& frontiers | Frontiers in Blockchain

’ @ Check for updates

OPEN ACCESS

EDITED BY
Roman Vitenberg,
University of Oslo, Norway

REVIEWED BY
Victoria L. Lemieux,

University of British Columbia, Canada
Chhagan Lal,

Delft University of Technology,
Netherlands

*CORRESPONDENCE
Peng Zhang,
peng.zhang@vanderbilt.edu

RECEIVED 28 July 2022
ACCEPTED 07 July 2023
PUBLISHED 27 July 2023

CITATION

Zhang P, Kelley A, Schmidt DC and
White J (2023), Design pattern
recommendations for building
decentralized healthcare applications.
Front. Blockchain 6:1006058.

doi: 10.3389/fbloc.2023.1006058

COPYRIGHT
© 2023 Zhang, Kelley, Schmidt and White.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Blockchain

TvPE Original Research
PUBLISHED 27 July 2023
pol 10.3389/fbloc.2023.1006058

Design pattern recommendations
for building decentralized
healthcare applications

Peng Zhang'?*, Adair Kelley?, Douglas C. Schmidt! and
Jules White*

'Department of Computer Science, School of Engineering, Vanderbilt University, Nashville, TN,
United States, 2Data Science Institute, Vanderbilt University, Nashville, TN, United States

Blockchain and distributed ledger technologies (DLT) are emerging decentralized
infrastructures touted by researchers to improve existing systems that have been
limited by centralized governance and proprietary control. These technologies
have shown continued success in sustaining the operational models of modern
cryptocurrencies and decentralized finance applications (DeFi). These
applications has incentivized growing discussions in their potential applications
and adoption in other sectors such as healthcare, which has a high demand for
data liquidity and interoperability. Despite the increasing research efforts in
adopting blockchain and DLT in healthcare with conceptual designs and
prototypes, a major research gap exists in literature: there is a lack of design
recommendations that discuss concrete architectural styles and domain-specific
considerations that are necessary for implementing health data exchange systems
based on these technologies. This paper aims to address this gap in research by
introducing a collection of design patterns for constructing blockchain and DLT-
based healthcare systems that support secure and scalable data sharing. Our
approach adapts traditional software patterns and proposes novel patterns that
take into account both the technical requirements specific to healthcare systems
and the implications of these requirements on naive blockchain-based solutions.

KEYWORDS

blockchain technology, distributed ledger technology, software engineering, design
patterns, smart contracts, smart contract security and vulnerability, healthcare, data
sharing

1 Introduction

Blockchain and distributed ledger technologies have successfully been implemented in
managing transactions of digital assets through cryptographic currencies (cryptocurrency) in
a decentralized manner, with the most prevalent being Bitcoin Nakamoto (2008) and
Ethereum (Buterin, 2014). These decentralized technologies are a new paradigm that is
fundamentally supported by mature concepts from computer science and mathematics.
They differ from traditional infrastructures that have placed many constraints on system
services and capabilities due to centralization. To achieve decentralization, a certain amount
of key information must become transparent and thus immutable to a certain degree, which
enabled “trustless” exchanges of Bitcoin-like cryptocurrencies Blundell-Wignall (2014) that
directly involve both parties of a transaction without the need for a trusted middleman or
third party. The revolutionary fundamentals underlying blockchain have sparked significant
interest from technologists and domain experts to explore meaningful services across various
industries, such as finance, healthcare, transactive energy, and the food industry.

01 frontiersin.org

Zhang et al.

Ethereum blockchain has become a mainstream platform today for
developing applications as it has extended the capabilities of
cryptocurrency-based blockchains to enable programmability and
near Turing-complete computations via “smart contracts® (Buterin,
2014). Smart contracts are similar to a typical software program in that
they have internal data and supported instructions (program code) to
directly control or manipulate the data to facilitate exchanges and
redistributions of digital assets. The instructions define rules and
agreements established between involved parties in advance to
produce deterministic outputs. The successful implementations of
programmable smart contracts by Ethereum has promoted the
development of decentralized apps (DApps) Johnston et al. (2014),
which are autonomously operated applications that interact with
cryptography-protected data stored on the blockchain and maintain
the records of transactions also on-chain. DApps enable end users to
directly interact with the blockchain and/or access relevant data on-
chain.

Blockchain and smart contracts have been explored widely by
researchers in healthcare to address interoperability challenges DeSalvo
and Galvez (2015); Das (2017) among use cases. Interoperability is
defined as the ability for different information technology systems and
applications to communicate, exchange data, and effectively digest the
exchanged information Geraci et al. (1991). Healthcare authorities and
experts have attempted to improve healthcare interoperability for
decades Richesson and Nadkarni (2011) in order to provide more
continuous and consistent medical services, including but not limited to
delivering patient data across multiple care practices securely and
reliably, facilitating effective medical communications between
providers, and accurately managing medical devices and promptly
delivering their outputs to the appropriate patients or providers Lesh
et al. (2007). Despite the growing interest in creating blockchain-based
healthcare systems, the current literature on the concrete design
recommendations deserves greater attention for applying blockchain
technology to address domain-specific challenges in healthcare.

This research paper addresses the need for software design patterns
tailored to the unique challenges of creating healthcare DApps. The
paper offers two key contributions: firstly, a summary of five key
domain challenges faced by blockchain technologies—evolvability,
on-chain storage requirements, data privacy, communication
scalability, and data authorization. Secondly, a set of design patterns
is presented, including Layered Ring, Guarded Update, Contract
Manager, Database Connector, Database Proxy, Entity Registry,
Tokenized Exchange, and Publisher-Subscriber. Code examples and
healthcare use cases are provided to illustrate how these patterns can
effectively address the challenges associated with blockchain-based
healthcare systems. The intended audience for this paper is health
information technology (IT) system architects and developers seeking
to implement blockchain and related technologies in their system
design. The importance of our contributions lies in the potential
impact they can have on software engineering practices and
outcomes for the blockchain community. Utilizing design patterns
can lead to more robust and adaptable systems, ultimately
improving overall software quality. This can benefit developers,
architects, and researchers in designing and maintaining complex
systems. Furthermore, our research contributes to the theoretical
understanding of blockchain-oriented software engineering principles
by exploring the relationship between healthcare-specific requirements
and design patterns.

Frontiers in Blockchain

10.3389/fbloc.2023.1006058

In software engineering practice, design patterns offer general and
reusable solutions to recurring problems. They allow software engineers
to communicate using well-known and well-understood vocabulary for
interactions in the software Shvets (2015). By documenting a collection of
reoccurring blockchain-specific patterns that take into account domain-
specific requirements, this work can assist the target audience to more
quickly and effectively adopt this technology and create robust solutions
with it in the healthcare domain. Design patterns play a particularly
crucial role in blockchain development, as blockchain technology is still
relatively new, and developers face unique challenges in building
decentralized applications that can scale, remain secure, and interact
seamlessly with other parts of the ecosystem. By using design patterns,
developers can avoid common pitfalls, reduce development time, and
create robust and reliable applications that can help drive the widespread
adoption of blockchain technology in domain-specific applications.

Not applying design patterns can have negative consequences for
software systems—software systems are more prone to becoming rigid
and difficult to maintain, resulting in increased costs and effort.
Additionally, neglecting important aspects such as scalability can
limit the ability to leverage emerging technologies or adapt to
potentially leading to diminished
competitiveness. Furthermore, insufficient attention to evolvability

increasing user needs,
and design patterns can result in brittle systems that are prone to
errors, security vulnerabilities, and performance degradation, ultimately
compromising software quality. By investigating and integrating those
important aspects in the proposed design patterns, we aim to provide
practical insights and guidance for software practitioners and
researchers, ultimately improving the robustness, adaptability, and
overall quality of software systems.

The remainder of this paper is organized as follows: Section 2
provides an overview of blockchain technology and the Ethereum
implementation; Section 3 summarizes existing research related to
this work; Section 4 presents our proposed pattern collection in
detail with example code and their use cases in healthcare
applications; and Section 5 concludes the paper and summarizes
future work on applying blockchain and related technologies in the
healthcare domain.

2 Key concepts of blockchain
technology

This section provides an overview of the general concept behind
blockchain technology in addition to the open-source Ethereum
implementation that supports smart contracts, which enable
computation and facilitate the development of decentralized apps
beyond cryptocurrencies. Solidity, the programming language for
writing smart contracts in Ethereum and the basis of our pattern
collection discussed in Section 4 will also be introduced.

2.1 Blockchain concepts

In essence, a blockchain is a decentralized, replicated, and
continually reconciled ledger that maintains an append-only list
of ordered transactions grouped into blocks, as shown in Figure 1.

Transactions with timestamps are recorded in the blockchain and
distributed to all network nodes to provide transparency of the

frontiersin.org

Zhang et al.

(Header
0

10.3389/fbloc.2023.1006058

Header
n

Header
2

Block 0

FIGURE 1

Block 2

Blockn

Blockchain structure: A shared, append-only list of ordered transactions grouped into blocks.

exchanges of digital data, such as cryptocurrencies. Only one block may
be added to the blockchain at a time following a mathematical
verification (based on cryptography) to ensure that it is in sequence
from the previous block and that it contains all valid transactions.
Network nodes are incentivized to verify transactions and blocks via a
process called mining, during which they will gain some financial
reward for their work Nakamoto (2008). This mechanism requires that
1) information in the blockchain is transparent so that anyone easily
verifying that a specific transaction occurred at a particular point in
time, 2) validated blocks are tamper-proof, which prevents existing
transaction history from being altered, and 3) all blocks of transactions
are replicated to each network node, which makes the network resilient
to a single point of failure Hub (2017).

The Bitcoin blockchain serves as a public ledger that facilitates the
direct exchange of its native token between individual users that is
secured with cryptography. The Bitcoin blockchain primarily focuses on
token transactions but is less suitable for other types of data exchange
with higher complexity. To provide a more flexible framework,
Ethereum was created as an alternative, general-purpose blockchain
that enables programmability and thus more sophisticated computation
via the support of smart contracts (Buterin, 2014).

Ethereum is a decentralized computing system that uses a near
Turing-complete Ethereum Virtual Machine (EVM) and a native token
ETH to power the network. EVM enables the creation and execution of
smart contracts that can store data of different structures and codify
operations on the data. Ethereum enforces a payment policy in terms of
“gas” for creating, storing, and executing smart contracts. This policy
provides both a financial incentive for network nodes to verify and
execute valid transactions and a financial disincentive against malicious
attacks on the network. In addition, there is a global maximum gas limit
defined by the Ethereum protocol and a sender-specified gas limit that
indicates the max gas amount that the sender is willing to pay. If gas spent
during the execution of a transaction exceeds either of these two limits,
computation will be stopped, and the sender still has to pay for the
performed computation. This protocol protects senders from completely
running out of funds and also further deters malicious attacks and abuse,
such as distributed denial of service attacks in the network or hostile
infinite loops in smart contract code (Buterin, 2014).

Frontiers in Blockchain

2.2 Overview of consensus mechanisms

In addition to Proof of Work, there are other consensus mechanisms
that may be more fitting in blockchain-based healthcare applications.
One popular alternative is Proof of Stake (PoS), which is based on the
concept of stakeholder consensus E. Napoletano (2022). In PoS, instead
of miners competing to solve a mathematical puzzle, network nodes (or
“validators”) are chosen to create the next block based on the amount of
cryptocurrency they have “staked” as collateral. This creates an economic
incentive for validators to act honestly, as their stake is at risk if they act
maliciously. PoS is considered to be more energy-efficient than PoW, as it
does not require significant computational power to maintain the
network. Ethereum aims to migrate from PoW to PoS as part of the
Ethereum 2.0 upgrade, which aims to improve the scalability, security
and energy efficiency of the network Rene Millman (2020).

Another consensus mechanism that has gained popularity in recent
years is Tendermint consensus. Tendermint is a protocol for secure,
Byzantine fault-tolerant (BFT) consensus in decentralized networks
GMBH, 2023a (accessed on 01-13-2023a). Tendermint consensus uses
a two-step process: first, validators propose and pre-vote on the next
block, and then they commit and vote on the block. This creates a more
efficient and fault-tolerant consensus mechanism compared to PoW or
PoS. Tendermint is also more flexible than other consensus
mechanisms as it can be used in any blockchain platform and it can
be configured to use different consensus algorithms. Tendermint is
most widely used as the consensus mechanism in the Cosmos
ecosystem GMBH, 2023b (accessed on 01-13-2023b), where it
enables the creation of independent, app-specific chains that can
interoperate with one another. An app-chain may be the best
approach for such a healthcare application as it can be customized
to fit the needs of the healthcare industry and can provide higher
scalability, security, and privacy than a general-purpose blockchain'.

1 App-chains are not explored in-depth in the context of this paper, though
will be one direction of future work.

frontiersin.org

Zhang et al.

2.3 Overview of solidity

Solidity is an object-oriented language and is designed primarily
for developing smart contracts in Ethereum Foundation (2015a). A
Solidity class is realized through a “contract,” which is an object
prototype (some code template) stored on-chain. Just like an object-
oriented class can be instantiated into a concrete object at runtime that
can then be executed, a contract may be instantiated into a useable
“smart contract account” (SCA) by a transaction or a function call
from another contract. When a contract is instantiated, it is assigned a
unique address that is similar to a reference or pointer in C/C++-like
languages. The contract can then be referenced and its functions
invoked using the address. A smart contract can also define state
variables to store data and functions that interact with the data.
Although one contract can be instantiated into many SCAs, it should
be treated as a singleton (i.e., an object that has only one instance of) to
avoid undesired behavior and storage overhead. A common practice is
to store the address of an instantiated contract in a static location, such
as a configuration file or a database Dourlens (2017).

Solidity also supports multiple inheritance and polymorphism
Ethereum.io (2017). When a contract inherits from one or more
other contracts, a new contract instance is created by copying all the
base contracts code into the child contract prototype. An abstract
contract in Solidity can declare function headers but without
concrete implementations, which means that it cannot be
compiled into an SCA but can be used as a base contract. In this
paper, we focus the pattern discussions based on the use of Solidity.

3 Related work

Although relatively few studies focus on realizing software
patterns in blockchains, some relate to healthcare blockchain
solutions and design principles in this space. This section gives
an overview of related research on design principles and
recommended practices for developing blockchain-based apps.

Porru et al. (2017) highlighted evident challenges in state-of-the-art
blockchain-oriented software development by analyzing open-source
software repositories and addressed future directions for developing
blockchain-based software. Their work focused on macro-level design
principles such as improving collaboration, integrating effective testing,
and evaluations of adopting the most appropriate software architecture.
Bartoletti et al. Bartoletti and Pompianu (2017) surveyed the usage of
smart contracts and identified nine common software patterns shared
by the studied contracts, e.g, using “oracles” to interface between
contracts and external services and creating “polls” to vote on some
question. These patterns summarize the most frequent solutions to
handle some repeated scenarios. Xu et al. (2018) presented a collection
of patterns in categories of communication with off-chain channels,
data management, security, and structural design that are applicable to
general blockchain-based applications. Similarly, Six et al. (2022)
created a taxonomy of existing patterns for designing DApps as a
path to build out an ontology for performing semantic queries.

A number of attacks on Ethereum smart contracts have been
reported, including the infamous DAO attack Siegel (2016) where
$50 million worth of Ether was stolen and the critical Parity wallet hack
Palladino (2017) that incurred in $30 million worth of Ether being
exploited. Atzei et al. (2017) surveyed existing attacks on Solidity smart

Frontiers in Blockchain

10.3389/fbloc.2023.1006058

contracts with code snippets showing related vulnerabilities.
Meanwhile, the blockchain community also compiled a number of
software patterns and anti-patterns targeting Solidity programming
around cryptocurrency transactions in order to maximize the security
of Ethereum smart contract design ConsenSys (2018). More recently,
Moreno et al. (2019) proposed a security pattern focusing on the use of
blockchain in big data systems. Relatedly, Ellervee et al. (2017)
described a comprehensive reference model for blockchain-based
systems using software architecture concepts.

Recent surveys summarized existing applications of blockchain
technologies in the healthcare sector and provided a positive outlook
on their potential. De Aguiar et al. (2020) discussed the potential
applications of blockchain technology in healthcare, focusing on
privacy, safety, and the sharing of health information. The study
highlighted that blockchain has the potential to guarantee privacy by
using techniques such as data immutability, attribute-based encryption,
and zero-knowledge proof. It compared different consensus protocols
and suggested that Practical Byzantine Fault Tolerance (PBFT) is more
suitable for healthcare applications due to its lower computational costs
and permissioned nature. Chukwu et al. Chukwu and Garg (2020)
presented functional use cases of blockchain in data sharing, access
control, audit, distributed computing, data storage, and data
aggregation, with applications in various health domains such as
HIV aids, Cancer, Clinical trials, Insurance, and more. Their analysis
highlighted scalability issues, low performance, and high costs as
significant challenges in implementing blockchain in healthcare. In
the survey conducted by Arbabi et al. (2022), state-of-the-art efforts in
utilizing blockchain-based solutions in healthcare were classified and
analyzed, focusing on interactions between healthcare entities,
functional components of healthcare storage systems, challenges in
the healthcare domain, and benefits derived from blockchain
technology. It also discussed compliance with privacy regulations
such as GDPR and HIPAA.

Many research and engineering ideas have been proposed to apply
blockchain technology in healthcare, and implementation attempts
are underway Azaria et al. (2016); Peterson et al. (2016); Porru et al.
(2017); Bartoletti and Pompianu (2017). Prior research efforts have
provided a number of design recommendations for implementing
Solidity smart contracts involving general-purpose decentralized
applications. Few published studies, however, have addressed
software design considerations needed to implement blockchain-
based healthcare apps effectively with concrete examples. While it
is crucial to understand the fundamental properties of blockchains
and design patterns that are applicable when developing general
solutions based on blockchain, it is crucial to apply them properly
so that healthcare-specific requirements are satisfied in these designs
as well. Even though a subset of principles from prior work may be
relevant to the healthcare space, a systematic approach to
documenting appropriate design practice that specifically targets
technical challenges in healthcare is still essential.

4 A pattern collection for designing
blockchain-based healthcare
applications

The US Office of the National Coordination for Health
Information Technology (ONC) defined the basic technical

frontiersin.org

Zhang et al.

requirements for achieving interoperability ONC (2014). Based on
these domain-specific requirements, the study in Zhang et al.
(2017a)
challenges faced by blockchain-based apps:

outlined five aspects of relevant interoperability

1. Evolvability: ~Maintaining
integration

evolvability while minimizing

complexity: unlike traditionally centralized
applications, data, changes to data, and its change history
persist on-chain-due to the immutable nature of blockchain,
it is computationally infeasible to revert them in a decentralized
environment. At the same time, systems are subject to updates or
upgrades required by clinical workflow or healthcare regulations.
Balancing the need for change while avoiding a complete
redesign of previous system component requires a good design.
2. On-Chain Storage: Minimizing data storage requirements on the
blockchain: healthcare applications are expected to serve
thousands to millions of users, which, if run on centralized
systems, are much easier to scale. When data exchanges are
brought to decentralized networks, how to minimize the storage
overhead while maintaining necessary, traceable histories needed
to support interoperability is another key design consideration.
3. On-Chain Privacy: Balancing data storage with privacy concerns:
encryption is a modern approach applied to secure sensitive
data-healthcare applications use encryption to guard personal
health computing

substantially cheaper and more powerful, existing encryption

information. As resources become
algorithms are yet to stand the test of time. Centralized systems
face serious consequences when data privacy is breached, but
when data is replicated across multiple locations, it will be more
challenging to trace the source of the breach.

4. Scalable Communication: Tracking relevant health changes across
large patient populations at-scale: according to a recent study,
physicians on average spend 5.5h documenting and reviewing
electronic health records (EHR) of their patients for every 8 h of
scheduled patient time Melnick et al. (2021). When patients visit
multiple healthcare providers, there will be new information for
each provider to review. A decentralized system should allow
timely delivery and communication of changes in patient notes.

5. Security: Preventing unintended software loopholes and
safeguarding on-chain data: the implication of blockchain’s
decentralized nature is that system is at higher risks of
unintended loopholes and unauthorized data access, as

information is exposed to a much wider and, if not carefully
designed, uncontrolled audience, and security issues cannot be
immediately rectified. In recent years, software loopholes that
existed in several major blockchain-based crytocurrency services
have been exploited by attackers, causing significant financial
losses to users and the service providers Atzei et al. (2017). To
prevent similar predicament from happening to healthcare
services hosted in blockchain-based infrastructures, security
risks must be recognized in the early stage of system designs.

This section presents a pattern collection for creating healthcare
DApps that address these major challenges. We applied three
different approaches for developing this collection. First, we
extracted a subset of patterns using commonality and variability
analysis Coplien et al. (1998) by reviewing a number of verified
smart contract source code from Etherscan.io Etherescan to capture

Frontiers in Blockchain

10.3389/fbloc.2023.1006058

common portions repeatedly used across various contracts and/or
supporting library contracts. This included contracts that resulted in
attacks to produce our recommendations for safer smart contract
design. Second, based on design practice and lessons learned from
prior research Zhang et al. (2017b, 2018a, 2017¢c, 2018b), we
proposed several patterns that target healthcare requirements.
Third, we reviewed and adapted several design principles that are
widely accepted as general system design recommendations to our
pattern collection with blockchain-focused design considerations.
Additionally, due to the growing popularity of Solidity and attacks
that have occurred to public smart contracts, the Ethereum
community has captured a number of Solidity code patterns for
preventing similar attacks. Although those code patterns were
almost exclusively targeting cryptocurrency or other apps with
financial incentives, we identified one code pattern that would be
particularly critical in a healthcare system.

The remainder of this section applies a pattern form variant to
motivate and show how our pattern collection aids in designing
blockchain-based healthcare applications. In particular, we present
eight design patterns—LAYERED RING, GUARDED UPDATE, CONTRACT
MANAGER, DATABASE CONNECTOR, DATABASE PROXY, ENTITY REGISTRY,
TOKENIZED EXCHANGE, and PUBLISHER-SUBSCRIBER Gamma et al.
(1995); (2007)
permission-less Ethereum blockchain. We describe key healthcare

Buschmann et al in the context of the
challenges these patterns resolve in the blockchain context and detail
their structure and composition®.

Table 1 provides an overview of the pattern collection, showing
how the patterns relate to healthcare-specific challenges described at
the beginning of this section and what specific sub-challenge each
pattern aims to solve.

Each of the patterns in this collection is discussed in depth
below.

4.1 A decentralized infrastructure for health
data sharing systems

4.1.1 Design problem faced by DApps for
healthcare use cases

Healthcare data is known to be fragmented across heterogeneous
healthcare data warehouses managed by large healthcare organizations,
private practices, and, more recently, mobile health app providers Ajami
and Bagheri-Tadi (2013); Zhang et al. (2018a). Despite the adoption of
certified EHRs or other data vendors that provide direct data exchange
between providers within the same network, impediments for
healthcare providers and researchers to access those heterogeneous
data silos still exist.

4.1.2 Solution — apply the Layered Ring pattern to
define a decentralized base architecture for a
health data sharing system

The that supports
decentralized data storage and executable code via smart

emerging blockchain technology

2 Naturally, there are other patterns relevant in this domain, which will be the
focus of future work.

frontiersin.org

Zhang et al.

10.3389/fbloc.2023.1006058

TABLE 1 Overview of proposed pattern collection for designing blockchain-based healthcare apps.

Pattern Targeted Category

Layered Ring Evolvability

Specific challenge to solve

Defining the basic architecture of data sharing system

Guarded Update Evolvability & Security

Contract Manager Evolvability

Preventing unexpected reentrancy attacks

Splitting data from logic to ensure data availability via clean separation of concerns

Database
Connector

On-Chain Storage
storage

Ensuring on-chain storage scalability and interoperability with standardized and minimal interfaces to off-chain

Database Proxy On-Chain Privacy

connectors

Entity Registry On-Chain Storage

Providing an additional layer of security by performing lightweight tasks before permitting access to database

Managing healthcare entities on-chain and other types of common data at scale

Tokenized On-Chain Privacy Authorizing access to data storage and maintaining verifiable access logs
Exchange
Publisher- Scalable Communication & Providing user notifications when events of interest occur across the decentralized system
Subscriber Security
|Architecture #1| |Architecture #2|
Provider Pharmacist Researcher Pri.W.lte
~ ~ Practitioner user accounts gamer accounts
~ transactions game actions
j}\a 43 “ user balances gamer rewards
S0k oo ese App _—_E o Blockchain ‘O]
—_— Interfac
EHR HFQ LFQ System| A
System #1 System #2

' 1]

' Authorized f \ > =

! Exchange . ! Al \ @

Service User-1
---------- ’4 - -x - User-2 Gamer
Q Digital Identity ~ ETH Wallet
FIGURE 2

Comparing the current state of traditionally centralized healthcare architecture with that of popular blockchain-based use cases.

contracts, with Ethereum (Buterin, 2014) being the most popular,
has presented itself as a potential infrastructure to connect existing
healthcare data silos Peter B. Nichol (2016); Broderson et al. (2016);
Dubovitskaya et al. (2017). It has successfully maintained tamper-
proof cryptocurrency transactions between Internet users
worldwide Nakamoto (2008); Cap (2023) and managed verifiable
collectibles and rewards from cryptogaming like CryptoKitties and
artwork through Non-Fungible Tokens Kugler (2021).

Figure 2 compares the high-level architecture of modern
healthcare data sharing systems with blockchain-based digital
asset management platforms. In this figure, the bottom layer in
Architecture 1 represents heterogeneously represented objects,
such as siloed healthcare data sources, low-frequency, high-
fidelity clinical data (LFQ) captured by trusted sources, and
high-frequency, low-fidelity data (HFQ) generated by patients
or wearable and mobile devices Zhang et al. (2018c¢), and

Frontiers in Blockchain

geographically dispersed Internet users in Architecture 2.
Data sources generated by healthcare professionals via
diverse, centralized EHR systems on the left may or may not
inter-operate, depending on if an authorized exchange service is
available between the data sources. Whereas on the right, data
(like identifiers of users or asset owners) and data requests flow
into and out of the same service implemented on the
decentralized ledger and is thus widely accessible, with or
without a common user interface.

Architecture 1 can be modified to achieve more decentralization
by applying the basic pattern of Architecture 2 in Figure 2, except
that a user interface is needed for healthcare users who need not
concern themselves with acquiring advanced knowledge about
blockchain or smart contract function invocation. In fact, most
dApps, such as CryptoKitties (a cryptogame for collecting and
breeding digial cats) CryptoKitties, 2023, Fomo3D (a gambling

frontiersin.org

Zhang et al.

Data

Data

3.

HFQ

FIGURE 3

User-Facing
App Layer

Blockchain Layer

Storage Layer = - 8‘ went

LFQ

10.3389/fbloc.2023.1006058

EHR1

Structure of the Layered Ring pattern that defines the base architecture of the data sharing system.

game for winning cryptocurrency lotteries) FOMO3D, 2023, and
IDEX (a cryptocurrency trading platform) IDEX - Decentralized
Ethereum Asset Exchange, 2018, implement a user-friendly interface
that encapsulates the blockchain component to provide a familiar
user experience as any other centralized applications.

Figure 3 presents the first pattern in the collection, LAYERED RING,
which is generalized from Architecture 2 above with a high-level
view to illustrate the scale of involved entities in each layer. The
outermost layer is a Storage Layer composed of a large number of
data sources, each maintained by its owner (e.g., a private
practitioner, a healthcare organization, or a 3rd party HFQ data
provider). The middle Blockchain Layer connects data sources from
the outer layer and is to be maintained by key stakeholders or mid-to
large-size healthcare organizations in a federated environment. The
innermost User-Facing App Layer provides a convenient interface
for interacting with data and operations defined in the blockchain. It
is also the most centralized piece of the system because a user-facing
app, whether a mobile or web-based one, is usually hosted in a
centralized server. However, the app server can be designed to log
activities and events directly to the shared ledger and preserve the
system’s overall transparency.

TheLayered Ring pattern is also a variant of the ENTERPRISE
SERVICE BUS (ESB) pattern Zdun et al. (2006); Fernandez (2013),
which provides a common data model and a messaging
infrastructure to allow various systems to communicate through
a shared set of interfaces. In LAYERED RING, the Blockchain layer acts
as the messaging bus that provides services to the rest of the
components. However, unlike the ESB, the interface of Layered
Ring focuses only on the structural and syntactic level of the
exchanged data and does not itself create a common ontology for
interpreting the semantics of shared data, which is an entirely

Frontiers in Blockchain

separate and complex topic being researched by domain experts.
The infrastructure also requires careful design to ensure that
stewards or managing nodes of the network are decentralized.

4.2 Preventing reentrancy attack in the
blockchain

4.2.1 Design problem faced by DApps for
healthcare use cases

The replicated and decentralized nature of blockchain makes
DApps prone to mistakes that are exploited by attackers. This
raises security concerns regarding the use of this technology in
data-sensitive industries such as healthcare that requires
compliance to strict security and privacy regulations. An
infamous example of prior attacks on the blockchain was the
DAO attack in 2016 Siegel (2016) in which a reentrancy bug was
discovered and exploited that caused at the time worth $30 million
of Ethereum being stolen. Even though the immutability and
decentralization properties of blockchain technology can provide
tremendous value to the direct exchange of digital information,
without proper design decisions made prior to deploying a system
on-chain could yield destructive consequences for healthcare
users.

4.2.2 Solution — apply the Guarded Update pattern
to prevent unexpected reentrancy attacks

We deem attack prevention as the utmost important design
consideration in the development cycle of a blockchain-based
healthcare system, so we propose the use of this pattern as a
mechanism against reentrancy attack early on during the

frontiersin.org

Zhang et al.

10.3389/fbloc.2023.1006058

GuardedUpdate

+ conditions: mapping

<<Interface>>
GuardedReentry

+ reentrancyMutex: bool

+ updateCondition{cond, value): bool

+ ___mutex: bool

@ modifier: noReentry(}

value) returns(bool)
{

require (!reentrancyMutex);

condition[cond] = value;
return false;

}

/! or use the modifier from the interface

function updateCondition(string cond, string B

function updateCondition(...) noReentry() ------ -

modifier noReentry() A
{
require (!__mutex);
771 __mutex = true;
return;
!
i Blockchain
Layer

FIGURE 4

Structure and example solidity code snippet of Guarded Update pattern to prevent reentrancy attacks on-chain.

development cycle in order to help design the rest of the
system wherever this pattern may apply. A simplified
reentrancy bug that affected the DAO app is shown in the
code snippet below:

contract VulnerableContract {

mapping (address => uint (public balances;

function withdraw() {
if (!msg.sender.call.value (balances[msg.sender]) () {
throw;
}
balances [msg.sender]
}
)

= 0;

contract ExploitVulnerableContract {

VulnerableContract public vc;

function () payable {

vc.withdraw();

The withdraw() function in VulnerableContract sets the caller’s
balance after checking if the asset transfer to the caller (msg.sender)
is successful. The attack in ExploitVulnerableContract exploits this
vulnerability by calling the withdraw() function in a fallback
function that is executed by the call.value() method, creating
recursions that bypass the statement on the line of code that sets
the user balance after the vulnerable statement returns ConsenSys
(2018).

Although the reentrancy bug primarily targets digital assets
such as cryptocurrencies that hold financial values, this bug could

Frontiers in Blockchain

08

also affect system designs for healthcare functions if prevention is
not implemented in advance. As a key pattern in the collection,
GUARDED UPDATE prevents reentrancy attacks by ensuring atomic
update to critical data in the system. The structure and code
examples of this pattern appears in Figure 4°. As shown in the
figure, a guarding conditional flag reentrancyMutex is used to
control operations on protected state variable(s) (i.e., conditions).
Once the variable(s) has been modified, the guarding condition is
reset to the initial state to permit other memory contexts to operate
the guarded data. Another, more systematic way to achieve this is
to create a modifier in a Solidity interface contract, which can then
be included in the declaration header of functions in other
contracts.

Protecting atomic updates to state variables in the smart
contracts prevents serious reentrancy attacks to occur, however,
one major drawback is that atomic executions may both slow down
runtime performance and increase transaction costs of the system,
particularly in a decentralized network.

Functions that require an additional call through an
intermediary contract can also be protected using a modified
GUARDED UPDATE pattern. A situation where this is required is
when the smart contract requires a call that casts an address of
a contract to a contract instance. It should be noted that when
making the call from the casted contract, the msg.sender value no
longer contains the actual caller but rather the contract making the
call itself. If the destination of the call passes through an
intermediary contract and is destined for the original contract,

3 The code examples are based on https://github.com/oOragmanQo/
ReentryProtected.

frontiersin.org

Zhang et al.

it may be necessary to cache the _data field and validate that it was
not altered in between calls.

An example of an implementation for such a modifier can be
found below.

uint256 private pendingInternalRecipientId;

modifier cachedInternalTransfer (bytes memory _data) {

if (_data.length == 32) {
require (pendingInternalRecipientId == 0, "Reentrant call");
assembly |
sstore (pendingInternalRecipientId.slot, mload(add(_data, add(0x20, 0))))
}
)

pendingInternalRecipientId = 0;

In the above example, pendingInternalRecipientld is the ID of a
token to which another token may be transferred. This is part of an
implementation for composable tokens, where tokens can be owners
of tokens in addition to standard addressed owners. Within the
assembly code, _data is the memory address of the start of the array
data. The first 32 bytes (0 x 20 bytes) are reserved for the length of
the array, which needs to be stepped over in order to retrieve the first
value. The array elements are numbered consecutively starting at
0 and each occupies one 32 byte word. The mload function retrieves
the value at a specific point in the _data, stored in memory. Solidity’s
sstore loads the data from the second argument into the slot for the
pendingInternalRecipientId. ~As in GUARDED UPDATE, this
implementation also protects against reentrant calls on line 6 by
ensuring that pendinglnternalRecipientld is set to the 0 address
before entering the modified function at line 11. Following the
function call, pendingInternalRecipientld is set to 0 once more to
reset the reentrancy check on line 12.

function safeTransferChildFrom (
address _to,
address _childContract,
uint256 _childTokenId,
uint256 _amount,
bytes memory _data

) public override cachedInternalTransfer (_data) {

ERC1155 (_childContract) .safeTransferFrom(address (this), _to,
_childTokenId, _amount, _data);

i

function onERC1155Received (
address _operator,
address _from,
uint256 _childTokenId,
uint256 _amount,
bytes memory _data
) virtual external override returns (bytes4) {
require (_data.length == 32, "data must contain the unique uint256

tokenId to transfer the child token to");

uint256 recipientTokenId;

assembly {recipientTokenId := calldataload(msg.data.length - 32)}

if (_from != address(0)) {
require (
pendingInternalRecipientId == recipientTokenId,
"Recipient was not validated before transfer."

}

return this.onERC1155Received.selector;

Frontiers in Blockchain

10.3389/fbloc.2023.1006058

In the above code sample, the safeTransfer ChildFrom method
has an additional argument deviating from the standard
safeTransferFrom from the OpenZeppelin ERC1155 standard
contract interface OpenZeppelin, 2023a (accessed on 01-16-
2023), which
safeTransferFrom call needs to be made. As mentioned above,

represents a child contract on which a
the _data argument must be verifiably unaltered when the
function has a callback to the original contract to ensure the
original intention of the call is honored. By including the
cachedInternalTransfer modifier, the address to which the
child token is transferred is cached until the function is fully
completed. If the argument _to is the address of the original
onERCI155Received is of the
requirement of the ERCI1155 contract standards by
OpenZeppelin (2023b) (accessed on 01-16-2023).

On the invocation of onERCI1155Received, the recipientTokenld
from the _data argument is parsed and subsequently compared to
the pendinInternalRecipientld cached in the safeTransferChildFrom
call. This validates that the _data’s recipient address has not been

contract, called because

altered and that no reentrancy has occurred.

4.3 Separating data from logic via a manager
contract

4.3.1 Design problem faced by DApps for
healthcare use cases

The inherent immutability of blockchains provides non-
repudiation of data operations and transactions, but it can also
become a major bottleneck to data liquidity. On the one hand,
immutability is helpful for achieving interoperability in a healthcare
environment as it makes data objects (whether it is a reference pointer
to a remote data repository or an authorization request that grants a
provider access to healthcare data) on the blockchain always available,
even when one of the key maintainers of the network becomes
unavailable. On the other hand, without a loosely-coupled design
that focuses on clean separation of data and logic, immutability
leads to difficulties during system upgrades. Data that is exchanged
in healthcare systems includes not only information shared across
various healthcare participants but also meta data related to the system
or the most up-to-date list of network users. Logic is operation on the
data (read, creation, update, or removal) or an event that occurs when a
predefined condition is met.

4.3.2 Solution — apply the Contract Manager
pattern to separate data from logic to ensure data
availability

The CONTRACT MANAGER pattern aims to address the separation of
data and logic via a permanent storage structure, which has been
described in ConsenSys (2018). Figure 5 presents the structure of
this pattern with sample interfaces and code snippets.

Permanent storage maintains one or more data fields used
throughout the system with getter and setter functions for each
data field. This ensures that all meta data needed by the system
(such as the version or address information of any smart contract
dependencies and other data structures shared across different
smart contracts) remains readable even when logic contracts are

frontiersin.org

Zhang et al.

outdated. Additionally, CONTRACT MANAGER stores a Contract
Repository of meta data that describes versions of the system
(including but not limited to the addresses of the latest logic
contract components and history contract addresses). To ensure
upgradeability of the system, CONTRACT MANAGER also defines
access privilege of smart contracts by allowing the original
owner of the storage contract to configure an access group for
delegating or revoking some or all rights of data access and
operations to other members to prevent data locking.

One drawback of CONTRACT MANAGER is that all other logic
contracts would need to access this contract for versioning
checks and data queries. An alternative design is to leverage the
AUTHORIZER pattern Fernandez (2013) along with fine-grained
authorization models such as role-based access control models
Sandhu et al. (1996) or access matrix Sandhu and Samarati
(1994) to separate the definition of access rules, further
decoupling the rules from the storage component. OpenZeppelin
provides such an implementation of role-based access control
models as a standard for Ethereum-based smart contracts
OpenZeppelin (2023a).

4.4 Standardized on-chain interfaces to off-
chain storage access

4.4.1 Design problem faced by DApps for
healthcare use cases

EHR systems have served the U.S. healthcare for decades
and have accumulated enormous amounts of valuable medical
records that either exist in legacy systems or in more modern
certified EHRs. Despite there being significant efforts to create
compatible data sharing features, centralized systems still present
a major barrier to interoperability. For decentralized systems, the
large scale and stringent privacy requirements of healthcare data
also present considerable challenges: 1) replicated copies of data
make storing encrypted or hashed versions of the actual data on
the blockchain vulnerable to attacks and 2) the prevalence of
existing EHR systems make it impractical to replace or
completely duplicate their functionality with decentralized
systems. The design question now becomes how to bridge the
gap between legacy central systems and the new paradigm of
decentralized services that facilitate interoperability.

4.4.2 Solution — apply the Database Connector
pattern promote interoperability via standardized
and scalable interfaces to existing off-chain
(centralized) systems

Figure 6 presents the composition of the DATABASE CONNECTOR
pattern. The Database Connector component defines a standardized
interface between the blockchain and storage layers. The interface
provides an abstraction of the heterogeneous health data silos (e.g.,
EHR or other LFQ databases and HFQ data) to present only a
minimal set of information about each data source to the blockchain
layer. As shown in Figure 6, the interface may only need to capture
meta information of a data source (such as name of owner or
description) and then provide reference pointers to the original data
source and a verifiable credential from the data source owner that
proofs integrity of the data. Database Connector is also closely

Frontiers in Blockchain

10

10.3389/fbloc.2023.1006058

associated with the DATABASE PROXY pattern (discussed next in
Section 4.5) that uses a Connector Handler component in the
blockchain layer to provide data access to the connector.

The main benefits of DATABASE CONNECTOR are 1) it provides
on-chain scalability that allows efficient sharing of the necessary
connectors and 2) it offers a standardized interface that unifies
the on-chain representations of off-chain databases. The
drawback is the additional implementations that are required
for creating standardized connectors to existing databases.

4.5 Security checking before accessing off-
chain storage

4.5.1 Design problem faced by DApps for
healthcare use cases

Patients in healthcare systems are not represented uniformly, so
data sharing between providers often involve exchanging personally
identifying information. As aforementioned, the replicated nature of
blockchain is not suitable for sharing such sensitive information as
any data and its transaction history stored on-chain are available to
all network managers in an immutable and verifiable way. For
financial applications focusing on verifying that a transfer of an
asset indeed took place, these properties are critical. When the
objective is to store data with an intricate structure and a large scale,
it is important to understand how these properties will impact the
use case.

For example, immutability makes it difficult for anyone,
including data owners, to modify or remove the data change
history from the blockchain. However, certain scenarios, such as
when a security flaw is found, when a medical error is discovered
in the data, or when data standards are updated, may demand
change to data or data history over time. In these situations, the
immutable nature of blockchains creates a fundamental tension
that must be resolved between the need to present data to
providers with integrity and the flexibility needed to change
data when patient data privacy is at risk or when mistakes in
the data need to be rectified.

4.5.2 Solution — apply the Database Proxy pattern
to provide an additional layer of security by
performing lightweight tasks before permitting
access to database connectors

Database Proxy is akin to the traditional Proxy pattern Gamma
et al. (1995) with a focus that is unique to a DApp design. To reduce
computational costs on-chain, the Database Proxy interface 1) defines a
lightweight representation as a placeholder of the original data object
and 2) encodes necessary lightweight security checks and auditing tasks
until retrieval of the original data object is required. It is worth noting
that protected health information should only exist as an off-chain data
object for which a proxy is created. This is so that any regulatory or
security checks (which is much more rigorous) defined by HIPAA or
other privacy standards, are performed off-chain.

Figure 7 illustrates the structure of DATABASE PROXY pattern and
its interaction with the Database Connector object described
previously in Section 4.4.

Database Proxy is an interface that maintains a reference to a
Connector Handler object and forwards read/write requests to the

frontiersin.org

Zhang et al. 10.3389/fbloc.2023.1006058
Blockchain
Layer
<<Interface>> —
ContractManager if (newContract != latestContract) {
prevContracts.push(newContract);
+ '3‘9‘15(500’:"3?1_ aggress latestContract = newContract;
+ prevContracts: address] L re true;
+ updateLatest(address): bool [~ !
T return false;
<<Interface=>> intert
PermanentStorage <<inieriace>>
UpgradableContract
+ someData: mapping(uint=>string) .
+ access: mapping(address=>bool) + permStg: PermanentStorage
+ someDataGetter(uint): string | + getSomeData(uint): string
+ someDataSetter(uint, string) /| + setSomeData(pint, string)
+ setAccess(address) / !
+ denyAccess(address) |
@ modifier: someAcoassNeeded function setSomeData(index, val)
someAccessNeeded() {
: permStg.setSomeData(index,
return pennStg‘someDataGetter(uint);lj val);
FIGURE 5

Structure and example solidity code of Contract Manager pattern for maintaining key meta-data on-chain.

appropriate Database Connector component for data access from
the storage layer of the system. Each request through the
Connector Handler is then logged on-chain, making the
request history transparent to the blockchain network for
verification against data corruption or unauthorized access.
This design encapsulates
variations of the proxified contract. When the Database

lower-level — implementation
Connector that contains more heavyweight implementations is
updated with a new storage configuration (e.g., when a data
source has been introduced a new management system that
requires some change in its Database Connector abstraction
layer), the interface of the proxy contract remains unaffected.
Similar to the original PrROXY pattern Gamma et al. (1995), a
proxy object can perform lightweight housekeeping tasks, such as
security checks of administrative access and auditing tasks that
log existing data requests, on commonly used metadata stored in
its internal states before retrieving the actual data. This
component follows the same interface as the real object and
can execute the original data object’s function implementations
as needed. It provides an additional layer for securing access to
the real data object. However, Database Proxy may cause
disparate behavior when the real object is accessed directly by
some other component in the system while the proxy surrogate is
accessed by others. It also creates an additional level of

Frontiers in Blockchain

11

indirection for accessing actual data objects. This pattern
complements the Entity Registry pattern when applied to the
digital identity management use case. The user accounts from the
registry can each have a proxy to the complete user data object.
As the original data object builds up, its proxy contract stays
unchanged. If the proxy is linked with an identifier along with the
complete data object, it can also serve as a mechanism to retrieve
stolen or lost identity, as implemented by an earlier version of the
UPort identity system Lundkvist et al. (2017).

4.6 Managing healthcare entities and
common data on-chain at scale

4.6.1 Design problem faced by DApps for
healthcare use cases

Decentralization can only be achieved when digital assets and
their transaction histories are shared with every network
manager, which implies intensive storage requirements. For a
DApp to serve healthcare use cases well, it should minimize on-
chain storage burden yet still enable data sharing among
participants.

Suppose a DApp stores some encrypted patient billing data on-
chain. Billing data typically includes detailed patient insurance

frontiersin.org

Zhang et al.
Smart Contract
Connector
Handler
Blockchain Layer
Storage Layer
FIGURE 6

10.3389/fbloc.2023.1006058

| Database
_.-~"| Connector

<<interface>>
DatabaseConnector

+ name: string
+ metaData: mapping
+ ownerSignature: keccak256

+ readData(conn): string
+ updateData(conn, data): bool

Structure of the Database Connector pattern used to standardize on-chain Interfaces to off-chain storage access.

information, such as their policy number, insurance contact
information, coverage details, and other aspects needed by
providers to bill for services. This implies that millions of records
being replicated on all nodes of the network.

Realistically, most patients are covered by a relatively small subset of
insurance groups (particularly in comparison to the total number of
patients, e.g,, each insurer may cover 10,000s or 100,000s of patients).
Therefore, a substantial amount of intrinsic, non-varying information is
common across patients that can be reused and shared, such as details
on what procedures are covered by an insurance policy. To bill for a
service, however, this common intrinsic information must be combined
with extrinsic information (such as the patient’s policy number) that is
specific to each patient. A good design consideration is to create an on-
chain data structure to capture such common data to reduce replication
overhead while providing access to the complete data objects on
demand.

4.6.2 Solution — apply the Entity Registry pattern
for managing healthcare entities and common data
on-chain at scale

As shown in Figure 8, the ENTITY REGISTRY mimics the
traditional FLYWEIGHT pattern Gamma et al. (1995) with a
factory Gamma et al. (1993) object to help manage healthcare
entities on-chain. In particular, getEntity uses a factory to create
entity objects and maintain references (addresses) to created
Entity objects in a common smart contract (i.e., Entity
Registry). It internalizes common data across a number of
Entity’s data field while externalizing varying data storage in
entity-specific contracts (such as Patient or Provider entity).
Using references (i.e., addresses) to entity-specific contracts
stored in the registry, combined extrinsic and intrinsic data
can be retrieved upon request to return a complete dataset.

Applying this pattern to the earlier scenario, shared, encrypted
insurance information is only stored once in the registry instead of
being repeated stored in all patient accounts. Varying, patient-
specific billing information is maintained in corresponding
patient-specific entity contracts. The registry can also maintain a
look up table (or a mapping) between unique entity identifiers and

Frontiers in Blockchain

12

the referencing addresses of already deployed entity contracts to
prevent account duplication. To retrieve complete insurance and
billing information of a particular patient, clients need only invoke a
function call from the registry with the patient identifier to obtain
the combined intrinsic and extrinsic data object.

Entity Registry intends to provide more efficient management of
large volumes of objects (such as user accounts in the example
above). It minimizes redundancy in similar objects by maximizing
data and operation sharing. Particularly in the insurance example, if
common insurance policy details are not extracted from each
patient’s contract, the cost to change a policy detail will be
immense-it will require rewriting a huge number of impacted
contracts. Data sharing with flyweight registry helps minimize
the cost to change the common state in objects stored on-chain.
However, the application of this pattern alone cannot ensure
integrity of the data being exchanged because it exposes only
reference information for retrieving complete data objects for
security and privacy reasons. It would rely on an off-chain or a
3rd-party oracle service Xu et al. (2016) to certify the integrity of the
data either via hashing functions or other data verification protocols.

This pattern is particularly suitable for creating a standardized
digital identity management system for healthcare participants that
have varying roles. For instance, common data of participants
includes identifiers, role type, role description, which can be
stored in an ENTITY REGISTRY. Whereas specific data structures
unique to each role type can be implemented in their respective
contract classes or stored in off-chain locations, which can then be
referenced in the registry. The registry in this case would serve as a
global directory where identifiers are used for looking up specific
information if given the access.

4.7 Securing and recording data access

4.7.1 Design problem faced by DApps for
healthcare use cases

Smart contracts are powerful for automating executions of
predefined agreements directly between involved entities. They

frontiersin.org

Zhang et al.
Data Database |
Contract Proxy
Connector
Handler
Blockchain Layer
Storage Layer
FIGURE 7

10.3389/fbloc.2023.1006058

<<interfaces>
DatabaseProxy

+ handler: ConnectorHandler

-+ readData(conn): string
+ updateData(conn, data): bool

--. ' Data ', 2

— | Database

"] Connector

<<interface>>
DatabaseConnector

+ name: string
+ metaData: mapping
+ ownerSignature: keccak256

+ readData(conn): string
+ updateData(conn, data): bool

Composition of Database Proxy pattern for performing additional security checks before accessing off-chain data store.

have successfully been leveraged in DeFi applications Chen and
Bellavitis (2020) to register entities on the blockchain using
cryptographic keys and define mutually agreed rules that dictate
the updates of appropriate cryptocurrency digital wallets and
balances. The direct on-chain exchange of digital healthcare assets is
unfortunately hard to achieve due to its high complexity and variability
in its management systems. Even if data sharing would be enabled in a
decentralized environment, the shared information cannot be openly
visible to anyone in the network. Proper authorizations to access
sensitive health data must be safeguarded.

4.7.2 Solution — apply the Tokenized Exchange
pattern to authorize access to off-chain data
storage with a verifiable data access trail
Variability of off-chain data sources can be encapsulated with
a standardized interface that encodes high-level information
about the data source and a set of basic operations on the
data source (e.g., functions to retrieve from the data source or
verify origin and integrity of the data source.). Figure 9 presents
the structure of the TOKENIZED EXCHANGE pattern that defines an
off-chain interface named Token to consistently represent each
data source. With this interface, the Database Connector Object
(from the DATABASE CONNECTOR pattern discussed in Section 4.4)
that references an off-chain data component can be “tokenized”
off-chain with access authorizations being encoded to a standard
format using encryption and digital certification algorithms. The
employed security mechanism along with any public keys used to
generate the tokens are stored as attributes defined in the
interface. Tokens generated are maintained on-chain in a
shared Token Registry smart contract, which captures a history
of all events related to the tokens, such as the creation, update,
deletion, and access requests. To retrieve the Database Connector

Frontiers in Blockchain

13

Object, the recipient needs to possess the authorized party’s secret
key in order to decrypt the desired data via the DATABASE PROXY
pattern presented in Section 4.5.

With this pattern, shared tokens that carry access authorizations
can only be consumed by the intended recipient(s) with proper
cryptographically paired keys. One limitation to this pattern is that
tokens may be hard to standardize in some situations, in which case,
implementations of other interfaces may be required. Example
interfaces include role-based access control models Sandhu et al.
(1996) and access matrix Sandhu and Samarati (1994), which
provide more fine-grained authorizations and organization-
specific rules that define lower-level permissions to the access
tokens. Combined with other patterns in this collection,
TOKENIZED EXCHANGE can help design patient-centered DApps
such as a patient healthcare record system, where patients can
grant providers data access to data they own, provided that a

tokenizer interface is implemented.

4.8 Providing notifications of relevant
healthcare activities at scale

4.8.1 Design problem faced by DApps for
healthcare use cases

The immutability of blockchain is accomplished through a
replicated, complete event history, such as digital asset transactions
and smart contract function executions. The availability of this
information also makes blockchain potentially suitable for improving
the coordination of patient care among participants (e.g., physicians,
pharmacists, insurance agents, etc.) who traditionally communicate
through diverse channels with some degree of manual effort. For
instance, to discuss a patient’s care case, a provider may share the

frontiersin.org

Zhang et al.

10.3389/fbloc.2023.1006058

| Blockchain Layer |

<<interface=>
Entity

+ data: mapping(bytes32=>string)

+ addData(bytes32, string)
+ getData(bytes32): string

T
| |

Patient Provider

+ funci() + func2()

EntityRegistry

+ registry: mapping{bytes32=>address)

+ getEntity(bytes32): address

if(registry[keyl{
return registry[keyl;
telse{
newEntity = new Entity(};
registry[key] = newEntity;
return newEntity;

}

FIGURE 8

Entity registry pattern used with a factory to manage entities and other types of common data while minimizing on-chain storage requirements.

DApp ized
Berver mapie <<interface>>
Exchange Tokan
+ name: string
+ encryptionMethod: string
. + keyType: string
Authorized
User Connector + verifySig(sig, obj): bool
Object + getConnector(obj, key): conn
User-Interfacing | Tokenizer - 1 B
App Layer FRCTYIN
Blockchain <<Interface>>
Layer TokenRegistry
+ tokens: mapping
Lo le + getToken(addr, key, tokenld): conn
Proxy ! + addToken(addr, key, tokenld, access): bool <

FIGURE 9

@ event readLog(addr, tokenld, timestamp)
@ event addLog(from, to, tokenld, timestamp)

Structure of Tokenized Exchange pattern for authorizing off-chain data access and recording verifiable data access logs.

patient’s information with a specialist by phone or fax. In a
decentralized systems, these interactions are to be captured as part
of the event history, which creates a challenge for directly capturing
specific health-related topics from an exhaustive search of transactions
or topic filtering, which requires non-trivial computation and may
result in delayed responses and user fatigue.

An effective design should facilitate coordinated care and
provide timely notifications when appropriate. For instance,
health-related activities should be communicated to relevant
parties from the point when a patient self-reports illness to their
prescription pickup activity; clinical reports and follow-up

Frontiers in Blockchain

14

procedures should be relayed to and from the associated care
provider offices in a timely manner.

4.8.2 Solution — apply the Publisher-Subscriber
pattern to manage user notifications at scale when
events of interest occur across the decentralized
network

To facilitate information filtering and relaying at scale, a
notification service using the Publisher-Subscriber pattern
Buschmann et al. (2007) is needed. In this design, changes in
health activities are broadcast to providers who subscribe to

frontiersin.org

Zhang et al. 10.3389/fbloc.2023.1006058
i Messenger
.| Publisher- | [
, her 5 ||® queryEvents(): events !
Subscriber | © |___|, fiterEvent(events) '
Web App Layer (. g
e
BlOCRChf}E Layer ... EventLog
Blockchain <<interface>> @ event(topic,value)

I P [Topic '

i + struct(name,value) .

f Publisher Subscriber '

+ subscribers: Subscriber]] [---- , M

+ subscribe(Subscriber) + oracleCallback(Topic) dOTaSk(Tomc)

H + unsubscribe(Subscriber) '

i |+ notify(Subscriber, Topic) !

i |foreach s in subscribers { !

! s.oracleCallback(Topic) |

) !

FIGURE 10

Two variants of the publisher-subscriber pattern for providing clinical notifications of relevant healthcare activities at scale

events related to their patients, which removes the overhead of
filtering or manual searching. Due to the deterministic nature of
smart contract computations, communications between the on-
chain address space and off-chain services can occur in two ways:
1) via a regular polling mechanism, in which an off-chain
server delegates a Messenger component to monitor changes
or new events in the system, and 2) pushing data out to a
trusted 3rd party Oracle who performs some computation off-
chain and then forwards the results back to the blockchain
address space via a callback function®, such as in Foundation
(2015b). The scalability of an Oracle service is yet to be tested
however.
The
overhead on-chain as it delegates the querying and event

first communication method avoids computation
processing task to an off-chain server. Specifically, when the
publisher has an update, its subscribers only need to do a simple
update to an internal state variable that records the publisher’s
address, which a Messenger is created to monitor changes
actively. When a change event is detected, the responsibility
the
delegated to the DApp server from the blockchain: the change

for computation-heavy task of content filtering is

activity is retrieved directly from the publisher using the address.
The DApp server is context-aware at this point because each

4 https://blockchainhub.net/blockchain-oracles/

Frontiers in Blockchain

subscriber has an associated contract address accessible by the
server. The Messenger can then filter the content based on
subscribed topics and update the contract states of appropriate
subscribers as needed.

The second approach shifts the responsibility of topic
subscriptions and updates to the smart contract component
on-chain. When a topic, such as a patient their provider
to be notified of any health-related
experiences a new event or has a value update, the smart

wishes activities,
contract logic that notifies the subscribers pushes the updated
topic to an Oracle service, which executes some task related to the
topic (e.g., sending a secure message to the subscriber regarding
the updated event) and sends the result back to the smart contract
caller upon task completion.

Figure 10 shows the two variants of PUBLISHER-SUBSCRIBER tO
provide the notification service.

A solution presently available for DApps makes use of a
decentralized interoperability layer called the Query Execution
Layer GraphProtocol (2018). Figure 11 shows a high-level
overview of the Web3 application stack, where the Query
Execution Layer is built over the blockchain protocols and
interfaces with a DApp. This layer can operate using a
Decentralized Query Protocol, defined to be a “collection of
rules by which clients pay a decentralized network of nodes
for indexing, caching, and querying data that is stored on
public blockchains and decentralized storage networks such as
IPES/Swarm” GraphProtocol (2018). This protocol can enable

15 frontiersin.org

Zhang et al.

Decentralized Applications

Query Execution Layer

Protocols

Trustless Computation (Smart Contracts)

Decentralized Storage

Networks Blockchains

Peer to Peer Networks

FIGURE 11
A Web3 application stack including the Query Execution Layer.

users and DApps to query a chain-agnostic network’s data
without having to manage a centralized query infrastructure
for the DApps.

The solution provided by GraphProtocol (2018) for indexing
information on blockchain networks is similar to the Publisher-
Subscriber pattern, where the topics are published events emitted
from a smart contract, subscribed to by decentralized nodes, which
subsequently index and curate the information. Custom resolvers
for the subgraph may be deployed to nodes to ensure further
decentralization of the DApp.

Implementing a notification service in a healthcare DApp is
useful when a state change in the shared environment must be
reported to interested parties without a complex, many-to-many
communication model. Although, a disadvantage to the polling
approach is the complexity in the implementation of the
messenger component that regularly monitors smart contract
events, but it is much more efficient to offload the topic filtering
task to off-chain services. The drawbacks to the push-to-oracle
approach are on-chain computation overhead and potential costs
of Oracle services despite this approach being relatively easier to
implement.

5 Concluding remarks

Blockchain and programmable smart contracts provide an
ecosystem for creating DApps that have the potential to improve
healthcare interoperability on the technical level. However, key
make blockchain
applications—decentralization, immutability, and transparency-also

properties that successful ~ for financial
pose major concerns when adopted to create healthcare systems.
Specifically, we analyzed concerns related to system evolvability,
on-chain storage requirements and the overhead they cause, data
privacy, communication scalability in the face of a large number of
healthcare users and healthcare data, as well as data authorization.
The paper then described a collection of patterns-Layered Ring,

Guarded Update, Contract Manager, Database Connector,

Frontiers in Blockchain

10.3389/fbloc.2023.1006058

Database Proxy, Entity Registry, Tokenized Exchange, and
Publisher-Subscriber-to mitigate these concerns with code
examples and/or their healthcare use cases.

The decentralized nature of blockchain has the potential to
enable a more interoperable environment that cannot be easily
achieved with traditionally centralized systems, but it also
requires careful design choices to implement a reliable and
DApp.
programmability on the blockchain, but they can also produce

sustainable healthcare Smart contracts enable
overhead in data storage and communication in addition to
expose system vulnerability to malicious attackers. By combining
time-proven design practices with an understanding of domain-
specific requirements, the collection of patterns and their use cases
are proposed to help create healthcare DApps that respect the
security and privacy requirements of the domain in addition to

being modular, scalable, easy to integrate and maintain.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://etherscan.io/.

Author contributions

PZ contributed to conception and design of the study and
wrote the first draft of the manuscript. AK wrote sections of this
manuscript. DS and JW contributed research ideas and guidance
to this study and edited drafts of the manuscript. All
authors contributed to the article and approved the submitted
version.

Funding

This research is supported by NSF’s CISE-CRII program
(Project No. 2153232). The authors would like to thank Dr. Kelly
Aldrich from Vanderbilt University and COMBINEDBrain
(combinedbrain.org) for providing domain expertise to this
research.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

frontiersin.org

Zhang et al.

References

Ajami, S., and Bagheri-Tadi, T. (2013). Barriers for adopting electronic health
records (ehrs) by physicians. Acta Inform. Medica 21, 129. doi:10.5455/aim.2013.
21.129-134

Arbabi, M. S., Lal, C.,, Veeraragavan, N. R., Marijan, D., Nygard, J. F., and Vitenberg,
R. (2022). A survey on blockchain for healthcare: Challenges, benefits, and future
directions. IEEE Commun. Surv. Tutorials 25, 386-424. doi:10.1109/COMST.2022.
3224644

Atzei, N., Bartoletti, M., and Cimoli, T. (2017). Principles of security and trust.
Springer, 164-186.A survey of attacks on ethereum smart contracts (sok)

Azaria, A., Ekblaw, A., Vieira, T., and Lippman, A. “Medrec: Using blockchain
for medical data access and permission management,” in Proceedings of the Open
and Big Data (OBD), International Conference on (IEEE), Vienna, Austria, August
2016, 25-30.

Bartoletti, M., and Pompianu, L. (2017). An empirical analysis of smart contracts:
Platforms, applications, and design patterns. https://arxiv.org/abs/1703.06322.

Blundell-Wignall, A. (2014). “The bitcoin question: Currency versus trust-less
transfer technology,” in OECD working papers on finance, insurance and private
pensions (Paris, France: OECD Publishing), 1.

Broderson, C., Kalis, B., Leong, C., Mitchell, E., Pupo, E., and Truscott, A. (2016).
Blockchain: Securing a new health interoperability experience. https://pdfs.
semanticscholar.org/8b24/dc9cffeca8cc276d3102{8ae17467c7343b0.pdf.

Buschmann, F., Henney, K., and Schimdt, D. (2007). Pattern-oriented software
architecture: On patterns and pattern language. Hoboken, New Jersey, United States:
John Wiley & Sons.

Buterin, V. (2014). A next-generation smart contract and decentralized application
platform. white paper 3, 2-1.

Cap, C. M. (2023). Cryptocurrency market capitalizations. https://
coinmarketcap.com/.

Chen, Y., and Bellavitis, C. (2020). Blockchain disruption and decentralized finance:
The rise of decentralized business models. J. Bus. Ventur. Insights 13, €00151. doi:10.
1016/.jbvi.2019.00151

Chukwu, E., and Garg, L. (2020). A systematic review of blockchain in healthcare:
Frameworks, prototypes, and implementations. Ieee Access 8, 21196-21214. doi:10.
1109/access.2020.2969881

ConsenSys (2018). “Recommendations for smart contract security in solidity,” in
Recommendations for smart contract security in solidity (New York, NY, United States:
ConsenSys).

Coplien, J., Hoffman, D., and Weiss, D. (1998). Commonality and variability in
software engineering. IEEE Softw. 15, 37-45. doi:10.1109/52.730836

CryptoKitties (2023). Cryptokitties. https://www.cryptokitties.co/.

Das, R. (2017). Does blockchain have a place in healthcare. https://www.forbes.com/
sites/reenitadas/2017/05/08/does-blockchain-have-a-place-in-healthcare/.

De Aguiar, E. J., Faigal, B. S., Krishnamachari, B., and Ueyama, J. (2020). A survey of
blockchain-based strategies for healthcare. ACM Comput. Surv. (CSUR) 53, 1-27.
doi:10.1145/3376915

DeSalvo, K., and Galvez, E. (2015). Connecting health and care for the nation: A shared
nationwide interoperability roadmap—version 1.0. https://www.healthit.gov/buzz-blog/.

Dourlens, J. (2017). Ethereum smart contracts lifecycle.

Dubovitskaya, A., Xu, Z.,, Ryu, S., Schumacher, M., and Wang, F. (2017). Secure and trustable
electronic medical records sharing using blockchain. https://arxiv.org/abs/1709.06528.

E Napoletano, B. C. (2022). Proof of stake. Web. https://www.forbes.com/advisor/
investing/cryptocurrency/proof-of-stake/.

Ellervee, A., Matulevicius, R, and Mayer, N. (2017). A comprehensive reference model for
blockchain-based distributed ledger technology. http://kodu.ut.ce/~andrease/ellervee blockchain.

Etherescan (2023). Etherescan - the ethereum blockchain explorer. https://
etherscan.io/.

Fernandez, E. B. (2013). Security patterns in practice: Designing secure architectures
using software patterns. Hoboken, New Jersey, United States: John Wiley & Sons.

Fomo3D (2023). Fomo3d. https://fomo3d.net/.
Foundation, E. (2015b). Oraclize limited. http://www.oraclize.it/.
Foundation, E. (2015a). Solidity. https://solidity.readthedocs.io/en/develop/.

Gamma, E., Helm, R,, Johnson, R., and Vlissides, J. “Design patterns: Abstraction and
reuse of object-oriented design,” in Proceedings of the European Conference on Object-
Oriented Programming, Kaiserslautern, Germany, July 1993, 406-431.

Gamma, E,, Vlissides, J., Johnson, R,, and Richard, H. (1995). Design patterns: Elements of
reusable object-oriented software. London, United Kingdom: Pearson Education.

Geraci, A., Katki, F., McMonegal, L., Meyer, B., Lane, J., Wilson, P., et al. (1991). IEEE
standard computer dictionary: Compilation of IEEE standard computer glossaries.
https://ieeexplore.ieee.org/document/182763.

Frontiers in Blockchain

17

10.3389/fbloc.2023.1006058

Gmbh, 1. (2023b). Cosmos, the internet of blockchains, features. https://cosmos.
network/features.

Gmbh, I. (2023a). What is tendermint. Web. https://docs.tendermint.com/v0.33/
introduction/what-is-tendermint.html.

GraphProtocol (2018). The graph: A decentralized query protocol for blockchains.
https://github.com/graphprotocol/research/blob/master/papers/whitepaper/the-graph-
whitepaper.pdf.

Hub, B. (2017). Blockchain oracles. Web. https://insights.sei.cmu.edu/sei_blog/2017/
07/what-is-bitcoin-what-is-b lockchain.html.

Idex - Decentralized Ethereum Asset Exchange (2018). Idex - decentralized ethereum
asset exchange. https://idex.io/.

Johnston, D., Yilmaz, S. O., Kandah, J., Bentenitis, N., Hashemi, F., Gross, R., et al.
(2014). The general theory of decentralized applications, dapps. GitHub, June 9.

Kugler, L. (2021). Non-fungible tokens and the future of art. Commun. ACM 64,
19-20. doi:10.1145/3474355

Lesh, K., Weininger, S., Goldman, J. M., Wilson, B., and Himes, G. “Medical device
interoperability-assessing the environment,” in Proceedings of the 2007 Joint
Workshop on High Confidence Medical Devices, Software, and Systems and
Medical Device Plug-and-Play Interoperability (HCMDSS-MDPnP 2007), Boston,
MA, USA, June 2007, 3-12.

Lundkvist, C., Heck, R., Torstensson, J., Mitton, Z., and Sena, M. (2017). Uport: A
platform for self-sovereign identity. URL: https://whitepaper.uport.me/uPort_
whitepaper_ DRAFT20170221.pdf.

Melnick, E. R, Fong, A., Nath, B., Williams, B., Ratwani, R. M., Goldstein, R, et al.
(2021). Analysis of electronic health record use and clinical productivity and their
association with physician turnover. JAMA Netw. Open 4, €2128790. doi:10.1001/
jamanetworkopen.2021.28790

Moreno, J., Fernandez, E. B., Fernandez-Medina, E., and Serrano, M. “A security pattern
to incorporate blockchain in big data ecosystems,” in Proceedings of the EuroPLoP-24th
European Conference on Pattern Languages of Programs, Irsee, Germany, July 2019.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.
org/bitcoin.pdf.

Onc (2014). Connecting health and care for the nation: A 10-year vision to achieve an
interoperable health it infrastructure. https://www.healthit.gov/sites/default/files/
ONCl10yearInteroperabilityConceptPaper.pdf.

OpenZeppelin (2023b). Access control. https://docs.openzeppelin.com/contracts/4.x/
access-control.

OpenZeppelin (2023a). Erc1155. https://docs.openzeppelin.com/contracts/4.x/api/
token/erc1155.

Palladino, S. (2017). The parity wallet hack explained. https://blog.zeppelin.solutions/
on-the-parity-wallet-multisig-hack-405a 8c12e8f7.

Peter, B., and Nichol, J. B. (2016). Co-creation of trust for healthcare: The
cryptocitizen. framework for interoperability with blockchain. Res. Propos. Res.

Peterson, K., Deeduvanu, R., Kanjamala, P., and Boles, K. (2016). A blockchain-based
approach to health information exchange networks. https://www.healthit.gov/sites/
default/files/12-55-blockchain-based-approach-final.pdf.

Porru, S,, Pinna, A., Marchesi, M., and Tonelli, R. “Blockchain-oriented software engineering:
Challenges and new directions,” in Proceedings of the 39th International Conference on
Software Engineering Companion, Buenos Aires, Argentina, May 2017, 169-171.

Rene, M. L., and Stephen, G. (2020). What is ethereum 2.0? ethereum’s consensus
layer and merge explained. https://decrypt.co/resources/what-is-ethereum-2-0.

Richesson, R. L., and Nadkarni, P. (2011). Data standards for clinical research data
collection forms: Current status and challenges. J. Am. Med. Inf. Assoc. 18, 341-346.
doi:10.1136/amiajnl-2011-000107

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. (1996). Role-based
access control models. Computer 29, 38-47. doi:10.1109/2.485845

Sandhu, R. S., and Samarati, P. (1994). Access control: Principle and practice. [EEE
Commun. Mag. 32, 40-48. doi:10.1109/35.312842

Shvets, A. (2015). Design patterns explained simply. https://sourcemaking.com/.

Siegel, D. (2016). Understanding the dao attack. http://www.coindesk.com/
understanding-dao-hack-journalists.

Six, N., Herbaut, N., and Salinesi, C. (2022). Blockchain software patterns for the
design of decentralized applications: A systematic literature review. Blockchain Res.
Appl. 3, 100061. doi:10.1016/j.bcra.2022.100061

Solidity.Readthedocs (2017). Ethereumio. Contracts. http://solidity.readthedocs.io/
en/develop/contracts.html.

Xu, X., Pautasso, C., Zhu, L., Gramoli, V., Ponomarev, A., Tran, A. B., et al. “The
blockchain as a software connector,” in Proceedings of the 2016 13th Working
IEEE/IFIP Conference on Software Architecture (WICSA), Venice, Italy, April
2016, 182-191.

frontiersin.org

Zhang et al.

Xu, X,, Pautasso, C., Zhu, L., Lu, Q.,, and Weber, I. “A pattern collection for
blockchain-based applications,” in Proceedings of the 23rd European Conference on
Pattern Languages of Programs, Irsee, Germany, July 2018, 1-20.

Zdun, U., Hentrich, C., and Van Der Aalst, W. M. (2006). A survey of patterns for
service-oriented architectures. Int. J. Internet Protoc. Technol. 1, 132-143. doi:10.1504/
ijipt.2006.009739

Zhang, P., Schmidt, D. C., White, J., and Lenz, G. (2018b). Blockchain technology use
cases in healthcare. Blockchain technology: Platforms, tools, and use cases. Adv. Comput.
111, 1-41. doi:10.1016/bs.adcom.2018.03.006

Zhang, P., Walker, M. A., White, J., Schmidt, D. C., and Lenz, G. “Metrics for assessing
blockchain-based healthcare decentralized apps,” in Proceedings of the 2017 IEEE 19th
International Conference on e-Health Networking, Applications and Services
(Healthcom), Dalian, China, October 2017c, 1-4.

Frontiers in Blockchain

18

10.3389/fbloc.2023.1006058

Zhang, P., White, J., and Schmidt, D. “Architectures and patterns for leveraging high-
frequency, low-fidelity data in the healthcare domain,” in Proceedings of the 2018 IEEE
International Conference on Healthcare Informatics (ICHI), New York, NY, USA, June
2018c, 463-464.

Zhang, P., White, J., Schmidt, D. C,, and Lenz, G. “Design of blockchain-based apps using
familiar software patterns with a healthcare focus,” in Proceedings of the 24th Conference on
Pattern Languages of Programs, Vancouver British Columbia Canada, October 2017a, 19.

Zhang, P., White,], Schmidt, D. C,, and Lenz, G. “Design of blockchain-based apps using
familiar software patterns with a healthcare focus,” in Proceedings of the 24th Conference on
Pattern Languages of Programs, Vancouver British Columbia Canada, October 2017b, 19.

Zhang, P., White, J., Schmidt, D. C., Lenz, G., and Rosenbloom, S. T. (2018a).
Fhirchain: Applying blockchain to securely and scalably share clinical data. Comput.
Struct. Biotechnol. J. 16, 267-278. doi:10.1016/j.csbj.2018.07.004

frontiersin.org

	Design pattern recommendations for building decentralized healthcare applications
	1 Introduction
	2 Key concepts of blockchain technology
	2.1 Blockchain concepts
	2.2 Overview of consensus mechanisms
	2.3 Overview of solidity

	3 Related work
	4 A pattern collection for designing blockchain-based healthcare applications
	4.1 A decentralized infrastructure for health data sharing systems
	4.1.1 Design problem faced by DApps for healthcare use cases
	4.1.2 Solution → apply the Layered Ring pattern to define a decentralized base architecture for a health data sharing system

	4.2 Preventing reentrancy attack in the blockchain
	4.2.1 Design problem faced by DApps for healthcare use cases
	4.2.2 Solution → apply the Guarded Update pattern to prevent unexpected reentrancy attacks

	4.3 Separating data from logic via a manager contract
	4.3.1 Design problem faced by DApps for healthcare use cases
	4.3.2 Solution → apply the Contract Manager pattern to separate data from logic to ensure data availability

	4.4 Standardized on-chain interfaces to off-chain storage access
	4.4.1 Design problem faced by DApps for healthcare use cases
	4.4.2 Solution → apply the Database Connector pattern promote interoperability via standardized and scalable interfaces to ...

	4.5 Security checking before accessing off-chain storage
	4.5.1 Design problem faced by DApps for healthcare use cases
	4.5.2 Solution → apply the Database Proxy pattern to provide an additional layer of security by performing lightweight task ...

	4.6 Managing healthcare entities and common data on-chain at scale
	4.6.1 Design problem faced by DApps for healthcare use cases
	4.6.2 Solution → apply the Entity Registry pattern for managing healthcare entities and common data on-chain at scale

	4.7 Securing and recording data access
	4.7.1 Design problem faced by DApps for healthcare use cases
	4.7.2 Solution → apply the Tokenized Exchange pattern to authorize access to off-chain data storage with a verifiable data ...

	4.8 Providing notifications of relevant healthcare activities at scale
	4.8.1 Design problem faced by DApps for healthcare use cases
	4.8.2 Solution → apply the Publisher-Subscriber pattern to manage user notifications at scale when events of interest occur ...

	5 Concluding remarks
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

