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ABSTRACT

We present a quasi-Newton interior-point method appropriate for
optimization problems with pointwise inequality constraints in
Hilbert function spaces. Among others, our methodology applies
to optimization problems constrained by partial differential equa-
tions (PDEs) that are posed in a reduced-space formulation and have
bounds or inequality constraints on the optimized parameter func-
tion. We first introduce the formalization of an infinite-dimensional
quasi-Newton interior-point algorithm using secant BFGS updates
and then proceed to derive a discretized interior-point method capa-
ble of working with a wide range of finite element discretization
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schemes. We also discuss and address mathematical and software
interface issues that are pervasive when existing off-the-shelf PDE
solvers are to be used with off-the-shelf nonlinear programming
solvers. Finally, we elaborate on the numerical and parallel com-
puting strengths and limitations of the proposed methodology on
several classes of PDE-constrained problems.
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1. Introduction

Many scientific and engineering applications result in optimization problems described by
means of differential equations (DEs). Efficient numerical evaluation of the objective and
constraints functions derivatives needed by the optimization method generally requires
setting up and solving adjoint sensitivity DEs [2,11,23,36], which have a considerable
human development cost, sometimes comparable to developing a solver for the underlying
DEs. For this reason, many applications only provide first-order derivatives as the compu-
tation of second-order derivatives has considerable additional development cost and is not
routinely provided.

In these circumstances, quasi-Newton algorithms [15] are a pragmatic and convenient
choice since they internally build and maintain approximations of the second-order deriva-
tives using only gradient evaluations. One popular class of such approximations consists
of the so-called secant updates, which are also very appropriate for large-scale problems
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if equipped with a limited-memory (or low-rank updates) mechanism [10]. In general,
quasi-Newton algorithms do not have the convergence properties of Newton-like methods,
but they can achieve Newton-like superlinear convergence for some classes of prob-
lems [14,35,41]; also, they have convergence properties and practical performance superior
to gradient-based or derivative-free algorithms [35]. It is also possible that quasi-Newton
methods can equal and even outperform Newton-like methods in practice, even in the
cases where the second-order derivatives are available and cheap to evaluate. While the
iteration count is generally lower for Newton than for quasi-Newton, Newton methods can
have a considerably larger cost per iteration than quasi Newton methods, which is enough
to offset the benefits of low iteration count. This situation is particularly likely when good
preconditioners for the Newton linearization systems are not available.

In [39], the first author showed that a limited memory BFGS interior-point method has
great parallelization potential since it scales to thousands of cores of a parallel computer;
the present work can be viewed as a further step aimed at ensuring that the BFGS interior-
point method performs efficiently and in a mesh independent manner for a few types of
PDE-constrained optimization problems. More specifically, the present work addresses a
couple of discretization peculiarities of quasi-Newton and interior-point methods in infi-
nite dimensions that stem from the use of incorrect Riesz representers for dual variables
and are pervasive when nonuniform discretization meshes are used with a finite element
method.

This paper proposes a quasi-Newton optimization method using concepts from
interior-point algorithms for optimization problems posed in Hilbert function spaces with
complicating infinite-dimensional inequality constraints. Recently, interior-point algo-
rithms in function spaces have been proposed and analysed theoretically both from
the angle of well-posedness, iteration complexity, and local rate of convergence on one
hand, for example in [5,27,48,53-55,62], and from a discretization consistency and order
of convergence perspective on the other hand, for example, in [63]. We mention that
our methodology only covers PDE-constrained optimization with control or design con-
straints; optimization problems with state constraints [52,62] have analytical properties
(typically more restrictive than control-constrained problems, e.g. Lagrange multipliers
are measures) that require different algorithmic approaches than the one we take in this
work; we refer the reader to [25,27,48] for some recent algorithmic developments for
PDE state-constrained optimization problems. Practical computational methods based
on interior-point methods have been also in the attention of the community, for exam-
ple, see [21,37,38]. The present work is in line with these latter works as it focuses on
computational aspects; however, it differs in that it focuses on quasi-Newton optimization
methods for reasons discussed in the previous paragraphs. Our specific goal in this work
is to provide a unified quasi-Newton computational setup and a numerical solver capa-
ble of working with various finite element discretization schemes in a manner consistent
with the underlying infinite-dimensional space. In our opinion this is a very important first
step towards ensuring mesh independence and scalability to large problems of the solution
methodology.

A comprehensive list of algorithms and software packages available for PDE-
constrained problems is compiled by Funke and Farrell in [18]. This work lists two algorith-
mic approaches (i.e. [32,45]) as available for the general optimization in infinite dimensions
with general inequalities that we consider in this paper, however, these algorithms are only
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first-order, gradient-based. PETSc’s TAO optimization package is also mentioned, how-
ever its module for PDE-constrained optimization currently does not support inequality
constraints [13]. In addition, we mention hIPPYlib [56] that implements state-of-the-art
scalable first- and second-order adjoint-based algorithms for PDE-based deterministic
and Bayesian inverse problems. However this library does not treat general optimiza-
tion constraints. Finally, we mention the Rapid Optimization Library (ROL) of Trilinos
that provides an extensive collection of algorithms for PDE-constrained optimization. For
infinite-dimensional inequality constraints, ROL uses a combination of matrix-free trust-
region methods, projection methods, and primal-dual active set methods according to
the user documentation, without a reference to quasi-Newton IPMs [31]. Therefore, we
find that the present work adds to existing capabilities of the community of computational
optimization.

A reader with background in nonlinear programming (NLP) in finite-dimensional
Euclidean spaces may disagree with our choice of considering a complicating infinite-
dimensional setup. Since the infinite-dimensional optimization problems we consider
are invarijably discretized, one may suggest instead to pose the discretizations as ‘finite-
dimensional’ problems and to solve them using NLP solvers over the Euclidean space.
However, using the Euclidean inner product instead of the inner product of the underly-
ing Hilbert space causes incorrect representers to be used for certain derivative functionals
and introduces discretization inconsistencies (e.g. mesh dependence) in the discretized
optimality conditions. These discrepancies cause convergence behaviour dependent on
the underlying discretization or meshing of the domain (see [49] and Section 3.6.1 for
examples of simple problems and Section 6 for more complex problems where this issue
is pervasive). Such mesh dependent behaviour is not necessarily specific to optimization
and has been previously identified and addressed in the context of linear systems arising
in PDE discretizations (for example, see [24,30]).

In addition, in many cases, NLP solvers over the Euclidean space provide solutions that
are mesh dependent, as we show for topology optimization in Section 6.2, or are non-
physical, as we illustrate in Figure 1. The lack of spatial symmetry of the right design
of Figure 1 is likely caused by numerical round-off errors that are exacerbated by the
nonsymmetric mesh and the use of the (unweighted) I, inner product by the Euclidean
NLP solver! used to obtain this design. All the aforementioned deficiencies of the NLP
solvers are pervasively exacerbated when the mesh is distorted, which is a common occur-
rence in mesh adaptation and refinement techniques used by state-of-the-art solvers for
PDEs. In this regard, the present paper lays out all the necessary mathematical and
computational components needed by a mesh independent numerical quasi-Newton IPM
algorithm.

1.1. Notation

Since the paper goes back and forth between optimization, functional analysis, finite-
element spaces, and computational engineering, it is difficult to use a notation that
transcends all these communities. For this reason, the notation conventions below are a
compromise and it is our hope that they are intelligible. Given two normed spaces U and
V, we denote the metric space of all linear operators from U to V by £(U, V). The symbol
U refers to an Hilbert space of scalar valued functions defined over a bounded, open, and
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Figure 1. Shown are two designs for a commercial quad-motor drone body obtained by solving a struc-
tural topology optimization with a slightly distorted mesh. The valid left design was optimized with the
proposed infinite-dimensional algorithm while the right design was obtained using an Euclidean NLP
solver and is nonphysical since it lacks spatial symmetry.

connected set 2, of R (d € {1,2,3}). The dual £(U, R) of the Hilbert space U is denoted
by U*.

Normal math italic font is used for elements of U and for functions, functionals, and
operators that act on U. In general, we use lower cases for functions and functionals and
upper cases for linear operators. For a linear functional g € U* we use the shorthand gu to
refer to g(u), i.e. the application of g to an u € U. When an operator E : U — V is linear,
we also use Ev to denote E(v). For a linear operator B : U — U*, Bv;v, denotes [Bv1](v2).
In some circumstances, the operator depends on some u € U, in which case we express this
dependence by E(u), and E(u)v denotes the application of the operator to v € U. For u, v €
U, uv denotes the pointwise multiplication of u and v, that is w = uv is defined by w(x) =
u(x)v(x). Similarly, we use % for pointwise division and % with & € R for the function with
values ;5.

Roman fonts are used to denote discretized quantities. For vectors we use lower cases
and for matrices and tensors we use upper cases. The compact, MATLAB-like notation
[Vi;v25. . .; vy] refers to v € R” with components v;. The symbol e denotes the vector with
all components equal to 1. The multiplication of vectors u and v from R” is understood
pointwise, i.e. uv = [uyvi;...; uyv,l.

Our formal derivation below will explicitly use dual spaces of Hilbert spaces to ‘type
check’ various quantities employed by the infinite-dimensional algorithm and to leave no
room for guessing which inner products to use and the form of finite-dimensional repre-
sentations when the discretization is performed. For a functional f : U — R, Df (1) € U*
denotes the Fréchet derivative at u, while D2f (u) € L(U, U*) denotes the second deriva-
tive. The derivative of a : U — R™ at u € U is denoted by Da(u) and is in L(U, R™); its
adjoint Da(u)* is in L(R™*, U*). We will use linear functionals defined over Euclidean
spaces, e.g. A € R™ = L(R™, R).

1.2. The optimization paradigm

We consider general problems of the form

rur'leilr} fu) (1a)

s.t. aw) =0, u<u<nu. (1b)
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Here U is a real Hilbert space of functions u: 2 — R at least square-integrable over a
bounded domain 2 of R4 (d=1{1,2,3}). Also,f : U - Randa: U — R™ are twice con-
tinuously differentiable functions. We assume throughout that the Fréchet derivative Da
is surjective and that m is relatively small, i.e. m = O(1). The bound constraints on the
optimization variable u are enforced pointwise almost everywhere and u, u € L*°(£2). We
consider only bound and equality constraints for the sake of a compact presentation, but
we remark that general inequality constraints can be accommodated by expressing them
as a combination of equality constraints and slack variables with bound constraints. We do
so in our numerical implementation.

The present work is motivated by PDE-constrained optimization problems with bounds
and equality constraints on the controls or designs u in the form of

iy, J6
s.t. c(y,u) =0,

au)=0, u<u<u,

where ¢ : Y x U — W represents the PDE state equation parametrized by the optimiza-
tion variable # and Y and W are also real Hilbert spaces. Many such PDE-constrained
problems allow solving for y = y(u) for any given u, which allows formulating the above
problem as a so-called reduced-space problem of the form (la)-(1b) by taking f(u) =
J(u, y(u)). We refer the reader to [26,28,52] for a thorough discussion of reduced-space
PDE-constrained optimization. A frequent issue in this context is the efficient computa-
tion of the derivative Df, which almost invariably is done by using the so-called adjoint
sensitivity approach. Namely, one can show under mild conditions (for example, see [28,
Chapter 5]) that DJ(u) = ¢, (y, u)* X + J,(u, y), where . € W* is computed as the solution
to the adjoint system ¢, (y, u)*A + J,,(y,u) = 0 2. The adjoint sensitivity methods used for
the inverse and structural topology optimization problems of Section 6 are covered, for
example, in [44,51], respectively.

Characterizing solvability of (1a)-(1b) can be involving and needs to be done on a
per-problem basis. A general condition of solvability of (1a)-(1b), namely, lower semicon-
tinuity of f with respect to sequential L*°(£2) — weak™® convergence, can be found in [54]. It
is important to mention that the methodology of this paper focuses on pragmatic compu-
tational solutions and omits key analyses such as well posedness outside the assumptions
of [54], convergence, and discretization error estimates.

1.3. Paper contributions

The paper proposes a comprehensive numerical quasi-Newton IPM algorithm for solving
the optimization problem (la)-(1b) in a Hilbert function space U of at least square-
integrable functions. First, we provide a mathematically sound formalization of an IPM in
an infinite-dimensional setup with emphasis on its quasi-Newton specifics, such as quasi-
Newton search direction linear systems, quasi-Newton secant update formulas, and dual
variables updating. We also derive the optimization-specific convergence mechanisms,
such as the line search and the stopping criteria required by our infinite-dimensional setup.
Many constituents of our algorithm are inspired from previously published works: the IPM
relies on the theoretical work of [54], the secant quasi-Newton formulas are well known
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in the literature (e.g. see [3,15,35,41]), and the convergence mechanisms follow [59,60]).
However, the assembly of our quasi-Newton IPM algorithm for the general optimiza-
tion paradigm (1a)-(1b) posed over generic Hilbert function spaces is, to the best of our
knowledge, novel. The closest quasi-Newton algorithm is that from [49, Chapter 1.5]. The
limitation of this work is that it only considers a finite number of inequalities as opposed
to the infinite dimensional constraints (1b). This is an important difference since the treat-
ment of the (discretization of the) inequalities (1b) without consideration of the underlying
Hilbert space and the corresponding finite element discretization space misses a so-called
mass weighting matrix in the representation of the dual variables and in the log-barrier
term that results in a mesh dependent algorithm. This is further illustrated in Section 3.6.1.

Another salient contribution consists of the algorithm’s capability to work generically
with various finite element discretization schemes for the underlying Hilbert space. We
achieve this by judiciously identifying the optimization- and IPM-related discretization
issues and by proposing computationally efficient, yet mathematically sound and gen-
eral numerical resolutions to these issues. These developments are presented in detail in
Section 3 for finite element discretization spaces.

We also discuss problem specification considerations and propose a unified solver
interface that accommodates optimization over generic Hilbert function spaces with min-
imal user input and without requiring extensive knowledge of the underlying infinite-
dimensional and discretization spaces. Central to our approach is the suitability to mas-
sively parallel computations. In regard to this aspect, the paper revisits the decomposition
technique proposed by the first author in [39] and discusses its parallelization limitations
under the infinite-dimensional setup of this paper.

2. Formal derivation of a primal-dual interior-point method in a function
space

Specific to interior-point methods is the use of the log-barrier problem associated with the
bound- and equality-constrained problem (1a)-(1b):

ruréi{} V() :=f(u) — p /Q In(u(x) — u(x)) dx — n /Q In(u(x) — u(x)) dx
st.  a(u) =0,

()

where the barrier parameter y is positive. The integral logarithm terms above correspond
to inequalities (1b) and are such that the minimizer of (2) converges to the minimizer
of (1a)-(1b) in the limit, as & — 0. Under our assumptions for (1a)-(1b), there exist a
local solution u,, to the above log-barrier problem and a dual multiplier A, € R™* that
satisfy

. v(x) v(x) _
Df(u,)v + [Da(u, ) Ay lv — M/Q () — 4 dx + ,u/Q 50 — 1, ) dx=0 G)

a(u,) =0

for all variations v in a dense subset of U [54, Lemma 1].

In order to derive a primal-dual interior-point method, we introduce the artificial vari-

ables z, = —+*— € U and Zy = —E_ ¢ U. Furthermore, we define the linear operator
=p uy—u Uy—u
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E : U — U* such that for any given u € U we have E(u)v = fQ u(x)v(x) dx for allv € U;
we remark that the derivative DE(u) of E(u) satisfies DE(u)v = E(v) forall u,v € U. Asa
result, the optimality conditions (3) can be written compactly in the following ‘primal-dual’
form:

l(uﬂ,ku,gu,iﬂ) := Df (u,) + Da(uy,)*r, — E(gu) +E(z,) =0, (4a)
a(uy,) =0, (4b)

(up —wz, = w, and (U —uy)z, =p, aeinQ.  (4¢)

Equation (4a) can be safely posed in U* whenever the operators E(z,) and E(z,) are
bounded (thus, in U*). For U = L*(Q) and U = H'(R2), the boundedness follows from
the Cauchy-Schwarz inequality

The solution to the system of Equations (4a)-(4c) is known as the central path and under
appropriate assumptions is regular enough to allow the use of Newton’s method [54]. The
main idea of primal-dual interior-point methods is to approximately compute a solution
(> Aps 2, Z0) of (4a)-(4c) for a decreasing sequence of ; > 0 that converges to 0. For
a given value of the barrier parameter y, the numerical algorithm computes the Newton
search direction (Au, AA, Az, AZ) by solving a linearization of (4a)-(4c) in the form of

H(u,)Au+ Da(u,)* Ax — DE(gu)Ag + DE(z,,)AZ = —l(uﬂ,kﬂ,gu,zﬂ), (5a)

Da(uy) Au = —a(uy,), (5b)
z, Au+ (uy — WAz = p — (uy — Wz, (50)
—ZyAu+ (U —u)AZ = p — (U — uy)zy. (5d)

Above in (5a), H(u) € L(U, U*) is the partial derivative of I(u, A,z,z) with respect to
u, namely H(u) = D*f(u) + D(Da(u)*1). We observe that (5a) can be simplified since
DE(z,)Az = E(Az) and DE(z,)AZz = E(AZ). We also use the compact, operator-like
notation G(u) for pointwise product of functions: for a given u € U, G(u)v = uv for any
v € U. The linear system (5a)-(5d) becomes

H(u,)Au+ Da(u,)*Ax — E(Az) + E(Az) = =y Apps 2,5 20) (6a)
Da(u,) Au = —a(uy), (6b)

Gz, )Au+ Gluy —wAz = — (U — Wz, (6¢)

—GEZ)Au+ G —u)AZ = — (U — uy)z,. (6d)

Once the search direction (Au, AX, Az, AZ) is computed from (6a)-(6d), the primal-
dual variables are updated using a linesearch over this direction that ensures certain ‘filter’
conditions and the barrier parameter y is decreased. These are further discussed in the
remainder of this section.

2.1. Secant quasi-Newton Hessian approximations

The interior-point algorithm we propose uses secant approximations B € L(U, U*) for
the second-derivative H (1) as a way to circumvent the unavailability of the Hessian H (u).
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Namely, assuming that the algorithm finished iteration k and updated the primal-dual iter-
ation variables to (g1, Ak+15Zx4 1> Zk+1)> the operator By 1 approximates H at iteration
k+ 1 by satisfying (i) a secant equation of the form B(uy41)sx = gk, wWhere sp = ugy1 —
ur € Uand gx = W(ugq1, Mt 15 2y 1o 2kt 1) — bk Ak 15 2515 Zk1) € U™, (ii) @ symmetry
condition, and (iii) a minimum departure from the previous operator approximation. We
refer the reader to [58] for a judicious derivation of various quasi-Newton formulas in
Hilbert spaces. Here we use the BFGS operator formula for the Hessian in the following
pointwise expression:

Bisivy - Brskvz kV1 - 8kV2
By1v1va = Bgviva — + 8 8 , VYv,v e U (7)
Bresksk 8kSk

As pointed out in Section 1.1, Bxvyv, and ggv; denote (the real number) Bi(vi)v, and
gk(v1), respectively; also ‘-’ denotes the multiplication of real numbers. The recursion (7)
can be also given in terms of dyadic products (e.g. see [3]), however, we prefer the pointwise
expression for compactness.

Limited-memory secant BFGS formulas are used in computational practice since full-
memory counterparts such as (7) require solving large dense linear systems and thus, may
quickly become computationally intractable for large-scale problems. We use a limited-
memory BFGS formula that generalizes the compact representation of Byrd et. al. [10]
for Hilbert spaces. Namely we store only the last [ pairs (s, g), where the approximation
‘memory’ [ is a positive integer 6 < | < 24, and use the compact operator representation

By = By + F{ Q. 'Fy, (8)

where By € L(U, U*) is an initial approximation for the second-derivative H, usually a
multiple of the identity, and Fx € L(U, R%) is such that

Fru = [Bosk_l+1u; .5 Bosku; gk—i+11; ...;gku] e R%. )

Ne Li

Also the matrix =
Qi [ L. —Dy

} € R2x2 hag the blocks

. IxI
Dy = diag(gk—i+15k—i4+1>- - -»8ksk) € R™,

0 0 0 ... 0 0
8k—I41Sk—1+2 0 0 cee 0 0
Ly = : : : ¢ ¢ | eR™ and
Gk—1+15k—1  Ek—I+2Sk—1 Gk—I+35k—1 - - 0 0
8k—1+15k 8k—1+25k &k—1+35%k -+ &k—15k O
Bosk—1+18k—1+1  BoSk—1+15k—142 - BoSk—1+15k
Bosk—1+28k—1+1  BoSk—i1+28k—1+2  --- BoSk—1+2Sk Ix
Nk = . . . . e R
BoskSk—1+1 Bosksk—142 . Bosgsk
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2.2. Conceptual primal-dual linesearch IPM method

To facilitate the presentation and the derivation of the proposed method, we present
the skeleton of the infinite-dimensional conceptual primal-dual IPM algorithm in
Algorithm 1. The remainder of this section elaborates on the constituents of the algorithm,
while the following section provides the discretization details that are needed to derive a
‘discrete’ numerical algorithm that is suitable to a computer implementation.

Algorithm 1 Skeleton of a linesearch IPM method that uses BFGS approximations of the
second-derivatives
1: Input: An initial point u strictly feasible with respect to the bound constraints, ini-
tial barrier parameter 119, initial multiple o of the identity operator I, and stopping
tolerance €.
2: Let u = o, BO = opl.
3: Initialize the initial ‘dual’ variables: z, = uy — ulow, zZo = uupp — ug, and A as the
solution to the least-square problem (11).
fork=0,1,...do
If e (ug, Mx> 2,2;0) < €401, then return optimal solution.
If e (ug, Mk> 2, 2; 1) < 10 €4, reduce w to 0.4p and continue the loop 4.
Compute search direction (Au, AL, Az, AZ) by solving linear system (6a) at incum-
bent iteration (ug, Ak, 2, zk) with Bk given by (8) as an approximation for H at
iteration k.
8 Perform backtracking filter linesearch to find primal steplengths o, and .
9 Update: ugy1 = ug +apAu, 2, | = z; + ¢gAz, and Zg ) = Zx + g AZ.
10 If ejgas(uk) < 1075, take A as the solution to the least-squares problem (11), else
Ak+1 = Ak F agAA.
11:  Compute si4+; and g1 and update the compact representation (8) for Bk + 1.
12: end for

N on

2.3. Stopping criteria

The stopping criteria of Algorithm 1 are based on the norms of the residuals of the opti-
mality system (4a)-(4c). This system has three components: (i) stationary Equations (4a)
(also known as dual feasibility equations) posed in U*, (ii) primal feasibility Equations (4b)
posed in R™, and (iii) complementarity Equations from (4c) posed pointwise (almost
everywhere). Obviously, the errors/residuals for (i) and (ii) should be measured using
| - lux and one of the finite-dimensional norms (we choose || - [|o0), respectively. On
the other hand, the pointwise nature of (4c) requires the use of one of the L’ norms
(1 < p < 00). Using || - ||z would be ideal for these pointwise equations; however, we
remark that without additional regularity assumptions, the product of two functions from
U C L*(R) for bounded generally lies in L'(2) and not in any of the more regular LP(2)
for 2 < p < oo. Therefore we use the weaker but mathematically rigorous || - ||;1 for (4¢).
Based on the above considerations, we propose the following error measures:
_ IDf(w) + Da(u)*» — E(2) + E@)||u+

eqar (1, 1,2,2) = - , (10a)
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ftas() = 2 oc,  and (10b)
ompi (122,75 1) = max(llpe = (u = wzlp I = @ = wZlp)/se. (10¢)

The scalars s. and s; above are defined by
1 1 _
S¢ = max EHEHLZ + EHZ”LZ»SmaX /Smax

1 1 1 _
S4 = max {5”)‘”00 + §||§||L2 + §||Z||L2’5max} /Smax-

They have the role of ‘relaxing’ the accuracy of the optimality conditions when the dual
variables are large in magnitude [61]. The threshold spyay is taken to be 100 in our
implementation. The overall optimality error is defined as

e (u, A, z,7; ) = max {e;’at(u, 72, 2); €05 (1), €000 (1 15 2, % M)} .

In particular, e” (1, A, z, Z; 0) is an appropriate measure of the optimality® of (u, A, z, Z) with
respect to the original problem (1a)-(1b).

2.4. Least-squares-based (LSQ) computation of the duals

The dual variables Ay are computed as the solution of a linear least-squares problem in
step 1 (k =0) and in step 1 (k> 0) of Algorithm 1. More specifically, Ax is chosen to
minimize the norm of the residual of (4a) for given variables (u, z;, zk), i.e.

Ak = argmin | Df (ug) + Da(ug)*A — E(z;.) + EZx) |3+ (11)
A

This LSQ updating strategy for A is known to increase the performance of quasi-Newton
methods over the Newton-like alternative update from step 1 of Algorithm 1, especially

when the feasibility error ef | (uy) is small [61].

2.5. Linesearch procedure

To enforce convergence from arbitrary remote points for general problems (1a)-(1b) (e.g.
possibly nonconvex and nonlinear), we use the Wichter—Biegler filter linesearch [59,60].
This linesearch algorithm has the combined goal of reducing the log-barrier objective
¥, (uk) and the infeasibility 6 (ux) = ||a(uk) || at each iteration k of Algorithm 1. It may
happen that only v, (1) or 6 (uy) decrease along the search direction at iteration k; to pre-
vent cycling between such points a filter set is maintained and updated to contain pairs of
(6, ) values that are prohibited for any subsequent updates of the u variables in step 1
of Algorithm 1. We refer the reader to [61] for details of the linesearch algorithms; here
we focus on the nontrivial issues that arise in the generalization of this filter linesearch
algorithm to the infinite-dimensional problem (1a)-(1b). Such issues occur in formaliz-
ing the sufficient-decrease Armijo rule for v, because the log-barrier terms of v, are
not differentiable (Fréchet and even Giteaux) for the most common functional spaces
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(eg. U= L? or U = H') [52]. For this reason, we work with directional variations of the
log-barrier objective of (2).

By denoting p(u) = [, In(u(x)) dx, the variation of p at u along the direction d € U
is 8p(u; d) = limy,_, o (o (u + hd) — p(u))/h. Similarly to obtaining (3), one can show that
5{0 (u; cé) = fQ % dx. Since f is Fréchet differentiable, the directional variation of v, is
given by

5, (s d) :Df(u)d—,u/ LM—MLde. (12)

Q u(x) —u(x) u(x) — u(x)
Consequently, the Armijo rule in our setup requires that the steplength « satisfies the
sufficient decrease condition

VY (uk + aAu) < Yy (uk) + nya - 3¢, (ug Au)

in order to be acceptable, where the algorithm parameter 7y, is taken 0.001.

3. Discretization using finite element spaces

In this section, we derive a computer implementable variant based on finite element dis-
cretizations of the infinite-dimensional quasi-Newton IPM introduced in the previous
section. Broadly speaking, we follow an optimize-then-discretize approach (see [26, Chapter
3]) and provide discretizations for the algorithm’s constituents parts (e.g. variables, vector-
and matrix-based formulas for BFGS updates, linearizations, stopping criteria, etc.) in line
with previous works in PDE-constrained optimization (e.g. in [8,9,22,42,49]). A notable
exception is the discretization of the smoothed complementarity equations from (4c),
which poses some difficulties and, to the best of our knowledge, has not been addressed
before. In particular, in Section 3.2.1 we derive an ‘economy’ discretized form for (4c) that
is effective computationally and non-intrusive from an implementation perspective. The
salient idea of our tedious yet simple derivation is to ensure consistency of the discretized
algorithm with the inner products of U and U* (and their dual pairing) as a first neces-
sary step towards mesh independence. Notably, in Section 3.6 we point out that incorrect
discretizations of the dual variables are likely to appear when off-the-shelf NLP solvers are
used as-is directly on discretized PDE-constrained problems. In this respect, the current
work can be regarded as a generalization of the discretization approach in [49] to certain
problems with inequality constraints (on the control/design variables) in the context of
primal-dual IPMs.

3.1. Discretization representations

The finite-dimensional discretization Hilbert space Uy, for U can consist of piecewise con-
stant or continuous functions defined over a mesh of €2, as is often the case of the finite
element method. Then a finite-dimensional approximation uy, € Uy of u € U is

up(x) = Y wighi(x), (13)
i=1

where ¢; € U foralli € {1,...,n}, the set {¢;}" | form a function basis of Uy, and {u;}_;
are the expansion coefficients that completely and uniquely determine uy, [7].
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Common choices for the finite element basis functions are so that ¢; are defined piece-
wise over the elements €2; that partition the domain £, as it is the case for Lagrange
shape polynomials of various degrees [19]. The form of the basis functions depends
on U. For example, they can be piecewise constant over the elements €2; for L?> and
must be piecewise continuous for H' and other Sobolev spaces. The discretized form
of the infinite-dimensional quasi-Newton IPM described in the previous section can be
drastically simplified when the basis functions satisfy

P;: aKronecker delta property, namely ¢;(xj) = §;;* whenever xj € Q; for piecewise con-
stant basis functions or x; is a vertex (node) coordinate of §2; for piecewise continuous
basis functions, and

Py YU ¢i(x) =1forallx € Q.

The consequence of P; is that u; = u(x;) = uy(x;) for all i € {1,...,n}, which is used
by our algorithm to reduce computational cost and simplify software interfacing.

In a numerical algorithm, the vector u = [u;; uy;. . . ; u,] serves as a computer encoding
(or representation) of u, € Uy, and, by extension, as a discretization representation of u €
U. Similarly, finite-dimensional vector encodings or representations are available for func-
tionals from the dual space U}'; a typical vector representation of wy, € U} is in the form of
the R" vector w = [wy; Wp;...; W, ], where w; = wy,(¢b;) [30]. We remind the reader that
symbols in roman font denote the vector and matrices discretization representations. of
the

The finite-element space U, and its dual U}’ equipped with the restriction of the inner
products of U and U* are Hilbert spaces [30]. Furthermore, these inner products have
‘finite-dimensional’ expressions in terms of the discretization representations [30] in the
form

(un, vi)y, = u'Hv and  (wp,z)pr = wH 'z, (14)

where the symmetric positive definite matrix H € R"*" is the so-called ‘weight’ matrix
that depends on the spaces U and Uy, and the basis functions used in discretization. For
example, for our U = L? case, one can write that

(uns vi) U, = /Q up (x) v (x) dx
:/ (Z ui¢i(x)> Zngbj(x) dx
g i=1 j=1
- Z Z UiV /Q $i(x)¢j(x) dx = u'Hyv,

i=1 j=1

and, therefore, H equals the ‘mass’ matrix M with entries M;j = fQ $i(x)pj(x) dx, i,j €
{1,...,n}. When piecewise constant basis functions are used, we remark that M is diagonal.
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Similarly, for U = H! using piecewise continuous basis functions,

{(un,vi)u, /(uh(x)vh(X)JrVuh(x) Vvp(x)) dx

=/Q(Zui¢i(x)> Zv,-¢j(x) + (Zu,-qui(x)) Zvjv¢j(x) dx
i=1 j=1 i=1

j=1

= Z Z uvj / ($i(x)j(x) + Voi(x) - V§j(x)) dx = u'Hv,

i=1 j=1

showing that H = M + K, where the ‘stiffness’ matrix K has entries K;; = fQ Vi(x) -
Vi(x) dx, foralli,j € {1,...,n}.

In many places we will use vector representations of constant functions. We denote the
vector representation of the function identically equal to 1 by € and remark that (13) can
be used to show that, in general, € = M~ [ [, ¢1(x) dx; [, 2(x) dx; ... 5 [ P () dx].
In particular, when P; and P; hold, it can be easily proved that€ = e, where e denotes the
vector of all ones.

Hereafter we will work with a generic Hilbert space U and a generic discretization space
Uy, and (only) make use of the inner product weight matrix H and the mass matrix M in the
derivation of the discretized quasi-Newton IPM method. Properties P; and P, are generally
not assumed for Uy, unless stated otherwise in text.

Similarly to the representations of elements of U*, the Euclidean linear functionals A €
R™* have vector representations in the form of . = [A(e1), A(e2), . .., A(en)], where {e;}7" i
is the standard orthonormal basis of R™ (i.e. the ith entry of vector e] is given by §;); also,
we remark that A(v) = A'v for any v € R™. The discretized counterparts of the objective f
and the constraintsgaref : R” — Randa: R” — R™ such thatf(u) = f(uy,) and a(u) =
a(up). We next state some basic results regarding the discretization of integral forms and
of linear functionals from U*.

Lemma 3.1: Given uy, vy, € Uy, the integral form (up,vy)2 = fQ up (x)vy(x) dx equals
u'Mv. As an immediate consequence, [q up(x) dx =€'Mu.

Proof: We write that [, us(x)vp(x) dx = > 1L, Z}'zl uivj [ ¢i(0)Pi(x) dx =u'Mv. B
Lemma 3.2: For any wy, € U;l“ and u € U, wy(uy) = u'w.

Proof: We observe that wy,(u) = wi (31, wigi) = Y wiwp() = D1 ujw; = u'w.
|

3.2. Vector representations for functionals and derivatives

For a function f : U — R with derivative Df (u) € U*, we will use Df(u) to denote the
vector representation of Df (uy). As a consequence of Lemma 3.2, we have that

Df (up)vy, = Df(w)'v, (15)
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where v is the representation of v;,. For example, when f(u) = fQ u(x) dx, it can be eas-
ily proved that Df(u) is such that Df(u)v = fQ v(x) dx for all v € U; therefore, since
Df(u)'v = Df (up)vy, = €Mv by Lemma 3.1, we obtain that Df (u) = ME.

Similarly to Df (u), we introduce the (matrix) representation of the derivative Da(u) of
a:U— R"as

Daj(u)!
Da(u) = 5
Da,, (u)t

where Daj(u) is the representation of the derivative of the jth function component g; of a
(j e {1,...,m}) defined as in (15).

The following lemmas derive discretization representations for various quantities
employed by the algorithm that are consistent with the inner products of U and U*.

Lemma 3.3: We have that Da(uy)vy, = Da(u)v. Also, the vector representation of
Da(up)* € Uy, from the optimality conditions (4a) is given by Da(u)tx.

Proof: The first relation follows from (15) and the above expression of Da(u).

To prove the second statement we remark that the representation of Da(uy)*A, which
we denote by w, should satisfy w'v = [Da(uy,)*A](vy) for all v, € Uy,. On the other hand,
for any v, € Uy, one can write

(Da(w)'A)'v = A'Da(u)v = A(Da(up)vy) = [Da(up)*A](vp),

where the last equality is given by the definition of an adjoint operator. This shows that
w = Da(u)'A and concludes the proof. |

Lemma 3.4: The vector representation of E(zy) from (4a) is Mz.

Proof: To prove the statement we write E(zp)vi, = [, 2h(x)v4(x) dx = 2'My, for all v, €
Uy, where the last equality follows from Lemma 3.1. |

Lemma3.5: Given uy, vy, € Uy, the vector representation of G(uy)vy, € Uy, appearing in (6¢)
and (6d) is M~ [u'Cyv; ...; u'C,v], where C denotes the mass tensor given by Cijx =
fQ #i(x)P;(x)px (x) dx and the matrix Cy is the kth frontal slice of C, namely (Cy)ij = Cyj,
kell,...,n}

Proof: Let z € R" be the vector representation of [G(uy)vy] = upvy. We remark that
up(xX)vy(x) = Z?:l zi¢i(x) and take the L? product of the two sides of this identity with
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basis functions ¢y for each k € {1,. .., n} to obtain

/Q (Zu;-@(x)) S i) | o) de = /Q S agie0 v, Vke(L,..,n).
i=1 j=1 i=1

Furthermore, this can be also written equivalently as

D> w fg $i(0)(X)pr(x) dx = Y "z, [Q $i()Pr(x)dx, Vke(l,...,n},
i=1

i=1 j=1

which in matrix form is exactly u'Cyv = Mz for all k € {1,...,n}. This proves the
conclusion. |

3.2.1. Discretization of optimality conditions

Lemmas 3.3 and 3.4, and Equation (15) allows to write the infinite-dimensional optimality
Equations (4a) and (4b) as the discretized Equations (16a) and (16b) below. Further-
more, since the other two infinite-dimensional optimality equations from (4c) can be
written as G(u — u)z = w and G(u — u)z = u, Lemma 3.5 implies that the discretization
of these two equations is given by (16¢) below. We have obtained the following matrix-form
discretization of optimality conditions:

Df(u) + Da(u)'A — Mz + Mz = 0, (16a)

a(u) =0, (16b)
(u—w'Ciz U—-w'Cz

M! : =ue, M! : = e, (16¢)
(u—w'Cpz W—w'Cyz

A couple of remarks are in order. When piecewise constant elements are used, i.e. our L?
case, one can easily prove that the tensor C has a simple form, namely, the frontal slices Cy
are equal to the (diagonal) mass matrix M. As a result, the Equations (16¢) have a simpli-
fied form (see (17¢) below) that requires only pointwise vector multiplications. This is ideal
both computationally and from a software interface perspective since the optimization
solver does not need the application of C.

For more general finite element discretizations, the tensor C has a more onerous
form [12], which leads to nontrivial complications. For example, C would appear in
the Newton linearizations (i.e. the correspondent of Equation (21c)) of (16¢) and, as a
result, the quasi-Newton linearization system (i.e. the correspondent of (21a)-(21c)) would
become much more cumbersome to solve, especially in parallel; in contrast, the lineariza-
tion (21a)-(21c) that we derive later in the paper involve only diagonal matrices. Another
complication consists of the fact that C is not routinely formed for the PDE state and adjoint
solves as these only require the mass and stiffness matrices; as a result, requiring C in the
optimization phase may impede the use of the optimization solver since the practitioners
need to dedicate additional effort for making the tensor C available for optimization.

All the aforementioned complications can be circumvented by using a projection-
based discretization of the infinite-dimensional complementarity equations from (4c).
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First let use consider the prototype infinite-dimensional equation v; (x)v2(x) = u a.e. on
2, where v, v, € U and p € R, which is the form present in (4c). Assuming the Kro-
necker property Py, we then define the projection Py, : U — U}, such that for any u € U,
the function wy, := Py, (u) is the (unique) element of Uy, for which wy,(x;) = u(x;), for all
j € {l,...,n}. Furthermore, let us consider the projection of prototype equation, namely
Py, (viv2) = u. Notonly the projected equation is in Uj, but also one can equivalently write
vin(x)van(xj) = pforallj € {1,...,n}and, asaresult, obtain the discretization viv,; = ue
for the prototype equation. Consequently, we propose and use throughout the paper the
following ‘economy’ discretization of the infinite-dimensional optimality conditions:

Df(u) 4+ Da(u)'A — Mz + Mz = 0, (17a)
a(u) = 0, (17b)
(u—wz=pue, (U—uwz=pue (17¢)

3.3. Stopping criteria discretization

The discretizations of the error measures from (10a) are obtained by replacing the elements
in U and U* with their vector representations and the norms U and U* with their finite-
dimensional algebraic expressions given by (14). In particular, the stationary error is given
by

1/2

el = 1 (Df(u) + Da(w)'A — Mz + MZ)t H™' (Df(u) + Da(w)'A — Mz + Mz)
sd

and we remark that its computation requires the application of H~! and M.
The computation of eg mpl from (10c) requires evaluating terms in the form of ||v;,vo, —
wllgt for vip, von, € Up, which is not necessarily straightforward for general approximation
spaces Uy. Our general approach is based on the observation that one can write formally
that ||vipvan — wllpr = (|vinvan — ml, 1) 2 where the left operand in the last inner product
denotes the absolute value function and the right operand denotes the function of all ones.
Since |vipvon — | is not necessarily in Uy, a convenient and yet consistent error estima-
tor can be obtained under P; and P, properties by projecting this term in Uj, based on
the considerations said before the economy discretization (17a)-(17c). More specifically,
we propose to use (Py, (|vipvan — ul), 1)z = e'M|vivy — pe| := ||viva — ilim, where
|[vivy — el is the vector of absolute values of the vector viv, — we. This estimator is essen-
tially the finite-dimensional norm || - ||; weighted by the mass matrix M. As a consequence,

an economy expression for e ol is

elompr = Max{[lpue — (u — wzlim, llne — (@ — wzllim}/se.

Finally, we mention that the weighted two-norm ||v|2m = v v*Mv worked as well as || -
1M in all of our numerical experiments.



OPTIMIZATION METHODS & SOFTWARE . 75

3.3.1. Matrix representations for BFGS formulas

Since for f : U — R, sz (u) is in L(U, U*), we target a matrix representation D?*f(u) of
sz (up,) such that sz (up)vy, = D*f(u)v for all v, € Uy,. As before, u and v are represen-
tations of uy, and vy, respectively. The Hessian application D*f(u)v can be computed effi-
ciently in general by using second-order adjoint sensitivities (see, for example, [43,44,51]).
However, the Hessian computation requires nontrivial additional development effort,
which can be circumvented by using secant approximations formulas, such as the BFGS
formula derived below.

We observe that D*f(up)vywy = (D*f(w)v)'w = vID*f(u)'w and similarly, that D?
f(up)wpvy = wD*f(u)tv. Since D?*f(uj) is symmetric, we have that viD*f(u)w =
wD?f(u)'v for all v and w, which shows that the matrix D*f(u) is symmetric. It is
illustrative to compute the representation of D? f (u) for f(u) = % | ulliz. Since one can eas-
ily verify that sz (u)yvw = (v,w);2 = E(v)w, Lemma 3.4 implies that D*f(u) = M; also,
D*f(u) = Hwhen f(u) = %H u||i[1 . Similarly, the representations B of the secant operators
B e L(U,U*) from (7) and (8) should satisty for all v, € Uy, that

Bv = Byy,. (18)

For a representation (uy, Ak, 2y, Zk) of the primal-dual variables, let sy = ux4; — ug; also,
let gi = 1(ug+1, Ak> Zg> Zk) — L(uk, Ak 2, Zk) be the representation of gi from Section 2.1,
where 1 is the discretization of [ from (4a), namely, 1(ug, Ak, ., Zk) = W(uk, Ak, 24 Z)-

Lemma 3.6: The matrix representation By, of By given by the recursion (7) is

Bysksi Bl gkg;

Bry1 = Br — . (19)
s Brsk gk
Furthermore, the representation By of By from (8) has the compact representation
Bi = By + FLQ; 'Fr, (20)

where F}c = [ BoSk—1+1 --- BoSk 8k—i+1 --- 8 ] € R"<2 gnd Q. is given by (9), with the
blocks Dy, being the diagonal matrix with entries gi—l+1sk—l+1’ ey g}csk,

0 0 - 0 0
t

8k 14 15k—I42 0 ... 0 0

Ly = ) ) ,
t t t
8k—1415%k B2k -+ G5k O
and
t t t

Sk—1+1B08k—1+1 S BoSk—142 -. Sy Bosk
st Bgs st Bgs st Bgs
N k—l42005%—1+1  Sp_j42P08k—14+2 -+ Sy D0S%

k= . . .

s;Bosk—141 siBosk—i42 ... s;Bosk

Proof: Equation (19) follows from applying the infinite-dimensional counterpart (7) to
functions v, in U, and by using the definition (18) and that gis; = g}(sk and Bjsisy =
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s}(Bksk. It is also relatively easy to prove that F in (20) is the matrix representation of Fy
from (8). Furthermore, N in (20) is simply the matrix N in (8) computed over Uy, instead
of U. Identity (20) follows immediately. |

We remark that the above discretized BFGS formulas are identical to the formulas
derived and used for optimization over finite-dimensional spaces [10,35]. However, as
we discuss later, a typical choice for the initial approximation By is a multiple of M or H
(which are the matrix representations in L and H' of the identity operator), while in the
finite-dimensional case By is typically a multiple of the identity matrix.

3.3.2. The BFGS linear systems for IPM search directions

With the matrix compact representation (20) as the approximation for the second deriva-
tive H from (6a), the discretized, matrix-form quasi-Newton search direction equations
(compare with (6a)) at iteration k are given by

(Bo — FLQ; 'F)Au + Da(up)' AL — MAz + MAZ = —1(uk, Ao 24, Z0),  (21a)
Da(up)Au = —a(ug), (21b)
—ZiAu + UrAZ = pe — (U — up)Zg, ZiAu+ U Az = pe — (ug — Wz, (21¢)

The matrices Uy, Us, Z, and Zk above are diagonal with positive diagonal entries given
by vectors uy — u, U — ug, z;, and zj, respectively. The last two linear equations represent
formal linearizations of the economy complementarity Equation (17c¢), but they can be also
derived directly from the infinite-dimensional linear Equation (6a) under the Kronecker
property. Finally, we mention that linearizations of the mass tensor-based optimality sys-
tem from the beginning of Section 3.2.1 could be also derived and would be valid should
this be of interest to the reader.

3.3.3. Thediscretization of the log-barrier terms

The discretization of the log-barrier function v, () and its directional variation §v,, (u; d)
poses some nontrivial difficulties because of the use of the logarithm function as a barrier
function and the presence of rational functions in the expression (12) of §p (u; d). We layout
one possible discretization that is convenient because it is general, however, we do not
exclude the possibility of more accurate discretizations for ¥, (1) and 8/, (u; d), especially
when specialized for a particular choice of basis functions.

We discretize log-barrier terms of the form p(u) = fQ In(u(x)) dx using a projection
approach. Intuitively, discretizing [, In(u(x)) dx is the same as discretizing [, v(x) dx for
v(x) = In(u(x)) with v,(x) = Zinzl vigi(x), i.e. v, is the projection of In uy, in Uy. When
properties P; and P, hold for Uy, we have v; = In u; and thus write

p(u) = / v(x) dx ~ / vu(x) dx = e'Mv = e'MInu := p(u),
Q Q

where In u denotes [Inuy;. . . ;Inu,]. Similarly, §p(u; d) = fQ d(x)/u(x) dx can be viewed
as fQ d(x)v(x) dx with v(x) = 1/u(x), and, therefore, one can write

Sp(u;d) = / d(x)v(x) dx =~ f dp(x)v(x) dx = d'Mv = dtMl = 8p(u,d),
Q Q u
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where 1 . denotes the vector with entries Ll u— and d and v are the vector representa-
tions of dy, and of vy, respectively. We observe that the representation 8o (u; d) is gradient
of p(u) with respect to u along the direction d, namely <5 dp (u) d = 8p(u, d). This is impor-
tant since a discrepancy between the two would indicate 1nconsistent discretizations and
likely cause convergence issues. We have obtained the following discretization form for the

log-barrier objective and its directional variation.

Lemma 3.7: Given the vector representations u and Au of the variable u and search direction
Au, the log-barrier objective from (2) has the discretization

V() =f(u) — ue'MIn(u — u) + pe'MIn(u — u)

and its variation (12) along direction Au can be discretized as

1 1
8Y, (s Au) = Df(ug)'Au — pAu'M—— + pAu'M=
u—u u—u

3.4. Discretization of the LSQ-based computation of the duals

The discretization A of the solution X of the least-squares problem (11) is

Ak = argmin ||Da(ug)'A + Df (ug) — Mz + MZ) ||%J;,
)

where the norm ||v|| ur = lIvalluy = ~/vtH~1v accordingly to (14). Consequently,

A= [Da(uk)H*IDa(uk)t]‘1 Da(up)H ™' (—=Df(ur) + Mz; — Mzg) .

We remark that m + 1 applications of the inverse of H are needed to compute A, which is
computationally tractable in general since m is relatively small.

3.5. Thediscretized quasi-Newton BFGS linesearch IPM algorithm based on
derivative representations (QlpmDDe)

At this point we have all the discretization ingredients needed for the discretization of
Algorithm 1 using the vector representations for the functional derivatives introduced
in Section 3.2. The numerical QIpmDDe algorithm corresponds to substituting the con-
stituent parts of Algorithm 1 (i.e. primal-dual variables, search directions, linesearch pro-
cedure, update of dual variables, error measures, quasi-Newton limited-memory formula)
with their discretized counterparts that were introduced in this section. The implementa-
tion details, such as various parameters of the algorithm, strategies for constructing starting
points, and others, are described in [39,61].
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3.6. Comparison with Euclidean NLP solvers

Here, we make a couple of observations on the use of NLP solvers equipped with the
Euclidean inner product for solving the discretization of (1a)-(1b) in the form

min f(u)st.aw)=0€R™, u<u<nu
ueR”

For illustration purposes, we consider the state-of-the-art solver Ipopt and the similar
Euclidean solver from HiOp. The log-barrier problem used by these solvers is

muin Yu(u) :=fu) — p Zln(ui —u) —u Zln(ﬁi —u;) s.ta(u) =0,

i=1 i=1
for which the following optimality conditions are used:
VE(u,) + Ja(uu) Ay — 2, + 7, =0,
a(u,) =0,
(e —wz, =u, @—uu)z, =W

Here, Vf(u) € R" denotes the gradient of f : R” — R and Ja(u) € R™*" the Jacobian of
a:R" - R™ at some u € R", which coincide with the vector representations Df (u) and
Da(u) used by our discretized QIpmDDe algorithm.

A quick look at the above optimality conditions and the discretized optimality condi-
tions (17a)-(17c) reveals that the former does not employ the correct dual representer for
linear operator E(z) defined in Section 2 after Equation (3). We believe this inconsistency
is one of the causes of the mesh dependent behaviour of the Euclidean solver(s) that we
report in Section 6.

Another severe limitation of the Euclidean NLP solvers comes from the use of the
Euclidean norms in the stopping criteria, which results in premature termination at inac-
curate solution and in an iteration count that changes drastically as the mesh is refined
and/or distorted. Intuitively, the Euclidean, inner-product-oblivious approach to treating
NLPs defined in Hilbert spaces divorces the space of decision variables from the finite ele-
ment mesh. As a result, the decision variables become a tuple of real numbers - without a
mesh, operations like refinement and coarsening do not make much sense. Furthermore,
the inner-product-oblivious approach treats every component e.g. of the stationarity error
vector, as equally important, when one would expect that error components corresponding
to larger elements on nonuniform finite element meshes should be weighted more heav-
ily than error components corresponding to smaller elements. The inner-product-aware
approach of this paper corrects these deficiencies through the incorporation of the correct
inner product.

Finally, Euclidean NLP solvers using secant updates generally hard-code By as a mul-
tiple of the identity matrix. This choice results in mesh dependent convergence even for
elementary problems such as the unconstrained convex quadratic problem

1

min ~(u,u)y + (¢, ),

posed in a generic Hilbert space U with ¢ € U. The discretized problem would consist of
minimizing %utHu + c'Hu. A BFGS quasi-Newton algorithm applied to the discretized
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Table 1. Discretized input problem and internal discretizations for QlpmDDe and a generic Euclidean
NLP solver for (22) is illustrated for U = L2(§2) and U = H' ().

input problem internal discretizations

Algorithm f(u) a(u) 1st order derivatives Df/Vf and Da/Ja E(2) By inner products

U=1L%Q)

QlpmDDe JutMu e'Mu Mu e'tM Mz M wiM~w,
viMv,

Euclidean —n_ — Mu etM z | viv

U=H(Q)

QlpmDDe JutHu e'Mu Hu e'tM Mz H wiH™w,
viMv;

Euclidean —n_ — Hu etM z | viv

Note: We highlight in red discretizations used by the Euclidean solver that are inconsistent with the underlying Hilbert space
u.

problem is identical in exact arithmetic with the preconditioned conjugate gradient
method for Hu = —Hc using the preconditioner B, ' [35, Theorem 6.4]. When By = [,
as it is the case for Euclidean solvers, the iteration count of the quasi-Newton method is
determined by the number of distinct eigenvalues of B 'H = H, which can be large for
distorted meshes, for example; on the other hand, QIpmDDe using By = H converges in
one iteration since B, 'H=1

We remark that QIpmDDe works as an Euclidean solver by takingM = H = L.

3.6.1. Anillustrative example
Let us consider the quadratic problem

1
min f(u) := —||u||%] s.t.a(u) ;= / ux)dx =0, u<u<u. (22)
ueU 2 Q

Table 1 shows the discretizations of the objective and constraints for U = L*(2) and
U = HY(R) as well as the internal representations for E(z) and the initial BFGS opera-
tor By and the discretized form of the inner product(s) used by QIpmDDe and Euclidean
NLP solvers. We assume for simplicity that properties P; and P, hold for the underlying
discretization space Uy. The cells highlighted in red indicate discretization inconsistent
with the underlying Hilbert space as per the discussion of the previous subsection.

4. Parallelization considerations

A parallelization technique for Euclidean quasi-Newton IPMs equipped with limited-
memory BFGS updates was proposed in [39] based on a specialized symmetric Guassian
elimination to solve the IPM linear systems. Essentially (21a)-(21c) can be manipulated to
a system that is more amenable to parallel computations, namely to

EkAu + Da(uk)tAk =1},

(23)
Da(ui)Au = —a(uy),

where Ek =By + Mg,jlzk + Mﬁ,:lzk - F}(Q’le, and 1 = —1(ug, Mg, Zp> Zk) —G—Q,:l
[ne — (up —wz ] + ﬁk_ 1[Me — (ux — wzg]. Furthermore, assuming the linear sys-
tem (23) is solved, the rest of the unknowns of (21a)-(21¢c) are obtained from Az =
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~Up ' ZiAug + Up e — (o — wzg), and AZ = Uy ZeAwe + Uy (e — (@ — we)zil,
both operations involving only basic vector-vector computations that parallelize well.

The parallelization difficulty occurs in solving the linear system (23). The original
approach of [39] exploits that By is a low-rank update of the invertible matrix By -+
Mgk_l Z, + Mﬁk_ lzk and uses the Sherman-Morrison-Woodbury formula to compute
ﬁ;l explicitly. This requires solving with By + MQ;I Z, + MU, lzk for multiple right-
hand sides (required by the presence of the low rank term F}(Q‘le) and matrix-matrix
multiplications. As a result, this approach parallelizes efficiently as long as the solves with
By + Mg;l Z, + MU, lzk parallelize well. Once the inverse of §;1 is computed, the Schur
complement Da(uk)f]é:];lDa(uk)t € R™*M of By in (23) can be computed using parallel
matrix-matrix operations and used to solve [Da(uk)ﬁk_lDa(uk)‘]A)» = a(ug) + E;lrk for
A; this solve is done in serial and has negligible computational footprint because its size
is small (being the number of contraints, not including the bounds). Finally, one only
needs to solve ByAu = ry — Da(ug)' AL to compute Au in (23), which requires another
multiplication with the inverse of By.

This approach extends readily to QIpmDDe since the limited-memory update (20) and
the IPM linear system (21a)—(21c) are structurally identically to their Euclidean counter-
parts. In the Euclidean case (By = M = I) this matrix is diagonal and the solves are trivial.
Obviously, this approach readily extends to QIpmDDe as long as M and By are diagonal
matrices. For example, M is diagonal for piecewise constant elements and By can be taken
to be a positive definite diagonal matrix. The diagonality of M can also be ensured by
using special quadrature formulas, for example see [27], or by employing mass lumping
techniques [27,64]. For non-diagonal matrices By and M, the aforementioned technique
is efficient as long as solving linear systems involving By + MQk_IZk + MU;lzk can be
parallelized efficiently. We expect that this is possible since M is sparse even for higher
order finite elements and By can be chosen freely. Our current parallel implementation
of QIpmDDe from HiOp only supports diagonal matrices M and By and we defer the
development of a more general implementation to future work.

5. Problem specification

It should be apparent from Section 3 that QIpmDDe needs minimal knowledge of the
underlying discretized optimization space Uy, namely, it only requires the application (to
vectors) of the mass matrix M, the inner product weight matrix H, and the inverse H™1.
This characteristic is of great practical value since it allows to use QIpmDDe for problems
posed over Hilbert spaces with generic inner products. For a complete specification of (the
discretization of) the infinite-dimensional problem (1a)-(1b), the following are needed:

(I1) the size n of the representation u and the number m of equality constraints;

(I2) routines for evaluating discretized functions f(u) and a(u);

(I3) routines for evaluating derivative representations Df (u) and Da(u);

(I4) representations u and u for the function bounds u and 4, respectively;

(I5) routines for applying M, H, and H~! to vectors from R";

(I6) a routine for applying By to vectors from R”, which is evaluated at each iteration;
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(I7) aroutine returning the distribution of n-dimensional vector and matrices across MPI
ranks, as per the discussion of data parallelism in Section 4

We remark that I5, 16, and 17 above are optional. If I5 is not provided, QIpmDDe uses
M = H = I, and thus acts as an Euclidean solver. If I6 is not provided, the solver uses By =
M. If 17 is not provided, the parallel computations are switched off. HiOp’s C++ abstract
class for problem specification encapsulates I1-17 above. We refer the interested reader to
HiOp user manual for more software details [40].

6. Strengths and weaknesses of QlpmDDe on practical problems

We discuss the numerical performance of QIpmDDe by solving two classes of PDE-
constrained problems for which the optimization variable u appears as coefficient in the
PDE state equation. For all problems, the optimization derivatives are obtained via an
adjoint-based approach and calculus of variations, for example, see [44].

6.1. Inverse problem governed by an elliptic PDE

As a first example, we consider the estimation of a coefficient field in a prototype elliptic
PDE. Depending on the interpretation of the inputs and the type of measurements, this
problem arises, for instance, in inversion for the permeability field in a subsurface flow
problem, for the conductivity field in a heat transfer problem, or the stiffness parameter
field in a membrane deformation problem. We formulate the inverse problem over Q =
[0,1] x [0, 1] as follows: given (possibly noisy) observations d € R? of the state solution
yin €2, a volume force f € H (), and lower and upper bounds u, u € L°°(L2), we infer
the coefficient field u that best reproduces the observations by solving

(Oy(u) —d,Oy(u) — d)Rq + % (Vu,Vu)2, stu<u<u, (24)

| =

min J(u) :=

uel?()

where y(u) is the solution of the state problem —V - (uVy) = f in Q and y = 0 on 9.
Above, O : L>(©2) — RYis a linear observation operator that extracts measurements from
y. The second term in the objective of (24) is the regularization term with parameter y > 0
added to render the inverse problem well-posed [16,57].

For the numerical experiments, we used f = 25, u = 1.0,and u = 3.5. The ‘true’ param-
eter field is a Gaussian cut flat at 3.5 in the centre as shown in Figure 2 (bottom left). To
synthesize the observations, we add 1% noise to the state solution y corresponding to the
‘true’ parameter field to lessen the inverse crime [29] (see Figure 2 top right). The obser-
vations d are then obtained by extracting the values of the noisy state solution at the points
shown in red in Figure 2 (top left). The state and adjoint variables are discretized with
quadratic finite element basis functions, while the parameter is discretized with linear ele-
ments. We used the COMSOL Multiphysics library for finite element discretizations and
MATLAB’s sparse backsolve to solve the discretized state and adjoint linear systems [44].
The optimization problem (24) is solved on uniform meshes of various sizes and on a
nonuniform mesh, as shown in Figure 2 (top left). For the latter, the dimensions of the
state/adjoint and parameter are 5227 and 1328, respectively. The solution of the inverse
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Figure 2. Results for the elliptic coefficient field inversion model (24). Top: The nonuniform mesh and
the observation locations represented by the red dots (left) and the noisy observable y (right). Bottom:
The ‘true’ coefficient field u (left), and the reconstructed coefficient field (right).

problem 24 with regularization parameter y = 1.5 x 10~ is shown in Figure 2 (bottom
right).

We solve the above inverse problem with a MATLAB implementation of QIpmDDe
method and with MATLAB’s fmincon BFGS solver with full-memory secant approxima-
tion for the Hessian (I = 00). The convergence tolerances were set to 10~° for fmincon and
to a more stringent 10~ for QIpmDDe. QIpmDDe used By = M + yK, where K is the
stiffness matrix. This choice is motivated by the structure of the objective function: M cor-
responds to an uninformed second-derivative approximation (by the identity operator) of
the first term in the objective, while y K is exactly the representer of the second-derivative of
the regularization term in the objective. On the other hand, fmincon most used a multiple
of the identity matrix for By.

Table 2 shows the number of iterations and objective values obtained using the pro-
posed QIpmDDe method and MATLAB BFGS IPM implementation from fmincon. QlIp-
mDDe was used with (full-memory) formula (19), which is denoted by I = 0o, and with
the limited-memory BFGS secant formula (20) with / = 6. On the other hand, we ran
fmincon with full-memory secant BFGS approximation. We remark from Table 2 that QIp-
mDDe shows mesh-independent iteration count with both I = co and I = 6, whereas the
Euclidean BFGS solver of fmincon requires an increasingly large number of iterations as
the mesh is refined and/or distorted. Also we remark that the QIpmDDe requires less itera-
tions than the Euclidean solver despite the fact it was ran with a more stringent termination
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Table 2. QlpmDDe (/ = coand/ = 6) and MATLAB BFGS IPM (/ = oo) performance for various meshes.

QlpmDDe MATLAB BFGS
#iter #iter
Mesh /=6 | =00 obj. | =00 obj.
10 x 10 44 30 1.483-1072 232 1.483-1072
20 x 20 44 34 1455 - 1072 288 1458 - 102
30 x 30 53 34 1.449 . 1072 331 1.455-1072
40 x 40 46 36 1.448 - 1072 350 1457 - 1072
50 x 50 48 35 1.447 - 1072 355 1.461-1072
nonunif. 45 36 1.448 - 1072 418 1.453-1072
2 ——10x10
20x20
l=co — 30x30
40x40
50x50
nonunif.
—5—10x10
—4&—20x20
_ 30x30
1=6 40x40
—6—50x50
10 ) ) ) ) ) —<&— nonunif.
0 10 20 30 40 50 60

Figure 3. Convergence history of QlpmDDe with limited-memory BFGS (/ = 6) and full-memory (/ =
o0) when solving the inverse problem (24).

criterion. Our MATLAB implementation takes close to 800 seconds to solve the inverse
problem on the finest uniform mesh (50 x 50) and approximatively 320 seconds on the
nonuniform mesh for [ = co. The execution times for I = 6 are slighter smaller.

In Figure 3 we plot the decimal logarithm of the optimality error ¢’” at each iteration of
QIpmDDe for the problems solved in Table 2. The convergence for both the full-memory
and limited-memory QIpmDDe is fast and at a linear rate or better. In particular, QIp-
mDDe with full-memory (I = 00) seems to exhibit a convergence rate better than linear
nearby the optima. This desirable ‘superlinear’ convergence behaviour of QlpmDDe is
in line with previous theoretical work [20,46] related to certain superlinearly convergent
secant quasi-Newton methods for some classes of infinite-dimensional problems and, for
this reason, can be regarded as a theoretical check of the validity of QIpmDDe (and its
implementation).

6.2. Structural topology optimization

Topology optimization finds the optimal distribution of material in a given design domain
2 to minimize a cost function and satisfy constraint functions. We follow the ersatz
approach, where the geometry is defined by a continuous field v that represents the material
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volume fraction. The resulting problem is commonly known as the compliance problem

min J(v) = / y(v) - fds,
veUy Ty

(25)
st.a(v) = / vdx — Vipax <0 and 001 <v <1,
Q

where ds is a one dimensional measure on the boundary I'y where the load is applied and
y(v) is the solution of the linear elasticity problem

V:o=0 inQ, o=r»C[Vy] ing, 26)
26
o-n=f only, y=0 onIp.

The filtered volume fraction field ¥ is required to obtain a well-posed problem and is
obtained using a PDE filter [33], namely by solving

—kV 4+ D=, (27)

where the constant « > 0 is the minimum length scale of the design [33]. We use the SIMP
penalization [4] to encourage 0-1 designs on the filtered volume fractions v. Finally, C is
the elasticity tensor of an isotropic material with Young’s modulus E = 1 and Poisson’s
ratio u = 0.3 and f is the applied traction on the surface I'.

For the computational results of this section we interfaced QIpmDDe’s C++ implemen-
tation from HiOp solver with Livermore Design Optimization (LiDO). LiDO is a design
optimization library that uses the MFEM [34] finite element library and HYPRE [47] lin-
ear solvers to scalably discretize and solve the state elasticity and adjoint PDEs governing
design physics. For this work, MFEM used piece constant finite elements for the design
variables (densities) and Lagrange finite elements for the state. HYPRE used the conjugate
gradient method equipped with the BoomerAMG algebraic multigrid preconditioner [17]
for both the state and adjoint system. To solve the optimization problems, LiDO includes
an internal implementation of the method of moving asymptotes (MMA) and also inter-
faces with two optimization libraries: HiOp and Ipopt. The combination of HiOp and
MFEM provides LiDO competent HPC capabilities. For instance, the left quadmotor drone
design from Figure 1 consisted of 880 million design parameters and required 8 hours of
simulation on 9216 cores of the Quartz cluster at LLNL. We will not elaborate here on
the parallel capabilities due to space limitations, but we mention that the efficiency of the
decomposition technique from [39] translates to QIpmDDe.

We first compare the Euclidean approach with our QIpmDDe algorithm and with
MMA [1,6,50] on a standard cantilever beam design problem that is solved using a dis-
torted mesh. This mesh is obtained by halving six times each element of the mesh shown
in Figure 4, which resulted in a total of 249 856 elements (and design variables). The distor-
tion factor, by which we mean the ratio of the areas of the largest and smallest discretization
elements, is 256. We allowed for generous amount of material (Viax = 0.3), which tends
to make the problem less challenging.

The Euclidean solver® finds a design shown in Figure 5 that lacks the sharp transition
from void to solid in the regions where the mesh is fine. Also, the design differs significantly
from the ‘expected’ optimal design, shown in Figure 6 and 7. Numerically, the Euclidean
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Figure 4. A distorted mesh for the cantilever beams used in this section.

Figure 5. Design found by an Euclidean solver with the distorted mesh from Figure 4.

0.8
-0.78
0.6
lﬂ 0.50
0.4 a—
~0.25

Figure 6. Design found by MMA with the distorted mesh from Figure 4 after 50 iterations.

solver converges to the required tolerance (10~°) in 213 iterations and reports a minimum
compliance of 1.001 - 1072, In contrast, both MMA and QIpmDDe find valid designs of
up to 22.6% smaller compliance in fewer iterations. After only 50 iterations for example,
MMA reports compliance of 7.787 - 1072 (design in Figure 6) and QIpmDDe reports a
compliance 7.802 - 107> (design in Figure 7).

Both QIpmDDe and MMA find in a relatively small number of iterations designs with
sharp void-solid transitions suitable to manufacturing. They also compare similarly in
terms of computational cost/PDEs evaluations. However, under tight stopping criteria,
both QIpmDDe and MMA take a large number of iterations to converge and the vast major-
ity of these iterations do not improve the compliance significantly. For instance, for the
cantilever beam, at iteration 500 the compliances of MMA and QIpMDDe are 7.761 - 1073
and 7.742 - 1073, respectively, which is less than half percent improvement over the respec-
tive compliances at iteration 50. The execution time for 500 iterations is around 10 minutes
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Figure 7. QlpmDDe design after 50 iterations.

using six 2.4 GHz cores of a Intel I5 processor. The execution time is overwhelmingly spent
in solving the state and adjoint PDE, with the internal times of QIpMDDe, MMA, and Ipopt
accounting for only a couple percent of total computational cost.

The slow convergence of QIlpmDDe under tight convergence criteria is very likely
caused by the choice of By = M, which is not a good approximation for the second deriva-
tive of the compliance. A potential remedy would be to use an initial By that approximates
the second derivative of the compliance up to a compact perturbation; such choice can
lead to a superlinearly convergent secant updates [20,46]. One potential way to achieve
such approximations would be via multigrid technique, namely, to form a computationally
affordable ‘coarse’ second derivative and use it as By. We defer such nontrivial development
to future investigations.

Finally, we report that QIpmDDe consistently yields mesh-independent designs when
used for topology optimization. For instance, the high-resolution quadmotor drone design
at the left of Figure 1 is virtually identical to the designs obtained on coarser meshes. On the
other hand, Euclidean solvers generally lack this design robustness feature when the mesh
is refined and/or distorted and they provide radically different designs, inaccurate designs
such as the one for the simple cantilever beam from Figure 5, or non-physical designs such
as the drone design at the right of Figure 1.

7. Conclusions and future work

The QIpmDDe algorithm presented in this paper was developed for optimization prob-
lems with inequalities to be consistent with the inner product of the Hilbert space used
for optimization parameters. In order to achieve this, we derived mathematically sound
(and computationally efficient) discretization techniques for use within the filter linesearch
mechanism and quasi-Newton secant updates used by QIlpmDDe algorithm. The pre-
sented numerical evidence shows that the algorithm performs in a mesh-independent way
and has good convergence properties even with limited-memory quasi-Newton Hessian
approximations for a class of inverse problems.

We stress the limitations of our algorithm and solver. The most prevalent one is that par-
allel computing capabilities for optimization in Hilbert spaces can be currently achieved
with our quasi-Newton strategy only by using a diagonal matrix approximation By for the
second derivative. As elaborated in Section 4 future work will be dedicated to remov-
ing this limitation. Also, we remark that fast (local) convergence may be elusive when
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quasi-Newton approximations are used for the Hessian. This situation is especially per-
vasive when good initial Hessian approximations By are not known, as it is the case for the
structural topology optimization problems we considered in this work.

Notes

1. This NLP solver is state-of-the-art and one of the most robust open-source optimization
package, thus, we exclude the possibility of malfunction.

. The subscripts , and , denote the partial derivatives with respect to u and y, respectively.

. i.e. (4, A, 2,Z) would satisfy first-order necessary optimality conditions

. The Kronecker delta function 8 is such that §;; = 1if i = jand §;; = 0if i # j.

. We have used the state-of-the-art solver Ipopt.
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