−6 for fmincon and

to a more stringent 10−8 for QIpmDDe. QIpmDDe used B0 = M + γK, where K is the

stiffness matrix. This choice is motivated by the structure of the objective function: M cor-

responds to an uninformed second-derivative approximation (by the identity operator) of

the first term in the objective, while γK is exactly the representer of the second-derivative of

the regularization term in the objective. On the other hand, fmincon most used a multiple

of the identity matrix for B0.

Table 2 shows the number of iterations and objective values obtained using the pro-

posed QIpmDDe method and MATLAB BFGS IPM implementation from fmincon. QIp-

mDDe was used with (full-memory) formula (19), which is denoted by l = ∞, and with

the limited-memory BFGS secant formula (20) with l = 6. On the other hand, we ran

fminconwith full-memory secant BFGS approximation.We remark fromTable 2 that QIp-

mDDe shows mesh-independent iteration count with both l = ∞ and l = 6, whereas the

Euclidean BFGS solver of fmincon requires an increasingly large number of iterations as

themesh is refined and/or distorted. Also we remark that the QIpmDDe requires less itera-

tions than the Euclidean solver despite the fact it was ranwith amore stringent termination

OPTIMIZATION METHODS & SOFTWARE 83

Table 2. QIpmDDe (l = ∞ and l = 6) andMATLAB BFGS IPM (l = ∞) performance for variousmeshes.

QIpmDDe MATLAB BFGS

#iter #iter

Mesh l = 6 l = ∞ obj. l = ∞ obj.

10 × 10 44 30 1.483 · 10−2 232 1.483 · 10−2

20 × 20 44 34 1.455 · 10−2 288 1.458 · 10−2

30 × 30 53 34 1.449 · 10−2 331 1.455 · 10−2

40 × 40 46 36 1.448 · 10−2 350 1.457 · 10−2

50 × 50 48 35 1.447 · 10−2 355 1.461 · 10−2

nonunif. 45 36 1.448 · 10−2 418 1.453 · 10−2

Figure 3. Convergence history of QIpmDDe with limited-memory BFGS (l = 6) and full-memory (l =
∞) when solving the inverse problem (24).

criterion. Our MATLAB implementation takes close to 800 seconds to solve the inverse

problem on the finest uniform mesh (50 × 50) and approximatively 320 seconds on the

nonuniform mesh for l = ∞. The execution times for l = 6 are slighter smaller.

In Figure 3 we plot the decimal logarithm of the optimality error err at each iteration of

QIpmDDe for the problems solved in Table 2. The convergence for both the full-memory

and limited-memory QIpmDDe is fast and at a linear rate or better. In particular, QIp-

mDDe with full-memory (l = ∞) seems to exhibit a convergence rate better than linear

nearby the optima. This desirable ‘superlinear’ convergence behaviour of QIpmDDe is

in line with previous theoretical work [20,46] related to certain superlinearly convergent

secant quasi-Newton methods for some classes of infinite-dimensional problems and, for

this reason, can be regarded as a theoretical check of the validity of QIpmDDe (and its

implementation).

6.2. Structural topology optimization

Topology optimization finds the optimal distribution of material in a given design domain

� to minimize a cost function and satisfy constraint functions. We follow the ersatz

approach,where the geometry is defined by a continuous field ν that represents thematerial

84 C. G. PETRA ET AL.

volume fraction. The resulting problem is commonly known as the compliance problem

min
ν∈Uad

J(ν) =
∫

�N

y(ν) · f ds,

s.t. a(ν) =
∫

�

ν dx − Vmax ≤ 0 and 0.01 ≤ ν ≤ 1,

(25)

where ds is a one dimensional measure on the boundary �N where the load is applied and

y(ν) is the solution of the linear elasticity problem

∇ · σ = 0 in �, σ = r(ν̃)C[∇y] in �,

σ · n = f on �N , y = 0 on �D.
(26)

The filtered volume fraction field ν̃ is required to obtain a well-posed problem and is

obtained using a PDE filter [33], namely by solving

− κ∇2ν̃ + ν̃ = ν, (27)

where the constant κ > 0 is the minimum length scale of the design [33].We use the SIMP

penalization [4] to encourage 0–1 designs on the filtered volume fractions ν̃. Finally, C is

the elasticity tensor of an isotropic material with Young’s modulus E = 1 and Poisson’s

ratio µ = 0.3 and f is the applied traction on the surface �.

For the computational results of this section we interfaced QIpmDDe’s C++ implemen-

tation from HiOp solver with Livermore Design Optimization (LiDO). LiDO is a design

optimization library that uses the MFEM [34] finite element library and HYPRE [47] lin-

ear solvers to scalably discretize and solve the state elasticity and adjoint PDEs governing

design physics. For this work, MFEM used piece constant finite elements for the design

variables (densities) and Lagrange finite elements for the state. HYPRE used the conjugate

gradient method equipped with the BoomerAMG algebraic multigrid preconditioner [17]

for both the state and adjoint system. To solve the optimization problems, LiDO includes

an internal implementation of the method of moving asymptotes (MMA) and also inter-

faces with two optimization libraries: HiOp and Ipopt. The combination of HiOp and

MFEMprovides LiDO competentHPC capabilities. For instance, the left quadmotor drone

design from Figure 1 consisted of 880 million design parameters and required 8 hours of

simulation on 9 216 cores of the Quartz cluster at LLNL. We will not elaborate here on

the parallel capabilities due to space limitations, but we mention that the efficiency of the

decomposition technique from [39] translates to QIpmDDe.

We first compare the Euclidean approach with our QIpmDDe algorithm and with

MMA [1,6,50] on a standard cantilever beam design problem that is solved using a dis-

torted mesh. This mesh is obtained by halving six times each element of the mesh shown

in Figure 4, which resulted in a total of 249 856 elements (and design variables). The distor-

tion factor, by whichwemean the ratio of the areas of the largest and smallest discretization

elements, is 256. We allowed for generous amount of material (Vmax = 0.3), which tends

to make the problem less challenging.

The Euclidean solver5 finds a design shown in Figure 5 that lacks the sharp transition

from void to solid in the regionswhere themesh is fine. Also, the design differs significantly

from the ‘expected’ optimal design, shown in Figure 6 and 7. Numerically, the Euclidean

OPTIMIZATION METHODS & SOFTWARE 85

Figure 4. A distorted mesh for the cantilever beams used in this section.

Figure 5. Design found by an Euclidean solver with the distorted mesh from Figure 4.

Figure 6. Design found by MMA with the distorted mesh from Figure 4 after 50 iterations.

solver converges to the required tolerance (10−6) in 213 iterations and reports a minimum

compliance of 1.001 · 10−2. In contrast, both MMA and QIpmDDe find valid designs of

up to 22.6% smaller compliance in fewer iterations. After only 50 iterations for example,

MMA reports compliance of 7.787 · 10−3 (design in Figure 6) and QIpmDDe reports a

compliance 7.802 · 10−3 (design in Figure 7).

Both QIpmDDe and MMA find in a relatively small number of iterations designs with

sharp void-solid transitions suitable to manufacturing. They also compare similarly in

terms of computational cost/PDEs evaluations. However, under tight stopping criteria,

bothQIpmDDe andMMAtake a large number of iterations to converge and the vastmajor-

ity of these iterations do not improve the compliance significantly. For instance, for the

cantilever beam, at iteration 500 the compliances of MMA and QIpMDDe are 7.761 · 10−3

and 7.742 · 10−3, respectively, which is less than half percent improvement over the respec-

tive compliances at iteration 50. The execution time for 500 iterations is around 10minutes

86 C. G. PETRA ET AL.

Figure 7. QIpmDDe design after 50 iterations.

using six 2.4GHz cores of a Intel I5 processor. The execution time is overwhelmingly spent

in solving the state and adjoint PDE,with the internal times ofQIpMDDe,MMA, and Ipopt

accounting for only a couple percent of total computational cost.

The slow convergence of QIpmDDe under tight convergence criteria is very likely

caused by the choice of B0 = M, which is not a good approximation for the second deriva-

tive of the compliance. A potential remedy would be to use an initial B0 that approximates

the second derivative of the compliance up to a compact perturbation; such choice can

lead to a superlinearly convergent secant updates [20,46]. One potential way to achieve

such approximations would be via multigrid technique, namely, to form a computationally

affordable ‘coarse’ second derivative and use it asB0.We defer such nontrivial development

to future investigations.

Finally, we report that QIpmDDe consistently yields mesh-independent designs when

used for topology optimization. For instance, the high-resolution quadmotor drone design

at the left of Figure 1 is virtually identical to the designs obtained on coarsermeshes. On the

other hand, Euclidean solvers generally lack this design robustness feature when the mesh

is refined and/or distorted and they provide radically different designs, inaccurate designs

such as the one for the simple cantilever beam from Figure 5, or non-physical designs such

as the drone design at the right of Figure 1.

7. Conclusions and future work

The QIpmDDe algorithm presented in this paper was developed for optimization prob-

lems with inequalities to be consistent with the inner product of the Hilbert space used

for optimization parameters. In order to achieve this, we derived mathematically sound

(and computationally efficient) discretization techniques for use within the filter linesearch

mechanism and quasi-Newton secant updates used by QIpmDDe algorithm. The pre-

sented numerical evidence shows that the algorithm performs in a mesh-independent way

and has good convergence properties even with limited-memory quasi-Newton Hessian

approximations for a class of inverse problems.

We stress the limitations of our algorithm and solver. Themost prevalent one is that par-

allel computing capabilities for optimization in Hilbert spaces can be currently achieved

with our quasi-Newton strategy only by using a diagonal matrix approximation B0 for the

second derivative. As elaborated in Section 4 future work will be dedicated to remov-

ing this limitation. Also, we remark that fast (local) convergence may be elusive when

OPTIMIZATION METHODS & SOFTWARE 87

quasi-Newton approximations are used for the Hessian. This situation is especially per-

vasive when good initial Hessian approximations B0 are not known, as it is the case for the

structural topology optimization problems we considered in this work.

Notes

1. This NLP solver is state-of-the-art and one of the most robust open-source optimization
package, thus, we exclude the possibility of malfunction.

2. The subscripts u and y denote the partial derivatives with respect to u and y, respectively.
3. i.e. (u, λ, z, z) would satisfy first-order necessary optimality conditions
4. The Kronecker delta function δ is such that δij = 1 if i = j and δij = 0 if i �= j.
5. We have used the state-of-the-art solver Ipopt.

Acknowledgments

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344. The authors acknowledge valuable
guidance from theMFEM teammembers V. Dobrev,M. Stowell, T. Kolev, andA. Barker on finite ele-
ment methods, from E. Sachs on infinite-dimensional quasi-Newton algorithms, and fromD.White
on setting up the drone problem within LiDO.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The work of the LLNL authors was supported by the LLNL LDRD program [project numbers 16-
ERD-025 and 17-SI-005]. The work of C. G. Petra on derivation and formalization of the infinite-
dimensional algorithmwas supported by theU.S.Department of Energy,Office of Science,Advanced
Scientific Computing Research Program [contract number DE-AC52-07NA27344]. The work of N.
Petra was supported by NSF [grant number CAREER-1654311].

Notes on contributors

Cosmin G. Petra is a computational mathematician in the Center for Applied Scientific Computing
at Lawrence Livermore National Laboratory. Cosmin’s work focuses on high-performance comput-
ing algorithms and C/C++ solvers for mathematical optimization. Prior to joining the Center for
Applied Scientific Computing, Cosmin was with Argonne National Laboratory as a computational
mathematician.

Miguel Salazar De Troya is the Head of Simulation at Corintis SA. Previously, he was a postdoc-
toral researcher at the Lawrence Livermore National Laboratory. His field of expertise is topology
optimization.

Noemi Petra is an Associate Professor in the Department of Applied Mathematics at the University
of California, Merced. She earned her Ph.D. degree in Applied Mathematics from the University of
Maryland, Baltimore County. Prior to joining the University of California, Merced Noemi was the
recipient of a Peter O’Donnell Jr. Postdoctoral Fellowship at the Oden Institute for Computational
and Engineering Sciences at The University of Texas at Austin. Her research interests include large-
scale Bayesian inverse problems governed by differential equations, uncertainty quantification in
inference and prediction, and optimal experimental design.

88 C. G. PETRA ET AL.

Youngsoo Choi is a computational math scientist in CASC under Computing directorate at LLNL.
He has earned his undergraduate degree for Civil and Environmental Engineering from Cornell
University and his PhD degree for Computational and Mathematical Engineering from Stanford
University.Hewas a postdoc at SandiaNational Laboratories and StanfordUniversity prior to joining
LLNL in 2017.

Daniel Tortorelli, retired from his 25 career of being the George Grim Professor of Mechanical Sci-
ences and Engineering at the University of Illinois at Urbana-Champaign in 2016 to become the
director of Lawrence Livermore National Laboratory’s (LLNL) Center for Design Optimization. He
has published extensively in the field of design optimization and has assembled a diverse team of
subject matter experts and numerical modelers to solve many LLNL design problems.

ORCID

Cosmin G. Petra http://orcid.org/0000-0002-1050-3221

Miguel Salazar De Troya http://orcid.org/0000-0002-7168-6172

Noemi Petra http://orcid.org/0000-0002-9491-0034

Youngsoo Choi http://orcid.org/0000-0001-8797-7970

Geoffrey M. Oxberry http://orcid.org/0000-0001-7451-8097

Daniel Tortorelli http://orcid.org/0000-0001-5346-5520

References

[1] N. Aage and B.S. Lazarov, Parallel framework for topology optimization using the method of
moving asymptotes, Struct. Multidiscip. Optim. 47 (2013), pp. 493–505.

[2] P.I. Barton, R.J. Allgor, W.F. Feehery, and S. Galán, Dynamic optimization in a discontinuous
world, Ind. Eng. Chem. Res. 37 (1998), pp. 966–981.

[3] B. Benahmed, H.Mokhtar-Kharroubi, B. deMalafosse, and A. Yassine,Quasi-Newton methods
in infinite-dimensional spaces and application to matrix equations, J. Glob. Optim. 49 (2011),
pp. 365–379.

[4] M.P. Bendsøe and O. Sigmund,Material interpolation schemes in topology optimization, Arch.
Appl. Mech. 69 (1999), pp. 635–654.

[5] M. Bergounioux, M. Haddou, M. Hintermüller, and K. Kunisch, A comparison of a
Moreau–Yosida-based active set strategy and interior point methods for constrained optimal
control problems, SIAM. J. Optim. 11 (2000), pp. 495–521.

[6] T. Borrvall and J. Petersson, Large-scale topology optimization in 3D using parallel computing,
Comput. Methods Appl. Mech. Eng. 190 (2001), pp. 6201–6229.

[7] S.C. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Vol.
15, Springer, NY, USA, 2008.

[8] T. Bui-Thanh, O. Ghattas, J. Martin, and G. Stadler, A computational framework for infinite-
dimensional Bayesian inverse problems part I: The linearized case, with application to global
seismic inversion, SIAM. J. Sci. Comput. 35 (2013), pp. A2494–A2523.

[9] T. Bui-Thanh and Q.P. Nguyen, FEM-based discretization-invariant MCMC methods for PDE-
constrained Bayesian inverse problems, Inverse Probl. Imaging 10 (2016), pp. 943.

[10] R.H. Byrd, J. Nocedal, and R.B. Schnabel, Representations of quasi-Newton matrices and their
use in limited memory methods, Math. Program. 63 (1994), pp. 129–156.

[11] Y. Cao, S. Li, L. Petzold, and R. Serban, Adjoint sensitivity analysis for DAEs: The adjoint system
and its numerical solution, SIAM J. Sci. Comput. 24 (2002), pp. 1076–1089.

[12] B.J. Debusschere, H.N. Najm, P.P. Pebay, O.M. Knio, R.G. Ghanem, and O.P. LeMaitre,Numer-
ical challenges in the use of polynomial chaos representations for stochastic processes, SIAM. J. Sci.
Comput. 26 (2004), pp. 698–719.

[13] A. Dener, A. Denchfield, T. Munson, J. Sarich, S. Wild, S. Benson, and L.C. McInnes, TAO 3.10
Users Manual, Tech Report ANL/MCS-TM-322. Argonne National Laboratory (2018).

OPTIMIZATION METHODS & SOFTWARE 89

[14] J.Dennis and J.J.Moré,Acharacterization of superlinear convergence and its application to quasi-
Newton methods, Math. Comput. 28 (1974), pp. 549–560.

[15] J.E. Dennis Jr and J.J. Moré, Quasi-Newton methods, motivation and theory, SIAM Rev. 19
(1977), pp. 46–89.

[16] H.W. Engl and C.W. Groetsch, Inverse and Ill-Posed Problems, Academic Press, Boston, USA,
1987.

[17] R.D. Falgout and U.M. Yang, HYPRE: A Library of High Performance Preconditioners, in Com-
putational Science — ICCS 2002, P.M.A. Sloot, A.G. Hoekstra, C.J.K. Tan, and J.J. Dongarra,
eds., Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 632–641.

[18] S.W. Funke and P.E. Farrell, A framework for automated PDE-constrained optimisation, CoRR
abs/1302.3894. Available at http://arxiv.org/abs/1302.3894, 2013.

[19] M.S. Gockenbach, Understanding and Implementing the Finite Element Method, SIAM,
Philadelphia, PA, USA, 2006.

[20] A. Griewank, The local convergence of Broyden-like methods on Lipschitzian problems in Hilbert
spaces, SIAM. J. Numer. Anal. 24 (1987), pp. 684–705.

[21] M.J. Grote, J. Huber, D. Kourounis, and O. Schenk, Inexact interior-point method for pde-
constrained nonlinear optimization, SIAM. J. Sci. Comput. 36 (2014), pp. A1251–A1276.

[22] M.D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM, Philadelphia, 2003.
[23] W.W. Hager, Runge-Kutta methods in optimal control and the transformed adjoint system,

Numer. Math. 87 (2000), pp. 247–282.
[24] R. Herzog and E. Sachs, Preconditioned conjugate gradient method for optimal control problems

with control and state constraints, SIAM. J. Matrix. Anal. Appl. 31 (2010), pp. 2291–2317.
[25] M. Hintermüller and M. Hinze,Moreau–Yosida regularization in state constrained elliptic con-

trol problems: Error estimates and parameter adjustment, SIAM. J. Numer. Anal. 47 (2009), pp.
1666–1683.

[26] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich,Optimization with PDE Constraints, Springer,
Dordrecht, 2009.

[27] M. Hinze and A. Schiela, Discretization of interior point methods for state constrained elliptic
optimal control problems: Optimal error estimates and parameter adjustment, Comput. Optim.
Appl. 48 (2011), pp. 581–600.

[28] K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications,
SIAM, Philadelphia, PA, USA, 2008.

[29] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, AppliedMathemat-
ical Sciences, Vol. 160, Springer-Verlag, New York, 2005.

[30] R.C. Kirby, From functional analysis to iterative methods, SIAM Rev. 52 (2010), pp. 269–293.
[31] D. Kouri and D. Ridzal, Rapid Optimization Library – Functional Interface, Available at

https://trilinos.org/docs/r12.12/packages/rol/doc/html/group__func__group.html, 2018.
[32] D. Kraft, Algorithm 733: TOMP–Fortran modules for optimal control calculations, ACM Trans.

Math. Softw. 20 (1994), pp. 262–281.
[33] B.S. Lazarov and O. Sigmund, Filters in topology optimization based on Helmholtz differential

equations, Int. J. Numer. Methods Eng. 86 (2011), pp. 765–781.
[34] Modular finite element methods. Available at www.mfem.org.
[35] J. Nocedal and S.J. Wright, Numerical Optimization, 2nd ed., Springer, New York, 2006.
[36] D.B. Ozyurt and P.I. Barton, Cheap second order directional derivatives of stiff ODE embedded

functionals, SIAM. J. Sci. Comput. 26 (2005), pp. 1725–1743.
[37] J.W. Pearson and J. Gondzio, Fast interior point solution of quadratic programming problems

arising from pde-constrained optimization, Numer. Math. 137 (2017), pp. 959–999.
[38] J.W. Pearson, M. Porcelli, and M. Stoll, Interior-point methods and preconditioning for pde-

constrained optimization problems involving sparsity terms, Numer. Linear Algebra Appl. 27
(2020), pp. 272–298.

[39] C.G. Petra, A memory-distributed quasi-Newton solver for nonlinear optimization with a small
number of constraints, J. Parallel Distrib. Comput. 133 (2019), pp. 337–348.

[40] C.G. Petra, HiOp – User Guide, Tech. Rep. LLNL-SM-743591, Center for Applied Scientific
Computing, Lawrence Livermore National Laboratory, Livermore, 2018.

90 C. G. PETRA ET AL.

[41] C.G. Petra, N. Chiang, and M. Anitescu, A structured quasi-Newton algorithm for separable
optimization with incomplete Hessian, SIAM J. Optim. 28 (2019), pp. 1048–1075.

[42] N. Petra, J. Martin, G. Stadler, and O. Ghattas, A computational framework for infinite-
dimensional Bayesian inverse problems: Part II. stochastic Newton MCMC with application to
ice sheet flow inverse problems, SIAM. J. Sci. Comput. 36 (2014), pp. A1525–A1555.

[43] N. Petra and E.W. Sachs, Second Order Adjoints in Optimization, in Numerical Analysis and
Optimization. Springer, Cham, 2020, pp. 209–230.

[44] N. Petra and G. Stadler, Model variational inverse problems governed by partial differential
equations, Tech. Rep. 11–05, ICES, The University of Texas at Austin, 2011.

[45] M.J.D. Powell, A Direct Search Optimization Method that Models the Objective and Constraint
Functions by Linear Interpolation, in Advances in Optimization and Numerical Analysis, S.
Gomez and J.P. Hennart, eds., Springer, Netherlands, 1994, pp. 51–67.

[46] E.W. Sachs, Broyden’s method in Hilbert space, Math. Program. 35 (1986), pp. 71–82.
[47] Scalable linear solvers and multigrid methods, Available at www.llnl.gov/casc/hypre.
[48] A. Schiela,An interior pointmethod in function space for the efficient solution of state constrained

optimal control problems, Math. Program. 138 (2013), pp. 83–114.
[49] T. Schwedes, D.A. Ham, S.W. Funke, and M.D. Piggott,Mesh Dependence in PDE-Constrained

Optimisation an Application in Tidal Turbine Array Layouts, Springer, Cham, 2017.
[50] K. Svanberg, A class of globally convergent optimization methods based on conservative convex

separable approximations, SIAM. J. Optim. 12 (2002), pp. 555–573.
[51] D.A. Tortorelli and P. Michaleris, Design sensitivity analysis: Overview and review, Inverse

Probl. Eng. 1 (1994), pp. 71–105.
[52] F. Tröltzsch,Optimal Control of Partial Differential Equations, AmericanMathematical Society,

Providence, RI, USA, 2010.
[53] M. Ulbrich and S. Ulbrich, Superlinear convergence of affine-scaling interior-point newtonmeth-

ods for infinite-dimensional nonlinear problems with pointwise bounds, SIAM J. Control Optim.
38 (2000), pp. 1938–1984.

[54] M. Ulbrich and S. Ulbrich, Primal-dual interior-point methods for PDE-constrained optimiza-
tion, Math. Program. 117 (2009), pp. 435–485.

[55] M.Ulbrich, S. Ulbrich, andM.Heinkenschloss,Global convergence of trust-region interior-point
algorithms for infinite-dimensional nonconvex minimization subject to pointwise bounds, SIAM
J. Control Optim. 37 (1999), pp. 731–764.

[56] U. Villa, N. Petra, and O. Ghattas, hIPPYlib: An extensible software framework for deterministic
and Bayesian inverse problems, J. Open Source Softw. 3 (2018), pp. 1–2.

[57] C.R. Vogel, Computational Methods for Inverse Problems, Frontiers in Applied Mathematics,
SIAM, Philadelphia, PA, 2002.

[58] R.G. Vuchkov, C.G. Petra, and N. Petra, On the derivation of quasi-Newton formulas for
optimization in function spaces, Numer. Funct. Anal. Optim. 41 (2020), pp. 1564–1587.

[59] A. Wächter and L.T. Biegler, Line search filter methods for nonlinear programming: Local
convergence, SIAM. J. Optim. 16 (2005), pp. 32–48.

[60] A. Wächter and L.T. Biegler, Line search filter methods for nonlinear programming: Motivation
and global convergence, SIAM. J. Optim. 16 (2005), pp. 1–31.

[61] A. Wächter and L.T. Biegler, On the implementation of an interior-point filter line-search
algorithm for nonlinear programming, Math. Program. 106 (2006), pp. 25–57.

[62] M. Weiser, Interior point methods in function space, SIAM J. Control Optim. 44 (2005), pp.
1766–1786.

[63] M. Weiser and A. Schiela, Function space interior point methods for PDE constrained opti-
mization, in PAMM: Proceedings in Applied Mathematics and Mechanics, Vol. 4. Wiley Online
Library, Weinheim, 2004, pp. 43–46.

[64] O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu The Finite Element Method: Its Basis and Funda-
mentals, Elsevier, Oxford, 2005.

	1. Introduction
	1.1. Notation
	1.2. The optimization paradigm
	1.3. Paper contributions

	2. Formal derivation of a primal-dual interior-point method in a function space
	2.1. Secant quasi-Newton Hessian approximations
	2.2. Conceptual primal-dual linesearch IPM method
	2.3. Stopping criteria
	2.4. Least-squares-based (LSQ) computation of the duals
	2.5. Linesearch procedure

	3. Discretization using finite element spaces
	3.1. Discretization representations
	3.2. Vector representations for functionals and derivatives
	3.2.1. Discretization of optimality conditions

	3.3. Stopping criteria discretization
	3.3.1. Matrix representations for BFGS formulas
	3.3.2. The BFGS linear systems for IPM search directions
	3.3.3. The discretization of the log-barrier terms

	3.4. Discretization of the LSQ-based computation of the duals
	3.5. The discretized quasi-Newton BFGS linesearch IPM algorithm based on derivative representations (QIpmDDe)
	3.6. Comparison with Euclidean NLP solvers
	3.6.1. An illustrative example

	4. Parallelization considerations
	5. Problem specification
	6. Strengths and weaknesses of QIpmDDe on practical problems
	6.1. Inverse problem governed by an elliptic PDE
	6.2. Structural topology optimization

	7. Conclusions and future work
	Notes
	Acknowledgments
	Funding
	ORCID
	References

