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Abstract

Noradrenergic and cholinergic modulation of functionally distinct regions of the brain has
become one of the primary organizational principles behind understanding the contribution of
each system to the diversity of neural computation in the central nervous system. Decades of
work has shown that a diverse family of receptors stratified across different brain regions and
circuit-specific afferent and efferent projections play a critical role in helping such widespread
neuromodulatory systems obtain substantial heterogeneity in their role in neural information
processing. This review briefly discusses the anatomical layout of both the noradrenergic and
cholinergic systems, as well as the types and distributions of relevant receptors for each system.
Previous work characterizing direct and indirect interaction between these two systems is
discussed, especially in the context of high order cognitive functions such as attention, learning,
and the decision making process. Though a substantial amount of work has been done to
characterize the role of each neuromodulator, a cohesive understanding of the region-specific
cooperation of these two systems is not yet fully realized. For the field to progress, new
experiments will need to be conducted that capitalize on the modular subdivisions of the brain
and systematically explore the role of norepinephrine and acetylcholine in each of these subunits

and across the full range of receptors expressed in different cell types in these regions.
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Introduction

The central nervous system performs an incredibly large number of continuous
computations, the result of which is to efficiently process the external world and execute a relevant
response. In the human brain, an estimated 10" neurons make approximately 1000 average
connections to other neurons, forming up to 10™ distinct sites for information transmission. That
is likely an order of magnitude higher than the total number of cells in the entire human body.
Even this staggering number of physical connections understates the complexity of information
handling in the brain. Beyond simple neuron-to-neuron connections, multiple subtypes of glial
cells are also known to play a role in synaptic transmission?3. This ever-shifting structural
background, across which the flow of information proceeds throughout an individual’s life, is then
capable of giving rise to a diverse array of orchestral melodies through the 100+ endogenous
substances that play a role in modulating synaptic transmission*. Some of these substances,
known as neurotransmitters, can act over varying physical distances through their interaction with
a much larger number of receptors.

Since the discovery of the first neurotransmitter, acetylcholine, in 1926 by Otto Loewi,
there has been an explosion in the identification and understanding of chemical
neurotransmission. Conceptually simplified, information transfer occurs in two modes: electrical
propagation within neurons or chemical propagation outside neurons. Neurotransmitters are the
chemicals that traverse the physical division between cells connecting the postsynaptic cell with
information from the presynaptic cell. This is primarily mediated through an array of specific
receptors on the postsynaptic cell. For any given neuron the combination of presynaptic inputs
will determine if a message is electrically transcribed and transmitted. If it is transmitted, an action
potential will travel down the length of a neuron, resulting in the release of extracellular
neurotransmitter onto the dendrites of postsynaptic cells. The substances released are usually

tightly regulated and reuptaken or degraded to limit the action of the substance on its target.
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Generally, neurotransmitters may have excitatory, inhibitory, and neuromodulatory effects
on neurons through the action of their receptors. Excitatory receptors, when activated by
corresponding neurotransmitters, result in a membrane depolarization and the propagation of an
action potential. Glutamate is the neurotransmitter that predominate mediates excitatory effects
through its receptor, which is nearly ubiquitously expressed in all types of neurons and many
types of glial cells®. Inhibitory receptors exert an opposing effect, with the binding of corresponding
neurotransmitters resulting in a membrane hyperpolarization that limits the ability of a neuron to
initiate an action potential. In the mature brain, y-aminobutyric acid (GABA) is the primary
neurotransmitter that exerts inhibitory effects on neurons through GABAergic receptors®. The
interplay between these two competing systems has been studied in a variety of contexts’® and
provides the foundation for how neurotransmission is thought to occur in the brain. The
summation of excitatory and inhibitory inputs at every connection point in the brain determines
the direction and pattern of information propagation in complex networks of neurons. The third
type of neurotransmitters, known as neuromodulators, add an additional, but important,
complexity to this paradigm by altering the balance of transmission on a micro-, meso-, or
macroscale.

There are four primary neuromodulatory systems: acetylcholine, norepinephrine,
dopamine, and serotonin. Each of these four molecules play an important function in altering basic
synaptic transmission patterns. The groups of neurons responsible for delivery of these four
neuromodulators are known as ascending neuromodulatory systems due to the fact each of these
neurotransmitters originates in the brainstem, midbrain, or basal forebrain and projects to various
brain structures. While early work characterized these ascending modulatory systems as highly
collateralized and largely exerting their influence through global regulation of neural activity'®",
more recent work has emphasized the subdivision of these systems into cortical-region-specific
sub-systems that can differentially influence information processing'>'3. Subsequently there has

been a shift away from viewing neuromodulatory systems as mere “state-setting” or “gating”
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systems towards a framework in which there is also an understanding that a subset of highly
specific neuromodulatory projections to the forebrain, especially the cortex, are necessary for
specific cognitive functions™.

This review will focus specifically on the role of two of these neuromodulatory systems,
the noradrenergic and cholinergic systems, in modulating cognitive functions. Acetylcholine (ACh)
is an important neuromodulator long implicated in learning, memory, and synaptic plasticity'>¢.
More recent work, however, has also highlighted the role of ACh in attentional effort, orienting,
and detection of behaviorally significant stimuli'”'®. Norepinephrine (NE) has classically been
viewed as a major mediator of arousal that plays an important role in regulating the efficiency of
external sensory processing’2. Recent work expanding on this has revealed a varied and
complex role for the noradrenergic system in everything from memory formation?, to executive
function and attention?”28, to cognitive flexibility?®°, to decision making?'-33. Dysfunction in either
of these two neuromodulatory systems or in the coordinated interaction between them is heavily
implicated in numerous neurodegenerative and neuropsychiatric diseases34'.

Understanding the complex and dynamic roles of neuromodulation on sophisticated
behavioral outcomes requires not only understanding the full range of impact of each
neuromodulator and its various anatomically distinct subdivisions, but also an understanding of
the interplay between multiple neuromodulatory systems. These interactions could occur at the
functional level seen in an organism’s behavior, the anatomic level through connectomic
communication, the cellular level through intertwined signaling pathways, or even at the synaptic
level when important brain regions experience the release of multiple neurotransmitters. A more
complete understanding of the role that neuromodulation plays in brain functions will require a
better understanding of when and how two systems, such as the cholinergic and noradrenergic
systems, collectively work together. The implications will be critical for better understanding and
predicting normal brain function and for providing novel treatment strategies for aberrant brain

function.
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Anatomical Overview
Cholinergic System
Sources

The cholinergic system is primarily comprised of groups of cells in the basal forebrain and
midbrain that send diffuse but sparse projections to the rest of the brain*?-52. Only the striatum
differs with a local supply of cholinergic neurons for local transmission®. In primates, the
cholinergic input to the cerebral cortex originates almost entirely from the nucleus basalis of
Meynert (NBM), located in the basal forebrain®. These neurons are large with extensive dendritic
trees, and a single neuron can innervate multiple brain regions, though there is minimal overlap
in the axonal fields®®%. While cholinergic projections are widespread throughout the cortex,
multiple studies have shown that there is a distinct pattern of segmented innervation depending
on which nuclei in the basal forebrain the cholinergic neuron originates from17:51.56-58,

A second maijor cholinergic source is found in the continuous array of multipolar neurons
in the medial septum (MS)* and diagonal band of Broca (DB)%%°. A whole-brain atlas of
projections from these regions in the mouse has found that cholinergic neurons were distributed
in an uneven pattern between different brain regions, with neuronal density varying more than 10-
fold across various structures®®. Additionally, soma volume of cholinergic neurons varied by up to
8-fold across the examined regions®. Taken together, this work has demonstrated the existence
of region-specific subtypes of cholinergic neurons that perform varying functions, though unlike in
the nucleus basalis, there does not seem to be a specific relationship between soma location in

the nuclei and the location of projections®.

Inputs

Cholinergic neurons in the nucleus basalis (NB) receives dopaminergic input from the

ventral tegmental area and substantial nigra, serotonergic input from the raphe nuclei, and
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noradrenergic input from the locus coeruleus*:8'. The main cholinergic afferents to the nucleus
basalis arrive from the midbrain pedunculopontine (PPT), the lateral dorsal tegmental (LDT)
nuclei, and the limbic cortex®?®*. There is also GABAergic input in the form of symmetric
synapses, which could represent local inhibitory neurons or projections from other brain regions®*-
7. It has been shown in multiple studies that the cholinergic neurons originating in NB and
projecting to the cortex are regulated through GABAergic receptors#:61:6567  There is also
extensive bidirectional communication between the nucleus basalis and the prefrontal cortex, and
in the mouse the rostral-caudal distribution of cholinergic cells in the basal forebrain is associated
with projection to the superficial-deep layers of the ventral medial prefrontal cortex, respectively*°.

Both the PPT and LDT nuclei receive afferent projections from a widespread number of
common structures, most predominately the reticular formation in the brainstem, the midbrain
central gray region, and the lateral hypothalamus-zona incerta region®%°. Retrograde tracing
studies have shown inputs arriving in the LDT nucleus from the midbrain reticular formation, the
periaqueductal gray, the medial preoptic nucleus, the anterior hypothalamic nucleus, the
perifornical and lateral hypothalamic areas, the premammillary nucleus, paraventricular
hypothalamic nucleus, zona incerta, and the lateral habenular nucleus*®’°. The PPT nucleus
receives afferent inputs from the wide range of regions, reviewed more in depth by Martinez-
Gonzalez in 201177, but most notably including afferent connections from the cortex®®7273, various
locations in the basal ganglia® 48!, the locus coereleus®?, and the dorsal raphe®.

The MS receives noradrenergic inputs from the locus coeruleus*®® and serotonergic
inputs from the raphe nuclei®®, as well as additional inputs from several other brainstem nuclei®.
Afferent projections to the DB have not been well characterized, partly due to its poorly defined
margins. Some studies have shown afferent connections arriving from the supermammillary

nucleus® and reciprocal connections with the CA2 subfield of the hippocampus®®.
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Outputs

The nucleus basalis is an important source of ACh to the cerebral cortex*351:52.56.57  wjith
efferent cholinergic projections that terminate on both pyramidal and GABAergic cells®. The
nucleus basalis also supplies several thalamic nuclei with ACh, including the intralaminar nuclei,
medial dorsal nucleus, and reticular nucleus**#”. Additional cells arise from the nucleus basalis
that terminate throughout the amygdala, though most of these projections are GABAergic, with a
minority being cholinergic?®8°

The cholinergic nuclei in the midbrain, the PPT and LDT, have primary outputs that project
to the nucleus accumbens, hypothalamus, raphe, and pontine and medullary reticular formations.
They also project to the nucleus basalis, all thalamic nuclei, the amygdala, and the primary visual
cortex*®%_ The PPT, specifically, has long been thought to act as an interface between the basal
ganglia and motor systems, though more recent work highlights the role of the varied neuronal
subtypes and projections to play a central role in updating behavioral states®. The LDT appears

to play a significant role in activating the mesolimbic reward system®.

Noradrenergic System
Sources

Noradrenergic projection to the forebrain is exclusively provided by a single source: the
locus coeruleus (LC), which is a small, bilateral nucleus located in the pons®’. A complete review
of the LC was provided by Poe et al in 2020%, but a brief description will be provided here.
Traditional investigations of the LC presumed it to be a broadly acting, primarily homogenous
source of NE with broad implications®*°49%1%° but more recent research has shown that the LC is
composed of many distinct modules with highly specific functional roles throughout the brain®.
There are two major, complementary theories on how a diffusely projecting single source of
norepinephrine can achieve such disparate functional results. The first is that the function of NE

release relies on regional differences in postsynaptic receptor distribution and resulting
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differences in spatiotemporal NE reuptake'®'%. The second is a corollary to the function of the
noradrenergic system in the periphery, in which the sympathetic nervous system has discrete
efferent limbs that are organ specific but capable of acting in a unified manner'%41%, In this theory,
the LC provides localized neuromodulation to well-defined target regions and spiking is
synchronized in highly specific subsets of LC neurons. For a more complete review see Totah et

al, 2019'%.

Inputs

An important step in understanding the regional and modular functionality of the LC was
achieved through an in-depth characterization of the afferent and efferent projections to and from
the LC. The LC itself consists of a small, dense core, where cell bodies are found, and a peri-LC
shell in which LC dendrites reside'?-'%, There are prominent afferent inputs to the LC core
originating from the paragigantocellularis nucleus and the prepositus hypoglossi nuclei, both
structures in the rostral medulla'®. There are also additional inputs from the insular cortex, central
nucleus of the amygdala, preoptic area, and the lateral and paraventricular hypothalamic
areas'%111.112 Cerebellar Purkinje cells and neurons from deep cerebellar nuclei also provide
synaptic inputs onto the core of the LC'%.

Although the projections of sensory afferents from the mesencephalic trigeminal sensory
nucleus (Me5)'"*'* and the nucleus of tractus solitarius (NTS)''® to the LC exert influences on
cognitive functions'®, an important regulatory component on the core noradrenergic neurons in
the LC include the peri-LC afferent innervations. Noradrenergic LC neurons possess long
dendrites that pass through the surrounding small nuclei-like regions around the LC, which
receive separate inputs from a variety of brain regions, including the prefrontal and infralimbic
cortex, the amygdala, and the dorsal raphe nucleus''”. There are additionally cholinergic,
serotonergic, and adrenergic inputs to the peri-LC area, representing potential points of indirect
regulation from other neuromodulatory systems®-12, The peri-LC zone also gives rise to a number

of GABAergic inputs into the LC''8.119,
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Outputs

The efferent projections from the LC are widespread but nonuniform to the neocortex in
both rodents'®? and primates'?®'2!, Collateral axons from the LC are distributed in a coordinated
fashion to target circuits with a specific function®108.122-126 The efferent projections from the LC
travel throughout the brain, providing NE input to the cortex, insula, hippocampus, thalamus,
amygdala, and cerebellum. A full review of this system was provided by Schwarz and Luo in
20152'. Though the projections are widespread, the selective activation of specifically patterned
noradrenergic neurons is poorly understood and likely involves a complex interplay between
inputs into the LC and interacting systems?'. Nevertheless, it has been shown that genetically
distinct groups of noradrenergic neurons projects to regionally and functionally specific circuits'?”.
Understanding the anatomically distinct efferent circuits underlying specific functional
consequences is an ongoing area of research that will likely improve our understanding of the
role of the LC in the context of localized function.

An important aspect of neuromodulation, the LC also directly projects to serotonergic,
cholinergic, and dopaminergic nuclei, providing a centralized locus of control over, or feedback

with, other neuromodulators®3128,

Direct Communication between the Cholinergic and Noradrenergic Systems

Direct interactions between the cholinergic and noradrenergic systems are complex and
likely highly dependent on regional context. Some example experiments have shed an early
understanding of some of these direct actions. Post-synaptic NE release inhibits approximately
90% of rat brainstem cholinergic neurons through direct activation of inwardly rectifying K*
currents, most likely through the o, adrenoreceptor'?. In striatal cholinergic neurons, NE mediates
depolarization, through B+ adrenoreceptor activation'®. It is also interesting to note, that the LC

has unidirectional input into the basal forebrain, where a mix of a; and 31 adrenoceptors are found
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on cholinergic neurons™"32, In the same region however, GABAergic cells express az, the
activation of which suppresses neural activity. Overall, the net effect of LC modulation on the
basal forebrain is enhancement of ACh release in the cortex?"133134 though more sophisticated
studies should be performed to determine the binding preference and net effect with varying levels
of NE input'.

Conversely, ACh acting on noradrenergic neurons is mediated primarily through as
nicotinic receptors, leading to depolarization and NE release and activation of the hypothalamic-
pituitary-adrenal axis'®. In the hippocampus, nicotinic receptors are also responsible for releasing
NE from LC neuron terminals, likely through the NO/cGMP pathway'3¢'3”. Beyond evidence for
local modulation of noradrenergic neurons by ACh'38'%  cholinergic receptors, presumed to be
muscarinic, on LC neurons can act to centrally modulate LC firing. ACh induces increased firing
rates, though the cholinergic source is not well understood.

These direct forms of interactive modulation demonstrate that even in the simplest
scenarios in which cholinergic or noradrenergic activity occurs, the other system is being
engaged. Whether or not this results in a synergistic or antagonistic effect likely depends on the
extent to which each system is activated, the distribution of receptors in targeted regions, and the

relative concentrations of each.

Indirect Communication of Cholinergic and Noradrenergic Systems

Cholinergic and noradrenergic projections to the prefrontal cortex are important for a
variety of cognitive and executive functions. As such, neuromodulatory connections to distinct
areas in the cortex such as the anterior cingulate cortex, medial prefrontal cortex, and orbitofrontal
cortex control important aspects of an animal’s behavior''3, An important study by Chandler et
al in 2014, showed that, while both cholinergic and noradrenergic neurons projected to the cortex
from their respective nuclei, their pattern of distribution varied across subregions in the prefrontal

cortex'**. Cholinergic neurons appeared to occur throughout all regions in a relatively equal
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distribution, while noradrenergic neurons projected to much more defined locations, which did not
overlap with other monoaminergic projections',

Much of what is currently known about cholinergic and noradrenergic interaction has been
researched in the context of various functional outcomes or neurological disease models. In a
sheep model of chronic pain concentrations of ACh and NE in the cerebral spinal fluid were
measured, and found to only be correlated to one another in those animals with pain'. In
Alzheimer’s disease (AD), the close interplay between ACh and NE is being increasingly
investigated under a theory that AD is a broad neuromodulatory disorder as opposed to a
dysfunction of primarily the cholinergic system3*'4¢_|ocomotor activity, a process often disrupted
in a wide array of neurological disorders, has also been shown to be mediated through cholinergic
interaction with the noradrenergic system'#. In attentional disorders, there is evidence indicating
deficits in norepinephrine-mediated control of the cholinergic system in the parietal cortex'.

An extremely important, though substantially under-researched mode by which indirect
interactions between these neuromodulatory systems occur is in their differential effect in glial
cells such as astrocytes. Specifically, it has been shown that each neuromodulator has a specific
effect on astrocyte potassium clearance, thereby regulating the extracellular potassium
concentration and influencing local synaptic transmission™?.

There are also examples in literature of the indirect engagement of the noradrenergic
system that is likely mediated by a7 nicotinic receptors on GABAergic neurons and a resulting
disinhibitory effect'’. Supporting this is direct measurement of increased ACh and NE in the rat
cortex after administration of a nicotinic agonist'®'. It is important to note here though, that a simple
increase and decrease in neurotransmitter level is not enough to discern the role of that change
in a functional capacity. A more thorough understanding of the location, receptors, and other

systems involved is needed to unravel functional consequences.
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Role of Acetylcholine in the Brain
Major Cholinergic Receptor Subtypes and Function

The cholinergic system exerts its action by binding to two distinct receptor classes:
nicotinic and muscarinic. Nicotinic acetylcholine receptors (nNnAChRs) are composed of five
subunits arranged around a central core, forming a transmembrane channel that conducts Na*,
K*, and Ca?* when bound to ACh, leading to a local membrane depolarization'?. The assembled
receptor is constructed using two primary families of a and B subunits'®?. The standard neuronal
configuration includes combinations of a2 through a6 and B2 through B4 proteins'®>'%4. There are
additional homomeric configurations composed of a7 through a9 subunits'®. The central nervous
system appears to be predominately composed of a432 or a7 nAChRs, of which the former has
a higher affinity for ACh'®. In the adult rat brain, there is little anatomical overlap between the
heteromeric and homomeric nAChR types, indicating two distinct modes of ACh activity within
distinct anatomical regions'®”. Overall, nAChRs are distributed widely, but sparsely, throughout
the hippocampus and cortex at both pre- and postsynaptic locations'? and expressed on
interneurons, pyramidal cells, and stellate cells'®'¢'. A series of previous experiments have
shown that layers |, lll, and V in the human cortex exhibit the highest binding of ACh. This was
slightly different in the primary somatosensory cortex, where binding in layer Il was highest, and
in the primary motor cortex, where layers Ill and V were the highest'®2. The a7 receptors are
expressed broadly across almost all glutaminergic and GABAergic neurons, though regional
differences have been noted. The presence of a presynaptic NAChR almost universally results in
an increased neurotransmitter release, across multiple types of neurotransmitters %2163,

Muscarinic receptors (MAChR) are expressed throughout all layers of the cortex though
layers Il and V exhibit the highest concentration'®. There are a total of five known muscarinic
receptors types, M1 to Ms. In general, My receptors are most abundant in the neocortex,
hippocampus, and striatum™®; M, receptors are located throughout the entire brain'®; M;

receptors only have a low level of expression throughout the brain'4; M4 receptors are localized
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in the striatum®”; and Ms receptors are also widely distributed across the brain''®, These receptors
have a seven transmembrane region that is highly conserved in G-protein coupled receptors
(GPCRs) and activate multiple intracellular signaling pathways, including phospholipase C (by
Mi, Ms, Ms), inhibition of adenylyl cyclase (by M2 and M), and regulation of several ion
channels™®1%9, MAChRs also activate mitogen-activated protein kinases (MAPKs), which

regulates cell survival, differentiation, and synaptic plasticity %172,

Cholinergic Involvement in Learning and Decision Making

The cholinergic system plays an important role in higher cognitive functions, specifically
in decision making and the learning process. Neuromodulation by acetylcholine is generally
orchestrated through the differential activation of the nicotinic and muscarinic receptors. The
nicotinic receptor, for example, has been shown to be easily desensitized and up-regulated
through the presence of nicotine, inducing long term alterations in the decision-making process'”>.
Nicotine has also been implicated in increasing impulsivity and disinhibition in decision making'"4.
Studies have also shown how nAChRs seem to be important in adapting appropriate choices to
a specific outcome'’%. Specifically, the NnAChR a7 receptor has been implicated in slowing learning
rates in mice during knockout experiments*, as well as cognitive improvement during enhanced
activation'’8,

Both nAChRs and MAChRs have been identified to contribute to risk and uncertainty'”’,
with several studies showing that a complex interaction between these two receptors contributes
to cholinergic interneuron patterned activity'’®'7°. This interaction seems to have a larger
implication for network dynamics across different brain regions. Specifically, studies where
MAChRs or nAChRs were activated or blocked demonstrated changes in neural synchrony
across multiple EEG bands, invoking the emergence of theta-gamma coupling in the cortex and
exhibiting a correlation to increased learning performance in item-context association

behaviors80.181,
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Acetylcholine on a global level in the brain has been found to be relevant in almost every
decision-making paradigm. Lesioning studies of the basal forebrain have shown disruptions in
reversal learning in marmosets'®, as well as being implicated in memory storage'®'84. The role
of ACh in memory has been shown to act as a modulator of update speed and as a controller of
metalearning'®. Here ACh modulates different neural systems throughout learning, regulating the
appropriate amount of ACh in specific brain regions to appropriately and effectively learn and

formulate memories'®.

Cholinergic Involvement in Attention

Cholinergic release primarily mediates attentional processing in the brain''®. In a 5-
choice serial reaction time task (5-CSRTT), the nicotinic facilitation of attention was found to exist
and the magnitude of this facilitation was dependent on the level of attentional engagement'®. In
addition, by using the 5-CSRT, Robbins and colleagues demonstrated that nicotinic 2 subunits
in the prelimbic cortex are crucial for mice to successfully detect the cue'. In an operant
sustained attention task (SAT), both the detection of signals and the attentional performance were
enhanced by the a4B2 nAChR agonist-evoked ACh increases in the mPFC'™, In a knockout
study, it was shown that task performance which relies on highly attentive control was impaired
in a group of mice lacking the B2 subunit in the mPFC, in comparison with their wild-type
littermates™’'. Similarly, genetic deletion of this special subtype of nAChRs also results in
compromised performance in an auditory discrimination paradigm', suggesting its critical role in
selective auditory attention.

In addition, there is evidence implicating that the muscarinic system plays a role in
directing attentional selection mechanisms'%2'%4, Specifically, muscarinic receptors are believed
to primarily modulate higher-level visual stimulus processing'®*. Attending to the receptive field of
certain V1 neurons evokes an increase in these neurons’ firing rates and scopolamine, a

muscarinic antagonist, reduces this attentional modulation'. Interestingly, nicotinic antagonist



353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

does not exert systematic effect'®. Yet another aspect which can also be associated with
attentional control is adaptive behavioral control'®. Various genotypes of M2 modulate the high-
level inhibitory control processes that require the processing of prior information and suppression

of irrelevant information 6.

Role of Norepinephrine in the Brain
Major Noradrenergic Receptor Subtypes

The noradrenergic system exerts influence over brain function through three receptor
classes: a4, a2, and 3 receptors. Each of these receptors has control over specific processes of
neurotransmission and sympathetic nervous system regulation. a1 receptors are members of the
adrenoreceptor family, a subset of G-protein coupled receptors'’. They have been further
classified into three distinct subtypes: asa, ais, and aip. Each subreceptor has demonstrated
unique quantitative differences in effect'®”. Several experiments have explored the different
concentrations of these subtypes throughout the brain. Specifically, it has been shown that ais
was more prominent in the thalamus, lateral amygdaloid nuclei, and cortical laminar areas, while
aia was higher in the entorhinal cortex, amygdala, and general cerebral cortex areas's®.
Furthermore, transgenic mouse experiments have allowed for specific receptors to be knocked
out, uncovering that both aia and asg has similar expression throughout the central nervous
system, just with different abunadnces'®. Around 55% of the brain was shown to express aia,
35% ass, and less than 10% a1p?°%2°2, The function of a4 receptors is implicated in a variety of
cognitive processes and synaptic efficacies. Beginning with synaptic involvement, as receptors
have been shown to increase the firing frequency of pyramidal and somatosensory neurons of
the visual cortex through the protein kinase C signaling (PKC) pathway?%*2%4, They have also
been implicated in the enhancement of glutamate and acetylcholine release as well as neuronal
excitation via PKC pathways, calcium pathways, and excitatory synapses?°5-2%°, a4 has also been

shown to affect non-neuronal function as well, with modulation of synaptic transmission through
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astrocytes and glial cells?'%2'2, |n regards to cognitive functions, a1 receptors have been shown
to be implicated in memory, motor and motivational behavior, memory retention, and storage, but
most of these are associated with general norepinephrine release in the brain?'3.

o2 receptors are also a type of G-protein coupled adrenoreceptor, classified into three
subtypes: a2a, 028, and azc. Specifically az receptors have been implicated in orchestrating the
presynaptic inhibition of norepinephrine in the central and peripheral nervous system?'42'®_ This
inhibition is critical for regulation of normal involuntary processes including physiological functions
of the heart, vision, and gastrointestinal systems. Using pharmacological agents such as prazosin
or oxymetazoline, aza and azs receptors have been shown to have significant control over
sympathetic outflow and blood pressure?'®. Several other studies have shown aza receptor
agonists enhance both serotonin and norepinephrine release?'®. Interestingly, the abundance of
a. receptor subtypes is much more localized than a4. While literature here is limited, studies have
shown that ags receptors are found almost exclusively in the thalamus; axc in the olfactory bulb,
cerebral cortex, hippocampal formation, and dorsal root ganglia?’.

The final type of noradrenergic receptors, classified as [3, are also a G-protein coupled
receptor, divided into three subtypes: B+, B2, Bs%'®. There have been studies linking B receptors
to synaptic plasticity, with norepinephrine acting on 8 receptors to dictate synaptic strength in
hippocampal neurons, as well as NE released from the locus coeruleus enhancing LTD-related

memory processing?'é.

Noradrenergic Involvement in Learning and Decision Making

The noradrenergic system has been implicated in a variety of decision-making paradigms
as well as throughout the learning process. Studies using optogenetics, pharmacological agents,
and lesioning have brought to light the effect norepinephrine has on cognition and higher-order
thought processes. One theory regarding the role of NE in decision making involves the idea of

network reset, acting as an “internal interrupt” signal®'®22°, Here it is explained that the phasic
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activation of locus coeruleus noradrenergic neurons, causes an increase of NE throughout the
cortex, invoking cognitive shifts and potential reorganization of neural networks??'. This shifted
brain state is hypothesized to be better equipped for rapid behavioral adaptation and enhanced
decision making??'. Other theories point out how stimulus-induced firing patterns of the LC are
closely attuned to behavioral performance, hypothesized from LC primate recordings in visual
discrimination tasks??2. Similar phasic activation in primates has shown how the LC can respond
to specific task-related decisions, modulating NE release and adapting future task-relevant
decisions'®, as well as showcasing coordinated activity patterns in cortical networks derived from
ascending NE projections??. Studies invoking NE release through an agonist have shown
enhancement in sensory stimulation, allowing more rapid synaptic plasticity and faster behavioral
responses®?,

Several pharmacological experiments have investigated the specific role azreceptors play
in the decision-making process. Studies using NE antagonists have shown aza receptor knockout
leading to more risk-on behavior, with rats exhibiting greedier decisions??®. a,a agonists have been
proven to enhance the efficiency of working memory and reduce impulsivity in primates??®. This
increased receptor uptake in the prefrontal cortex seems to be part of the shifted network brain
state described earlier. The agonist guanfacine, another aza agent, was also shown to improve

visual object discrimination performance during a reversal learning paradigm in primates??’.

Noradrenergic Involvement in Attention

Noradrenergic modulation of attention has been studied for several decades??-23°, Studies
have established the theory that the LC-NE system regulates the efficacy of information
processing during neuronal coding of detected cues?%23'232, During behavioral tasks, selective
attention enhances neuronal responsiveness to sensory cues?32%, The firing rates of LC neurons
is correlated with attentive behavior in an odd-ball task?®, in which either high or low tonic firing

rates corresponds to inattentive states, and medium firing rates associates with animals’ best
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performance. In a novel environment where more adaptive behaviors are required, changes in
electrotonic coupling among LC neurons regulates the goal-directed exploration and preserves
attentional selectivity?®. In addition, some studies have investigated the effects of NE agonists. It
is shown that in a cued target detection task (CTD), the application of a, receptor agonists
clonidine or guanfacine significantly impaired alerting behavior and the effect was dose-
dependent?®8, while the effect was blocked by the a. antagonists idazoxan or yohimbine.

Most recent studies also show an association between the NE system and impulsivity
control?¥”-23°_ |t was observed from the superior frontal theta band activity that the NE system
dynamically gains and loses relevance to regulate inhibitory control under different responding
modes?*. This work has led to the use of the NE-specific reuptake inhibitor atomoxetine as a
treatment of pediatric attention-deficit’/hyperactivity disorder (ADHD)?’. Furthermore, it is
demonstrated that ADHD patients have a higher positron emission tomography (PET)-measured
NET availability in comparison to healthy individuals, suggesting that there are underlying genetic

and epigenetic mechanisms.

Functional Interplay between the Cholinergic and Noradrenergic Systems
ACh and NE in Attention

It has been widely acknowledged that both cholinergic and noradrenergic systems show
graded and transient increases in their response to increased attention to environmental cues?4*-
243 Noradrenergic axon activity starts ~1 s prior to the peak of pupil dilation while cholinergic axion
activity lags ~0.5 s behind the peak, suggesting pupil-linked alertness, attention and mental effort
are controlled differentially by the two neuromodulatory transmitter systems?*. Studies have
shown that basal forebrain (BF) and brainstem cholinergic systems interact differently with LC-
NE system related to attention*?24°. It was demonstrated that sustained attentional performance
necessarily requires the integrity of BF cholinergic projections but not their noradrenergic

afferents?*¢24’. However, for thalamocortical information processing, ACh activation produces a
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noisy broadband signal detection mode, while NE activation sets to a noise-free high-frequency
signal detection mode, which seems to be more optimized for selective attention than brainstem
cholinergic activation?#°.

Generally, cortical ACh-NE interaction plays a significant role in the modulation of
attention?8-250, Using fluorescent retrograde tracers in ACC, mPFC and OFC, it was uncovered
that subsets of LC neurons might be responsible for modulating individual prefrontal subregions
independently, yet subsets of NB neurons might produce universal influence in prefrontal
subregions?*®, providing insights respecting prefrontal cortex’s role of allocating attentional
reserves. In a attentional set shifting task, McGaughy and colleagues pointed out that the specific
impairments in animals’ ability to shift attentional set were produced by noradrenergic instead of
cholinergic deafferentation in prefrontal cortex?*°. Indeed, the cortical cholinergic system is very
likely to be involved in aspects of established attentional performance while NE system is more
competent in detecting shifts in the predictive relationship between action and reinforcement?4°,

Future studies are highly encouraged to explore the ACh-NE interaction in the contexts of
their complementary roles regarding attention modulation. Systematic characterization and
manipulation of the cholinergic and NE projections at biochemical, genetic, pharmacological and
physiological levels would largely facilitate our understanding of the interaction between the two
systems and inform the development of potential therapeutics for certain neurodegenerative and

psychiatric diseases.

ACh and NE in Learning and Decision Making

The interplay between the noradrenergic and cholinergic systems in the decision making and
learning processes is highly complex. Each neuromodulatory system plays a pivotal role in
creating these complex cognitive brain states, integrating sensory information with positive and
negative feedback loops through multiple brain regions. For example, the visual system of a

macaque primate has integration and circuitry across all neuromodulators, inhibiting and exciting
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different neurons, changing gene expression, and modulating synaptic circuirty?®'. Due to the
complexity of decision making, the unpredictability of environments, and the uncertainty of risk-
taking during exploration, the relationship between neuromodulators is not yet well understood?®2.
Even with this challenge, there have been studies which attempted to look at isolated NE and
ACh interaction in specific decision-making tasks. In isolated behaviors, specific neuromodulators
can be seen regulating specific sub-tasks. In metalearning, NE can be seen contributing to the
randomness of action selection, while ACh seems to solely dictate the speed of specific memory
updates'®. Both neuromodulators also have been implicated in the information transmission
during different behaviors'®2%3, Theoretical modeling has been used to further understand the role
both NE and ACh play in uncertainty, behaving both synergistically and antagonistically, enabling
complex learning in challenging adaptive environments?®* Understanding how both of these
neuromodulators interact with one another in a variety of decision making and learning paradigms
will be critical for developing translational treatments for neurological conditions that involve these

neurotransmitters.

Future Directions

The functional consequences of overlapping and interacting neuromodulatory systems are
as numerous as they are behaviorally important. An understanding has been slowly emerging
over at least two decades that a diversity of functionally distinct circuits and heterogeneously
distributed receptor subpopulations between neuromodulatory systems gives rise to many of the
most interesting aspects of neural processing and adaptive behavioral outcomes. The differential
influence of each neuromodulator on a specific circuit of interest is highly complex though and
requires a very careful experimental framework in order to begin unraveling a more complete
understanding of the influence of ACh and NE on specific behaviors. As has been demonstrated
by the work covered in this review, overlapping, segmented receptive fields, non-uniform receptor

distributions and the wide-range of actions of ACh and NE, in a spatially and temporally dependent
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manner, make broad conclusions about each system difficult to generalize. It is critical for future
work to use a modern arsenal of tools to dissect the role of these two systems in isolated circuits
that have important behavioral relevance.

Given the highly region-dependent action of these neuromodulatory systems, future work
may begin with the identification and isolation of a specific target. An example of such an isolation
would be to examine the role of the regions comprising the mPFC in decision making'752%5-2%8 |n
order to understand the possible functional role of ACh and NE in modulating these regions,
experiments should be devised to further characterize noradrenergic and cholinergic inputs to the
mPFC. Initial experiments should also provide a basic characterization of the density and
distribution of cholinergic and noradrenergic receptors in the target region using either traditional
receptor expression profiling tools or the integration of new tools such as spatial single cell
sequencing. Once the neuromodulatory input into the region of interest has been quantified and
the range of receptors expressed summarized, an experimental framework can be established to
systematically isolate one variable at a time.

Under this framework, a functionally important region of cortex can be isolated with respect
to its neuromodulatory input and the relevant molecular targets identified. At this point systematic
exploration of the release of NE and ACh in a representative behavioral task will provide the
foundation for understanding the differential presence of each system in the specified brain region
during normal behavior. More sophisticated single-unit electrophysiology or calcium imaging
experiments that explore the change in network dynamics in response to neuromodulator release
can be paired with selective cholinergic and noradrenergic activation or silencing to observe the
response not only of the animal and the neuronal connectivity, but also in the response of the
other neurotransmitter system. Systematic knock outs or implementation of inducible/repressible
receptor expression in the specified region will also provide insights into how functional modules

in the cortex are regulated by multiple neuromodulators.
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The result of conducting many of these experiments in parallel will be an improved
understanding of how broadly acting neuromodulator networks contribute to subdivided, and not
necessarily unified, responses throughout the brain. Understanding the influence of ACh and NE
on specific modules, and the afferent source of these neuromodulators, will provide improved
targets for functional neural stimulation and greater degrees of freedom for higher bandwidth

communication and dynamic network control through neural interfaces 2%°.

Conclusion

Cholinergic and noradrenergic modulation of functionally distinct regions of the brain has
become one of the primary organizational principles behind understanding the contribution of
each system to the diversity of neural computation in the central nervous system. Decades of
work has shown that a diverse family of receptors, which stratify across different brain regions,
and afferent and efferent projections that can be selectively activated, are critical in helping
widespread neuromodulatory systems obtain substantial heterogeneity in the sophistication of
their role in neural processes. The end result of such a complicated interplay between two diffuse
modulatory systems is a dynamic and highly context dependent role for brain regions important
in learning, memory, attention, and decision making. To further improve our understanding of
these systems, it is essential to adopt approaches that are built on previous work to identify the
interplay, at the receptor, circuit, and functional levels, between these systems in an isolated
circuit that can be tied to a behaviorally functional outcome. The results will allow greater

understanding and control over wide-ranging behaviors.
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