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ABSTRACT 17 

After sensory information is encoded into neural signals at the periphery, it is processed 18 

through multiple brain regions before perception occurs (i.e., sensory processing). Recent work 19 

has begun to tease apart how neuromodulatory systems influence sensory processing. Vagus 20 

nerve stimulation (VNS) is well-known as an effective and safe method of activating 21 

neuromodulatory systems. Supporting this hypothesis, there is a growing body of studies 22 

confirming VNS has immediate effects on sensory processing across multiple sensory modalities. 23 

These immediate effects of VNS on sensory processing are distinct relative to the more well-24 

documented method of inducing lasting neuroplastic changes to the sensory pathways through 25 

repeatedly delivering a brief VNS burst paired with a sensory stimulus. Immediate effects occur 26 

upon VNS onset, often disappear upon VNS offset, and the modulation is present for all sensory 27 

stimuli received. Conversely, the neuroplastic effects of pairing sub-second bursts of VNS with a 28 

sensory stimulus alters sensory processing only after multiple pairing sessions, this alteration 29 

remains after cessation of pairing sessions, and the alteration selectively affects the response 30 

properties of neurons encoding the specific paired sensory stimulus. Here, we call attention to the 31 

immediate effects VNS has on sensory processing. This review discusses existing studies on this 32 

topic, provides an overview of the underlying neuromodulatory systems that likely play a role, and 33 

briefly explores the potential translational applications of using VNS to rapidly regulate sensory 34 

processing. 35 

 36 
  37 



INTRODUCTION 38 

Accurate and detailed perception of tactile, auditory, and visual stimuli is critical for 39 

completing a large variety of tasks, including many necessary for daily life and independent living. 40 

Perceptual acuity is dependent upon both reliable transduction of sensory stimuli into neural 41 

signals at the periphery and high-fidelity processing of sensory information by the central nervous 42 

system. Once sensory information is transduced into neural activity by sensory receptors, it is 43 

processed through multiple stages of the sensory pathway before perception occurs (i.e., central 44 

sensory processing) 1-6. Developing methods that use neuromodulation of sensory processing to 45 

improve sensory acuity is of great interest as many significant clinical, commercial, and consumer 46 

problems stem from misperception or miscommunication. A growing body of evidence strongly 47 

suggests that vagus nerve stimulation (VNS) is a safe and effective method of neuromodulation 48 

7. In this mini-review, we explore the effects of VNS on sensory processing. Multiple recent 49 

reviews have discussed in detail the ability of short VNS bursts repeatedly paired with sensory 50 

stimuli to catalyze neuroplastic reorganization of sensory pathways after multiple pairing sessions 51 

8-10, likely via engagement of neuromodulatory systems including the acetylcholine system 11. 52 

Here, we instead specifically call attention to the immediate effects VNS has on sensory 53 

processing and discuss how they likely arise from VNS activating neuromodulatory systems that 54 

innervate sensory processing pathways.  55 

Sensory processing is highly dependent upon behavioral states such as attention and 56 

arousal 12-24 as both are heavily influenced by the same global neuromodulatory systems, 57 

including the noradrenergic 25-28 and cholinergic systems 29. For example, our laboratory recently 58 

demonstrated that activation of the locus coeruleus – norepinephrine system (LC-NE), a major 59 

neuromodulator of attention and arousal, rapidly enhanced somatosensory processing through 60 

NE-mediated suppression of burst spiking induced by calcium T-channels 30. This NE-enhanced 61 

sensory processing increased accuracy of encoded information and improved perceptual 62 

sensitivity of awake rats performing tactile discrimination tasks.  63 



 64 

LASTING ALTERATIONS TO SENSORY PROCESSING OCCUR OVER TIME WHEN VNS 65 
BURSTS ARE PAIRED WITH REPEATED SENSORY STIMULI 66 

A large body of previous work has focused on using repeated short bursts of VNS paired 67 

with a brief sensory stimulus to induce reorganization of sensory pathways. This work was 68 

inspired by studies which found pairing an auditory tone with phasic activation of dopaminergic, 69 

cholinergic, or noradrenergic neuromodulatory systems resulted in a lasting shift of frequency 70 

selectivity for neurons in the auditory cortex toward the paired tone’s frequency  11, 31-33. We will 71 

not review these studies in detail here as they have already been well reviewed previously 8-10.  72 

In general, these studies have paired phasic VNS (e.g., 0.5 s, 30 Hz, 0.8mA, 100µs 73 

biphasic pulses) with a specific sensory stimulus (e.g. a specific auditory tone or tactile tap 74 

frequency) repeatedly across multiple sessions (e.g. 300 times/day, 20 days). This alters sensory 75 

processing in a manner that facilitates detection of the specific paired stimulus 34-39 and 76 

accordingly disfavors detection of non-paired stimuli. This mechanism of action can be 77 

strengthened over multiple sessions of pairing to produce long-term permanent reorganization of 78 

sensory pathways that alters perception. Taken together, these works suggest phasic VNS has 79 

great potential as a next generation neuromodulation technology for rehabilitative motor and 80 

sensory therapies 40-50. 81 

TRANSIENT MODULATION OF SENSORY PROCESSING OCCURS RAPIDLY UPON VNS 82 
ONSET 83 

The purpose of this review is to bring light to recent studies indicating VNS modulates 84 

sensory processing immediately upon onset. Here, we will discuss in detail studies investigating 85 

the immediate effects VNS has on the response properties of neurons along the sensory 86 

pathways.  87 



Tonic VNS drives a rapid and transient enhancement of tactile processing 88 

Our laboratory has recently demonstrated that VNS can be used to induce a rapid, general 89 

improvement of thalamic sensory processing (Figure 1). This is a continuation of our team’s 90 

studies investigating the effects of the LC-NE system on thalamocortical circuitry 30, a critical stage 91 

for sensory processing and perception 51-58. These studies found that direct activation of the LC-92 

NE system (electrical or optogenetic), in a continuous tonic fashion, optimized intrathalamic 93 

dynamics for sensory processing. Specifically, tonic LC stimulation (continuous, 5 Hz, 60 µA, 500 94 

µs biphasic pulses) increased the efficiency and rate of sensory-related information transmitted 95 

by thalamocortical neurons 30. Further, the observed NE-enhancement of sensory processing 96 

resulted in a significant improvement in perceptual sensitivity for rats tasked with discriminating 97 

between whisker stimuli of different frequencies. Through pharmacological manipulation it was 98 

determined that tonic LC activation improved thalamic sensory processing because a steady 99 

increase in NE concentration precludes priming, and in turn activation, of thalamic T-type calcium 100 

channels. When active, T-type calcium channels introduced a nonlinear bursting response that 101 

degraded transmission of detailed sensory information.  102 

 

Figure 1. Tonic VNS suppressed burst spiking of thalamocortical neurons and increased the 

selectivity of their response to the specific stimulus feature they encode, leading to a greater 

amount of sensory-related information transmitted. (A) VNS did not significantly alter firing rate 

of ventral posteromedial nucleus (VPm) neurons responding to white gaussian noise whisker 



(WGN) stimulation. (B) VNS reduced likelihood of VPm burst spikes, multiple successive spikes 

with a short inter-spike-intervals (~4 ms or less) commonly occurring after an extended period 

of quiescence (~100 ms) due to calcium t-channel current. (C)-(D) The amplitude of the specific 

kinetic feature(s) (i.e., whisker deflection) each VPm neuron was selective for was much larger 

when recovered during VNS, indicating VNS increased selectivity of response. (E) Enhanced 

feature selectivity of VPm neurons during VNS results in a significant increase in amount of the 

sensory-related information transmitted per spike. Adopted from 59.   

 103 

 VNS has been shown to activate the LC-NE system 60 and is accessible in a noninvasive 104 

manner, unlike the LC deep in the brainstem. Therefore, our team next investigated whether tonic 105 

VNS would drive similar rapid beneficial effects on sensory processing. Through testing the 106 

effects of multiple patterns of VNS on sensory processing,  the beneficial effect was found to be 107 

highly transient (i.e. benefit begins to dissipate within seconds of ceasing VNS) 59. For example, 108 

duty-cycled VNS (30 s on / 60 s off duty cycle, 30 Hz, 500 µs biphasic pulses) enhanced tactile 109 

sensory processing during the on cycle, but this enhancement rapidly dissipated during the off 110 

cycle, suggesting that cycling VNS on and off creates fluctuations in sensory processing that 111 

would likely be sub-optimal for discrimination. This suggested that an uninterrupted pattern is 112 

required to produce a stable benefit. Indeed, continuous tonic VNS pattern (continuous, 30 Hz, 113 

500 µs biphasic pulses) induced a steady enhancement of sensory processing similar to that 114 

observed with direct tonic LC stimulation. This immediate enhancement of sensory processing 115 

during continuous, tonic VNS was found to be reliably present across recorded neurons. As each 116 

recorded neuron encoded for a unique kinetic feature of the whisker stimuli, this suggests the 117 

tonic VNS modulation provided a general enhancement of sensory processing regardless of 118 

stimulus input. This effect is distinct relative to the selective facilitation of responses to a specific 119 

sensory stimulus found after repeatedly pairing VNS bursts with that sensory stimulus.  120 



Further, testing of various tonic VNS current levels and frequencies showed the beneficial 121 

effect of tonic VNS on sensory processing increased with intensity and frequency (10 vs 30 Hz, 122 

0.4 vs 1 and 1.6 mA) and did not exhibit the inverted U-shape function of effect strength that has 123 

been observed with other types of VNS modulation 61 (at least within the parameter ranges 124 

tested). 125 

VNS has rapid effects on evoked responses in the auditory cortex 126 

Other research groups working with human subjects have published findings that suggest 127 

VNS has immediate beneficial effects on auditory processing. One study in humans who had 128 

been receiving chronic VNS (via implanted cuffs as a treatment for epilepsy), found VNS 129 

enhanced performance on a standard auditory oddball task when compared to performance after 130 

their VNS device was turned off 62. Specifically, during VNS (7s on / 18 s off duty cycle, 20-30 Hz, 131 

0.75-3 mA, 250-500 µs pulses) both accuracy and response time was improved for participants 132 

tasked with responding to low frequency target audio tones while ignoring high frequency 133 

nontarget tones. This same study analyzed auditory event-related potentials (AERP), measured 134 

via EEG, and found that during VNS AERP amplitude was also increased. However, the effect on 135 

AERP was only significant in individuals whose epilepsy symptoms had positively responded to 136 

VNS treatment. A separate study investigating transcutaneous auricular vagus nerve stimulation 137 

(taVNS) (30 s on / 30 s off duty cycle, 25 Hz, 250 µs pulses) in healthy adults found similar results. 138 

Specifically, taVNS increased the strength of AERPs during an oddball auditory task 63. As this 139 

study used low frequency tones as nontargets and high frequency as target, a reversal of the prior 140 

discussed oddball auditory task, taken together they suggest immediate VNS modulation of 141 

auditory response is not specific to low or high frequency audio tones. Another study delivering 142 

continuous taVNS (25 Hz, 500 µs biphasic pulses) to healthy adults analyzed the neural response 143 

to auditory tones using magnetoencephalography (MEG) instead of EEG and found taVNS altered 144 

synchrony of brain activity 64. Further, recent studies using fMRI to monitor neural activity have 145 



shown taVNS rapidly affects auditory processing pathways. When taVNS (25 Hz, 0.1 to 1.8 mA, 146 

500 µs monophasic pulses) was delivered to male adults with chronic tinnitus, fMRI recordings 147 

exhibited altered activity of multiple brain regions involved with auditory processing 65. More 148 

recently, analysis of fMRI data from human subjects receiving taVNS indicated increased activity 149 

in the thalamus and auditory cortex 66, suggesting VNS rapidly modulates central auditory sensory 150 

processing in humans.  151 

These findings in humans are further supported by multiple electrophysiological and 152 

behavioral work in animals that found VNS rapidly affects the response properties of neurons of 153 

the auditory pathway. In isoflurane-anesthetized rats, the responses of neurons along the auditory 154 

pathway were compared with and without VNS delivered via an implanted VNS cuff (30 s on / 5 155 

min off duty cycle, 10 Hz, 0.5 mA, 130 µs pulses). The baseline condition was recorded without 156 

any ongoing VNS. The VNS condition consisted of discontinuous duty-cycled VNS where auditory 157 

testing was performed only during the off periods of the VNS duty cycle. Here they found duty-158 

cycled VNS weakened stimulus-specific adaptation in the cortex but not the thalamus 67, 159 

suggesting VNS may modulate thalamocortical transmission but not earlier stages of the auditory 160 

pathway. Further work by the same group, using the same paradigm, found VNS predominantly 161 

increased the amplitudes of auditory-evoked potentials in the sensory cortex 68.  162 

VNS modulates the olfactory and gustatory processing  163 

The immediate effects of VNS on olfactory processing had been demonstrated as early 164 

as the 1980’s. Specifically, a study in rats found that a single pulse of VNS from an implanted cuff 165 

(0.8-1.5 mA, 200 µs monophasic pulses) reliably evoked firing in the homolateral olfactory bulb 166 

(HOB) 69. Further evidence that VNS affects olfactory processing was found in more recent studies 167 

that used positron emission tomography (PET) to analyze the effects of VNS in awake rats. A 168 

PET scan conducted during the time period when the VNS cuff was switched on for the first time 169 

(30 s on / 5 min off duty cycle, 30 Hz, 1.5 mA, 500 µs pulses) found VNS induced a significant 170 



increase in glucose metabolism in both olfactory bulbs 70. However, another study in humans with 171 

implanted VNS cuffs for treatment of depression found that whether VNS (30 s on / 5 min off duty 172 

cycle, 20 Hz, 1.25 mA) was on or off had no effect on subjects’ ability to discriminate or detect 173 

olfactory stimuli 71. Yet that same study did find that VNS significantly increased the intensity of 174 

the taste of sweet and bitter, suggesting that VNS may rapidly affect gustatory processing as well.  175 

VNS ACTIVATES MULTIPLE NEUROMODULATORY SYSTEMS THAT RAPIDLY 176 
INFLUENCE THE RESPONSE PROPERTIES OF NEURONS ALONG SENSORY 177 
PATHWAYS. 178 

The ability of VNS to have immediate effects on sensory processing is likely due to VNS 179 

activating neuromodulatory systems (Figure 2). Here we briefly review studies of the effect of VNS 180 

on neuromodulatory systems in both human and animal models. Neurons in the neuromodulatory 181 

systems and sensory pathways discussed here can exhibit either tonic or burst spiking patterns 182 

72-76. Tonic spiking refers to sustained firing of tonic spikes at relatively slow rates compared to 183 

phasic. Phasic spiking refers to transient bursts of multiple spikes with short inter-spike-intervals. 184 

For neuromodulatory systems, the rate of continuous tonic spiking modulates brain state (e.g., 185 

attention, arousal) whereas phasic firing is linked with events (e.g., reward, sensory stimuli, 186 

decision-making) and thought to regulate learning and behavior 77, 78. For sensory pathways, tonic 187 

encoding is favored during periods of increased attention and is thought to be more optimal for 188 

the discrimination of sensory detail 73, 79. Conversely, bursting responses to sensory stimuli are 189 

more likely when drowsy or inattentive and provide a strong encoding that facilitates detection, 190 

potentially serving as a wake-up call 80, 81. It is important to note that neuromodulatory systems 191 

are well preserved over evolution, and the function of neuromodulatory systems are similar in 192 

humans and other mammals such as rodents 82. Indeed, the studies discussed earlier confirm 193 

VNS affects sensory processing in both rodents and humans. 194 



 

Figure 2. VNS activates multiple global neuromodulatory systems that are known to influence 

sensory processing. BF: basal forebrain; DRN: dorsal raphe nucleus; LC: locus coeruleus; LDT: 

laterodorsal tegmental nucleus; NTS: nucleus tractus solitaries; PPT: pedunculopontine 

tegmental nucleus; VTA: ventral tegmental area. 

 195 

VNS and the Noradrenergic System 196 

The LC is the primary source of NE in the forebrain 83. The LC exhibits constant tonic firing 197 

(1-5 Hz) that regulates brain state (e.g., arousal) as well as intermediate phasic burst spiking 198 



events (2-5 spikes at 10-20 Hz per burst) that occur in response to salient sensory stimuli as well 199 

as when decisions or responses are made 72. These two firing modes have been shown to 200 

produce distinctly different modulations of the response properties of sensory neurons 72. The LC 201 

innervates multiple regions along the sensory pathway, including the sensory thalamus and cortex 202 

84, 85.  203 

There is a large body of evidence showing that the LC-NE system modulates sensory 204 

processing and perceptual learning 32, 86-91. Moreover, it is well documented that activation of the 205 

LC-NE system immediately modulates the response of sensory neurons. In-vitro, NE has a 206 

depolarizing effect on auditory and visual thalamic relay neurons that coincides with a suppression 207 

of burst spiking 74. This likely occurs because NE depolarization prevents the extended 208 

hyperpolarized periods needed to prime the calcium t-channels responsible for bursts 79. In-vivo, 209 

tonic LC activation has been found to reduce spontaneous activity of the somatosensory 210 

thalamus, while facilitating sensory evoked activity, resulting in an increase in signal to noise ratio 211 

89. Our team has shown how tonic LC-NE activation enhances the accuracy of encoded stimuli in 212 

the somatosensory thalamus by reducing the fluctuating influence of the calcium t-channels 213 

responsible for bursting 73. Within the cortex, the LC-NE system can cause either facilitation or 214 

inhibition with resulting effects specific to the sensory modality, cell, and stimulation pattern 92-95. 215 

VNS’ ability to activate the LC-NE system has long been hypothesized to underlie, in part, 216 

the clinical benefits of VNS 96. VNS is thought to activate the LC via the vagus nerve’s afferent 217 

projections to the nucleus tractus solitarius (NTS) 97, 98. The NTS then sends an excitatory signal 218 

to the LC, likely via the nucleus paragigantocellularis 99, 100. Indeed, multiple studies have 219 

confirmed VNS readily activates the LC-NE system in both animals and humans. In rats, VNS 220 

delivered via an implanted cuff has been shown to increase the activity of LC neurons as 221 

confirmed by electrophysiological recordings under halothane 101, chloral hydrate 102, equithesin 222 

103, and ketamine 60 as well as by immunohistochemical biomarkers of short-term neuronal 223 

activation 104. Similarly, multiple studies have found that microdialysis samples taken from rats 224 



receiving VNS exhibited increased NE concentration in the primary hippocampus 105, basolateral 225 

amygdala 106, and cortex 107-109. Finally, the findings in animals seem to be conserved in humans, 226 

as fMRI data from a study of adult males with tinnitus indicated taVNS activates the NTS and LC 227 

65. However, variations in VNS parameters may affect how reliably VNS drives the LC-NE system, 228 

as one study measuring NE concentration in the CSF of patients receiving VNS as a treatment 229 

for depression failed to detect a significant change 110. 230 

In addition to direct evidence VNS activates the LC-NE system, many effects of VNS are 231 

blocked if the LC-NE system is impaired through either LC lesion or adrenergic receptor blockers. 232 

For example, the anticonvulsive effect of VNS is abrogated when hippocampal adrenergic 233 

receptors are blocked 105, 111. Further, VNS enhancement of perforant path-CA3 synaptic 234 

transmission is blocked by either electrical lesions of the LC or an adrenergic receptor antagonist 235 

(timolol) 112. The antidepressant-like effects of VNS in rats, as measured by feeding and swim 236 

tests, have been shown to be blocked by lesion of noradrenergic neurons 113, 114. Immunotoxin 237 

depletion of norepinephrine was also found to prevent VNS-driven enhancement of motor cortex 238 

neuroplasticity 115.  239 

VNS and Cholinergic Systems 240 

Cholinergic nuclei of the basal forebrain (BF) project to the sensory processing regions of 241 

the thalamus 116 and cortex 117, 118. Additionally, cholinergic nuclei of the pontomesencephalic 242 

area, including the laterodorsal tegmental nucleus (LDT) and pedunculopontine tegmental 243 

nucleus (PPT), are a major source of ACh to the thalamus119, 120. There are two distinct neuron 244 

populations of the BF that differentiate in exhibiting either a tonic (10-15 Hz) or a bursting (2-6 245 

spikes/burst with bursting events occurring at 0.3-2 Hz) firing pattern 75 which influences arousal 246 

and attention. The response timing of both types of BF neurons is influenced by sensory stimuli 247 

121 and linked with novelty, salience, and surprise 122 248 



Extensive work has shown the cholinergic system strongly influences both sensory 249 

processing and perceptual learning across multiple sensory modalities 11, 123-134. Like the 250 

noradrenergic system, it is well documented that activation of the cholinergic systems has 251 

immediate effects on sensory processing. ACh applied in-vitro to neurons of the thalamic reticular 252 

nucleus, a subthalamic region involved in sensory processing, causes hyperpolarization and 253 

induces burst spiking 135, likely due to extended hyperpolarized periods priming the calcium t-254 

channels responsible for burst spiking 79. ACh applied to thalamic neurons of the primary visual 255 

and auditory pathways was found to increase firing rate 136, 137, although a hyperpolarization effect 256 

has been observed in thalamic neurons of the secondary (nonlemniscal) auditory pathway 138. 257 

Cholinergic modulation of the sensory cortex can cause either facilitation or inhibition with the 258 

resulting effect specific to the sensory modality, cell, and stimulation pattern 118, 139-141. In the visual 259 

cortex, BF stimulation has been shown to enhance accurate encoding by inducing decorrelation 260 

and increased reliability 142. 261 

It has long been hypothesized that VNS activates the BF–ACh system 143. VNS innervates 262 

the nucleus tractus solitarius (NTS) 97 and projections from the NTS activate the BF 144 in addition 263 

to the NTS projections that activate the LC 98-100. The LC also projects to the BF 145, suggesting 264 

VNS activates the BF both directly through the NTS as well as indirectly through the LC. Indeed, 265 

two separate studies investigating the potential of VNS for inducing neuroprotection from cerebral 266 

ischemia found that VNS enhanced protein levels of the nicotinic acetylcholine receptor alpha7 267 

subunit (a7nAchR) in the ischemic penumbra 146, 147. Recently, researchers performed in-vivo 268 

calcium imaging of the auditory cortex and found VNS evoked activity of cholinergic axons 269 

innervating the region 148. Further, they found the intensity of the evoked activity covaried with 270 

VNS intensity. In addition to this direct evidence that VNS rapidly activates the cholinergic system, 271 

multiple studies have shown ACh modulation of sensory pathways is a critical component 272 

underlying the plasticity effect induced by repeatedly pairing a burst of VNS with a sensory 273 

stimulus. For example, the effects of VNS on sensory processing in the auditory cortex were found 274 



to be blocked by a muscarinic antagonist 149. Further, lesioning the NB in rats was shown to 275 

abrogate the well-documented ability of VNS pulses repeatedly paired with a movement to 276 

enhance motor cortex plasticity 150. 277 

 278 

VNS and Serotonergic Systems 279 

The dorsal raphe nucleus (DRN) is a major source of serotonin (5-HT) to the forebrain 151. 280 

Neurons of the DRN consistently exhibit a continuous slow tonic firing rate (1-2 Hz) with little 281 

variation in inter-spike-interval 152, 153. Response of the DRN is related to both reward and 282 

punishment 154-156 as well as linked to sensory input 157, 158. The DRN innervates both cortical and 283 

subcortical regions of the sensory processing pathways 159. There is also a large body of work 284 

suggesting DRN activity modulates sensory processing and perception 160-166. 5-HT has been 285 

shown to have instant effects on neurons of the sensory pathways. For example, 5-HT has been 286 

shown to cause excitation of thalamic perigeniculate and reticular nucleus neurons 167, 168. In the 287 

inferior colliculus, an auditory region of the midbrain, 5-HT was found to modulate responses in 288 

both a cell and auditory stimulus specific manner 160. In the primary visual and auditory relay 289 

neurons of the visual and auditory pathways, 5-HT has been shown to have an inhibitory effect 290 

169-171. Additionally, activation of the DRN has been found to increase signal to noise ratio of the 291 

olfactory cortex 172. 292 

VNS may activate the DRN indirectly by first activating the LC which then projects to the 293 

DRN 173. This hypothesis is supported by a study in rats anesthetized with sodium pentobarbital 294 

that found VNS increased DRN neurons’ firing rates, but this causal relationship was lost once 295 

the LC was lesioned 103. Multiple studies have also shown that VNS increases DRN firing rate as 296 

measured via extracellular electrophysiological recordings 102, 174. However, one study found only 297 

a subset of VNS patterns they tested increased DRN activity suggesting VNS activation of the 298 

DRN may be dependent on VNS parameters 175. In follow-up work, the same group performed in-299 



vivo microdialysis in rats following chronic duty-cycled VNS and found increased 5-HT 300 

concentration in the DRN but not the hippocampus nor prefrontal cortex (PFC) 109.  In contrast to 301 

these studies supporting VNS’ ability to activate the DRN, another study analyzing microdialysis 302 

measurements in different brain regions of rats reported that neither vagotomy or chronic 303 

unilateral VNS had an effect on 5-HT levels in the VTA, nucleus accumbens (NAc), PFC, and 304 

striatum 176. These conflicting findings could potentially be related to the fact that electrical 305 

stimulation was delivered to an abdominal branch of the vagus nerve in this study. Further 306 

suggesting a more complex interplay between the VNS and DRN, a study analyzing 307 

immunohistochemical biomarkers of both short-term and long-term neuronal activation suggests 308 

chronic VNS does not induce DRN activation until stimulation has occurred across multiple days  309 

104. 310 

In addition to direct evidence that VNS increases activity of the serotonergic system, 311 

functionality of serotonergic neurons has been shown to be critical for multiple documented effects 312 

of VNS. For example, the earlier-mentioned study on the antidepressant-like effects of VNS in 313 

rats, which used feeding and swim tests as indexes of depression, found the beneficial effects of 314 

VNS were also precluded by administration of a neurotoxin for serotonergic neurons 114. 315 

Additionally, a separate study found immunotoxin depletion of serotonin prevented the well-316 

researched ability of repeatedly pairing a VNS burst with a movement to enhance motor cortex 317 

neuroplasticity 115.  318 

VNS and Dopaminergic Systems 319 

The ventral tegmental area (VTA) and Substantia Nigra pars Compacta (SNc) are primary 320 

sources of dopamine (DA) to the forebrain 177 and, respectively, they modulate cognition and 321 

movement 178. The VTA has been shown to innervate the sensory cortices 179. The VTA exhibits 322 

both tonic (1-8 Hz) and burst firing (2-5 spike bursts with bursting events occurring at 0.1-1 Hz) 323 

with firing rates varying across cell types 180-182. Tonic firing rate likely modulates brain state (e.g., 324 



motivation, arousal) and bursting events likely encode for salient stimuli (e.g., reward, sensory 325 

stimuli) 183. Although the body of work investigating the effects of DA on sensory processing is 326 

limited, there is evidence it rapidly modulates sensory processing and response 184-186.   327 

Although previous work demonstrated the LC projects to the VTA 187, many studies also 328 

suggest VNS effects on DA circuitry may be dependent on other factors besides VNS directly 329 

increasing VTA firing rates. For example, one study that performed in-vivo microdialysis of rats 330 

following chronic duty-cycled VNS found an increase in DA in the PFC and NAc but a decrease 331 

in VTA neurons’ firing rates as measured with electrophysiological recordings 109. A lack of VNS-332 

induced changes in VTA firing and bursting rates was also reported in a separate study 188. 333 

Studies analyzing brain sections from rats that received chronic VNS have also reported varied 334 

results. One such study found decreased DA levels in the VTA, NAc, PFC, and striatum 176; 335 

however, to properly interpret these results it should be mentioned that electrical stimulation was 336 

delivered to an abdominal branch of the vagus nerve in this study. Two other studies performing 337 

a similar analysis found VNS induced changes to the elemental composition of dopamine-related 338 

brain structures 189 and to the lipids and proteins within the VTA, NAc, SNc, striatum, dorsal motor 339 

nucleus of vagus and the motor cortex 190. A more recent study in awake rats found optogenetic 340 

VNS, which carries no risk of unintentional activation of surrounding nerves, increased the firing 341 

rate of dopaminergic VTA neurons as measured via in-vivo imaging 191. This same study also 342 

found lesioning the hepatic branch of the vagus nerve abrogated the increase in VTA neuron 343 

activity usually observed following ingestion.  344 

DISCUSSION: TRANSLATIONAL APPLICATIONS OF USING VNS TO RAPIDLY 345 
MODULATE SENSORY PROCESSING 346 

Accurate perception is required for daily life and independent living. However, dysfunction 347 

or degradation of central sensory processing pathways can rapidly impair sensory ability. The 348 

studies referenced here implicate VNS as a potential tool for modulating sensory processing. 349 

Accordingly, VNS presents great potential as a targeted treatment for impaired senses arising 350 



from central sensory processing dysfunction. Many clinical causes of impaired central sensory 351 

processing exist including multiple neurodegenerative conditions and neurological disorders. 352 

Impaired sensory processing reduces sensory acuity, increases likelihood of miscommunication, 353 

and causes misperceptions that potentially lead to costly human error. Further, the link between 354 

human performance and sensory processing state suggests there may be commercial interest in 355 

enhancing sensory processing in addition to clinical. This translation potential has spurred clinical 356 

trials looking at the effect of VNS on auditory perception (e.g., NCT04812015 at 357 

www.clinicaltrials.gov). VNS methods of enhancing sensory processing have great translation 358 

possibility because cervical transcutaneous VNS (ctVNS) and transcutaneous auricular VNS 359 

(taVNS) have both been suggested to be safe and effective methods of noninvasively activating 360 

the vagus nerve in humans 192-195. In light of this potential, our research team is currently 361 

conducting pilot clinical studies investing the effects of continuous tonic VNS on vision, hearing, 362 

and touch.  363 

 Age-related impairment of central sensory processing is particularly devastating to the 364 

elderly as it interferes with their ability to communicate 196, 197, accelerates cognitive decline 198, 365 

and is linked with Alzheimer’s disease (AD) 199. Treatments exist for age-related sensory receptor 366 

damage 200-203. However, there is a stark lack of solutions addressing the co-occurring age-related 367 

impairment of central sensory processing 204-207. For example, as evidence of this age-related 368 

decline in sensory processing, studies have shown that elderly individuals with normal 369 

audiograms, indicating normally functioning auditory receptors, still have decreased ability to 370 

discriminate detailed features of sensory stimuli, such as speech intelligibility over noise 208, 209. 371 

Similarly, aging is thought to degrade visual 210, 211 and tactile processing 212. The ability to improve 372 

or restore sensory processing clarity with VNS, could therefore positively impact a large segment 373 

of society by helping them remain social and active through improving their ability to communicate 374 

clearly and walk safely. Many researchers share the belief that different forms of VNS could help 375 

elderly cognition and perception as suggested by the many ongoing clinical studies investigating 376 



that topic (e.g., Clinical Trials NCT04396249, NCT04276805, NCT03359902, NCT04908358, 377 

NCT04276805, NCT03989375 at www.clinicaltrials.gov).  378 

Attention deficit hyperactivity disorder (ADHD) has been linked with impaired sensory 379 

processing evidenced by poor frequency discrimination ability 213, 214. Moreover, inattention is 380 

linked with increased bursting activity in the sensory thalamus, a type of neural activity our team’s 381 

research has found is suboptimal for encoding details and features of sensory stimuli therefore 382 

causing loss of sensory acuity 30. Further, thalamocortical bursting in response to sensory stimuli 383 

is thought to serve as a “wake-up-call” in response to salient stimuli, suggesting bursts are 384 

distracting 215. Recently, poor intrathalamic processing due to abnormal TRN responses has been 385 

suggested as a cause of ADHD 216. ADHD treatments (including stimulants) work, in part, via 386 

amplifying NE effects 217-219. Methylphenidate, a common treatment for ADHD, has been shown 387 

to enhance early-stage sensory processing through increasing DA and NE concentration in the 388 

brain 220. Previous work shows that VNS activates the locus coeruleus-norepinephrine (LC-NE) 389 

system, 60 and our work shows VNS suppresses noisy bursting activity along sensory pathways. 390 

Taken together, these findings suggest VNS could be potentially used to treat the sensory 391 

processing dysfunction linked with ADHD.  392 
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