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ABSTRACT

After sensory information is encoded into neural signals at the periphery, it is processed
through multiple brain regions before perception occurs (i.e., sensory processing). Recent work
has begun to tease apart how neuromodulatory systems influence sensory processing. Vagus
nerve stimulation (VNS) is well-known as an effective and safe method of activating
neuromodulatory systems. Supporting this hypothesis, there is a growing body of studies
confirming VNS has immediate effects on sensory processing across multiple sensory modalities.
These immediate effects of VNS on sensory processing are distinct relative to the more well-
documented method of inducing lasting neuroplastic changes to the sensory pathways through
repeatedly delivering a brief VNS burst paired with a sensory stimulus. Immediate effects occur
upon VNS onset, often disappear upon VNS offset, and the modulation is present for all sensory
stimuli received. Conversely, the neuroplastic effects of pairing sub-second bursts of VNS with a
sensory stimulus alters sensory processing only after multiple pairing sessions, this alteration
remains after cessation of pairing sessions, and the alteration selectively affects the response
properties of neurons encoding the specific paired sensory stimulus. Here, we call attention to the
immediate effects VNS has on sensory processing. This review discusses existing studies on this
topic, provides an overview of the underlying neuromodulatory systems that likely play a role, and
briefly explores the potential translational applications of using VNS to rapidly regulate sensory

processing.
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INTRODUCTION

Accurate and detailed perception of tactile, auditory, and visual stimuli is critical for
completing a large variety of tasks, including many necessary for daily life and independent living.
Perceptual acuity is dependent upon both reliable transduction of sensory stimuli into neural
signals at the periphery and high-fidelity processing of sensory information by the central nervous
system. Once sensory information is transduced into neural activity by sensory receptors, it is
processed through multiple stages of the sensory pathway before perception occurs (i.e., central
sensory processing) . Developing methods that use neuromodulation of sensory processing to
improve sensory acuity is of great interest as many significant clinical, commercial, and consumer
problems stem from misperception or miscommunication. A growing body of evidence strongly
suggests that vagus nerve stimulation (VNS) is a safe and effective method of neuromodulation
7. In this mini-review, we explore the effects of VNS on sensory processing. Multiple recent
reviews have discussed in detail the ability of short VNS bursts repeatedly paired with sensory
stimuli to catalyze neuroplastic reorganization of sensory pathways after multiple pairing sessions
810 likely via engagement of neuromodulatory systems including the acetylcholine system .
Here, we instead specifically call attention to the immediate effects VNS has on sensory
processing and discuss how they likely arise from VNS activating neuromodulatory systems that
innervate sensory processing pathways.

Sensory processing is highly dependent upon behavioral states such as attention and
arousal '>?* as both are heavily influenced by the same global neuromodulatory systems,
including the noradrenergic % and cholinergic systems 2°. For example, our laboratory recently
demonstrated that activation of the locus coeruleus — norepinephrine system (LC-NE), a major
neuromodulator of attention and arousal, rapidly enhanced somatosensory processing through
NE-mediated suppression of burst spiking induced by calcium T-channels 3°. This NE-enhanced
sensory processing increased accuracy of encoded information and improved perceptual

sensitivity of awake rats performing tactile discrimination tasks.
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LASTING ALTERATIONS TO SENSORY PROCESSING OCCUR OVER TIME WHEN VNS
BURSTS ARE PAIRED WITH REPEATED SENSORY STIMULI

A large body of previous work has focused on using repeated short bursts of VNS paired
with a brief sensory stimulus to induce reorganization of sensory pathways. This work was
inspired by studies which found pairing an auditory tone with phasic activation of dopaminergic,
cholinergic, or noradrenergic neuromodulatory systems resulted in a lasting shift of frequency
selectivity for neurons in the auditory cortex toward the paired tone’s frequency ' 3133, We will
not review these studies in detail here as they have already been well reviewed previously &°.

In general, these studies have paired phasic VNS (e.g., 0.5 s, 30 Hz, 0.8mA, 100us
biphasic pulses) with a specific sensory stimulus (e.g. a specific auditory tone or tactile tap
frequency) repeatedly across multiple sessions (e.g. 300 times/day, 20 days). This alters sensory
processing in a manner that facilitates detection of the specific paired stimulus 3+%° and
accordingly disfavors detection of non-paired stimuli. This mechanism of action can be
strengthened over multiple sessions of pairing to produce long-term permanent reorganization of
sensory pathways that alters perception. Taken together, these works suggest phasic VNS has
great potential as a next generation neuromodulation technology for rehabilitative motor and
sensory therapies 4%,

TRANSIENT MODULATION OF SENSORY PROCESSING OCCURS RAPIDLY UPON VNS
ONSET

The purpose of this review is to bring light to recent studies indicating VNS modulates
sensory processing immediately upon onset. Here, we will discuss in detail studies investigating
the immediate effects VNS has on the response properties of neurons along the sensory

pathways.
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Tonic VNS drives a rapid and transient enhancement of tactile processing

Our laboratory has recently demonstrated that VNS can be used to induce a rapid, general
improvement of thalamic sensory processing (Figure 1). This is a continuation of our team’s
studies investigating the effects of the LC-NE system on thalamocortical circuitry *°, a critical stage
for sensory processing and perception *'-8, These studies found that direct activation of the LC-
NE system (electrical or optogenetic), in a continuous tonic fashion, optimized intrathalamic
dynamics for sensory processing. Specifically, tonic LC stimulation (continuous, 5 Hz, 60 yA, 500
Ms biphasic pulses) increased the efficiency and rate of sensory-related information transmitted
by thalamocortical neurons . Further, the observed NE-enhancement of sensory processing
resulted in a significant improvement in perceptual sensitivity for rats tasked with discriminating
between whisker stimuli of different frequencies. Through pharmacological manipulation it was
determined that tonic LC activation improved thalamic sensory processing because a steady
increase in NE concentration precludes priming, and in turn activation, of thalamic T-type calcium
channels. When active, T-type calcium channels introduced a nonlinear bursting response that

degraded transmission of detailed sensory information.
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Figure 1. Tonic VNS suppressed burst spiking of thalamocortical neurons and increased the
selectivity of their response to the specific stimulus feature they encode, leading to a greater
amount of sensory-related information transmitted. (A) VNS did not significantly alter firing rate

of ventral posteromedial nucleus (VPm) neurons responding to white gaussian noise whisker
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(WGN) stimulation. (B) VNS reduced likelihood of VPm burst spikes, multiple successive spikes
with a short inter-spike-intervals (~4 ms or less) commonly occurring after an extended period
of quiescence (~100 ms) due to calcium t-channel current. (C)-(D) The amplitude of the specific
kinetic feature(s) (i.e., whisker deflection) each VPm neuron was selective for was much larger
when recovered during VNS, indicating VNS increased selectivity of response. (E) Enhanced
feature selectivity of VPm neurons during VNS results in a significant increase in amount of the

sensory-related information transmitted per spike. Adopted from °°.

VNS has been shown to activate the LC-NE system ©° and is accessible in a noninvasive
manner, unlike the LC deep in the brainstem. Therefore, our team next investigated whether tonic
VNS would drive similar rapid beneficial effects on sensory processing. Through testing the
effects of multiple patterns of VNS on sensory processing, the beneficial effect was found to be
highly transient (i.e. benefit begins to dissipate within seconds of ceasing VNS) %°. For example,
duty-cycled VNS (30 s on / 60 s off duty cycle, 30 Hz, 500 us biphasic pulses) enhanced tactile
sensory processing during the on cycle, but this enhancement rapidly dissipated during the off
cycle, suggesting that cycling VNS on and off creates fluctuations in sensory processing that
would likely be sub-optimal for discrimination. This suggested that an uninterrupted pattern is
required to produce a stable benefit. Indeed, continuous tonic VNS pattern (continuous, 30 Hz,
500 ps biphasic pulses) induced a steady enhancement of sensory processing similar to that
observed with direct tonic LC stimulation. This immediate enhancement of sensory processing
during continuous, tonic VNS was found to be reliably present across recorded neurons. As each
recorded neuron encoded for a unique kinetic feature of the whisker stimuli, this suggests the
tonic VNS modulation provided a general enhancement of sensory processing regardless of
stimulus input. This effect is distinct relative to the selective facilitation of responses to a specific

sensory stimulus found after repeatedly pairing VNS bursts with that sensory stimulus.
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Further, testing of various tonic VNS current levels and frequencies showed the beneficial
effect of tonic VNS on sensory processing increased with intensity and frequency (10 vs 30 Hz,
0.4 vs 1 and 1.6 mA) and did not exhibit the inverted U-shape function of effect strength that has
been observed with other types of VNS modulation &' (at least within the parameter ranges

tested).

VNS has rapid effects on evoked responses in the auditory cortex

Other research groups working with human subjects have published findings that suggest
VNS has immediate beneficial effects on auditory processing. One study in humans who had
been receiving chronic VNS (via implanted cuffs as a treatment for epilepsy), found VNS
enhanced performance on a standard auditory oddball task when compared to performance after
their VNS device was turned off 2. Specifically, during VNS (7s on / 18 s off duty cycle, 20-30 Hz,
0.75-3 mA, 250-500 ps pulses) both accuracy and response time was improved for participants
tasked with responding to low frequency target audio tones while ignoring high frequency
nontarget tones. This same study analyzed auditory event-related potentials (AERP), measured
via EEG, and found that during VNS AERP amplitude was also increased. However, the effect on
AERP was only significant in individuals whose epilepsy symptoms had positively responded to
VNS treatment. A separate study investigating transcutaneous auricular vagus nerve stimulation
(taVNS) (30 s on/ 30 s off duty cycle, 25 Hz, 250 ps pulses) in healthy adults found similar results.
Specifically, taVNS increased the strength of AERPs during an oddball auditory task 3. As this
study used low frequency tones as nontargets and high frequency as target, a reversal of the prior
discussed oddball auditory task, taken together they suggest immediate VNS modulation of
auditory response is not specific to low or high frequency audio tones. Another study delivering
continuous taVNS (25 Hz, 500 ps biphasic pulses) to healthy adults analyzed the neural response
to auditory tones using magnetoencephalography (MEG) instead of EEG and found taVNS altered

synchrony of brain activity %. Further, recent studies using fMRI to monitor neural activity have
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shown taVNS rapidly affects auditory processing pathways. When taVNS (25 Hz, 0.1 to 1.8 mA,
500 pys monophasic pulses) was delivered to male adults with chronic tinnitus, fMRI recordings
exhibited altered activity of multiple brain regions involved with auditory processing °. More
recently, analysis of fMRI data from human subjects receiving taVNS indicated increased activity
in the thalamus and auditory cortex ¢, suggesting VNS rapidly modulates central auditory sensory
processing in humans.

These findings in humans are further supported by multiple electrophysiological and
behavioral work in animals that found VNS rapidly affects the response properties of neurons of
the auditory pathway. In isoflurane-anesthetized rats, the responses of neurons along the auditory
pathway were compared with and without VNS delivered via an implanted VNS cuff (30 son /5
min off duty cycle, 10 Hz, 0.5 mA, 130 us pulses). The baseline condition was recorded without
any ongoing VNS. The VNS condition consisted of discontinuous duty-cycled VNS where auditory
testing was performed only during the off periods of the VNS duty cycle. Here they found duty-
cycled VNS weakened stimulus-specific adaptation in the cortex but not the thalamus ¢,
suggesting VNS may modulate thalamocortical transmission but not earlier stages of the auditory
pathway. Further work by the same group, using the same paradigm, found VNS predominantly

increased the amplitudes of auditory-evoked potentials in the sensory cortex .

VNS modulates the olfactory and gustatory processing

The immediate effects of VNS on olfactory processing had been demonstrated as early
as the 1980’s. Specifically, a study in rats found that a single pulse of VNS from an implanted cuff
(0.8-1.5 mA, 200 pus monophasic pulses) reliably evoked firing in the homolateral olfactory bulb
(HOB) ®. Further evidence that VNS affects olfactory processing was found in more recent studies
that used positron emission tomography (PET) to analyze the effects of VNS in awake rats. A
PET scan conducted during the time period when the VNS cuff was switched on for the first time

(30 s on / 5 min off duty cycle, 30 Hz, 1.5 mA, 500 us pulses) found VNS induced a significant
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increase in glucose metabolism in both olfactory bulbs 7°. However, another study in humans with
implanted VNS cuffs for treatment of depression found that whether VNS (30 s on /5 min off duty
cycle, 20 Hz, 1.25 mA) was on or off had no effect on subjects’ ability to discriminate or detect
olfactory stimuli ”'. Yet that same study did find that VNS significantly increased the intensity of
the taste of sweet and bitter, suggesting that VNS may rapidly affect gustatory processing as well.
VNS ACTIVATES MULTIPLE NEUROMODULATORY SYSTEMS THAT RAPIDLY

INFLUENCE THE RESPONSE PROPERTIES OF NEURONS ALONG SENSORY
PATHWAYS.

The ability of VNS to have immediate effects on sensory processing is likely due to VNS
activating neuromodulatory systems (Figure 2). Here we briefly review studies of the effect of VNS
on neuromodulatory systems in both human and animal models. Neurons in the neuromodulatory
systems and sensory pathways discussed here can exhibit either tonic or burst spiking patterns
7278 Tonic spiking refers to sustained firing of tonic spikes at relatively slow rates compared to
phasic. Phasic spiking refers to transient bursts of multiple spikes with short inter-spike-intervals.
For neuromodulatory systems, the rate of continuous tonic spiking modulates brain state (e.g.,
attention, arousal) whereas phasic firing is linked with events (e.g., reward, sensory stimuli,
decision-making) and thought to regulate learning and behavior ”7- 78, For sensory pathways, tonic
encoding is favored during periods of increased attention and is thought to be more optimal for
the discrimination of sensory detail 7> 7. Conversely, bursting responses to sensory stimuli are
more likely when drowsy or inattentive and provide a strong encoding that facilitates detection,
potentially serving as a wake-up call 88", It is important to note that neuromodulatory systems
are well preserved over evolution, and the function of neuromodulatory systems are similar in
humans and other mammals such as rodents 2. Indeed, the studies discussed earlier confirm

VNS affects sensory processing in both rodents and humans.



Figure 2. VNS activates multiple global neuromodulatory systems that are known to influence
sensory processing. BF: basal forebrain; DRN: dorsal raphe nucleus; LC: locus coeruleus; LDT:
laterodorsal tegmental nucleus; NTS: nucleus tractus solitaries; PPT: pedunculopontine

tegmental nucleus; VTA: ventral tegmental area.

195

196 VNS and the Noradrenergic System

197 The LC is the primary source of NE in the forebrain 8. The LC exhibits constant tonic firing

198 (1-5 Hz) that regulates brain state (e.g., arousal) as well as intermediate phasic burst spiking
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events (2-5 spikes at 10-20 Hz per burst) that occur in response to salient sensory stimuli as well
as when decisions or responses are made 2. These two firing modes have been shown to
produce distinctly different modulations of the response properties of sensory neurons 2. The LC
innervates multiple regions along the sensory pathway, including the sensory thalamus and cortex
84, 85.

There is a large body of evidence showing that the LC-NE system modulates sensory
processing and perceptual learning 3> 8¢-°1_ Moreover, it is well documented that activation of the
LC-NE system immediately modulates the response of sensory neurons. In-vitro, NE has a
depolarizing effect on auditory and visual thalamic relay neurons that coincides with a suppression
of burst spiking . This likely occurs because NE depolarization prevents the extended
hyperpolarized periods needed to prime the calcium t-channels responsible for bursts 7. In-vivo,
tonic LC activation has been found to reduce spontaneous activity of the somatosensory
thalamus, while facilitating sensory evoked activity, resulting in an increase in signal to noise ratio
8 QOur team has shown how tonic LC-NE activation enhances the accuracy of encoded stimuli in
the somatosensory thalamus by reducing the fluctuating influence of the calcium t-channels
responsible for bursting 7. Within the cortex, the LC-NE system can cause either facilitation or
inhibition with resulting effects specific to the sensory modality, cell, and stimulation pattern 92,

VNS’ ability to activate the LC-NE system has long been hypothesized to underlie, in part,
the clinical benefits of VNS %. VNS is thought to activate the LC via the vagus nerve’s afferent
projections to the nucleus tractus solitarius (NTS) % %8, The NTS then sends an excitatory signal
to the LC, likely via the nucleus paragigantocellularis ° ', Indeed, multiple studies have
confirmed VNS readily activates the LC-NE system in both animals and humans. In rats, VNS
delivered via an implanted cuff has been shown to increase the activity of LC neurons as
confirmed by electrophysiological recordings under halothane '°!, chloral hydrate '°2, equithesin
103 and ketamine %° as well as by immunohistochemical biomarkers of short-term neuronal

activation %4, Similarly, multiple studies have found that microdialysis samples taken from rats
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receiving VNS exhibited increased NE concentration in the primary hippocampus %, basolateral
amygdala %, and cortex 919, Finally, the findings in animals seem to be conserved in humans,
as fMRI data from a study of adult males with tinnitus indicated taVNS activates the NTS and LC
% However, variations in VNS parameters may affect how reliably VNS drives the LC-NE system,
as one study measuring NE concentration in the CSF of patients receiving VNS as a treatment
for depression failed to detect a significant change "°.

In addition to direct evidence VNS activates the LC-NE system, many effects of VNS are
blocked if the LC-NE system is impaired through either LC lesion or adrenergic receptor blockers.
For example, the anticonvulsive effect of VNS is abrogated when hippocampal adrenergic
receptors are blocked '% "' Further, VNS enhancement of perforant path-CA3 synaptic
transmission is blocked by either electrical lesions of the LC or an adrenergic receptor antagonist
(timolol) "2, The antidepressant-like effects of VNS in rats, as measured by feeding and swim
tests, have been shown to be blocked by lesion of noradrenergic neurons ''* "4, Immunotoxin
depletion of norepinephrine was also found to prevent VNS-driven enhancement of motor cortex

neuroplasticity 5.

VNS and Cholinergic Systems

Cholinergic nuclei of the basal forebrain (BF) project to the sensory processing regions of
the thalamus ''® and cortex "'” '8, Additionally, cholinergic nuclei of the pontomesencephalic
area, including the laterodorsal tegmental nucleus (LDT) and pedunculopontine tegmental
nucleus (PPT), are a major source of ACh to the thalamus''® 2%, There are two distinct neuron
populations of the BF that differentiate in exhibiting either a tonic (10-15 Hz) or a bursting (2-6
spikes/burst with bursting events occurring at 0.3-2 Hz) firing pattern ® which influences arousal
and attention. The response timing of both types of BF neurons is influenced by sensory stimuli

121 and linked with novelty, salience, and surprise '
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Extensive work has shown the cholinergic system strongly influences both sensory
processing and perceptual learning across multiple sensory modalities ' 123134 Like the
noradrenergic system, it is well documented that activation of the cholinergic systems has
immediate effects on sensory processing. ACh applied in-vitro to neurons of the thalamic reticular
nucleus, a subthalamic region involved in sensory processing, causes hyperpolarization and
induces burst spiking "%, likely due to extended hyperpolarized periods priming the calcium t-
channels responsible for burst spiking ’°. ACh applied to thalamic neurons of the primary visual
and auditory pathways was found to increase firing rate 3¢ 37 although a hyperpolarization effect
has been observed in thalamic neurons of the secondary (nonlemniscal) auditory pathway %,
Cholinergic modulation of the sensory cortex can cause either facilitation or inhibition with the
resulting effect specific to the sensory modality, cell, and stimulation pattern '8 13%-141 |n the visual
cortex, BF stimulation has been shown to enhance accurate encoding by inducing decorrelation
and increased reliability '42.

It has long been hypothesized that VNS activates the BF—ACh system #3. VNS innervates
the nucleus tractus solitarius (NTS) ®” and projections from the NTS activate the BF '** in addition
to the NTS projections that activate the LC %1%, The LC also projects to the BF %5, suggesting
VNS activates the BF both directly through the NTS as well as indirectly through the LC. Indeed,
two separate studies investigating the potential of VNS for inducing neuroprotection from cerebral
ischemia found that VNS enhanced protein levels of the nicotinic acetylcholine receptor alpha7
subunit (a7nAchR) in the ischemic penumbra %6 147 Recently, researchers performed in-vivo
calcium imaging of the auditory cortex and found VNS evoked activity of cholinergic axons
innervating the region '8, Further, they found the intensity of the evoked activity covaried with
VNS intensity. In addition to this direct evidence that VNS rapidly activates the cholinergic system,
multiple studies have shown ACh modulation of sensory pathways is a critical component
underlying the plasticity effect induced by repeatedly pairing a burst of VNS with a sensory

stimulus. For example, the effects of VNS on sensory processing in the auditory cortex were found
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to be blocked by a muscarinic antagonist '“°. Further, lesioning the NB in rats was shown to
abrogate the well-documented ability of VNS pulses repeatedly paired with a movement to

enhance motor cortex plasticity '*°.

VNS and Serotonergic Systems

The dorsal raphe nucleus (DRN) is a major source of serotonin (5-HT) to the forebrain 151,
Neurons of the DRN consistently exhibit a continuous slow tonic firing rate (1-2 Hz) with little
variation in inter-spike-interval 5> 53, Response of the DRN is related to both reward and
punishment %4156 as well as linked to sensory input '*” %8, The DRN innervates both cortical and
subcortical regions of the sensory processing pathways '*°. There is also a large body of work
suggesting DRN activity modulates sensory processing and perception '6%-1%. 5-HT has been
shown to have instant effects on neurons of the sensory pathways. For example, 5-HT has been
shown to cause excitation of thalamic perigeniculate and reticular nucleus neurons %7 168 |n the
inferior colliculus, an auditory region of the midbrain, 5-HT was found to modulate responses in
both a cell and auditory stimulus specific manner '®. In the primary visual and auditory relay
neurons of the visual and auditory pathways, 5-HT has been shown to have an inhibitory effect
169171 Additionally, activation of the DRN has been found to increase signal to noise ratio of the
olfactory cortex '72.

VNS may activate the DRN indirectly by first activating the LC which then projects to the
DRN 73, This hypothesis is supported by a study in rats anesthetized with sodium pentobarbital
that found VNS increased DRN neurons’ firing rates, but this causal relationship was lost once
the LC was lesioned '%. Multiple studies have also shown that VNS increases DRN firing rate as
measured via extracellular electrophysiological recordings '°% 74, However, one study found only
a subset of VNS patterns they tested increased DRN activity suggesting VNS activation of the

DRN may be dependent on VNS parameters '7°. In follow-up work, the same group performed in-
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vivo microdialysis in rats following chronic duty-cycled VNS and found increased 5-HT
concentration in the DRN but not the hippocampus nor prefrontal cortex (PFC) 1. In contrast to
these studies supporting VNS’ ability to activate the DRN, another study analyzing microdialysis
measurements in different brain regions of rats reported that neither vagotomy or chronic
unilateral VNS had an effect on 5-HT levels in the VTA, nucleus accumbens (NAc), PFC, and
striatum '7%. These conflicting findings could potentially be related to the fact that electrical
stimulation was delivered to an abdominal branch of the vagus nerve in this study. Further
suggesting a more complex interplay between the VNS and DRN, a study analyzing
immunohistochemical biomarkers of both short-term and long-term neuronal activation suggests
chronic VNS does not induce DRN activation until stimulation has occurred across multiple days
104_

In addition to direct evidence that VNS increases activity of the serotonergic system,
functionality of serotonergic neurons has been shown to be critical for multiple documented effects
of VNS. For example, the earlier-mentioned study on the antidepressant-like effects of VNS in
rats, which used feeding and swim tests as indexes of depression, found the beneficial effects of
VNS were also precluded by administration of a neurotoxin for serotonergic neurons 4.
Additionally, a separate study found immunotoxin depletion of serotonin prevented the well-
researched ability of repeatedly pairing a VNS burst with a movement to enhance motor cortex

neuroplasticity 5.

VNS and Dopaminergic Systems

The ventral tegmental area (VTA) and Substantia Nigra pars Compacta (SNc) are primary
sources of dopamine (DA) to the forebrain "7 and, respectively, they modulate cognition and
movement 8. The VTA has been shown to innervate the sensory cortices '"°. The VTA exhibits
both tonic (1-8 Hz) and burst firing (2-5 spike bursts with bursting events occurring at 0.1-1 Hz)

with firing rates varying across cell types '8-'82_ Tonic firing rate likely modulates brain state (e.g.,
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motivation, arousal) and bursting events likely encode for salient stimuli (e.g., reward, sensory
stimuli) 8. Although the body of work investigating the effects of DA on sensory processing is
limited, there is evidence it rapidly modulates sensory processing and response 8186,

Although previous work demonstrated the LC projects to the VTA '8, many studies also
suggest VNS effects on DA circuitry may be dependent on other factors besides VNS directly
increasing VTA firing rates. For example, one study that performed in-vivo microdialysis of rats
following chronic duty-cycled VNS found an increase in DA in the PFC and NAc but a decrease
in VTA neurons’ firing rates as measured with electrophysiological recordings '*. A lack of VNS-
induced changes in VTA firing and bursting rates was also reported in a separate study .
Studies analyzing brain sections from rats that received chronic VNS have also reported varied
results. One such study found decreased DA levels in the VTA, NAc, PFC, and striatum '7¢;
however, to properly interpret these results it should be mentioned that electrical stimulation was
delivered to an abdominal branch of the vagus nerve in this study. Two other studies performing
a similar analysis found VNS induced changes to the elemental composition of dopamine-related
brain structures '® and to the lipids and proteins within the VTA, NAc, SNc, striatum, dorsal motor
nucleus of vagus and the motor cortex '*°. A more recent study in awake rats found optogenetic
VNS, which carries no risk of unintentional activation of surrounding nerves, increased the firing
rate of dopaminergic VTA neurons as measured via in-vivo imaging '*'. This same study also
found lesioning the hepatic branch of the vagus nerve abrogated the increase in VTA neuron
activity usually observed following ingestion.

DISCUSSION: TRANSLATIONAL APPLICATIONS OF USING VNS TO RAPIDLY
MODULATE SENSORY PROCESSING

Accurate perception is required for daily life and independent living. However, dysfunction
or degradation of central sensory processing pathways can rapidly impair sensory ability. The
studies referenced here implicate VNS as a potential tool for modulating sensory processing.

Accordingly, VNS presents great potential as a targeted treatment for impaired senses arising
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from central sensory processing dysfunction. Many clinical causes of impaired central sensory
processing exist including multiple neurodegenerative conditions and neurological disorders.
Impaired sensory processing reduces sensory acuity, increases likelihood of miscommunication,
and causes misperceptions that potentially lead to costly human error. Further, the link between
human performance and sensory processing state suggests there may be commercial interest in
enhancing sensory processing in addition to clinical. This translation potential has spurred clinical
trials looking at the effect of VNS on auditory perception (e.g., NCT04812015 at
www.clinicaltrials.gov). VNS methods of enhancing sensory processing have great translation
possibility because cervical transcutaneous VNS (ctVNS) and transcutaneous auricular VNS
(taVNS) have both been suggested to be safe and effective methods of noninvasively activating
the vagus nerve in humans %' |n light of this potential, our research team is currently
conducting pilot clinical studies investing the effects of continuous tonic VNS on vision, hearing,
and touch.

Age-related impairment of central sensory processing is particularly devastating to the
elderly as it interferes with their ability to communicate '° 197 accelerates cognitive decline '%,
and is linked with Alzheimer’s disease (AD) '%°. Treatments exist for age-related sensory receptor
damage 2°%-203, However, there is a stark lack of solutions addressing the co-occurring age-related
impairment of central sensory processing 2°2%. For example, as evidence of this age-related
decline in sensory processing, studies have shown that elderly individuals with normal
audiograms, indicating normally functioning auditory receptors, still have decreased ability to
discriminate detailed features of sensory stimuli, such as speech intelligibility over noise 2% 209,
Similarly, aging is thought to degrade visual 2'% 2'" and tactile processing 2'2. The ability to improve
or restore sensory processing clarity with VNS, could therefore positively impact a large segment
of society by helping them remain social and active through improving their ability to communicate
clearly and walk safely. Many researchers share the belief that different forms of VNS could help

elderly cognition and perception as suggested by the many ongoing clinical studies investigating
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that topic (e.g., Clinical Trials NCT04396249, NCT04276805, NCT03359902, NCT04908358,
NCT04276805, NCT03989375 at www.clinicaltrials.gov).

Attention deficit hyperactivity disorder (ADHD) has been linked with impaired sensory
processing evidenced by poor frequency discrimination ability 2'> 2'*. Moreover, inattention is
linked with increased bursting activity in the sensory thalamus, a type of neural activity our team’s
research has found is suboptimal for encoding details and features of sensory stimuli therefore
causing loss of sensory acuity °. Further, thalamocortical bursting in response to sensory stimuli
is thought to serve as a “wake-up-call” in response to salient stimuli, suggesting bursts are
distracting 2'°. Recently, poor intrathalamic processing due to abnormal TRN responses has been
suggested as a cause of ADHD 2'6. ADHD treatments (including stimulants) work, in part, via
amplifying NE effects 2'72'°, Methylphenidate, a common treatment for ADHD, has been shown
to enhance early-stage sensory processing through increasing DA and NE concentration in the
brain 22°. Previous work shows that VNS activates the locus coeruleus-norepinephrine (LC-NE)
system, % and our work shows VNS suppresses noisy bursting activity along sensory pathways.
Taken together, these findings suggest VNS could be potentially used to treat the sensory

processing dysfunction linked with ADHD.
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