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Blockchain and distributed ledger technologies (DLT) are emerging decentralized

infrastructures touted by researchers to improve existing systems that have been

limited by centralized governance and proprietary control. These technologies

have shown continued success in sustaining the operational models of modern

cryptocurrencies and decentralized finance applications (DeFi). These

applications has incentivized growing discussions in their potential applications

and adoption in other sectors such as healthcare, which has a high demand for

data liquidity and interoperability. Despite the increasing research efforts in

adopting blockchain and DLT in healthcare with conceptual designs and

prototypes, a major research gap exists in literature: there is a lack of design

recommendations that discuss concrete architectural styles and domain-specific

considerations that are necessary for implementing health data exchange systems

based on these technologies. This paper aims to address this gap in research by

introducing a collection of design patterns for constructing blockchain and DLT-

based healthcare systems that support secure and scalable data sharing. Our

approach adapts traditional software patterns and proposes novel patterns that

take into account both the technical requirements specific to healthcare systems

and the implications of these requirements on naive blockchain-based solutions.
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1 Introduction

Blockchain and distributed ledger technologies have successfully been implemented in

managing transactions of digital assets through cryptographic currencies (cryptocurrency) in

a decentralized manner, with the most prevalent being Bitcoin Nakamoto (2008) and

Ethereum (Buterin, 2014). These decentralized technologies are a new paradigm that is

fundamentally supported by mature concepts from computer science and mathematics.

They differ from traditional infrastructures that have placed many constraints on system

services and capabilities due to centralization. To achieve decentralization, a certain amount

of key information must become transparent and thus immutable to a certain degree, which

enabled “trustless” exchanges of Bitcoin-like cryptocurrencies Blundell-Wignall (2014) that

directly involve both parties of a transaction without the need for a trusted middleman or

third party. The revolutionary fundamentals underlying blockchain have sparked significant

interest from technologists and domain experts to explore meaningful services across various

industries, such as finance, healthcare, transactive energy, and the food industry.
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Ethereum blockchain has become a mainstream platform today for

developing applications as it has extended the capabilities of

cryptocurrency-based blockchains to enable programmability and

near Turing-complete computations via “smart contracts“ (Buterin,

2014). Smart contracts are similar to a typical software program in that

they have internal data and supported instructions (program code) to

directly control or manipulate the data to facilitate exchanges and

redistributions of digital assets. The instructions define rules and

agreements established between involved parties in advance to

produce deterministic outputs. The successful implementations of

programmable smart contracts by Ethereum has promoted the

development of decentralized apps (DApps) Johnston et al. (2014),

which are autonomously operated applications that interact with

cryptography-protected data stored on the blockchain and maintain

the records of transactions also on-chain. DApps enable end users to

directly interact with the blockchain and/or access relevant data on-

chain.

Blockchain and smart contracts have been explored widely by

researchers in healthcare to address interoperability challenges DeSalvo

and Galvez (2015); Das (2017) among use cases. Interoperability is

defined as the ability for different information technology systems and

applications to communicate, exchange data, and effectively digest the

exchanged information Geraci et al. (1991). Healthcare authorities and

experts have attempted to improve healthcare interoperability for

decades Richesson and Nadkarni (2011) in order to provide more

continuous and consistentmedical services, including but not limited to

delivering patient data across multiple care practices securely and

reliably, facilitating effective medical communications between

providers, and accurately managing medical devices and promptly

delivering their outputs to the appropriate patients or providers Lesh

et al. (2007). Despite the growing interest in creating blockchain-based

healthcare systems, the current literature on the concrete design

recommendations deserves greater attention for applying blockchain

technology to address domain-specific challenges in healthcare.

This research paper addresses the need for software design patterns

tailored to the unique challenges of creating healthcare DApps. The

paper offers two key contributions: firstly, a summary of five key

domain challenges faced by blockchain technologies—evolvability,

on-chain storage requirements, data privacy, communication

scalability, and data authorization. Secondly, a set of design patterns

is presented, including Layered Ring, Guarded Update, Contract

Manager, Database Connector, Database Proxy, Entity Registry,

Tokenized Exchange, and Publisher-Subscriber. Code examples and

healthcare use cases are provided to illustrate how these patterns can

effectively address the challenges associated with blockchain-based

healthcare systems. The intended audience for this paper is health

information technology (IT) system architects and developers seeking

to implement blockchain and related technologies in their system

design. The importance of our contributions lies in the potential

impact they can have on software engineering practices and

outcomes for the blockchain community. Utilizing design patterns

can lead to more robust and adaptable systems, ultimately

improving overall software quality. This can benefit developers,

architects, and researchers in designing and maintaining complex

systems. Furthermore, our research contributes to the theoretical

understanding of blockchain-oriented software engineering principles

by exploring the relationship between healthcare-specific requirements

and design patterns.

In software engineering practice, design patterns offer general and

reusable solutions to recurring problems. They allow software engineers

to communicate using well-known and well-understood vocabulary for

interactions in the software Shvets (2015). By documenting a collection of

reoccurring blockchain-specific patterns that take into account domain-

specific requirements, this work can assist the target audience to more

quickly and effectively adopt this technology and create robust solutions

with it in the healthcare domain. Design patterns play a particularly

crucial role in blockchain development, as blockchain technology is still

relatively new, and developers face unique challenges in building

decentralized applications that can scale, remain secure, and interact

seamlessly with other parts of the ecosystem. By using design patterns,

developers can avoid common pitfalls, reduce development time, and

create robust and reliable applications that can help drive the widespread

adoption of blockchain technology in domain-specific applications.

Not applying design patterns can have negative consequences for

software systems–software systems are more prone to becoming rigid

and difficult to maintain, resulting in increased costs and effort.

Additionally, neglecting important aspects such as scalability can

limit the ability to leverage emerging technologies or adapt to

increasing user needs, potentially leading to diminished

competitiveness. Furthermore, insufficient attention to evolvability

and design patterns can result in brittle systems that are prone to

errors, security vulnerabilities, and performance degradation, ultimately

compromising software quality. By investigating and integrating those

important aspects in the proposed design patterns, we aim to provide

practical insights and guidance for software practitioners and

researchers, ultimately improving the robustness, adaptability, and

overall quality of software systems.

The remainder of this paper is organized as follows: Section 2

provides an overview of blockchain technology and the Ethereum

implementation; Section 3 summarizes existing research related to

this work; Section 4 presents our proposed pattern collection in

detail with example code and their use cases in healthcare

applications; and Section 5 concludes the paper and summarizes

future work on applying blockchain and related technologies in the

healthcare domain.

2 Key concepts of blockchain
technology

This section provides an overview of the general concept behind

blockchain technology in addition to the open-source Ethereum

implementation that supports smart contracts, which enable

computation and facilitate the development of decentralized apps

beyond cryptocurrencies. Solidity, the programming language for

writing smart contracts in Ethereum and the basis of our pattern

collection discussed in Section 4 will also be introduced.

2.1 Blockchain concepts

In essence, a blockchain is a decentralized, replicated, and

continually reconciled ledger that maintains an append-only list

of ordered transactions grouped into blocks, as shown in Figure 1.

Transactions with timestamps are recorded in the blockchain and

distributed to all network nodes to provide transparency of the
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exchanges of digital data, such as cryptocurrencies. Only one block may

be added to the blockchain at a time following a mathematical

verification (based on cryptography) to ensure that it is in sequence

from the previous block and that it contains all valid transactions.

Network nodes are incentivized to verify transactions and blocks via a

process called mining, during which they will gain some financial

reward for their work Nakamoto (2008). This mechanism requires that

1) information in the blockchain is transparent so that anyone easily

verifying that a specific transaction occurred at a particular point in

time, 2) validated blocks are tamper-proof, which prevents existing

transaction history from being altered, and 3) all blocks of transactions

are replicated to each network node, which makes the network resilient

to a single point of failure Hub (2017).

The Bitcoin blockchain serves as a public ledger that facilitates the

direct exchange of its native token between individual users that is

securedwith cryptography. The Bitcoin blockchain primarily focuses on

token transactions but is less suitable for other types of data exchange

with higher complexity. To provide a more flexible framework,

Ethereum was created as an alternative, general-purpose blockchain

that enables programmability and thusmore sophisticated computation

via the support of smart contracts (Buterin, 2014).

Ethereum is a decentralized computing system that uses a near

Turing-complete Ethereum Virtual Machine (EVM) and a native token

ETH to power the network. EVM enables the creation and execution of

smart contracts that can store data of different structures and codify

operations on the data. Ethereum enforces a payment policy in terms of

“gas” for creating, storing, and executing smart contracts. This policy

provides both a financial incentive for network nodes to verify and

execute valid transactions and a financial disincentive against malicious

attacks on the network. In addition, there is a global maximum gas limit

defined by the Ethereum protocol and a sender-specified gas limit that

indicates themax gas amount that the sender is willing to pay. If gas spent

during the execution of a transaction exceeds either of these two limits,

computation will be stopped, and the sender still has to pay for the

performed computation. This protocol protects senders from completely

running out of funds and also further deters malicious attacks and abuse,

such as distributed denial of service attacks in the network or hostile

infinite loops in smart contract code (Buterin, 2014).

2.2 Overview of consensus mechanisms

In addition to Proof ofWork, there are other consensusmechanisms

that may be more fitting in blockchain-based healthcare applications.

One popular alternative is Proof of Stake (PoS), which is based on the

concept of stakeholder consensus E. Napoletano (2022). In PoS, instead

of miners competing to solve a mathematical puzzle, network nodes (or

“validators”) are chosen to create the next block based on the amount of

cryptocurrency they have “staked” as collateral. This creates an economic

incentive for validators to act honestly, as their stake is at risk if they act

maliciously. PoS is considered to bemore energy-efficient than PoW, as it

does not require significant computational power to maintain the

network. Ethereum aims to migrate from PoW to PoS as part of the

Ethereum 2.0 upgrade, which aims to improve the scalability, security

and energy efficiency of the network Rene Millman (2020).

Another consensus mechanism that has gained popularity in recent

years is Tendermint consensus. Tendermint is a protocol for secure,

Byzantine fault-tolerant (BFT) consensus in decentralized networks

GMBH, 2023a (accessed on 01-13-2023a). Tendermint consensus uses

a two-step process: first, validators propose and pre-vote on the next

block, and then they commit and vote on the block. This creates a more

efficient and fault-tolerant consensus mechanism compared to PoW or

PoS. Tendermint is also more flexible than other consensus

mechanisms as it can be used in any blockchain platform and it can

be configured to use different consensus algorithms. Tendermint is

most widely used as the consensus mechanism in the Cosmos

ecosystem GMBH, 2023b (accessed on 01-13-2023b), where it

enables the creation of independent, app-specific chains that can

interoperate with one another. An app-chain may be the best

approach for such a healthcare application as it can be customized

to fit the needs of the healthcare industry and can provide higher

scalability, security, and privacy than a general-purpose blockchain1.

FIGURE 1

Blockchain structure: A shared, append-only list of ordered transactions grouped into blocks.

1 App-chains are not explored in-depth in the context of this paper, though

will be one direction of future work.
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2.3 Overview of solidity

Solidity is an object-oriented language and is designed primarily

for developing smart contracts in Ethereum Foundation (2015a). A

Solidity class is realized through a “contract,” which is an object

prototype (some code template) stored on-chain. Just like an object-

oriented class can be instantiated into a concrete object at runtime that

can then be executed, a contract may be instantiated into a useable

“smart contract account” (SCA) by a transaction or a function call

from another contract. When a contract is instantiated, it is assigned a

unique address that is similar to a reference or pointer in C/C++-like

languages. The contract can then be referenced and its functions

invoked using the address. A smart contract can also define state

variables to store data and functions that interact with the data.

Although one contract can be instantiated into many SCAs, it should

be treated as a singleton (i.e., an object that has only one instance of) to

avoid undesired behavior and storage overhead. A common practice is

to store the address of an instantiated contract in a static location, such

as a configuration file or a database Dourlens (2017).

Solidity also supports multiple inheritance and polymorphism

Ethereum.io (2017). When a contract inherits from one or more

other contracts, a new contract instance is created by copying all the

base contracts code into the child contract prototype. An abstract

contract in Solidity can declare function headers but without

concrete implementations, which means that it cannot be

compiled into an SCA but can be used as a base contract. In this

paper, we focus the pattern discussions based on the use of Solidity.

3 Related work

Although relatively few studies focus on realizing software

patterns in blockchains, some relate to healthcare blockchain

solutions and design principles in this space. This section gives

an overview of related research on design principles and

recommended practices for developing blockchain-based apps.

Porru et al. (2017) highlighted evident challenges in state-of-the-art

blockchain-oriented software development by analyzing open-source

software repositories and addressed future directions for developing

blockchain-based software. Their work focused on macro-level design

principles such as improving collaboration, integrating effective testing,

and evaluations of adopting the most appropriate software architecture.

Bartoletti et al. Bartoletti and Pompianu (2017) surveyed the usage of

smart contracts and identified nine common software patterns shared

by the studied contracts, e.g., using “oracles” to interface between

contracts and external services and creating “polls” to vote on some

question. These patterns summarize the most frequent solutions to

handle some repeated scenarios. Xu et al. (2018) presented a collection

of patterns in categories of communication with off-chain channels,

data management, security, and structural design that are applicable to

general blockchain-based applications. Similarly, Six et al. (2022)

created a taxonomy of existing patterns for designing DApps as a

path to build out an ontology for performing semantic queries.

A number of attacks on Ethereum smart contracts have been

reported, including the infamous DAO attack Siegel (2016) where

$50million worth of Ether was stolen and the critical Parity wallet hack

Palladino (2017) that incurred in $30 million worth of Ether being

exploited. Atzei et al. (2017) surveyed existing attacks on Solidity smart

contracts with code snippets showing related vulnerabilities.

Meanwhile, the blockchain community also compiled a number of

software patterns and anti-patterns targeting Solidity programming

around cryptocurrency transactions in order to maximize the security

of Ethereum smart contract design ConsenSys (2018). More recently,

Moreno et al. (2019) proposed a security pattern focusing on the use of

blockchain in big data systems. Relatedly, Ellervee et al. (2017)

described a comprehensive reference model for blockchain-based

systems using software architecture concepts.

Recent surveys summarized existing applications of blockchain

technologies in the healthcare sector and provided a positive outlook

on their potential. De Aguiar et al. (2020) discussed the potential

applications of blockchain technology in healthcare, focusing on

privacy, safety, and the sharing of health information. The study

highlighted that blockchain has the potential to guarantee privacy by

using techniques such as data immutability, attribute-based encryption,

and zero-knowledge proof. It compared different consensus protocols

and suggested that Practical Byzantine Fault Tolerance (PBFT) is more

suitable for healthcare applications due to its lower computational costs

and permissioned nature. Chukwu et al. Chukwu and Garg (2020)

presented functional use cases of blockchain in data sharing, access

control, audit, distributed computing, data storage, and data

aggregation, with applications in various health domains such as

HIV aids, Cancer, Clinical trials, Insurance, and more. Their analysis

highlighted scalability issues, low performance, and high costs as

significant challenges in implementing blockchain in healthcare. In

the survey conducted by Arbabi et al. (2022), state-of-the-art efforts in

utilizing blockchain-based solutions in healthcare were classified and

analyzed, focusing on interactions between healthcare entities,

functional components of healthcare storage systems, challenges in

the healthcare domain, and benefits derived from blockchain

technology. It also discussed compliance with privacy regulations

such as GDPR and HIPAA.

Many research and engineering ideas have been proposed to apply

blockchain technology in healthcare, and implementation attempts

are underway Azaria et al. (2016); Peterson et al. (2016); Porru et al.

(2017); Bartoletti and Pompianu (2017). Prior research efforts have

provided a number of design recommendations for implementing

Solidity smart contracts involving general-purpose decentralized

applications. Few published studies, however, have addressed

software design considerations needed to implement blockchain-

based healthcare apps effectively with concrete examples. While it

is crucial to understand the fundamental properties of blockchains

and design patterns that are applicable when developing general

solutions based on blockchain, it is crucial to apply them properly

so that healthcare-specific requirements are satisfied in these designs

as well. Even though a subset of principles from prior work may be

relevant to the healthcare space, a systematic approach to

documenting appropriate design practice that specifically targets

technical challenges in healthcare is still essential.

4 A pattern collection for designing
blockchain-based healthcare
applications

The US Office of the National Coordination for Health

Information Technology (ONC) defined the basic technical
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requirements for achieving interoperability ONC (2014). Based on

these domain-specific requirements, the study in Zhang et al.

(2017a) outlined five aspects of relevant interoperability

challenges faced by blockchain-based apps:

1. Evolvability: Maintaining evolvability while minimizing

integration complexity: unlike traditionally centralized

applications, data, changes to data, and its change history

persist on-chain–due to the immutable nature of blockchain,

it is computationally infeasible to revert them in a decentralized

environment. At the same time, systems are subject to updates or

upgrades required by clinical workflow or healthcare regulations.

Balancing the need for change while avoiding a complete

redesign of previous system component requires a good design.

2. On-Chain Storage: Minimizing data storage requirements on the

blockchain: healthcare applications are expected to serve

thousands to millions of users, which, if run on centralized

systems, are much easier to scale. When data exchanges are

brought to decentralized networks, how to minimize the storage

overhead while maintaining necessary, traceable histories needed

to support interoperability is another key design consideration.

3. On-Chain Privacy: Balancing data storage with privacy concerns:

encryption is a modern approach applied to secure sensitive

data–healthcare applications use encryption to guard personal

health information. As computing resources become

substantially cheaper and more powerful, existing encryption

algorithms are yet to stand the test of time. Centralized systems

face serious consequences when data privacy is breached, but

when data is replicated across multiple locations, it will be more

challenging to trace the source of the breach.

4. Scalable Communication: Tracking relevant health changes across

large patient populations at-scale: according to a recent study,

physicians on average spend 5.5 h documenting and reviewing

electronic health records (EHR) of their patients for every 8 h of

scheduled patient time Melnick et al. (2021). When patients visit

multiple healthcare providers, there will be new information for

each provider to review. A decentralized system should allow

timely delivery and communication of changes in patient notes.

5. Security: Preventing unintended software loopholes and

safeguarding on-chain data: the implication of blockchain’s

decentralized nature is that system is at higher risks of

unintended loopholes and unauthorized data access, as

information is exposed to a much wider and, if not carefully

designed, uncontrolled audience, and security issues cannot be

immediately rectified. In recent years, software loopholes that

existed in several major blockchain-based crytocurrency services

have been exploited by attackers, causing significant financial

losses to users and the service providers Atzei et al. (2017). To

prevent similar predicament from happening to healthcare

services hosted in blockchain-based infrastructures, security

risks must be recognized in the early stage of system designs.

This section presents a pattern collection for creating healthcare

DApps that address these major challenges. We applied three

different approaches for developing this collection. First, we

extracted a subset of patterns using commonality and variability

analysis Coplien et al. (1998) by reviewing a number of verified

smart contract source code from Etherscan.io Etherescan to capture

common portions repeatedly used across various contracts and/or

supporting library contracts. This included contracts that resulted in

attacks to produce our recommendations for safer smart contract

design. Second, based on design practice and lessons learned from

prior research Zhang et al. (2017b, 2018a, 2017c, 2018b), we

proposed several patterns that target healthcare requirements.

Third, we reviewed and adapted several design principles that are

widely accepted as general system design recommendations to our

pattern collection with blockchain-focused design considerations.

Additionally, due to the growing popularity of Solidity and attacks

that have occurred to public smart contracts, the Ethereum

community has captured a number of Solidity code patterns for

preventing similar attacks. Although those code patterns were

almost exclusively targeting cryptocurrency or other apps with

financial incentives, we identified one code pattern that would be

particularly critical in a healthcare system.

The remainder of this section applies a pattern form variant to

motivate and show how our pattern collection aids in designing

blockchain-based healthcare applications. In particular, we present

eight design patterns—LAYERED RING, GUARDED UPDATE, CONTRACT

MANAGER, DATABASE CONNECTOR, DATABASE PROXY, ENTITY REGISTRY,

TOKENIZED EXCHANGE, and PUBLISHER-SUBSCRIBER Gamma et al.

(1995); Buschmann et al. (2007) in the context of the

permission-less Ethereum blockchain. We describe key healthcare

challenges these patterns resolve in the blockchain context and detail

their structure and composition2.

Table 1 provides an overview of the pattern collection, showing

how the patterns relate to healthcare-specific challenges described at

the beginning of this section and what specific sub-challenge each

pattern aims to solve.

Each of the patterns in this collection is discussed in depth

below.

4.1 A decentralized infrastructure for health
data sharing systems

4.1.1 Design problem faced by DApps for
healthcare use cases

Healthcare data is known to be fragmented across heterogeneous

healthcare data warehouses managed by large healthcare organizations,

private practices, and,more recently,mobile health app providers Ajami

and Bagheri-Tadi (2013); Zhang et al. (2018a). Despite the adoption of

certified EHRs or other data vendors that provide direct data exchange

between providers within the same network, impediments for

healthcare providers and researchers to access those heterogeneous

data silos still exist.

4.1.2 Solution → apply the Layered Ring pattern to
define a decentralized base architecture for a
health data sharing system

The emerging blockchain technology that supports

decentralized data storage and executable code via smart

2 Naturally, there are other patterns relevant in this domain, whichwill be the

focus of future work.
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contracts, with Ethereum (Buterin, 2014) being the most popular,

has presented itself as a potential infrastructure to connect existing

healthcare data silos Peter B. Nichol (2016); Broderson et al. (2016);

Dubovitskaya et al. (2017). It has successfully maintained tamper-

proof cryptocurrency transactions between Internet users

worldwide Nakamoto (2008); Cap (2023) and managed verifiable

collectibles and rewards from cryptogaming like CryptoKitties and

artwork through Non-Fungible Tokens Kugler (2021).

Figure 2 compares the high-level architecture of modern

healthcare data sharing systems with blockchain-based digital

asset management platforms. In this figure, the bottom layer in

Architecture 1 represents heterogeneously represented objects,

such as siloed healthcare data sources, low-frequency, high-

fidelity clinical data (LFQ) captured by trusted sources, and

high-frequency, low-fidelity data (HFQ) generated by patients

or wearable and mobile devices Zhang et al. (2018c), and

geographically dispersed Internet users in Architecture 2.

Data sources generated by healthcare professionals via

diverse, centralized EHR systems on the left may or may not

inter-operate, depending on if an authorized exchange service is

available between the data sources. Whereas on the right, data

(like identifiers of users or asset owners) and data requests flow

into and out of the same service implemented on the

decentralized ledger and is thus widely accessible, with or

without a common user interface.

Architecture 1 can be modified to achieve more decentralization

by applying the basic pattern of Architecture 2 in Figure 2, except

that a user interface is needed for healthcare users who need not

concern themselves with acquiring advanced knowledge about

blockchain or smart contract function invocation. In fact, most

dApps, such as CryptoKitties (a cryptogame for collecting and

breeding digial cats) CryptoKitties, 2023, Fomo3D (a gambling

TABLE 1 Overview of proposed pattern collection for designing blockchain-based healthcare apps.

Pattern Targeted Category Specific challenge to solve

Layered Ring Evolvability Defining the basic architecture of data sharing system

Guarded Update Evolvability & Security Preventing unexpected reentrancy attacks

Contract Manager Evolvability Splitting data from logic to ensure data availability via clean separation of concerns

Database

Connector

On-Chain Storage Ensuring on-chain storage scalability and interoperability with standardized and minimal interfaces to off-chain

storage

Database Proxy On-Chain Privacy Providing an additional layer of security by performing lightweight tasks before permitting access to database

connectors

Entity Registry On-Chain Storage Managing healthcare entities on-chain and other types of common data at scale

Tokenized

Exchange

On-Chain Privacy Authorizing access to data storage and maintaining verifiable access logs

Publisher-

Subscriber

Scalable Communication &

Security

Providing user notifications when events of interest occur across the decentralized system

FIGURE 2

Comparing the current state of traditionally centralized healthcare architecture with that of popular blockchain-based use cases.
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game for winning cryptocurrency lotteries) FOMO3D, 2023, and

IDEX (a cryptocurrency trading platform) IDEX - Decentralized

EthereumAsset Exchange, 2018, implement a user-friendly interface

that encapsulates the blockchain component to provide a familiar

user experience as any other centralized applications.

Figure 3 presents the first pattern in the collection, LAYEREDRING,

which is generalized from Architecture 2 above with a high-level

view to illustrate the scale of involved entities in each layer. The

outermost layer is a Storage Layer composed of a large number of

data sources, each maintained by its owner (e.g., a private

practitioner, a healthcare organization, or a 3rd party HFQ data

provider). The middle Blockchain Layer connects data sources from

the outer layer and is to be maintained by key stakeholders or mid-to

large-size healthcare organizations in a federated environment. The

innermost User-Facing App Layer provides a convenient interface

for interacting with data and operations defined in the blockchain. It

is also the most centralized piece of the system because a user-facing

app, whether a mobile or web-based one, is usually hosted in a

centralized server. However, the app server can be designed to log

activities and events directly to the shared ledger and preserve the

system’s overall transparency.

TheLayered Ring pattern is also a variant of the ENTERPRISE

SERVICE BUS (ESB) pattern Zdun et al. (2006); Fernandez (2013),

which provides a common data model and a messaging

infrastructure to allow various systems to communicate through

a shared set of interfaces. In LAYERED RING, the Blockchain layer acts

as the messaging bus that provides services to the rest of the

components. However, unlike the ESB, the interface of Layered

Ring focuses only on the structural and syntactic level of the

exchanged data and does not itself create a common ontology for

interpreting the semantics of shared data, which is an entirely

separate and complex topic being researched by domain experts.

The infrastructure also requires careful design to ensure that

stewards or managing nodes of the network are decentralized.

4.2 Preventing reentrancy attack in the
blockchain

4.2.1 Design problem faced by DApps for
healthcare use cases

The replicated and decentralized nature of blockchain makes

DApps prone to mistakes that are exploited by attackers. This

raises security concerns regarding the use of this technology in

data-sensitive industries such as healthcare that requires

compliance to strict security and privacy regulations. An

infamous example of prior attacks on the blockchain was the

DAO attack in 2016 Siegel (2016) in which a reentrancy bug was

discovered and exploited that caused at the time worth $30 million

of Ethereum being stolen. Even though the immutability and

decentralization properties of blockchain technology can provide

tremendous value to the direct exchange of digital information,

without proper design decisions made prior to deploying a system

on-chain could yield destructive consequences for healthcare

users.

4.2.2 Solution→ apply the Guarded Update pattern
to prevent unexpected reentrancy attacks

We deem attack prevention as the utmost important design

consideration in the development cycle of a blockchain-based

healthcare system, so we propose the use of this pattern as a

mechanism against reentrancy attack early on during the

FIGURE 3

Structure of the Layered Ring pattern that defines the base architecture of the data sharing system.
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development cycle in order to help design the rest of the

system wherever this pattern may apply. A simplified

reentrancy bug that affected the DAO app is shown in the

code snippet below:

The withdraw() function in VulnerableContract sets the caller’s

balance after checking if the asset transfer to the caller (msg.sender)

is successful. The attack in ExploitVulnerableContract exploits this

vulnerability by calling the withdraw() function in a fallback

function that is executed by the call.value() method, creating

recursions that bypass the statement on the line of code that sets

the user balance after the vulnerable statement returns ConsenSys

(2018).

Although the reentrancy bug primarily targets digital assets

such as cryptocurrencies that hold financial values, this bug could

also affect system designs for healthcare functions if prevention is

not implemented in advance. As a key pattern in the collection,

GUARDED UPDATE prevents reentrancy attacks by ensuring atomic

update to critical data in the system. The structure and code

examples of this pattern appears in Figure 43. As shown in the

figure, a guarding conditional flag reentrancyMutex is used to

control operations on protected state variable(s) (i.e., conditions).

Once the variable(s) has been modified, the guarding condition is

reset to the initial state to permit other memory contexts to operate

the guarded data. Another, more systematic way to achieve this is

to create a modifier in a Solidity interface contract, which can then

be included in the declaration header of functions in other

contracts.

Protecting atomic updates to state variables in the smart

contracts prevents serious reentrancy attacks to occur, however,

one major drawback is that atomic executions may both slow down

runtime performance and increase transaction costs of the system,

particularly in a decentralized network.

Functions that require an additional call through an

intermediary contract can also be protected using a modified

GUARDED UPDATE pattern. A situation where this is required is

when the smart contract requires a call that casts an address of

a contract to a contract instance. It should be noted that when

making the call from the casted contract, the msg.sender value no

longer contains the actual caller but rather the contract making the

call itself. If the destination of the call passes through an

intermediary contract and is destined for the original contract,

FIGURE 4

Structure and example solidity code snippet of Guarded Update pattern to prevent reentrancy attacks on-chain.

3 The code examples are based on https://github.com/o0ragman0o/

ReentryProtected.
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it may be necessary to cache the _data field and validate that it was

not altered in between calls.

An example of an implementation for such a modifier can be

found below.

In the above example, pendingInternalRecipientId is the ID of a

token to which another token may be transferred. This is part of an

implementation for composable tokens, where tokens can be owners

of tokens in addition to standard addressed owners. Within the

assembly code, _data is the memory address of the start of the array

data. The first 32 bytes (0 × 20 bytes) are reserved for the length of

the array, which needs to be stepped over in order to retrieve the first

value. The array elements are numbered consecutively starting at

0 and each occupies one 32 byte word. The mload function retrieves

the value at a specific point in the _data, stored in memory. Solidity’s

sstore loads the data from the second argument into the slot for the

pendingInternalRecipientId. As in GUARDED UPDATE, this

implementation also protects against reentrant calls on line 6 by

ensuring that pendingInternalRecipientId is set to the 0 address

before entering the modified function at line 11. Following the

function call, pendingInternalRecipientId is set to 0 once more to

reset the reentrancy check on line 12.

In the above code sample, the safeTransferChildFrommethod

has an additional argument deviating from the standard

safeTransferFrom from the OpenZeppelin ERC1155 standard

contract interface OpenZeppelin, 2023a (accessed on 01-16-

2023), which represents a child contract on which a

safeTransferFrom call needs to be made. As mentioned above,

the _data argument must be verifiably unaltered when the

function has a callback to the original contract to ensure the

original intention of the call is honored. By including the

cachedInternalTransfer modifier, the address to which the

child token is transferred is cached until the function is fully

completed. If the argument _to is the address of the original

contract, onERC1155Received is called because of the

requirement of the ERC1155 contract standards by

OpenZeppelin (2023b) (accessed on 01-16-2023).

On the invocation of onERC1155Received, the recipientTokenId

from the _data argument is parsed and subsequently compared to

the pendinInternalRecipientId cached in the safeTransferChildFrom

call. This validates that the _data’s recipient address has not been

altered and that no reentrancy has occurred.

4.3 Separating data from logic via a manager
contract

4.3.1 Design problem faced by DApps for
healthcare use cases

The inherent immutability of blockchains provides non-

repudiation of data operations and transactions, but it can also

become a major bottleneck to data liquidity. On the one hand,

immutability is helpful for achieving interoperability in a healthcare

environment as it makes data objects (whether it is a reference pointer

to a remote data repository or an authorization request that grants a

provider access to healthcare data) on the blockchain always available,

even when one of the key maintainers of the network becomes

unavailable. On the other hand, without a loosely-coupled design

that focuses on clean separation of data and logic, immutability

leads to difficulties during system upgrades. Data that is exchanged

in healthcare systems includes not only information shared across

various healthcare participants but also meta data related to the system

or the most up-to-date list of network users. Logic is operation on the

data (read, creation, update, or removal) or an event that occurs when a

predefined condition is met.

4.3.2 Solution → apply the Contract Manager
pattern to separate data from logic to ensure data
availability

The CONTRACTMANAGER pattern aims to address the separation of

data and logic via a permanent storage structure, which has been

described in ConsenSys (2018). Figure 5 presents the structure of

this pattern with sample interfaces and code snippets.

Permanent storage maintains one or more data fields used

throughout the system with getter and setter functions for each

data field. This ensures that all meta data needed by the system

(such as the version or address information of any smart contract

dependencies and other data structures shared across different

smart contracts) remains readable even when logic contracts are
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outdated. Additionally, CONTRACT MANAGER stores a Contract

Repository of meta data that describes versions of the system

(including but not limited to the addresses of the latest logic

contract components and history contract addresses). To ensure

upgradeability of the system, CONTRACT MANAGER also defines

access privilege of smart contracts by allowing the original

owner of the storage contract to configure an access group for

delegating or revoking some or all rights of data access and

operations to other members to prevent data locking.

One drawback of CONTRACT MANAGER is that all other logic

contracts would need to access this contract for versioning

checks and data queries. An alternative design is to leverage the

AUTHORIZER pattern Fernandez (2013) along with fine-grained

authorization models such as role-based access control models

Sandhu et al. (1996) or access matrix Sandhu and Samarati

(1994) to separate the definition of access rules, further

decoupling the rules from the storage component. OpenZeppelin

provides such an implementation of role-based access control

models as a standard for Ethereum-based smart contracts

OpenZeppelin (2023a).

4.4 Standardized on-chain interfaces to off-
chain storage access

4.4.1 Design problem faced by DApps for
healthcare use cases

EHR systems have served the U.S. healthcare for decades

and have accumulated enormous amounts of valuable medical

records that either exist in legacy systems or in more modern

certified EHRs. Despite there being significant efforts to create

compatible data sharing features, centralized systems still present

a major barrier to interoperability. For decentralized systems, the

large scale and stringent privacy requirements of healthcare data

also present considerable challenges: 1) replicated copies of data

make storing encrypted or hashed versions of the actual data on

the blockchain vulnerable to attacks and 2) the prevalence of

existing EHR systems make it impractical to replace or

completely duplicate their functionality with decentralized

systems. The design question now becomes how to bridge the

gap between legacy central systems and the new paradigm of

decentralized services that facilitate interoperability.

4.4.2 Solution → apply the Database Connector
pattern promote interoperability via standardized
and scalable interfaces to existing off-chain
(centralized) systems

Figure 6 presents the composition of the DATABASE CONNECTOR

pattern. The Database Connector component defines a standardized

interface between the blockchain and storage layers. The interface

provides an abstraction of the heterogeneous health data silos (e.g.,

EHR or other LFQ databases and HFQ data) to present only a

minimal set of information about each data source to the blockchain

layer. As shown in Figure 6, the interface may only need to capture

meta information of a data source (such as name of owner or

description) and then provide reference pointers to the original data

source and a verifiable credential from the data source owner that

proofs integrity of the data. Database Connector is also closely

associated with the DATABASE PROXY pattern (discussed next in

Section 4.5) that uses a Connector Handler component in the

blockchain layer to provide data access to the connector.

The main benefits of DATABASE CONNECTOR are 1) it provides

on-chain scalability that allows efficient sharing of the necessary

connectors and 2) it offers a standardized interface that unifies

the on-chain representations of off-chain databases. The

drawback is the additional implementations that are required

for creating standardized connectors to existing databases.

4.5 Security checking before accessing off-
chain storage

4.5.1 Design problem faced by DApps for
healthcare use cases

Patients in healthcare systems are not represented uniformly, so

data sharing between providers often involve exchanging personally

identifying information. As aforementioned, the replicated nature of

blockchain is not suitable for sharing such sensitive information as

any data and its transaction history stored on-chain are available to

all network managers in an immutable and verifiable way. For

financial applications focusing on verifying that a transfer of an

asset indeed took place, these properties are critical. When the

objective is to store data with an intricate structure and a large scale,

it is important to understand how these properties will impact the

use case.

For example, immutability makes it difficult for anyone,

including data owners, to modify or remove the data change

history from the blockchain. However, certain scenarios, such as

when a security flaw is found, when a medical error is discovered

in the data, or when data standards are updated, may demand

change to data or data history over time. In these situations, the

immutable nature of blockchains creates a fundamental tension

that must be resolved between the need to present data to

providers with integrity and the flexibility needed to change

data when patient data privacy is at risk or when mistakes in

the data need to be rectified.

4.5.2 Solution → apply the Database Proxy pattern
to provide an additional layer of security by
performing lightweight tasks before permitting
access to database connectors

Database Proxy is akin to the traditional Proxy pattern Gamma

et al. (1995) with a focus that is unique to a DApp design. To reduce

computational costs on-chain, theDatabase Proxy interface 1) defines a

lightweight representation as a placeholder of the original data object

and 2) encodes necessary lightweight security checks and auditing tasks

until retrieval of the original data object is required. It is worth noting

that protected health information should only exist as an off-chain data

object for which a proxy is created. This is so that any regulatory or

security checks (which is much more rigorous) defined by HIPAA or

other privacy standards, are performed off-chain.

Figure 7 illustrates the structure of DATABASE PROXY pattern and

its interaction with the Database Connector object described

previously in Section 4.4.

Database Proxy is an interface that maintains a reference to a

Connector Handler object and forwards read/write requests to the
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appropriate Database Connector component for data access from

the storage layer of the system. Each request through the

Connector Handler is then logged on-chain, making the

request history transparent to the blockchain network for

verification against data corruption or unauthorized access.

This design encapsulates lower-level implementation

variations of the proxified contract. When the Database

Connector that contains more heavyweight implementations is

updated with a new storage configuration (e.g., when a data

source has been introduced a new management system that

requires some change in its Database Connector abstraction

layer), the interface of the proxy contract remains unaffected.

Similar to the original PROXY pattern Gamma et al. (1995), a

proxy object can perform lightweight housekeeping tasks, such as

security checks of administrative access and auditing tasks that

log existing data requests, on commonly used metadata stored in

its internal states before retrieving the actual data. This

component follows the same interface as the real object and

can execute the original data object’s function implementations

as needed. It provides an additional layer for securing access to

the real data object. However, Database Proxy may cause

disparate behavior when the real object is accessed directly by

some other component in the system while the proxy surrogate is

accessed by others. It also creates an additional level of

indirection for accessing actual data objects. This pattern

complements the Entity Registry pattern when applied to the

digital identity management use case. The user accounts from the

registry can each have a proxy to the complete user data object.

As the original data object builds up, its proxy contract stays

unchanged. If the proxy is linked with an identifier along with the

complete data object, it can also serve as a mechanism to retrieve

stolen or lost identity, as implemented by an earlier version of the

UPort identity system Lundkvist et al. (2017).

4.6 Managing healthcare entities and
common data on-chain at scale

4.6.1 Design problem faced by DApps for
healthcare use cases

Decentralization can only be achieved when digital assets and

their transaction histories are shared with every network

manager, which implies intensive storage requirements. For a

DApp to serve healthcare use cases well, it should minimize on-

chain storage burden yet still enable data sharing among

participants.

Suppose a DApp stores some encrypted patient billing data on-

chain. Billing data typically includes detailed patient insurance

FIGURE 5

Structure and example solidity code of Contract Manager pattern for maintaining key meta-data on-chain.
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information, such as their policy number, insurance contact

information, coverage details, and other aspects needed by

providers to bill for services. This implies that millions of records

being replicated on all nodes of the network.

Realistically, most patients are covered by a relatively small subset of

insurance groups (particularly in comparison to the total number of

patients, e.g., each insurer may cover 10,000s or 100,000s of patients).

Therefore, a substantial amount of intrinsic, non-varying information is

common across patients that can be reused and shared, such as details

on what procedures are covered by an insurance policy. To bill for a

service, however, this common intrinsic informationmust be combined

with extrinsic information (such as the patient’s policy number) that is

specific to each patient. A good design consideration is to create an on-

chain data structure to capture such common data to reduce replication

overhead while providing access to the complete data objects on

demand.

4.6.2 Solution → apply the Entity Registry pattern
formanaging healthcare entities and commondata
on-chain at scale

As shown in Figure 8, the ENTITY REGISTRY mimics the

traditional FLYWEIGHT pattern Gamma et al. (1995) with a

factory Gamma et al. (1993) object to help manage healthcare

entities on-chain. In particular, getEntity uses a factory to create

entity objects and maintain references (addresses) to created

Entity objects in a common smart contract (i.e., Entity

Registry). It internalizes common data across a number of

Entity’s data field while externalizing varying data storage in

entity-specific contracts (such as Patient or Provider entity).

Using references (i.e., addresses) to entity-specific contracts

stored in the registry, combined extrinsic and intrinsic data

can be retrieved upon request to return a complete dataset.

Applying this pattern to the earlier scenario, shared, encrypted

insurance information is only stored once in the registry instead of

being repeated stored in all patient accounts. Varying, patient-

specific billing information is maintained in corresponding

patient-specific entity contracts. The registry can also maintain a

look up table (or a mapping) between unique entity identifiers and

the referencing addresses of already deployed entity contracts to

prevent account duplication. To retrieve complete insurance and

billing information of a particular patient, clients need only invoke a

function call from the registry with the patient identifier to obtain

the combined intrinsic and extrinsic data object.

Entity Registry intends to provide more efficient management of

large volumes of objects (such as user accounts in the example

above). It minimizes redundancy in similar objects by maximizing

data and operation sharing. Particularly in the insurance example, if

common insurance policy details are not extracted from each

patient’s contract, the cost to change a policy detail will be

immense–it will require rewriting a huge number of impacted

contracts. Data sharing with flyweight registry helps minimize

the cost to change the common state in objects stored on-chain.

However, the application of this pattern alone cannot ensure

integrity of the data being exchanged because it exposes only

reference information for retrieving complete data objects for

security and privacy reasons. It would rely on an off-chain or a

3rd-party oracle service Xu et al. (2016) to certify the integrity of the

data either via hashing functions or other data verification protocols.

This pattern is particularly suitable for creating a standardized

digital identity management system for healthcare participants that

have varying roles. For instance, common data of participants

includes identifiers, role type, role description, which can be

stored in an ENTITY REGISTRY. Whereas specific data structures

unique to each role type can be implemented in their respective

contract classes or stored in off-chain locations, which can then be

referenced in the registry. The registry in this case would serve as a

global directory where identifiers are used for looking up specific

information if given the access.

4.7 Securing and recording data access

4.7.1 Design problem faced by DApps for
healthcare use cases

Smart contracts are powerful for automating executions of

predefined agreements directly between involved entities. They

FIGURE 6

Structure of the Database Connector pattern used to standardize on-chain Interfaces to off-chain storage access.
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have successfully been leveraged in DeFi applications Chen and

Bellavitis (2020) to register entities on the blockchain using

cryptographic keys and define mutually agreed rules that dictate

the updates of appropriate cryptocurrency digital wallets and

balances. The direct on-chain exchange of digital healthcare assets is

unfortunately hard to achieve due to its high complexity and variability

in its management systems. Even if data sharing would be enabled in a

decentralized environment, the shared information cannot be openly

visible to anyone in the network. Proper authorizations to access

sensitive health data must be safeguarded.

4.7.2 Solution → apply the Tokenized Exchange
pattern to authorize access to off-chain data
storage with a verifiable data access trail

Variability of off-chain data sources can be encapsulated with

a standardized interface that encodes high-level information

about the data source and a set of basic operations on the

data source (e.g., functions to retrieve from the data source or

verify origin and integrity of the data source.). Figure 9 presents

the structure of the TOKENIZED EXCHANGE pattern that defines an

off-chain interface named Token to consistently represent each

data source. With this interface, the Database Connector Object

(from the DATABASE CONNECTOR pattern discussed in Section 4.4)

that references an off-chain data component can be “tokenized”

off-chain with access authorizations being encoded to a standard

format using encryption and digital certification algorithms. The

employed security mechanism along with any public keys used to

generate the tokens are stored as attributes defined in the

interface. Tokens generated are maintained on-chain in a

shared Token Registry smart contract, which captures a history

of all events related to the tokens, such as the creation, update,

deletion, and access requests. To retrieve the Database Connector

Object, the recipient needs to possess the authorized party’s secret

key in order to decrypt the desired data via the DATABASE PROXY

pattern presented in Section 4.5.

With this pattern, shared tokens that carry access authorizations

can only be consumed by the intended recipient(s) with proper

cryptographically paired keys. One limitation to this pattern is that

tokens may be hard to standardize in some situations, in which case,

implementations of other interfaces may be required. Example

interfaces include role-based access control models Sandhu et al.

(1996) and access matrix Sandhu and Samarati (1994), which

provide more fine-grained authorizations and organization-

specific rules that define lower-level permissions to the access

tokens. Combined with other patterns in this collection,

TOKENIZED EXCHANGE can help design patient-centered DApps

such as a patient healthcare record system, where patients can

grant providers data access to data they own, provided that a

tokenizer interface is implemented.

4.8 Providing notifications of relevant
healthcare activities at scale

4.8.1 Design problem faced by DApps for
healthcare use cases

The immutability of blockchain is accomplished through a

replicated, complete event history, such as digital asset transactions

and smart contract function executions. The availability of this

information also makes blockchain potentially suitable for improving

the coordination of patient care among participants (e.g., physicians,

pharmacists, insurance agents, etc.) who traditionally communicate

through diverse channels with some degree of manual effort. For

instance, to discuss a patient’s care case, a provider may share the

FIGURE 7

Composition of Database Proxy pattern for performing additional security checks before accessing off-chain data store.
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patient’s information with a specialist by phone or fax. In a

decentralized systems, these interactions are to be captured as part

of the event history, which creates a challenge for directly capturing

specific health-related topics from an exhaustive search of transactions

or topic filtering, which requires non-trivial computation and may

result in delayed responses and user fatigue.

An effective design should facilitate coordinated care and

provide timely notifications when appropriate. For instance,

health-related activities should be communicated to relevant

parties from the point when a patient self-reports illness to their

prescription pickup activity; clinical reports and follow-up

procedures should be relayed to and from the associated care

provider offices in a timely manner.

4.8.2 Solution → apply the Publisher-Subscriber

pattern to manage user notifications at scale when
events of interest occur across the decentralized
network

To facilitate information filtering and relaying at scale, a

notification service using the Publisher-Subscriber pattern

Buschmann et al. (2007) is needed. In this design, changes in

health activities are broadcast to providers who subscribe to

FIGURE 8

Entity registry pattern used with a factory to manage entities and other types of common data while minimizing on-chain storage requirements.

FIGURE 9

Structure of Tokenized Exchange pattern for authorizing off-chain data access and recording verifiable data access logs.
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events related to their patients, which removes the overhead of

filtering or manual searching. Due to the deterministic nature of

smart contract computations, communications between the on-

chain address space and off-chain services can occur in two ways:

1) via a regular polling mechanism, in which an off-chain

server delegates a Messenger component to monitor changes

or new events in the system, and 2) pushing data out to a

trusted 3rd party Oracle who performs some computation off-

chain and then forwards the results back to the blockchain

address space via a callback function4, such as in Foundation

(2015b). The scalability of an Oracle service is yet to be tested

however.

The first communication method avoids computation

overhead on-chain as it delegates the querying and event

processing task to an off-chain server. Specifically, when the

publisher has an update, its subscribers only need to do a simple

update to an internal state variable that records the publisher’s

address, which a Messenger is created to monitor changes

actively. When a change event is detected, the responsibility

for the computation-heavy task of content filtering is

delegated to the DApp server from the blockchain: the change

activity is retrieved directly from the publisher using the address.

The DApp server is context-aware at this point because each

subscriber has an associated contract address accessible by the

server. The Messenger can then filter the content based on

subscribed topics and update the contract states of appropriate

subscribers as needed.

The second approach shifts the responsibility of topic

subscriptions and updates to the smart contract component

on-chain. When a topic, such as a patient their provider

wishes to be notified of any health-related activities,

experiences a new event or has a value update, the smart

contract logic that notifies the subscribers pushes the updated

topic to an Oracle service, which executes some task related to the

topic (e.g., sending a secure message to the subscriber regarding

the updated event) and sends the result back to the smart contract

caller upon task completion.

Figure 10 shows the two variants of PUBLISHER-SUBSCRIBER to

provide the notification service.

A solution presently available for DApps makes use of a

decentralized interoperability layer called the Query Execution

Layer GraphProtocol (2018). Figure 11 shows a high-level

overview of the Web3 application stack, where the Query

Execution Layer is built over the blockchain protocols and

interfaces with a DApp. This layer can operate using a

Decentralized Query Protocol, defined to be a “collection of

rules by which clients pay a decentralized network of nodes

for indexing, caching, and querying data that is stored on

public blockchains and decentralized storage networks such as

IPFS/Swarm” GraphProtocol (2018). This protocol can enable

FIGURE 10

Two variants of the publisher-subscriber pattern for providing clinical notifications of relevant healthcare activities at scale.

4 https://blockchainhub.net/blockchain-oracles/
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users and DApps to query a chain-agnostic network’s data

without having to manage a centralized query infrastructure

for the DApps.

The solution provided by GraphProtocol (2018) for indexing

information on blockchain networks is similar to the Publisher-

Subscriber pattern, where the topics are published events emitted

from a smart contract, subscribed to by decentralized nodes, which

subsequently index and curate the information. Custom resolvers

for the subgraph may be deployed to nodes to ensure further

decentralization of the DApp.

Implementing a notification service in a healthcare DApp is

useful when a state change in the shared environment must be

reported to interested parties without a complex, many-to-many

communication model. Although, a disadvantage to the polling

approach is the complexity in the implementation of the

messenger component that regularly monitors smart contract

events, but it is much more efficient to offload the topic filtering

task to off-chain services. The drawbacks to the push-to-oracle

approach are on-chain computation overhead and potential costs

of Oracle services despite this approach being relatively easier to

implement.

5 Concluding remarks

Blockchain and programmable smart contracts provide an

ecosystem for creating DApps that have the potential to improve

healthcare interoperability on the technical level. However, key

properties that make blockchain successful for financial

applications–decentralization, immutability, and transparency–also

pose major concerns when adopted to create healthcare systems.

Specifically, we analyzed concerns related to system evolvability,

on-chain storage requirements and the overhead they cause, data

privacy, communication scalability in the face of a large number of

healthcare users and healthcare data, as well as data authorization.

The paper then described a collection of patterns–Layered Ring,

Guarded Update, Contract Manager, Database Connector,

Database Proxy, Entity Registry, Tokenized Exchange, and

Publisher-Subscriber–to mitigate these concerns with code

examples and/or their healthcare use cases.

The decentralized nature of blockchain has the potential to

enable a more interoperable environment that cannot be easily

achieved with traditionally centralized systems, but it also

requires careful design choices to implement a reliable and

sustainable healthcare DApp. Smart contracts enable

programmability on the blockchain, but they can also produce

overhead in data storage and communication in addition to

expose system vulnerability to malicious attackers. By combining

time-proven design practices with an understanding of domain-

specific requirements, the collection of patterns and their use cases

are proposed to help create healthcare DApps that respect the

security and privacy requirements of the domain in addition to

being modular, scalable, easy to integrate and maintain.
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