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Abstract—In this letter, we present DeDRLSSL: a generic semisupervised noise suppression framework. The proposed
model is based on a reinforcement learning system for learning contrastive features to refine the features utilized in con-
sistency matching for semisupervised learning (SSL). The proposed method outperforms the state-of-the-art supervised
models in terms of error compensation for Inertial Measurement Unit data from various evaluation metrics and improves
the baselines for yaw estimation on average by 38% and 28% across the benchmarks for 30% and 50% of labeled data,
respectively. Our approach can be adapted to any SSL approach to compensate for the problem of label scarcity.

Index Terms—Sensor signal processing, contrastive features, noise suppression, reinforcement learning, semisupervised learning.

I. INTRODUCTION

The presence of noise, regardless of the signal type, is ubiquitous
in signal processing, therefore leveraging the error compensation
methods before an inference is inevitable. Noise suppression methods
are divided into conventional approaches and data-driven models.
The conventional methods for signal denoising, such as filtering and
wavelet transforms, are widely used in industry and academia. Methods
such as the Wiener filter [1] work well in removing low-frequency
noises like biases, however, they failed in high-frequency noise re-
moval. In the same way, error reduction methods based on a linear
model for error compensation like Kalman filter [2] are obviously not
applicable for large and complex errors. In addition, the methods such
as wavelet processing rely on delicate analysis to choose the basis for
signal decomposition, which requires prior knowledge of the nature
of signals. Data-driven models recently were leveraged to perform
the noise removal task. The deep neural modules have recently seen
success to some extent in noise removal for datasets with clean ground
truth labels [3], [4]. The existing methods typically employ encoder–
decoder architecture for signal denoising and the reconstruction error is
used for training and performance evaluation of the deep models. In [5],
an unsupervised method based on autoencoders is proposed to remove
noise artifacts from IMU signals. The method results in a competent
F1-score for human-activity recognition. In [4], an adversarial model is
introduced to distinguish the distribution of clean and noisy data toward
the target of aligning the distribution of the latent representation of
clean and noisy signals. In [6], dilated convolutional layers are applied
for denoising gyroscope data, and it was shown that if the model is
trained with a proper loss function, resulting accuracy competes with
the accuracy of highly accurate methods like visual-inertial systems.
Similarly, in [7] a deep model is constructed by using the temporal
convolutional network for noise compensation of IMU gyroscope data.

One of the main barriers in data-driven noise suppression approaches
is expensive ground-truth noise-free annotations. The existing data-
driven approaches mainly require accurate supervision information,
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such as precise quaternion from highly accurate methods like visual-
inertial systems. Regarding training with fewer labels, semisupervised
learning (SSL) has been a powerful approach, mitigating the require-
ment for labeled data. Recent years have witnessed significant progress
in semisupervised classification for image domain [8], [9], [10]. How-
ever, only a few works address semisupervised noise suppression
models with most of them leveraging domain-specific knowledge. The
recent SSL approaches split the data augmentation schemes in the im-
age domain into the subcategories of strong and weak augmentations. It
is not straightforward to extend these methods to other data modalities.
For instance, in sensory multivariate data, the dominant augmentation
is adding random noise, which is difficult to divide into strong and
weak sets. For instance, adding a random noise with a large mean
value for strong augmentation can intensify the noise modalities in
the raw sensory data. In this letter, we extend the flexibility of SSL
for noise suppression by incorporating reinforcement learning to learn
the contrastive features instead of applying strong augmentation of
unlabeled samples. In particular, we propose DeDRLSSL based on
deep neural models for noise suppression. Our SSL framework is
inspired by semisupervised approaches [9], [10], which is composed of
supervised loss and consistency loss between the contrastive features
of unlabeled samples. We utilize a deep reinforcement learning (DRL)
component to refine the augmented data that are used as contrastive
features in aligning the model outputs of unlabeled inputs. In particular,
we employ DRL to give us a prior of useful augmented contrastive
features as a reward to train our framework in SSL fashion. Our
approach can be applied to reduce high-frequency errors such as
nonlinear random noise and low-frequency errors like biases and scale
factors. We empirically demonstrate that the RL component is crucial
to achieving improved performances for the noise suppression task.

II. MODEL

In this letter, we address the problem of noise suppression in a
semisupervised setting, where we have only a small set of labeled
data {xl} with ground truth labels {yl} and a larger set of unlabeled
samples {xu}. Fig. 1 shows the overview of our architecture. The
proposed model takes raw noisy data as the input and regresses
the error-compensated data. In the proposed deep model, the error
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Fig. 1. Overview of training DeDRLSSL model.

features are extracted from a model, and further, the output for error
compensation is regressed. In our approach, the cloned teacher model is
fed by weakly augmented unlabeled samples while the student model
takes augmented unlabeled samples using the parameters from the
DRL model. The parameters of the teacher model are the exponential
moving average (EMA) of the student model parameters that are
learned in the training procedure. We facilitate the correct information
flow to the student model by augmenting the input data with random
noise with specific standard deviation (std) and noise mean value
(m). The selection of the parameters for data augmentation to obtain
contrastive features in consistency matching is performed by DRL
model, while for weakly augmented examples the parameters mean
and variance of random Gaussian noise are fixed. We adopt the SSL
model by applying the operator φc, which sequentially uses the output
parameters of the random distribution from the RL model to augment
the input data by adding random noise to obtain contrastive features
in SSL.

Active noise suppression framework: The data-driven denoisers are
typically trained on limited annotated data and fail to generalize to the
unseen data that are collected using a different setting. In SSL, data
augmentation is used to increase the diversity of the training data that
is further used to align the contrastive features for unlabeled data. Our
proposed framework utilizes the RL agent to select hyperparameters
for noise augmentation for consistency matching in SSL. Later, we will
demonstrate that utilizing DRL method to estimate the parameters of
the noise distribution for deriving contrastive features in SSL leads to
a significant improvement in performance.

A. Reinforcement Learning Model

The parameters in the noise distribution of the augmentation op-
erator are initiated randomly. The reward for DRL is computed from
the errors of the regressor on annotated data. As described earlier, the
agent regresses the parameters for a random noise distribution as an
action, which is a pair consisting of the mean and the std of random
noise. In particular, the contrastive feature φc(x) is obtained from the
input x by adding random noise from a random distribution, which is
determined by the agent.

State-Action Representation: The state at step n is the triplet
(Bn, en, An), where Bn is the feature map at step n learned by feature
encoder, and en is the reconstruction error defined by en = ‖xn − xgt‖,
where xgt is the ground truth signal. An is the continuous action

Algorithm 1: Training Algorithm for DeDRLSSL.

1: Input: reward threshold τ , reward penalty parameter ε,
unsupervised loss weight λ, momentum parameter for EMA
γ , number of iterations N , labeled dataset Dl = {xl},
unlabeled dataset Du = {xu}

2: Initialize: θ, f , A0

3: Set the EMA model g = f
4: for n = 0, 1, . . . , N do
5: for xl in Dl and xu in Du do
6: Apply An to obtain the feature operator φc(·)
7: Derive the feature map Bn from the feature encoder
8: Obtain xu

w from the weak augmentation of xu

9: Compute the loss L from (2) and update f with ∇ f L
10: Calculate the error en and determine rn from (1)
11: Update θ with Eπθ

[rn∇θ log πθ (An|Bn)]
12: Select An+1 ∼ πθ (·|Bn)
13: end for
14: Update g with γ g + (1 − γ ) f
15: Adjust the learning rate based on the scheduler
16: end for

consisting of the unknown parameters in the random distribution. We
use a deep stochastic policy πθ (An|Bn) for action selection, where
θ is the parameter that predicts the action An = (mn

a, stdn
a ), which

indicates the mean mn
a and std stdn

a of a random distribution to
obtain the contrastive feature φc(·). To generate action probabilities,
the feature map from the baseline model is fed to the deep neural
model, which is shared between the mean selection and std selection
model. We let zn

a denote the output from the penultimate layer of
DRL model at time step n. The support of mean and std estimation
is tailored to the dataset and the parameters are obtained using the
following expression: ma(wT

a zn
a + ba) = 10αm tanh(wT

a zn
a+ba )−βm1, where

[−βm, αm − βm] is the power range for the base 10, specifying the
support of mean value distribution. The learnable parameters wa and
ba are corresponding to the weight and bias of the neural layer.
Correspondingly, the distribution for the variance is provided by
stda(wT

a zn
a + ba ) = exp(αv tanh(wT

a zn
a + ba)). We choose the range of

std to be more limited than the mean for numerical stability.
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Reward Function: We compute the agent rewards from the recon-
struction error en of the model output at step n. The reward is estimated
proportional to the negative values of the reconstruction error while
applying an extreme penalty −ε for large ε values for the error outliers
determined by the threshold τ . More specifically, the reward is given
by

rn =
{

−en if en < τ

−ε otherwise.
(1)

B. Training Protocol

Our training protocol consists of two phases: a supervised training
phase, where our denoising regressor model and RL model are trained
over labeled data, followed by an SSL stage, which incorporates
unlabeled data.

Pretraining stage. We initialize the supervised training procedure on
the labeled set with the supervised loss. We clone our model, which is
regarded as a teacher model as opposed to the student model. We also
train our deep RL model in this stage by utilizing the output actions
for a random noise distribution to obtain the contrastive features φc(x)
by augmenting the input data.

SSL Training: In this phase, we apply unlabeled data alongside
labeled data. The training batch consists of both labeled samples and
unlabeled samples and thereby the loss function is composed of the
supervised loss for labeled data and the consistency loss for unlabeled
data as

L = Ll (x
l , yl ) + λLu(xu, xu

w ). (2)

In this expression, Ll is the supervised loss, Lu is the consistency loss,
and λ is the unsupervised loss weight. The loss terms are selected based
on domain-specific knowledge.

Algorithm 1 summarizes the training procedure of DeDRLSSL.

III. EXPERIMENTS

In this letter, we perform experiments on denoising IMU signals to
estimate the device orientation. An IMU measures the angular velocity
and acceleration of the carrier, which are employed for the carrier
dead-reckoning [11]. The measurements from low-cost IMUs suffer
from extreme noises such as scale factors, time-dependent offsets, and
noise artifacts, especially in free-mode body sensors. The orientation
Rn from local frame to global frame at timestamp n is obtained using
the single integration of angular velocity ωn as follows:

Rn = Rn−1 exp(ωndt ) (3)

where exp(·) is SO(3) exponential map and dt is the time increment
interval. It is evident from (3) that orientation computation from noisy
gyroscope data is prone to error accumulation in time.

Datasets: We evaluate the performance of our proposed method
for denoising the IMU data from public datasets EuRoc [12] and
TUM-VI [13]. EuRoc consists of micro-aerial vehicle (MAV) data. The
IMU data frequency for EuRoc is 200 HZ and the ground truth from the
motion capture system is properly time-synchronized with IMU data.
The training set is composed of six sequences and four sequences
from this dataset are used for testing. TUM-VI consists of inertial
measurement sequences from handheld devices, and the ground truth
is from the motion capture system. The IMU data are measured at
200 HZ. We use three annotated sequences from this dataset for training
and three sequences as a test set.

Fig. 2. (a) Roll, (b) pitch, and (c) yaw errors on the EuRoC test
sequence V1_03-difficult. The results used 30% of labeled training
samples. The solid line is for raw IMU data and the dashed lines are for
the denoised data from various approaches.

Baselines: To our best knowledge, we are the first to address the
problem of noise suppression in semisupervised procedures in this
setting; hence, the comparisons are made with fully supervised base-
lines. We compare our approach with the state-of-the-art data-driven
error compensation approaches DIM [6] and DIG [7] in Table 1. Our
goal is to indicate the effectiveness of our framework in SSL setting.

Training setting: Each dataset is divided into training, validation,
and test set. We further divide the training split into the labeled set
with ground truth and the unlabeled set without ground truth for SSL
training, where we set the ratio of labeled data as 50% and 30% of
the training set. The denoiser model uses eight dilation convolutional
layers and the architecture of RL model consists of two linear layers.
All experiments were performed using a single Nvidia V100 GPU on
a PC with Core i7 3.60 GHz, 16-GB RAM. We used PyTorch for the
implementation of our approach. We use ADAM optimizer with weight
decay and the initial learning rate is set to 0.01. We train the baseline
models on the labeled split of the training set. We use the validation
set to calculate the error en. For losses Ll and Lu, we use a loss function
based on integrated gyro increments which is recommended in [6]. We
also set λ = 0.01 in the training.

Performance metric: We evaluate our method based on absolute
orientation error, where the mean square error between the ground
truth and the IMU sequence is computed by

Roter =
√√√√ 1

N

N∑
n=1

∥∥log (RT
n R̂n)

∥∥2
. (4)

In this equation, N is the sequence length, log(·) is the SO(3) logarithm
projection, and R̂n is an estimate of Rn from (3) using ω̂n, which
is the error-compensated gyroscope data at timestamp n. We align
estimated orientation and ground truth at n = 0. We present Roter for
three quantities roll, pitch, and yaw. We also utilize ROE as [14] with
respect to IMU displacement of 8, 16, 24, 34, and 42 m.

Evaluation: Table 1 shows the results of our method compared with
baselines under different labeled data ratios. The results show that
our proposed method consistently outperforms the other calibration
methods in all shown metrics. For example, DeDRLSSL improves the
baselines for estimating yaw on average by 38% and 28% correspond-
ingly for 30% and 50% of labeled data. In Fig. 2, we compare the
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TABLE 1. Comparison of Baseline and DeDRLSSL Model for Orientation Estimation Error Roter (Roll, Pitch, Yaw), in Degree

Fig. 3. Relative orientation error (ROE) in terms of yaw errors on the
test sequence V1_01-easy from EuRoc. The mean error increases by
the distance traveled.

TABLE 2. Comparison of Baselines and DeDRLSSL Models for Ori-
entation Estimation Error Roter (Roll, Pitch, Yaw)

roll, pitch, and yaw errors for a test sequence. This figure shows that
raw IMU quickly deviates from the ground truth data. In addition,
the baseline models deviate from the ground truth in less than 30 s.
However, the results from our DeDRLSSL lead to more accurate
estimates, being least affected by time. This indicates SSL approach
can largely enhance the accuracy of estimations from the baseline
models. Fig. 3 shows ROE errors with different IMU displacements,
where statistics such as the median and percentiles are calculated. The
figure shows that the yaw error obtained by our method is smaller and
less affected by the distance traveled, which indicates that the proposed
method could effectively compensate for the gyro error.

Ablation Study: Here, we analyze how our DeDLSSE is dependent
on the DRL model. Shown in Table 2, the SSL model with DRL
model performs noticeably better. Therefore, in this setting applying
RL in learning contrastive features leads to additional performance
gains compared to utilizing simply noise-augmented data to derive
contrastive features.

IV. CONCLUSION

In this letter, we introduce DeDRLSSL: a semisupervised error
compensation model. Our model uses deep reinforcement learning
for learning contrastive features in semisupervised training and relies
on the student–teacher protocol for training. The experimental results
from our approach improved the baselines on average by 38% over
employing 30% of labeled data. This shows that the existing competing
methods rely significantly on accurate supervision information while
our SSL approach can compensate for the bottleneck of the amount of
labeled data.
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