Title: Rapid effects of vagus nerve stimulation on sensory processing through activation of neuromodulatory systems

Authors: Charles Rodenkirch^{1,2§}, Jason B. Carmel³, and Qi Wang^{1§}

Affiliation: ¹ Department of Biomedical Engineering

Columbia University

New York, NY

² Jacobs Technion-Cornell Institute

Cornell Tech New York, NY

³ Departments of Neurology and Orthopedics

Columbia University Medical Center

New York, NY

§ Corresponding Authors:

Professor Qi Wang

Department of Biomedical Engineering

Columbia University

Engineering Terrace Room 351, 500 W 120th Street, New York, NY 10027

Phone: 212.854.3657

Email: qi.wang@columbia.edu

2

1

3 Dr. Charles Rodenkirch

4 Jacobs Technion-Cornell Institute

5 Cornell Tech

Tata Innovation Center Room 381, 11 E Loop Road, New York, NY 10044

7 Phone: 646.470.3040

8 Email: cr585@cornell.edu

9

- 10 **Key words:** Vagus nerve stimulation, sensory processing, neuromodulation, locus coeruleus –
- 11 norepinephrine system, cholinergic system, dopaminergic system, serotonergic system,
- 12 plasticity

13

14 Number of words: 3817

15

16 Number of figures: 2

ABSTRACT

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36 37

After sensory information is encoded into neural signals at the periphery, it is processed through multiple brain regions before perception occurs (i.e., sensory processing). Recent work has begun to tease apart how neuromodulatory systems influence sensory processing. Vagus nerve stimulation (VNS) is well-known as an effective and safe method of activating neuromodulatory systems. Supporting this hypothesis, there is a growing body of studies confirming VNS has immediate effects on sensory processing across multiple sensory modalities. These immediate effects of VNS on sensory processing are distinct relative to the more welldocumented method of inducing lasting neuroplastic changes to the sensory pathways through repeatedly delivering a brief VNS burst paired with a sensory stimulus. Immediate effects occur upon VNS onset, often disappear upon VNS offset, and the modulation is present for all sensory stimuli received. Conversely, the neuroplastic effects of pairing sub-second bursts of VNS with a sensory stimulus alters sensory processing only after multiple pairing sessions, this alteration remains after cessation of pairing sessions, and the alteration selectively affects the response properties of neurons encoding the specific paired sensory stimulus. Here, we call attention to the immediate effects VNS has on sensory processing. This review discusses existing studies on this topic, provides an overview of the underlying neuromodulatory systems that likely play a role, and briefly explores the potential translational applications of using VNS to rapidly regulate sensory processing.

INTRODUCTION

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

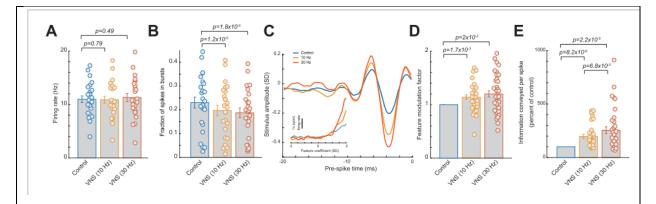
62

63

Accurate and detailed perception of tactile, auditory, and visual stimuli is critical for completing a large variety of tasks, including many necessary for daily life and independent living. Perceptual acuity is dependent upon both reliable transduction of sensory stimuli into neural signals at the periphery and high-fidelity processing of sensory information by the central nervous system. Once sensory information is transduced into neural activity by sensory receptors, it is processed through multiple stages of the sensory pathway before perception occurs (i.e., central sensory processing) ¹⁻⁶. Developing methods that use neuromodulation of sensory processing to improve sensory acuity is of great interest as many significant clinical, commercial, and consumer problems stem from misperception or miscommunication. A growing body of evidence strongly suggests that vagus nerve stimulation (VNS) is a safe and effective method of neuromodulation ⁷. In this mini-review, we explore the effects of VNS on sensory processing. Multiple recent reviews have discussed in detail the ability of short VNS bursts repeatedly paired with sensory stimuli to catalyze neuroplastic reorganization of sensory pathways after multiple pairing sessions ⁸⁻¹⁰, likely via engagement of neuromodulatory systems including the acetylcholine system ¹¹. Here, we instead specifically call attention to the immediate effects VNS has on sensory processing and discuss how they likely arise from VNS activating neuromodulatory systems that innervate sensory processing pathways.

Sensory processing is highly dependent upon behavioral states such as attention and arousal ¹²⁻²⁴ as both are heavily influenced by the same global neuromodulatory systems, including the noradrenergic ²⁵⁻²⁸ and cholinergic systems ²⁹. For example, our laboratory recently demonstrated that activation of the locus coeruleus – norepinephrine system (LC-NE), a major neuromodulator of attention and arousal, rapidly enhanced somatosensory processing through NE-mediated suppression of burst spiking induced by calcium T-channels ³⁰. This NE-enhanced sensory processing increased accuracy of encoded information and improved perceptual sensitivity of awake rats performing tactile discrimination tasks.

LASTING ALTERATIONS TO SENSORY PROCESSING OCCUR OVER TIME WHEN VNS BURSTS ARE PAIRED WITH REPEATED SENSORY STIMULI


A large body of previous work has focused on using repeated short bursts of VNS paired with a brief sensory stimulus to induce reorganization of sensory pathways. This work was inspired by studies which found pairing an auditory tone with phasic activation of dopaminergic, cholinergic, or noradrenergic neuromodulatory systems resulted in a lasting shift of frequency selectivity for neurons in the auditory cortex toward the paired tone's frequency 11, 31-33. We will not review these studies in detail here as they have already been well reviewed previously 8-10.

In general, these studies have paired phasic VNS (e.g., 0.5 s, 30 Hz, 0.8mA, 100µs biphasic pulses) with a specific sensory stimulus (e.g. a specific auditory tone or tactile tap frequency) repeatedly across multiple sessions (e.g. 300 times/day, 20 days). This alters sensory processing in a manner that facilitates detection of the specific paired stimulus ³⁴⁻³⁹ and accordingly disfavors detection of non-paired stimuli. This mechanism of action can be strengthened over multiple sessions of pairing to produce long-term permanent reorganization of sensory pathways that alters perception. Taken together, these works suggest phasic VNS has great potential as a next generation neuromodulation technology for rehabilitative motor and sensory therapies ⁴⁰⁻⁵⁰.

TRANSIENT MODULATION OF SENSORY PROCESSING OCCURS RAPIDLY UPON VNS ONSET

The purpose of this review is to bring light to recent studies indicating VNS modulates sensory processing immediately upon onset. Here, we will discuss in detail studies investigating the immediate effects VNS has on the response properties of neurons along the sensory pathways.

Our laboratory has recently demonstrated that VNS can be used to induce a rapid, general improvement of thalamic sensory processing (Figure 1). This is a continuation of our team's studies investigating the effects of the LC-NE system on thalamocortical circuitry ³⁰, a critical stage for sensory processing and perception ⁵¹⁻⁵⁸. These studies found that direct activation of the LC-NE system (electrical or optogenetic), in a continuous tonic fashion, optimized intrathalamic dynamics for sensory processing. Specifically, tonic LC stimulation (continuous, 5 Hz, 60 µA, 500 µs biphasic pulses) increased the efficiency and rate of sensory-related information transmitted by thalamocortical neurons ³⁰. Further, the observed NE-enhancement of sensory processing resulted in a significant improvement in perceptual sensitivity for rats tasked with discriminating between whisker stimuli of different frequencies. Through pharmacological manipulation it was determined that tonic LC activation improved thalamic sensory processing because a steady increase in NE concentration precludes priming, and in turn activation, of thalamic T-type calcium channels. When active, T-type calcium channels introduced a nonlinear bursting response that degraded transmission of detailed sensory information.

Figure 1. Tonic VNS suppressed burst spiking of thalamocortical neurons and increased the selectivity of their response to the specific stimulus feature they encode, leading to a greater amount of sensory-related information transmitted. (A) VNS did not significantly alter firing rate of ventral posteromedial nucleus (VPm) neurons responding to white gaussian noise whisker

(WGN) stimulation. (B) VNS reduced likelihood of VPm burst spikes, multiple successive spikes with a short inter-spike-intervals (~4 ms or less) commonly occurring after an extended period of quiescence (~100 ms) due to calcium t-channel current. (C)-(D) The amplitude of the specific kinetic feature(s) (i.e., whisker deflection) each VPm neuron was selective for was much larger when recovered during VNS, indicating VNS increased selectivity of response. (E) Enhanced feature selectivity of VPm neurons during VNS results in a significant increase in amount of the sensory-related information transmitted per spike. Adopted from ⁵⁹.

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

VNS has been shown to activate the LC-NE system 60 and is accessible in a noninvasive manner, unlike the LC deep in the brainstem. Therefore, our team next investigated whether tonic VNS would drive similar rapid beneficial effects on sensory processing. Through testing the effects of multiple patterns of VNS on sensory processing, the beneficial effect was found to be highly transient (i.e. benefit begins to dissipate within seconds of ceasing VNS) ⁵⁹. For example, duty-cycled VNS (30 s on / 60 s off duty cycle, 30 Hz, 500 µs biphasic pulses) enhanced tactile sensory processing during the on cycle, but this enhancement rapidly dissipated during the off cycle, suggesting that cycling VNS on and off creates fluctuations in sensory processing that would likely be sub-optimal for discrimination. This suggested that an uninterrupted pattern is required to produce a stable benefit. Indeed, continuous tonic VNS pattern (continuous, 30 Hz, 500 µs biphasic pulses) induced a steady enhancement of sensory processing similar to that observed with direct tonic LC stimulation. This immediate enhancement of sensory processing during continuous, tonic VNS was found to be reliably present across recorded neurons. As each recorded neuron encoded for a unique kinetic feature of the whisker stimuli, this suggests the tonic VNS modulation provided a general enhancement of sensory processing regardless of stimulus input. This effect is distinct relative to the selective facilitation of responses to a specific sensory stimulus found after repeatedly pairing VNS bursts with that sensory stimulus.

Further, testing of various tonic VNS current levels and frequencies showed the beneficial effect of tonic VNS on sensory processing increased with intensity and frequency (10 vs 30 Hz, 0.4 vs 1 and 1.6 mA) and did not exhibit the inverted U-shape function of effect strength that has been observed with other types of VNS modulation ⁶¹ (at least within the parameter ranges tested).

VNS has rapid effects on evoked responses in the auditory cortex

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

Other research groups working with human subjects have published findings that suggest VNS has immediate beneficial effects on auditory processing. One study in humans who had been receiving chronic VNS (via implanted cuffs as a treatment for epilepsy), found VNS enhanced performance on a standard auditory oddball task when compared to performance after their VNS device was turned off 62. Specifically, during VNS (7s on / 18 s off duty cycle, 20-30 Hz, 0.75-3 mA, 250-500 µs pulses) both accuracy and response time was improved for participants tasked with responding to low frequency target audio tones while ignoring high frequency nontarget tones. This same study analyzed auditory event-related potentials (AERP), measured via EEG, and found that during VNS AERP amplitude was also increased. However, the effect on AERP was only significant in individuals whose epilepsy symptoms had positively responded to VNS treatment. A separate study investigating transcutaneous auricular vagus nerve stimulation (taVNS) (30 s on / 30 s off duty cycle, 25 Hz, 250 µs pulses) in healthy adults found similar results. Specifically, taVNS increased the strength of AERPs during an oddball auditory task ⁶³. As this study used low frequency tones as nontargets and high frequency as target, a reversal of the prior discussed oddball auditory task, taken together they suggest immediate VNS modulation of auditory response is not specific to low or high frequency audio tones. Another study delivering continuous taVNS (25 Hz, 500 µs biphasic pulses) to healthy adults analyzed the neural response to auditory tones using magnetoencephalography (MEG) instead of EEG and found taVNS altered synchrony of brain activity 64. Further, recent studies using fMRI to monitor neural activity have

shown taVNS rapidly affects auditory processing pathways. When taVNS (25 Hz, 0.1 to 1.8 mA, 500 µs monophasic pulses) was delivered to male adults with chronic tinnitus, fMRI recordings exhibited altered activity of multiple brain regions involved with auditory processing ⁶⁵. More recently, analysis of fMRI data from human subjects receiving taVNS indicated increased activity in the thalamus and auditory cortex ⁶⁶, suggesting VNS rapidly modulates central auditory sensory processing in humans.

These findings in humans are further supported by multiple electrophysiological and behavioral work in animals that found VNS rapidly affects the response properties of neurons of the auditory pathway. In isoflurane-anesthetized rats, the responses of neurons along the auditory pathway were compared with and without VNS delivered via an implanted VNS cuff (30 s on / 5 min off duty cycle, 10 Hz, 0.5 mA, 130 µs pulses). The baseline condition was recorded without any ongoing VNS. The VNS condition consisted of discontinuous duty-cycled VNS where auditory testing was performed only during the off periods of the VNS duty cycle. Here they found duty-cycled VNS weakened stimulus-specific adaptation in the cortex but not the thalamus ⁶⁷, suggesting VNS may modulate thalamocortical transmission but not earlier stages of the auditory pathway. Further work by the same group, using the same paradigm, found VNS predominantly increased the amplitudes of auditory-evoked potentials in the sensory cortex ⁶⁸.

VNS modulates the olfactory and gustatory processing

The immediate effects of VNS on olfactory processing had been demonstrated as early as the 1980's. Specifically, a study in rats found that a single pulse of VNS from an implanted cuff (0.8-1.5 mA, 200 µs monophasic pulses) reliably evoked firing in the homolateral olfactory bulb (HOB) ⁶⁹. Further evidence that VNS affects olfactory processing was found in more recent studies that used positron emission tomography (PET) to analyze the effects of VNS in awake rats. A PET scan conducted during the time period when the VNS cuff was switched on for the first time (30 s on / 5 min off duty cycle, 30 Hz, 1.5 mA, 500 µs pulses) found VNS induced a significant

increase in glucose metabolism in both olfactory bulbs ⁷⁰. However, another study in humans with implanted VNS cuffs for treatment of depression found that whether VNS (30 s on / 5 min off duty cycle, 20 Hz, 1.25 mA) was on or off had no effect on subjects' ability to discriminate or detect olfactory stimuli ⁷¹. Yet that same study did find that VNS significantly increased the intensity of the taste of sweet and bitter, suggesting that VNS may rapidly affect gustatory processing as well.

VNS ACTIVATES MULTIPLE NEUROMODULATORY SYSTEMS THAT RAPIDLY INFLUENCE THE RESPONSE PROPERTIES OF NEURONS ALONG SENSORY PATHWAYS.

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

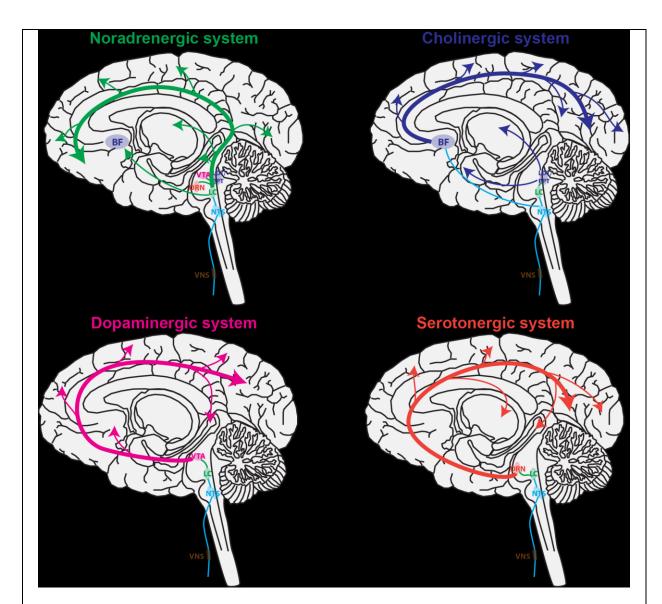
186

187

188

189

190


191

192

193

194

The ability of VNS to have immediate effects on sensory processing is likely due to VNS activating neuromodulatory systems (Figure 2). Here we briefly review studies of the effect of VNS on neuromodulatory systems in both human and animal models. Neurons in the neuromodulatory systems and sensory pathways discussed here can exhibit either tonic or burst spiking patterns ⁷²⁻⁷⁶. Tonic spiking refers to sustained firing of tonic spikes at relatively slow rates compared to phasic. Phasic spiking refers to transient bursts of multiple spikes with short inter-spike-intervals. For neuromodulatory systems, the rate of continuous tonic spiking modulates brain state (e.g., attention, arousal) whereas phasic firing is linked with events (e.g., reward, sensory stimuli, decision-making) and thought to regulate learning and behavior 77,78. For sensory pathways, tonic encoding is favored during periods of increased attention and is thought to be more optimal for the discrimination of sensory detail ^{73, 79}. Conversely, bursting responses to sensory stimuli are more likely when drowsy or inattentive and provide a strong encoding that facilitates detection, potentially serving as a wake-up call 80, 81. It is important to note that neuromodulatory systems are well preserved over evolution, and the function of neuromodulatory systems are similar in humans and other mammals such as rodents 82. Indeed, the studies discussed earlier confirm VNS affects sensory processing in both rodents and humans.

Figure 2. VNS activates multiple global neuromodulatory systems that are known to influence sensory processing. BF: basal forebrain; DRN: dorsal raphe nucleus; LC: locus coeruleus; LDT: laterodorsal tegmental nucleus; NTS: nucleus tractus solitaries; PPT: pedunculopontine tegmental nucleus; VTA: ventral tegmental area.

VNS and the Noradrenergic System

195

196

197

198

The LC is the primary source of NE in the forebrain ⁸³. The LC exhibits constant tonic firing (1-5 Hz) that regulates brain state (e.g., arousal) as well as intermediate phasic burst spiking

events (2-5 spikes at 10-20 Hz per burst) that occur in response to salient sensory stimuli as well as when decisions or responses are made ⁷². These two firing modes have been shown to produce distinctly different modulations of the response properties of sensory neurons ⁷². The LC innervates multiple regions along the sensory pathway, including the sensory thalamus and cortex ^{84,85}

There is a large body of evidence showing that the LC-NE system modulates sensory processing and perceptual learning ^{32, 86-91}. Moreover, it is well documented that activation of the LC-NE system immediately modulates the response of sensory neurons. In-vitro, NE has a depolarizing effect on auditory and visual thalamic relay neurons that coincides with a suppression of burst spiking ⁷⁴. This likely occurs because NE depolarization prevents the extended hyperpolarized periods needed to prime the calcium t-channels responsible for bursts ⁷⁹. In-vivo, tonic LC activation has been found to reduce spontaneous activity of the somatosensory thalamus, while facilitating sensory evoked activity, resulting in an increase in signal to noise ratio ⁸⁹. Our team has shown how tonic LC-NE activation enhances the accuracy of encoded stimuli in the somatosensory thalamus by reducing the fluctuating influence of the calcium t-channels responsible for bursting ⁷³. Within the cortex, the LC-NE system can cause either facilitation or inhibition with resulting effects specific to the sensory modality, cell, and stimulation pattern ⁹²⁻⁹⁵.

VNS' ability to activate the LC-NE system has long been hypothesized to underlie, in part, the clinical benefits of VNS ⁹⁶. VNS is thought to activate the LC via the vagus nerve's afferent projections to the nucleus tractus solitarius (NTS) ^{97, 98}. The NTS then sends an excitatory signal to the LC, likely via the nucleus paragigantocellularis ^{99, 100}. Indeed, multiple studies have confirmed VNS readily activates the LC-NE system in both animals and humans. In rats, VNS delivered via an implanted cuff has been shown to increase the activity of LC neurons as confirmed by electrophysiological recordings under halothane ¹⁰¹, chloral hydrate ¹⁰², equithesin ¹⁰³, and ketamine ⁶⁰ as well as by immunohistochemical biomarkers of short-term neuronal activation ¹⁰⁴. Similarly, multiple studies have found that microdialysis samples taken from rats

receiving VNS exhibited increased NE concentration in the primary hippocampus ¹⁰⁵, basolateral amygdala ¹⁰⁶, and cortex ¹⁰⁷⁻¹⁰⁹. Finally, the findings in animals seem to be conserved in humans, as fMRI data from a study of adult males with tinnitus indicated taVNS activates the NTS and LC ⁶⁵. However, variations in VNS parameters may affect how reliably VNS drives the LC-NE system, as one study measuring NE concentration in the CSF of patients receiving VNS as a treatment for depression failed to detect a significant change ¹¹⁰.

In addition to direct evidence VNS activates the LC-NE system, many effects of VNS are blocked if the LC-NE system is impaired through either LC lesion or adrenergic receptor blockers. For example, the anticonvulsive effect of VNS is abrogated when hippocampal adrenergic receptors are blocked ^{105, 111}. Further, VNS enhancement of perforant path-CA3 synaptic transmission is blocked by either electrical lesions of the LC or an adrenergic receptor antagonist (timolol) ¹¹². The antidepressant-like effects of VNS in rats, as measured by feeding and swim tests, have been shown to be blocked by lesion of noradrenergic neurons ^{113, 114}. Immunotoxin depletion of norepinephrine was also found to prevent VNS-driven enhancement of motor cortex neuroplasticity ¹¹⁵.

VNS and Cholinergic Systems

Cholinergic nuclei of the basal forebrain (BF) project to the sensory processing regions of the thalamus ¹¹⁶ and cortex ^{117, 118}. Additionally, cholinergic nuclei of the pontomesencephalic area, including the laterodorsal tegmental nucleus (LDT) and pedunculopontine tegmental nucleus (PPT), are a major source of ACh to the thalamus^{119, 120}. There are two distinct neuron populations of the BF that differentiate in exhibiting either a tonic (10-15 Hz) or a bursting (2-6 spikes/burst with bursting events occurring at 0.3-2 Hz) firing pattern ⁷⁵ which influences arousal and attention. The response timing of both types of BF neurons is influenced by sensory stimuli ¹²¹ and linked with novelty, salience, and surprise ¹²²

Extensive work has shown the cholinergic system strongly influences both sensory processing and perceptual learning across multiple sensory modalities ^{11, 123-134}. Like the noradrenergic system, it is well documented that activation of the cholinergic systems has immediate effects on sensory processing. ACh applied in-vitro to neurons of the thalamic reticular nucleus, a subthalamic region involved in sensory processing, causes hyperpolarization and induces burst spiking ¹³⁵, likely due to extended hyperpolarized periods priming the calcium t-channels responsible for burst spiking ⁷⁹. ACh applied to thalamic neurons of the primary visual and auditory pathways was found to increase firing rate ^{136, 137}, although a hyperpolarization effect has been observed in thalamic neurons of the secondary (nonlemniscal) auditory pathway ¹³⁸. Cholinergic modulation of the sensory cortex can cause either facilitation or inhibition with the resulting effect specific to the sensory modality, cell, and stimulation pattern ^{118, 139-141}. In the visual cortex, BF stimulation has been shown to enhance accurate encoding by inducing decorrelation and increased reliability ¹⁴².

It has long been hypothesized that VNS activates the BF–ACh system ¹⁴³. VNS innervates the nucleus tractus solitarius (NTS) ⁹⁷ and projections from the NTS activate the BF ¹⁴⁴ in addition to the NTS projections that activate the LC ⁹⁸⁻¹⁰⁰. The LC also projects to the BF ¹⁴⁵, suggesting VNS activates the BF both directly through the NTS as well as indirectly through the LC. Indeed, two separate studies investigating the potential of VNS for inducing neuroprotection from cerebral ischemia found that VNS enhanced protein levels of the nicotinic acetylcholine receptor alpha7 subunit (a7nAchR) in the ischemic penumbra ^{146, 147}. Recently, researchers performed in-vivo calcium imaging of the auditory cortex and found VNS evoked activity of cholinergic axons innervating the region ¹⁴⁸. Further, they found the intensity of the evoked activity covaried with VNS intensity. In addition to this direct evidence that VNS rapidly activates the cholinergic system, multiple studies have shown ACh modulation of sensory pathways is a critical component underlying the plasticity effect induced by repeatedly pairing a burst of VNS with a sensory stimulus. For example, the effects of VNS on sensory processing in the auditory cortex were found

to be blocked by a muscarinic antagonist ¹⁴⁹. Further, lesioning the NB in rats was shown to abrogate the well-documented ability of VNS pulses repeatedly paired with a movement to enhance motor cortex plasticity ¹⁵⁰.

VNS and Serotonergic Systems

The dorsal raphe nucleus (DRN) is a major source of serotonin (5-HT) to the forebrain ¹⁵¹. Neurons of the DRN consistently exhibit a continuous slow tonic firing rate (1-2 Hz) with little variation in inter-spike-interval ^{152, 153}. Response of the DRN is related to both reward and punishment ^{154,156} as well as linked to sensory input ^{157, 158}. The DRN innervates both cortical and subcortical regions of the sensory processing pathways ¹⁵⁹. There is also a large body of work suggesting DRN activity modulates sensory processing and perception ^{160,166}. 5-HT has been shown to have instant effects on neurons of the sensory pathways. For example, 5-HT has been shown to cause excitation of thalamic perigeniculate and reticular nucleus neurons ^{167, 168}. In the inferior colliculus, an auditory region of the midbrain, 5-HT was found to modulate responses in both a cell and auditory stimulus specific manner ¹⁶⁰. In the primary visual and auditory relay neurons of the visual and auditory pathways, 5-HT has been shown to have an inhibitory effect ¹⁶⁹⁻¹⁷¹. Additionally, activation of the DRN has been found to increase signal to noise ratio of the olfactory cortex ¹⁷².

VNS may activate the DRN indirectly by first activating the LC which then projects to the DRN ¹⁷³. This hypothesis is supported by a study in rats anesthetized with sodium pentobarbital that found VNS increased DRN neurons' firing rates, but this causal relationship was lost once the LC was lesioned ¹⁰³. Multiple studies have also shown that VNS increases DRN firing rate as measured via extracellular electrophysiological recordings ^{102, 174}. However, one study found only a subset of VNS patterns they tested increased DRN activity suggesting VNS activation of the DRN may be dependent on VNS parameters ¹⁷⁵. In follow-up work, the same group performed in-

vivo microdialysis in rats following chronic duty-cycled VNS and found increased 5-HT concentration in the DRN but not the hippocampus nor prefrontal cortex (PFC) ¹⁰⁹. In contrast to these studies supporting VNS' ability to activate the DRN, another study analyzing microdialysis measurements in different brain regions of rats reported that neither vagotomy or chronic unilateral VNS had an effect on 5-HT levels in the VTA, nucleus accumbens (NAc), PFC, and striatum ¹⁷⁶. These conflicting findings could potentially be related to the fact that electrical stimulation was delivered to an abdominal branch of the vagus nerve in this study. Further suggesting a more complex interplay between the VNS and DRN, a study analyzing immunohistochemical biomarkers of both short-term and long-term neuronal activation suggests chronic VNS does not induce DRN activation until stimulation has occurred across multiple days

In addition to direct evidence that VNS increases activity of the serotonergic system, functionality of serotonergic neurons has been shown to be critical for multiple documented effects of VNS. For example, the earlier-mentioned study on the antidepressant-like effects of VNS in rats, which used feeding and swim tests as indexes of depression, found the beneficial effects of VNS were also precluded by administration of a neurotoxin for serotonergic neurons ¹¹⁴. Additionally, a separate study found immunotoxin depletion of serotonin prevented the well-researched ability of repeatedly pairing a VNS burst with a movement to enhance motor cortex neuroplasticity ¹¹⁵.

VNS and Dopaminergic Systems

The ventral tegmental area (VTA) and Substantia Nigra pars Compacta (SNc) are primary sources of dopamine (DA) to the forebrain ¹⁷⁷ and, respectively, they modulate cognition and movement ¹⁷⁸. The VTA has been shown to innervate the sensory cortices ¹⁷⁹. The VTA exhibits both tonic (1-8 Hz) and burst firing (2-5 spike bursts with bursting events occurring at 0.1-1 Hz) with firing rates varying across cell types ¹⁸⁰⁻¹⁸². Tonic firing rate likely modulates brain state (e.g.,

motivation, arousal) and bursting events likely encode for salient stimuli (e.g., reward, sensory stimuli) ¹⁸³. Although the body of work investigating the effects of DA on sensory processing is limited, there is evidence it rapidly modulates sensory processing and response ¹⁸⁴⁻¹⁸⁶.

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

Although previous work demonstrated the LC projects to the VTA ¹⁸⁷, many studies also suggest VNS effects on DA circuitry may be dependent on other factors besides VNS directly increasing VTA firing rates. For example, one study that performed in-vivo microdialysis of rats following chronic duty-cycled VNS found an increase in DA in the PFC and NAc but a decrease in VTA neurons' firing rates as measured with electrophysiological recordings 109. A lack of VNSinduced changes in VTA firing and bursting rates was also reported in a separate study 188. Studies analyzing brain sections from rats that received chronic VNS have also reported varied results. One such study found decreased DA levels in the VTA, NAc, PFC, and striatum ¹⁷⁶; however, to properly interpret these results it should be mentioned that electrical stimulation was delivered to an abdominal branch of the vagus nerve in this study. Two other studies performing a similar analysis found VNS induced changes to the elemental composition of dopamine-related brain structures ¹⁸⁹ and to the lipids and proteins within the VTA, NAc, SNc, striatum, dorsal motor nucleus of vagus and the motor cortex 190. A more recent study in awake rats found optogenetic VNS, which carries no risk of unintentional activation of surrounding nerves, increased the firing rate of dopaminergic VTA neurons as measured via in-vivo imaging ¹⁹¹. This same study also found lesioning the hepatic branch of the vagus nerve abrogated the increase in VTA neuron activity usually observed following ingestion.

DISCUSSION: TRANSLATIONAL APPLICATIONS OF USING VNS TO RAPIDLY MODULATE SENSORY PROCESSING

Accurate perception is required for daily life and independent living. However, dysfunction or degradation of central sensory processing pathways can rapidly impair sensory ability. The studies referenced here implicate VNS as a potential tool for modulating sensory processing. Accordingly, VNS presents great potential as a targeted treatment for impaired senses arising

from central sensory processing dysfunction. Many clinical causes of impaired central sensory processing exist including multiple neurodegenerative conditions and neurological disorders. Impaired sensory processing reduces sensory acuity, increases likelihood of miscommunication, and causes misperceptions that potentially lead to costly human error. Further, the link between human performance and sensory processing state suggests there may be commercial interest in enhancing sensory processing in addition to clinical. This translation potential has spurred clinical trials looking at the effect of VNS on auditory perception (e.g., NCT04812015 at www.clinicaltrials.gov). VNS methods of enhancing sensory processing have great translation possibility because cervical transcutaneous VNS (ctVNS) and transcutaneous auricular VNS (taVNS) have both been suggested to be safe and effective methods of noninvasively activating the vagus nerve in humans ¹⁹²⁻¹⁹⁵. In light of this potential, our research team is currently conducting pilot clinical studies investing the effects of continuous tonic VNS on vision, hearing, and touch.

Age-related impairment of central sensory processing is particularly devastating to the elderly as it interferes with their ability to communicate ^{196, 197}, accelerates cognitive decline ¹⁹⁸, and is linked with Alzheimer's disease (AD) ¹⁹⁹. Treatments exist for age-related sensory receptor damage ²⁰⁰⁻²⁰³. However, there is a stark lack of solutions addressing the co-occurring age-related impairment of central sensory processing ²⁰⁴⁻²⁰⁷. For example, as evidence of this age-related decline in sensory processing, studies have shown that elderly individuals with normal audiograms, indicating normally functioning auditory receptors, still have decreased ability to discriminate detailed features of sensory stimuli, such as speech intelligibility over noise ^{208, 209}. Similarly, aging is thought to degrade visual ^{210, 211} and tactile processing ²¹². The ability to improve or restore sensory processing clarity with VNS, could therefore positively impact a large segment of society by helping them remain social and active through improving their ability to communicate clearly and walk safely. Many researchers share the belief that different forms of VNS could help elderly cognition and perception as suggested by the many ongoing clinical studies investigating

that topic (e.g., Clinical Trials NCT04396249, NCT04276805, NCT03359902, NCT04908358, NCT04276805, NCT03989375 at www.clinicaltrials.gov).

Attention deficit hyperactivity disorder (ADHD) has been linked with impaired sensory processing evidenced by poor frequency discrimination ability ^{213, 214}. Moreover, inattention is linked with increased bursting activity in the sensory thalamus, a type of neural activity our team's research has found is suboptimal for encoding details and features of sensory stimuli therefore causing loss of sensory acuity ³⁰. Further, thalamocortical bursting in response to sensory stimuli is thought to serve as a "wake-up-call" in response to salient stimuli, suggesting bursts are distracting ²¹⁵. Recently, poor intrathalamic processing due to abnormal TRN responses has been suggested as a cause of ADHD ²¹⁶. ADHD treatments (including stimulants) work, in part, via amplifying NE effects ²¹⁷⁻²¹⁹. Methylphenidate, a common treatment for ADHD, has been shown to enhance early-stage sensory processing through increasing DA and NE concentration in the brain ²²⁰. Previous work shows that VNS activates the locus coeruleus-norepinephrine (LC-NE) system, ⁶⁰ and our work shows VNS suppresses noisy bursting activity along sensory pathways. Taken together, these findings suggest VNS could be potentially used to treat the sensory processing dysfunction linked with ADHD.

Disclaimer:

All authors have financial interest in Sharper Sense, a company developing methods of enhancing sensory processing with VNS.

Acknowledgements:

This work was supported by NIH R01NS119813, R01AG075114, R01MH112267, and NSF CBET 1847315 to Q. W.

402 **REFERENCES**

- 403 1. Reid, C.R. & Alonso, J.-M. Specificity of monosynaptic connections from thalamus to visual cortex. *Nature* **378**, 281-284 (1995).
- Wang, Q., Webber, R. & Stanley, G.B. Thalamic Synchrony and the Adaptive Gating of Information Flow to Cortex. *Nature Neuroscience* **13**, 1534-1541 (2010).
- 407 3. Rodieck, R.W. Visual pathways. *Annu Rev Neurosci* **2**, 193-225 (1979).
- 408 4. Wall, P.D. & Dubner, R. Somatosensory pathways. *Annu Rev Physiol* **34**, 315-336 (1972).
- 5. Chechik, G., et al. Reduction of Information Redundancy in the Ascending Auditory Pathway.
- 410 Neuron **51**, 359-368 (2006).
- 411 6. Ollerenshaw, D.R., et al. Detection of tactile inputs in the rat vibrissa pathway. Journal of
- 412 *Neurophysiology* **108**, 479-490 (2012).
- 7. Collins, L., Boddington, L., Steffan, P.J. & McCormick, D. Vagus nerve stimulation induces
- 414 widespread cortical and behavioral activation. Curr Biol 31, 2088-2098 e2083 (2021).
- 415 8. Hays, S.A. Enhancing Rehabilitative Therapies with Vagus Nerve Stimulation. *Neurotherapeutics*:
- 416 the journal of the American Society for Experimental NeuroTherapeutics **13**, 382-394 (2016).
- 417 9. Engineer, N.D., Moller, A.R. & Kilgard, M.P. Directing neural plasticity to understand and treat
- 418 tinnitus. *Hear Res* **295**, 58-66 (2013).
- 419 10. Engineer, C. Vagus Nerve Stimulation as a Strategy to Augment Auditory Rehabilitation. *Brain*
- 420 *stimulation* **12**, 420 (2019).
- 421 11. Kilgard, M.P. & Merzenich, M.M. Cortical map reorganization enabled by nucleus basalis activity.
- 422 Science 279, 1714-1718 (1998).
- 423 12. Nicolelis, M.A.L. & Fanselow, E.E. Thalamocortical optimization of tactile processing according to
- behavioral state. *Nature Neuroscience* **5**, 517-523 (2002).
- 425 13. McGinley, Matthew J., et al. Waking state: rapid variations modulate neural and behavioral
- 426 responses. *Neuron* **87**, 1143-1161 (2015).
- 427 14. Niell, C.M. & Stryker, M.P. Modulation of visual responses by behavioral state in mouse visual
- 428 cortex. Neuron 65, 472-479 (2010).
- 429 15. Bennett, C., Arroyo, S. & Hestrin, S. Subthreshold mechanisms underlying state-dependent
- modulation of visual responses. *Neuron* **80**, 350-357 (2013).
- 431 16. Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J.A. Arousal and locomotion make distinct
- 432 contributions to cortical activity patterns and visual encoding. *Neuron* **86**, 740-754 (2015).
- 433 17. Schriver, B., Bagdasarov, S. & Wang, Q. Pupil-linked arousal modulates behavior in rats
- performing a whisker deflection direction discrimination task. Journal of Neurophysiology 120, 1655-
- 435 1670 (2018).
- 436 18. Schriver, B.J., Perkins, S.M., Sajda, P. & Wang, Q. Interplay between components of pupil-linked
- 437 phasic arousal and its role in driving behavioral choice in Go/No-Go perceptual decision-making.
- 438 *Psychophysiology*, e13565 (2020).
- 439 19. Liu, Y., Narasimhan, S., Schriver, B.J. & Wang, Q. Perceptual Behavior Depends Differently on
- 440 Pupil-Linked Arousal and Heartbeat Dynamics-Linked Arousal in Rats Performing Tactile Discrimination
- 441 Tasks. Front Syst Neurosci **14**, 614248-614248 (2021).
- 442 20. Reimer, J., et al. Pupil fluctuations track fast switching of cortical states during quiet
- 443 wakefulness. *Neuron* **84**, 355-362 (2014).
- 444 21. Reimer, J., et al. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in
- 445 cortex. *Nature communications* **7**, 13289 (2016).
- 22. Zheng, H.J.V., Wang, Q. & Stanley, G.B. Adaptive shaping of cortical response selectivity in the
- vibrissa pathway. *Journal of Neurophysiology* **113**, 3850-3865 (2015).
- 448 23. Carrasco, M., Ling, S. & Read, S. Attention alters appearance. *Nat Neurosci* **7**, 308-313 (2004).

- 449 24. Niell, C.M. & Stryker, M.P. Modulation of Visual Responses by Behavioral State in Mouse Visual
- 450 Cortex. Neuron 65, 472-479 (2010).
- 451 25. Liu, Y., Rodenkirch, C., Moskowitz, N., Schriver, B. & Wang, Q. Dynamic Lateralization of Pupil
- 452 Dilation Evoked by Locus Coeruleus Activation Results from Sympathetic, Not Parasympathetic,
- 453 Contributions. *Cell Reports* **20**, 3099–3112 (2017).
- 454 26. Aston-Jones, G. & Waterhouse, B. Locus coeruleus: From global projection system to adaptive
- regulation of behavior. *Brain research* **1645**, 75-78 (2016).
- 456 27. Berridge, C.W. & Waterhouse, B.D. The locus coeruleus–noradrenergic system: Modulation of
- behavioral state and state-dependent cognitive processes. *Brain Research Reviews* **42**, 33-84 (2003).
- 458 28. Chandler, D.J., et al. Redefining Noradrenergic Neuromodulation of Behavior: Impacts of a
- 459 Modular Locus Coeruleus Architecture. *The Journal of Neuroscience* **39**, 8239 (2019).
- 460 29. Pinto, L., et al. Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat
- 461 Neurosci 16, 1857-1863 (2013).
- 462 30. Rodenkirch, C., Liu, Y., Schriver, B.J. & Wang, Q. Locus coeruleus activation enhances thalamic
- 463 feature selectivity via norepinephrine regulation of intrathalamic circuit dynamics. *Nature Neuroscience*
- 464 **22**, 120-133 (2019).
- 465 31. Bao, S., Chan, V.T. & Merzenich, M.M. Cortical remodelling induced by activity of ventral
- tegmental dopamine neurons. Nature 412, 79-83 (2001).
- 467 32. Martins, A.R. & Froemke, R.C. Coordinated forms of noradrenergic plasticity in the locus
- 468 coeruleus and primary auditory cortex. *Nat Neurosci* **18**, 1483-1492 (2015).
- 469 33. Nichols, J.A., et al. Vagus nerve stimulation modulates cortical synchrony and excitability
- 470 through the activation of muscarinic receptors. *Neuroscience* **189**, 207-214 (2011).
- 471 34. Darrow, M.J., et al. Restoration of Somatosensory Function by Pairing Vagus Nerve Stimulation
- with Tactile Rehabilitation. Ann Neurol 87, 194-205 (2020).
- 473 35. Engineer, N.D., et al. Reversing pathological neural activity using targeted plasticity. *Nature* 470,
- 474 101-104 (2011).
- 475 36. Meyers, E.C., et al. Enhancing plasticity in central networks improves motor and sensory
- 476 recovery after nerve damage. *Nature communications* **10**, 5782 (2019).
- 477 37. Lai, J. & David, S.V. Short-Term Effects of Vagus Nerve Stimulation on Learning and Evoked
- 478 Activity in Auditory Cortex. *eNeuro* **8** (2021).
- 479 38. Martinez-Vargas, D., Valdes-Cruz, A., Magdaleno-Madrigal, V.M., Almazan-Alvarado, S. &
- 480 Fernandez-Mas, R. Effects of electrical stimulation of the vagus nerve on the development of visual
- habituation in the cat. Behav Brain Res 205, 45-49 (2009).
- 482 39. Engineer, N.D., et al. Reversing pathological neural activity using targeted plasticity. *Nature* **470**,
- 483 101-104 (2011).
- 484 40. Adcock, K.S., et al. Vagus nerve stimulation paired with tones restores auditory processing in a
- rat model of Rett syndrome. Brain stimulation 13, 1494-1503 (2020).
- 486 41. Engineer, C.T., Engineer, N.D., Riley, J.R., Seale, J.D. & Kilgard, M.P. Pairing Speech Sounds With
- Vagus Nerve Stimulation Drives Stimulus-specific Cortical Plasticity. *Brain stimulation* **8**, 637-644 (2015).
- 488 42. Neuhaus, A.H., et al. P300 is enhanced in responders to vagus nerve stimulation for treatment of
- major depressive disorder. *Journal of affective disorders* **100**, 123-128 (2007).
- 490 43. Llanos, F., et al. Non-invasive peripheral nerve stimulation selectively enhances speech category
- 491 learning in adults. NPJ Sci Learn 5, 12 (2020).
- 492 44. Kreuzer, P.M., et al. Feasibility, safety and efficacy of transcutaneous vagus nerve stimulation in
- chronic tinnitus: an open pilot study. *Brain stimulation* **7**, 740-747 (2014).
- 494 45. Vanneste, S., Martin, J., Rennaker, R.L., 2nd & Kilgard, M.P. Pairing sound with vagus nerve
- 495 stimulation modulates cortical synchrony and phase coherence in tinnitus: An exploratory retrospective
- 496 study. Sci Rep 7, 17345 (2017).

- 497 46. Kilgard, M.P., Rennaker, R.L., Alexander, J. & Dawson, J. Vagus nerve stimulation paired with
- tactile training improved sensory function in a chronic stroke patient. *NeuroRehabilitation* **42**, 159-165 (2018).
- 500 47. Tyler, R., et al. Vagus Nerve Stimulation Paired with Tones for the Treatment of Tinnitus: A
- Prospective Randomized Double-blind Controlled Pilot Study in Humans. Sci Rep 7, 11960 (2017).
- 502 48. Phillips, I., et al. Transcutaneous Auricular Vagus Nerve Stimulation Strengthens Semantic
- Representations of Foreign Language Tone Words during Initial Stages of Learning. *Journal of cognitive neuroscience* **34**, 127-152 (2021).
- Thakkar, V.J., Engelhart, A.S., Khodaparast, N., Abadzi, H. & Centanni, T.M. Transcutaneous
- auricular vagus nerve stimulation enhances learning of novel letter-sound relationships in adults. *Brain stimulation* **13**, 1813-1820 (2020).
- 508 50. Altidor, L.K., et al. Acute vagus nerve stimulation enhances reversal learning in rats.
- 509 *Neurobiology of learning and memory* **184**, 107498 (2021).
- 510 51. Saalmann, Y.B. & Kastner, S. Cognitive and Perceptual Functions of the Visual Thalamus. *Neuron*
- **71**, 209-223 (2011).
- 512 52. Wang, Q., Millard, D.C., Zheng, H.J.V. & Stanley, G.B. Voltage-sensitive dye imaging reveals
- improved topographic activation of cortex in response to manipulation of thalamic microstimulation
- parameters. *Journal of Neural Engineering* **9**, 026008 (2012).
- 515 53. Millard, D.C., Wang, Q., Gollnick, C.A. & Stanley, G.B. System identification of the nonlinear
- dynamics in the thalamocortical circuit in response to patterned thalamic microstimulation in vivo.
- 517 *Journal of Neural Engineering* **10**, 066011 (2013).
- 518 54. Rikhye, R.V., Wimmer, R.D. & Halassa, M.M. Toward an Integrative Theory of Thalamic Function.
- 519 *Annual Review of Neuroscience* **41**, 163-183 (2018).
- 520 55. Wimmer, R.D., et al. Thalamic control of sensory selection in divided attention. Nature 526, 705-
- 521 709 (2015).
- 522 56. Stanley, G.B., et al. Visual Orientation and Directional Selectivity through Thalamic Synchrony.
- 523 The Journal of Neuroscience **32**, 9073-9088 (2012).
- 524 57. Kelly, S.T., et al. The Role of Thalamic Population Synchrony in the Emergence of Cortical Feature
- 525 Selectivity. *PLoS Comput Biol* **10**, e1003418 (2014).
- 526 58. Ollerenshaw, Douglas R., Zheng, He J.V., Millard, Daniel C., Wang, Q. & Stanley, Garrett B. The
- adaptive trade-off between detection and discrimination in cortical representations and behavior.
- 528 Neuron **81**, 1152-1164 (2014).
- 529 59. Rodenkirch, C. & Wang, Q. Rapid and transient enhancement of thalamic information
- transmission induced by vagus nerve stimulation. *J Neural Eng* **17**, 026027 (2020).
- 531 60. Hulsey, D.R., et al. Parametric characterization of neural activity in the locus coeruleus in
- response to vagus nerve stimulation. *Exp Neurol* **289**, 21-30 (2017).
- 533 61. Morrison, R.A., et al. Vagus nerve stimulation intensity influences motor cortex plasticity. Brain
- 534 *stimulation* **12**, 256-262 (2019).
- 535 62. De Taeye, L., et al. The P3 event-related potential is a biomarker for the efficacy of vagus nerve
- 536 stimulation in patients with epilepsy. Neurotherapeutics: the journal of the American Society for
- 537 Experimental NeuroTherapeutics 11, 612-622 (2014).
- 538 63. Rufener, K.S., Geyer, U., Janitzky, K., Heinze, H.J. & Zaehle, T. Modulating auditory selective
- attention by non-invasive brain stimulation: Differential effects of transcutaneous vagal nerve
- 540 stimulation and transcranial random noise stimulation. Eur J Neurosci 48, 2301-2309 (2018).
- 541 64. Hyvarinen, P., et al. Transcutaneous vagus nerve stimulation modulates tinnitus-related beta-
- and gamma-band activity. *Ear Hear* **36**, e76-85 (2015).
- 543 65. Yakunina, N., Kim, S.S. & Nam, E.C. BOLD fMRI effects of transcutaneous vagus nerve stimulation
- in patients with chronic tinnitus. *PLoS One* **13**, e0207281 (2018).

- 545 66. Peng, L., et al. Transauricular vagus nerve stimulation at auricular acupoints Kindey (CO10),
- 546 Yidan (CO11), Liver (CO12) and Shenmen (TF4) can induce auditory and limbic cortices activation
- 547 measured by fMRI. *Hear Res* **359**, 1-12 (2018).
- 548 67. Shiramatsu, T.I., et al. Effect of vagus nerve stimulation on neural adaptation in thalamo-cortical
- 549 system in rats. *Annu Int Conf IEEE Eng Med Biol Soc* **2016**, 1834-1837 (2016).
- 550 68. Takahashi, H., Shiramatsu, T.I., Hitsuyu, R., Ibayashi, K. & Kawai, K. Vagus nerve stimulation
- 551 (VNS)-induced layer-specific modulation of evoked responses in the sensory cortex of rats. *Sci Rep* **10**, 552 8932 (2020).
- 69. Garcia-Diaz, D.E., Aguilar-Baturoni, H.U., Guevara-Aguilar, R. & Wayner, M.J. Vagus nerve
- stimulation modifies the electrical activity of the olfactory bulb. *Brain Res Bull* **12**, 529-537 (1984).
- 555 70. Dedeurwaerdere, S., et al. Small animal positron emission tomography during vagus nerve
- stimulation in rats: a pilot study. *Epilepsy research* **67**, 133-141 (2005).
- 557 71. Sperling, W., et al. Changes in gustatory perceptions of patients with major depression treated
- with vagus nerve stimulation (VNS). *Pharmacopsychiatry* **44**, 67-71 (2011).
- 559 72. Devilbiss, D.M. & Waterhouse, B.D. Phasic and tonic patterns of locus coeruleus output
- differentially modulate sensory network function in the awake rat. *J Neurophysiol* **105**, 69-87 (2011).
- 73. Rodenkirch, C., Liu, Y., Schriver, B.J. & Wang, Q. Locus coeruleus activation enhances thalamic
- feature selectivity via norepinephrine regulation of intrathalamic circuit dynamics. *Nat Neurosci* **22**, 120-133 (2019).
- 564 74. McCormick, D.A. & Prince, D.A. Noradrenergic modulation of firing pattern in guinea pig and cat
- thalamic neurons, in vitro. J Neurophysiol 59, 978-996 (1988).
- 566 75. Nuñez, A. Unit activity of rat basal forebrain neurons: Relationship to cortical activity.
- 567 *Neuroscience* **72**, 757-766 (1996).
- 76. Ramcharan, E.J., Gnadt, J.W. & Sherman, S.M. Burst and tonic firing in thalamic cells of
- unanesthetized, behaving monkeys. Visual neuroscience 17, 55-62 (2000).
- 570 77. Rajkowski, J., Kubiak, P. & Aston-Jones, G. Locus coeruleus activity in monkey: Phasic and tonic
- 571 changes are associated with altered vigilance. *Brain Research Bulletin* **35**, 607-616 (1994).
- 572 78. Parikh, V. & Sarter, M. Cholinergic Mediation of Attention. Annals of the New York Academy of
- 573 Sciences 1129, 225-235 (2008).
- 574 79. Sherman, S.M. Tonic and burst firing: dual modes of thalamocortical relay. *Trends in*
- 575 neurosciences **24**, 122-126 (2001).
- 576 80. Swadlow, H.A. & Gusev, A.G. The impact of 'bursting' thalamic impulses at a neocortical
- 577 synapse. *Nat Neurosci* **4**, 402-408 (2001).
- 578 81. Weyand, T.G., Boudreaux, M. & Guido, W. Burst and tonic response modes in thalamic neurons
- during sleep and wakefulness. J Neurophysiol 85, 1107-1118 (2001).
- 580 82. Avery, M.C. & Krichmar, J.L. Neuromodulatory Systems and Their Interactions: A Review of
- 581 Models, Theories, and Experiments. Front Neural Circuits 11, 108-108 (2017).
- 582 83. Sara, S.J. The locus coeruleus and noradrenergic modulation of cognition. *Nat Rev Neurosci* **10**,
- 583 211-223 (2009).
- 84. Morrison, J.H. & Foote, S.L. Noradrenergic and serotoninergic innervation of cortical, thalamic,
- and tectal visual structures in Old and New World monkeys. The Journal of comparative neurology 243,
- 586 117-138 (1986).
- 587 85. Simpson, K.L., et al. Lateralization and functional organization of the locus coeruleus projection
- to the trigeminal somatosensory pathway in rat. J Comp Neurol 385, 135-147 (1997).
- 589 86. Waterhouse, B.D. & Navarra, R.L. The locus coeruleus-norepinephrine system and sensory signal
- processing: A historical review and current perspectives. *Brain research* **1709**, 1-15 (2019).
- 591 87. Ego-Stengel, V., Bringuier, V. & Shulz, D.E. Noradrenergic modulation of functional selectivity in
- the cat visual cortex: an in vivo extracellular and intracellular study. *Neuroscience* **111**, 275-289 (2002).

- 593 88. Doucette, W., Milder, J. & Restrepo, D. Adrenergic modulation of olfactory bulb circuitry affects odor discrimination. *Learn Mem* **14**, 539-547 (2007).
- Hirata, A., Aguilar, J. & Castro-Alamancos, M.A. Noradrenergic activation amplifies bottom-up and top-down signal-to-noise ratios in sensory thalamus. *J Neurosci* **26**, 4426-4436 (2006).
- 597 90. Manunta, Y. & Edeline, J.M. Effects of noradrenaline on frequency tuning of rat auditory cortex neurons. *Eur J Neurosci* **9**, 833-847 (1997).
- 599 91. McBurney-Lin, J., Lu, J., Zuo, Y. & Yang, H. Locus coeruleus-norepinephrine modulation of sensory processing and perception: A focused review. *Neurosci Biobehav Rev* **105**, 190-199 (2019).
- 601 92. Devilbiss, D.M. & Waterhouse, B.D. The effects of tonic locus ceruleus output on sensory-evoked responses of ventral posterior medial thalamic and barrel field cortical neurons in the awake rat. *J Neurosci* **24**, 10773-10785 (2004).
- 93. Videen, T.O., Daw, N.W. & Rader, R.K. The effect of norepinephrine on visual cortical neurons in kittens and adult cats. *J Neurosci* **4**, 1607-1617 (1984).
- 94. Vazey, E.M., Moorman, D.E. & Aston-Jones, G. Phasic locus coeruleus activity regulates cortical encoding of salience information. *Proc Natl Acad Sci U S A* **115**, E9439-e9448 (2018).
- Sato, H., Fox, K. & Daw, N.W. Effect of electrical stimulation of locus coeruleus on the activity of neurons in the cat visual cortex. *J Neurophysiol* **62**, 946-958 (1989).
- 610 96. Slater, C. & Wang, Q. Alzheimer's disease: An evolving understanding of noradrenergic
- 611 involvement and the promising future of electroceutical therapies. Clin Transl Med 11, e397 (2021).
- 612 97. Ruffoli, R., et al. The chemical neuroanatomy of vagus nerve stimulation. *J Chem Neuroanat* **42**, 613 288-296 (2011).
- 98. Van Bockstaele, E.J., Peoples, J. & Telegan, P. Efferent projections of the nucleus of the solitary tract to peri-locus coeruleus dendrites in rat brain: evidence for a monosynaptic pathway. *The Journal of*
- 616 *comparative neurology* **412**, 410-428 (1999).
- 617 99. Ennis, M. & Aston-Jones, G. Activation of locus coeruleus from nucleus paragigantocellularis: a
- 618 new excitatory amino acid pathway in brain. J Neurosci 8, 3644-3657 (1988).
- 619 100. Reyes, B.A. & Van Bockstaele, E.J. Divergent projections of catecholaminergic neurons in the
- nucleus of the solitary tract to limbic forebrain and medullary autonomic brain regions. *Brain research*
- **1117**, 69-79 (2006).
- 622 101. Groves, D.A., Bowman, E.M. & Brown, V.J. Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat. *Neuroscience Letters* **379**, 174-179 (2005).
- 102. Dorr, A.E. & Debonnel, G. Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission. *J Pharmacol Exp Ther* **318**, 890-898 (2006).
- 626 103. Manta, S., Dong, J., Debonnel, G. & Blier, P. Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation. *J Psychiatry Neurosci* **34**, 272-280 (2009).
- 628 104. Cunningham, J.T., Mifflin, S.W., Gould, G.G. & Frazer, A. Induction of c-Fos and DeltaFosB
- 629 immunoreactivity in rat brain by Vagal nerve stimulation. *Neuropsychopharmacology: official*
- 630 publication of the American College of Neuropsychopharmacology **33**, 1884-1895 (2008).
- 631 105. Raedt, R., *et al.* Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. *J Neurochem* **117**, 461-469 (2011).
- 633 106. Hassert, D.L., Miyashita, T. & Williams, C.L. The effects of peripheral vagal nerve stimulation at a
- 634 memory-modulating intensity on norepinephrine output in the basolateral amygdala. *Behav Neurosci*
- 635 **118**, 79-88 (2004).
- 636 107. Roosevelt, R.W., Smith, D.C., Clough, R.W., Jensen, R.A. & Browning, R.A. Increased extracellular
- concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the
- 638 rat. Brain research 1119, 124-132 (2006).
- 639 108. Follesa, P., et al. Vagus nerve stimulation increases norepinephrine concentration and the gene
- expression of BDNF and bFGF in the rat brain. *Brain research* **1179**, 28-34 (2007).

- 641 109. Manta, S., El Mansari, M., Debonnel, G. & Blier, P. Electrophysiological and neurochemical
- effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int J
- 643 *Neuropsychopharmacol* **16**, 459-470 (2013).
- 644 110. Carpenter, L.L., et al. Effect of vagus nerve stimulation on cerebrospinal fluid monoamine
- metabolites, norepinephrine, and gamma-aminobutyric acid concentrations in depressed patients. *Biol*
- 646 *Psychiatry* **56**, 418-426 (2004).
- 647 111. Krahl, S.E., Clark, K.B., Smith, D.C. & Browning, R.A. Locus coeruleus lesions suppress the seizure-
- attenuating effects of vagus nerve stimulation. *Epilepsia* **39**, 709-714 (1998).
- 649 112. Shen, H., Fuchino, Y., Miyamoto, D., Nomura, H. & Matsuki, N. Vagus nerve stimulation
- enhances perforant path-CA3 synaptic transmission via the activation of beta-adrenergic receptors and
- the locus coeruleus. *Int J Neuropsychopharmacol* **15**, 523-530 (2012).
- 652 113. Grimonprez, A., et al. The antidepressant-like effect of vagus nerve stimulation is mediated
- through the locus coeruleus. J Psychiatr Res 68, 1-7 (2015).
- 654 114. Furmaga, H., Shah, A. & Frazer, A. Serotonergic and noradrenergic pathways are required for the
- anxiolytic-like and antidepressant-like behavioral effects of repeated vagal nerve stimulation in rats. *Biol*
- 656 *Psychiatry* **70**, 937-945 (2011).
- Hulsey, D.R., Shedd, C.M., Sarker, S.F., Kilgard, M.P. & Hays, S.A. Norepinephrine and serotonin
- are required for vagus nerve stimulation directed cortical plasticity. Exp Neurol 320, 112975 (2019).
- 659 116. Kolmac, C. & Mitrofanis, J. Organization of the basal forebrain projection to the thalamus in rats.
- 660 Neurosci Lett **272**, 151-154 (1999).
- 661 117. Ballinger, E.C., Ananth, M., Talmage, D.A. & Role, L.W. Basal Forebrain Cholinergic Circuits and
- Signaling in Cognition and Cognitive Decline. *Neuron* **91**, 1199-1218 (2016).
- 118. Jimenez-Martin, J., Potapov, D., Potapov, K., Knöpfel, T. & Empson, R.M. Cholinergic modulation
- of sensory processing in awake mouse cortex. Scientific Reports 11, 17525 (2021).
- 665 119. Schofield, B.R., Motts, S.D. & Mellott, J.G. Cholinergic cells of the pontomesencephalic
- tegmentum: connections with auditory structures from cochlear nucleus to cortex. *Hear Res* **279**, 85-95
- 667 (2011).
- 668 120. Huerta-Ocampo, I., Hacioglu-Bay, H., Dautan, D. & Mena-Segovia, J. Distribution of Midbrain
- 669 Cholinergic Axons in the Thalamus. *eNeuro* **7** (2020).
- 670 121. Laszlovszky, T., et al. Distinct synchronization, cortical coupling and behavioral function of two
- basal forebrain cholinergic neuron types. *Nature neuroscience* **23**, 992-1003 (2020).
- 122. Zhang, K., Chen, C.D. & Monosov, I.E. Novelty, Salience, and Surprise Timing Are Signaled by
- Neurons in the Basal Forebrain. *Current Biology* **29**, 134-142.e133 (2019).
- 674 123. Gratton, C., et al. Cholinergic, But Not Dopaminergic or Noradrenergic, Enhancement Sharpens
- Visual Spatial Perception in Humans. J Neurosci 37, 4405-4415 (2017).
- 676 124. Herrero, J.L., et al. Acetylcholine contributes through muscarinic receptors to attentional
- 677 modulation in V1. Nature **454**, 1110-1114 (2008).
- 678 125. Wilson, D.A., Fletcher, M.L. & Sullivan, R.M. Acetylcholine and olfactory perceptual learning.
- 679 *Learn Mem* **11**, 28-34 (2004).
- 680 126. Bentley, P., Husain, M. & Dolan, R.J. Effects of Cholinergic Enhancement on Visual Stimulation,
- Spatial Attention, and Spatial Working Memory. *Neuron* **41**, 969-982 (2004).
- 682 127. Verdier, D. & Dykes, R.W. Long-term cholinergic enhancement of evoked potentials in rat
- 683 hindlimb somatosensory cortex displays characteristics of long-term potentiation. Exp Brain Res 137, 71-
- 684 82 (2001).
- 585 128. Zhan, X., Yin, P. & Heinbockel, T. The basal forebrain modulates spontaneous activity of principal
- cells in the main olfactory bulb of anesthetized mice. Front Neural Circuits 7, 148 (2013).
- 687 129. Murphy, P.C. & Sillito, A.M. Cholinergic enhancement of direction selectivity in the visual cortex
- 688 of the cat. *Neuroscience* **40**, 13-20 (1991).

- 689 130. Furey, M.L., Pietrini, P., Haxby, J.V. & Drevets, W.C. Selective effects of cholinergic modulation
- on task performance during selective attention. Neuropsychopharmacology: official publication of the
- 691 American College of Neuropsychopharmacology **33**, 913-923 (2008).
- 692 131. Pinto, L., et al. Fast modulation of visual perception by basal forebrain cholinergic neurons.
- 693 *Nature Neuroscience* **16**, 1857-1863 (2013).
- 694 132. Rothermel, M., Carey, R.M., Puche, A., Shipley, M.T. & Wachowiak, M. Cholinergic inputs from
- Basal forebrain add an excitatory bias to odor coding in the olfactory bulb. *J Neurosci* **34**, 4654-4664 (2014).
- 697 133. Linster, C. & Cleland, T.A. Cholinergic modulation of sensory representations in the olfactory
- 698 bulb. Neural Networks 15, 709-717 (2002).
- 699 134. Kim, J.H., et al. Selectivity of Neuromodulatory Projections from the Basal Forebrain and Locus
- 700 Ceruleus to Primary Sensory Cortices. J Neurosci **36**, 5314-5327 (2016).
- 701 135. McCormick, D.A. & Prince, D.A. Acetylcholine induces burst firing in thalamic reticular neurones
- by activating a potassium conductance. *Nature* **319**, 402-405 (1986).
- 703 136. Sillito, A.M., Kemp, J.A. & Berardi, N. The cholinergic influence on the function of the cat dorsal
- lateral geniculate nucleus (dLGN). Brain research 280, 299-307 (1983).
- 705 137. McCormick, D.A. & Prince, D.A. Actions of acetylcholine in the guinea-pig and cat medial and
- lateral geniculate nuclei, in vitro. *J Physiol* **392**, 147-165 (1987).
- 707 138. Mooney, D.M., et al. Distinct forms of cholinergic modulation in parallel thalamic sensory
- pathways. *Proceedings of the National Academy of Sciences of the United States of America* **101**, 320-324 (2004).
- 710 139. Donoghue, J.P. & Carroll, K.L. Cholinergic modulation of sensory responses in rat primary
- 711 somatic sensory cortex. *Brain research* **408**, 367-371 (1987).
- 712 140. Metherate, R. & Weinberger, N.M. Acetylcholine produces stimulus-specific receptive field
- alterations in cat auditory cortex. *Brain research* **480**, 372-377 (1989).
- 714 141. Metherate, R. & Ashe, J.H. Basal forebrain stimulation modifies auditory cortex responsiveness
- by an action at muscarinic receptors. *Brain research* **559**, 163-167 (1991).
- 716 142. Goard, M. & Dan, Y. Basal forebrain activation enhances cortical coding of natural scenes.
- 717 *Nature Neuroscience* **12**, 1444-1449 (2009).
- 718 143. Detari, L., Juhasz, G. & Kukorelli, T. Effect of stimulation of vagal and radial nerves on neuronal
- activity in the basal forebrain area of anaesthetized cats. *Acta Physiol Hung* **61**, 147-154 (1983).
- 720 144. Martin, K.A., et al. Vagus nerve stimulation recruits the central cholinergic system to enhance
- 721 perceptual learning. bioRxiv, 2022.2001.2028.478197 (2022).
- 722 145. Berridge, C.W., Isaac, S.O. & España, R.A. Additive wake-promoting actions of medial basal
- 723 forebrain noradrenergic alpha1- and beta-receptor stimulation. Behav Neurosci 117, 350-359 (2003).
- 724 146. Lu, X.X., et al. Nicotinic Acetylcholine Receptor Alpha7 Subunit Mediates Vagus Nerve
- 725 Stimulation-Induced Neuroprotection in Acute Permanent Cerebral Ischemia by a7nAchR/JAK2 Pathway.
- 726 *Med Sci Monit* **23**, 6072-6081 (2017).
- 727 147. Jiang, Y., et al. Vagus nerve stimulation attenuates cerebral ischemia and reperfusion injury via
- endogenous cholinergic pathway in rat. *PLoS One* **9**, e102342 (2014).
- 729 148. Mridha, Z., et al. Graded recruitment of pupil-linked neuromodulation by parametric stimulation
- 730 of the vagus nerve. *Nat Commun* **12**, 1539 (2021).
- 731 149. Nichols, J.A., et al. Vagus nerve stimulation modulates cortical synchrony and excitability
- through the activation of muscarinic receptors. *Neuroscience* **189**, 207-214 (2011).
- 733 150. Hulsey, D.R., et al. Reorganization of Motor Cortex by Vagus Nerve Stimulation Requires
- 734 Cholinergic Innervation. *Brain stimulation* **9**, 174-181 (2016).

- 735 151. Jacobs, B.L. & Fornal, C.A. Activity of serotonergic neurons in behaving animals.
- 736 Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology
- 737 **21**, 9S-15S (1999).
- 738 152. Mlinar, B., Montalbano, A., Piszczek, L., Gross, C. & Corradetti, R. Firing Properties of Genetically
- 739 Identified Dorsal Raphe Serotonergic Neurons in Brain Slices. Frontiers in Cellular Neuroscience 10
- 740 (2016).
- 741 153. Trulson, M.E. & Jacobs, B.L. Raphe unit activity in freely moving cats: correlation with level of
- 742 behavioral arousal. *Brain Res* **163**, 135-150 (1979).
- 743 154. Ren, J., et al. Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-
- 744 systems. *Cell* **175**, 472-487.e420 (2018).
- 745 155. Li, Y., et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. *Nature*
- 746 *communications* **7**, 10503 (2016).
- 747 156. Ranade, S.P. & Mainen, Z.F. Transient firing of dorsal raphe neurons encodes diverse and
- specific sensory, motor, and reward events. J Neurophysiol 102, 3026-3037 (2009).
- 749 157. Waterhouse, B.D., Devilbiss, D., Seiple, S. & Markowitz, R. Sensorimotor-related discharge of
- simultaneously recorded, single neurons in the dorsal raphe nucleus of the awake, unrestrained rat.
- 751 Brain research **1000**, 183-191 (2004).
- 752 158. Rasmussen, K., Heym, J. & Jacobs, B.L. Activity of serotonin-containing neurons in nucleus
- 753 centralis superior of freely moving cats. Exp Neurol 83, 302-317 (1984).
- 754 159. Kirifides, M.L., Simpson, K.L., Lin, R.C. & Waterhouse, B.D. Topographic organization and
- neurochemical identity of dorsal raphe neurons that project to the trigeminal somatosensory pathway in
- the rat. *The Journal of comparative neurology* **435**, 325-340 (2001).
- 757 160. Hurley, L.M. & Pollak, G.D. Serotonin differentially modulates responses to tones and frequency-
- modulated sweeps in the inferior colliculus. *J Neurosci* **19**, 8071-8082 (1999).
- 759 161. Kapoor, V., Provost, A.C., Agarwal, P. & Murthy, V.N. Activation of raphe nuclei triggers rapid
- and distinct effects on parallel olfactory bulb output channels. *Nat Neurosci* **19**, 271-282 (2016).
- 761 162. Seillier, L., et al. Serotonin Decreases the Gain of Visual Responses in Awake Macague V1. J
- 762 *Neurosci* **37**, 11390-11405 (2017).
- 763 163. Jaber, L., Zhao, F.L., Kolli, T. & Herness, S. A physiologic role for serotonergic transmission in
- 764 adult rat taste buds. *PLoS One* **9**, e112152 (2014).
- 765 164. Dacks, A.M., Green, D.S., Root, C.M., Nighorn, A.J. & Wang, J.W. Serotonin modulates olfactory
- processing in the antennal lobe of Drosophila. J Neurogenet 23, 366-377 (2009).
- 767 165. Kähkönen, S., et al. Serotonin Modulates Early Cortical Auditory Processing in Healthy Subjects.
- 768 Evidence from MEG with Acute Tryptophan Depletion. *Neuropsychopharmacology: official publication*
- of the American College of Neuropsychopharmacology **27**, 862-868 (2002).
- Hurley, L.M. & Hall, I.C. Context-dependent modulation of auditory processing by serotonin.
- 771 Hear Res **279**, 74-84 (2011).
- 772 167. McCormick, D.A. & Wang, Z. Serotonin and noradrenaline excite GABAergic neurones of the
- guinea-pig and cat nucleus reticularis thalami. *J Physiol* **442**, 235-255 (1991).
- 774 168. Funke, K. & Eysel, U.T. Modulatory effects of acetylcholine, serotonin and noradrenaline on the
- activity of cat perigeniculate neurons. Exp Brain Res 95, 409-420 (1993).
- 776 169. Kayama, Y., Shimada, S., Hishikawa, Y. & Ogawa, T. Effects of stimulating the dorsal raphe
- nucleus of the rat on neuronal activity in the dorsal lateral geniculate nucleus. *Brain research* **489**, 1-11
- 778 (1989).
- 779 170. Marks, G.A., Speciale, S.G., Cobbey, K. & Roffwarg, H.P. Serotonergic inhibition of the dorsal
- 780 lateral geniculate nucleus. *Brain research* **418**, 76-84 (1987).
- 781 171. Monckton, J.E. & McCormick, D.A. Neuromodulatory role of serotonin in the ferret thalamus. J
- 782 *Neurophysiol* **87**, 2124-2136 (2002).

- 783 172. Lottem, E., Lörincz, M.L. & Mainen, Z.F. Optogenetic Activation of Dorsal Raphe Serotonin
- Neurons Rapidly Inhibits Spontaneous But Not Odor-Evoked Activity in Olfactory Cortex. J Neurosci 36,
- 785 7-18 (2016).
- 786 173. Kim, M.A., Lee, H.S., Lee, B.Y. & Waterhouse, B.D. Reciprocal connections between subdivisions
- of the dorsal raphe and the nuclear core of the locus coeruleus in the rat. *Brain research* **1026**, 56-67
- 788 (2004).
- 789 174. Manta, S., Dong, J., Debonnel, G. & Blier, P. Optimization of vagus nerve stimulation parameters
- using the firing activity of serotonin neurons in the rat dorsal raphe. Eur Neuropsychopharmacol 19, 250-
- 791 255 (2009).
- 792 175. Manta, S., El Mansari, M. & Blier, P. Novel attempts to optimize vagus nerve stimulation
- 793 parameters on serotonin neuronal firing activity in the rat brain. *Brain stimulation* **5**, 422-429 (2012).
- 794 176. Ziomber, A., et al. Chronic impairment of the vagus nerve function leads to inhibition of
- dopamine but not serotonin neurons in rat brain structures. *Pharmacol Rep* **64**, 1359-1367 (2012).
- 796 177. Poulin, J.F., et al. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. *Nat Neurosci* **21**, 1260-1271 (2018).
- 798 178. Mercuri, N.B., Calabresi, P. & Bernardi, G. The electrophysiological actions of dopamine and
- dopaminergic drugs on neurons of the substantia nigra pars compacta and ventral tegmental area. *Life* Sci **51**, 711-718 (1992).
- Hosp, J.A., et al. Ventral tegmental area connections to motor and sensory cortical fields in
- 802 humans. *Brain Structure and Function* **224**, 2839-2855 (2019).
- 803 180. Lodge, D.J. & Grace, A.A. The laterodorsal tegmentum is essential for burst firing of ventral
- tegmental area dopamine neurons. *Proceedings of the National Academy of Sciences of the United*
- 805 States of America 103, 5167-5172 (2006).
- 806 181. Kiyatkin, E.A. & Rebec, G.V. Heterogeneity of ventral tegmental area neurons: single-unit
- recording and iontophoresis in awake, unrestrained rats. *Neuroscience* **85**, 1285-1309 (1998).
- 808 182. Hyland, B.I., Reynolds, J.N.J., Hay, J., Perk, C.G. & Miller, R. Firing modes of midbrain dopamine
- cells in the freely moving rat. *Neuroscience* **114**, 475-492 (2002).
- 810 183. Dahan, L., et al. Prominent Burst Firing of Dopaminergic Neurons in the Ventral Tegmental Area
- during Paradoxical Sleep. Neuropsychopharmacology: official publication of the American College of
- 812 *Neuropsychopharmacology* **32**, 1232-1241 (2007).
- 813 184. Ungless, M.A. Dopamine: the salient issue. *Trends in neurosciences* **27**, 702-706 (2004).
- 814 185. Woolrych, A., Vautrelle, N., Reynolds, J.N.J. & Parr-Brownlie, L.C. Throwing open the doors of
- 815 perception: The role of dopamine in visual processing. Eur J Neurosci **54**, 6135-6146 (2021).
- 816 186. Govindaiah, G., Wang, Y. & Cox, C.L. Dopamine enhances the excitability of somatosensory
- thalamocortical neurons. *Neuroscience* **170**, 981-991 (2010).
- 818 187. Mejías-Aponte, C.A., Drouin, C. & Aston-Jones, G. Adrenergic and noradrenergic innervation of
- 819 the midbrain ventral tegmental area and retrorubral field: prominent inputs from medullary
- homeostatic centers. The Journal of neuroscience: the official journal of the Society for Neuroscience 29,
- 821 3613-3626 (2009).
- 822 188. Perez, S.M., Carreno, F.R., Frazer, A. & Lodge, D.J. Vagal nerve stimulation reverses aberrant
- dopamine system function in the methylazoxymethanol acetate rodent model of schizophrenia. J
- 824 Neurosci **34**, 9261-9267 (2014).
- 825 189. Szczerbowska-Boruchowska, M., et al. The influence of electrical stimulation of vagus nerve on
- 826 elemental composition of dopamine related brain structures in rats. *Neurochem Int* **61**, 156-165 (2012).
- 827 190. Surowka, A.D., et al. Peripheral vagus nerve stimulation significantly affects lipid composition
- and protein secondary structure within dopamine-related brain regions in rats. Neuromolecular Med 17,
- 829 178-191 (2015).

- 830 191. Fernandes, A.B., et al. Postingestive Modulation of Food Seeking Depends on Vagus-Mediated
- 831 Dopamine Neuron Activity. *Neuron* **106**, 778-788 e776 (2020).
- 832 192. Frangos, E. & Komisaruk, B.R. Access to Vagal Projections via Cutaneous Electrical Stimulation of
- the Neck: fMRI Evidence in Healthy Humans. Brain Stimulation 10, 19-27 (2017).
- Mwamburi, M., Liebler, E.J. & Tenaglia, A.T. Review of non-invasive vagus nerve stimulation
- 835 (gammaCore): efficacy, safety, potential impact on comorbidities, and economic burden for episodic and
- chronic cluster headache. *The American journal of managed care* **23**, S317-S325 (2017).
- 837 194. Reuter, U., McClure, C., Liebler, E. & Pozo-Rosich, P. Non-invasive neuromodulation for migraine
- and cluster headache: a systematic review of clinical trials. Journal of neurology, neurosurgery, and
- 839 *psychiatry* (2019).
- 840 195. McIntire, L.K., McKinley, R.A., Goodyear, C., McIntire, J.P. & Brown, R.D. Cervical transcutaneous
- vagal nerve stimulation (ctVNS) improves human cognitive performance under sleep deprivation stress.
- 842 *Commun Biol* **4**, 634 (2021).
- 843 196. Sardone, R., et al. The Age-Related Central Auditory Processing Disorder: Silent Impairment of
- the Cognitive Ear. *Frontiers in neuroscience* **13**, 619 (2019).
- 197. Tun, P.A., Williams, V.A., Small, B.J. & Hafter, E.R. The effects of aging on auditory processing
- and cognition. *American journal of audiology* **21**, 344-350 (2012).
- 198. Hewitt, D. Age-Related Hearing Loss and Cognitive Decline: You Haven't Heard the Half of It.
- 848 Frontiers in aging neuroscience **9**, 112 (2017).
- 849 199. Panza, F., Solfrizzi, V. & Logroscino, G. Age-related hearing impairment-a risk factor and frailty
- 850 marker for dementia and AD. *Nat Rev Neurol* **11**, 166-175 (2015).
- 851 200. Higuchi, A., et al. Stem Cell Therapies for Reversing Vision Loss. Trends in biotechnology 35,
- 852 1102-1117 (2017).
- 853 201. Barriga-Rivera, A., Bareket, L., Goding, J., Aregueta-Robles, U.A. & Suaning, G.J. Visual
- Prosthesis: Interfacing Stimulating Electrodes with Retinal Neurons to Restore Vision. Frontiers in
- 855 *neuroscience* **11**, 620 (2017).
- 856 202. Ferguson, M.A., et al. Hearing aids for mild to moderate hearing loss in adults. The Cochrane
- database of systematic reviews **9**, CD012023 (2017).
- 858 203. Moshirfar, M., Jehangir, N., Fenzl, C.R. & McCaughey, M. LASIK Enhancement: Clinical and
- 859 Surgical Management. Journal of refractive surgery (Thorofare, N.J.: 1995) 33, 116-127 (2017).
- 860 204. Humes, L.E., Busey, T.A., Craig, J. & Kewley-Port, D. Are age-related changes in cognitive function
- driven by age-related changes in sensory processing? Atten Percept Psychophys 75, 508-524 (2013).
- 862 205. Engel-Yeger, B. & Rosenblum, S. The relationship between sensory-processing patterns and
- occupational engagement among older persons. Canadian journal of occupational therapy. Revue
- 864 *canadienne d'ergotherapie* **84**, 10-21 (2017).
- 865 206. Humes, L.E. Age-Related Changes in Cognitive and Sensory Processing: Focus on Middle-Aged
- Adults. *American journal of audiology* **24**, 94-97 (2015).
- 867 207. Lesica, N.A. Why Do Hearing Aids Fail to Restore Normal Auditory Perception? *Trends in*
- 868 *neurosciences* **41**, 174-185 (2018).
- 869 208. Fullgrabe, C., Moore, B.C. & Stone, M.A. Age-group differences in speech identification despite
- 870 matched audiometrically normal hearing: contributions from auditory temporal processing and
- cognition. *Frontiers in aging neuroscience* **6**, 347 (2014).
- 872 209. Babkoff, H. & Fostick, L. Age-related changes in auditory processing and speech perception:
- 873 cross-sectional and longitudinal analyses. *European journal of ageing* **14**, 269-281 (2017).
- 874 210. Brannan, J.R. Changes in Temporal Visual Processing in Normal Aging. in *Advances in Psychology*
- 875 (ed. J.R. Brannan) 119-134 (North-Holland, 1992).
- 876 211. Wiegand, I., et al. Neural correlates of age-related decline and compensation in visual attention
- 877 capacity. *Neurobiol Aging* **35**, 2161-2173 (2014).

- 878 Engel-Yeger, B., Hus, S. & Rosenblum, S. Age effects on sensory-processing abilities and their
- 879 impact on handwriting. Canadian journal of occupational therapy. Revue canadienne d'ergotherapie 79,
- 088 264-274 (2012).
- 881 213. Sutcliffe, P.A., Bishop, D.V., Houghton, S. & Taylor, M. Effect of attentional state on frequency
- 882 discrimination: a comparison of children with ADHD on and off medication. J Speech Lang Hear Res 49,
- 883 1072-1084 (2006).
- 884 214. Shimizu, V.T., Bueno, O.F. & Miranda, M.C. Sensory processing abilities of children with ADHD.
- 885 Brazilian journal of physical therapy 18, 343-352 (2014).
- 886 215. Sherman, S.M. A wake-up call from the thalamus. *Nat Neurosci* **4**, 344-346 (2001).
- 887 216. Wells, M.F., Wimmer, R.D., Schmitt, L.I., Feng, G. & Halassa, M.M. Thalamic reticular impairment
- 888 underlies attention deficit in Ptchd1(Y/-) mice. *Nature* **532**, 58-63 (2016).
- 889 Arnsten, A.F. & Dudley, A.G. Methylphenidate improves prefrontal cortical cognitive function 217.
- 890 through alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in
- 891 Attention Deficit Hyperactivity Disorder. Behavioral and brain functions: BBF 1, 2 (2005).
- 892 De Crescenzo, F., et al. Noradrenaline reuptake inhibitors (NRIs) for attention deficit
- 893 hyperactivity disorder (ADHD) in adults. Cochrane Database of Systematic Reviews 2018, CD013044
- 894 (2018).

900

- 895 219. Schneider, J., Patterson, M. & Jimenez, X.F. Beyond depression: Other uses for tricyclic
- 896 antidepressants. Cleveland Clinic journal of medicine 86, 807-814 (2019).
- 897 220. Navarra, R.L., Clark, B.D., Gargiulo, A.T. & Waterhouse, B.D. Methylphenidate Enhances Early-
- 898 Stage Sensory Processing and Rodent Performance of a Visual Signal Detection Task.
- 899 *Neuropsychopharmacology* **42**, 1326-1337 (2017).