

The neuromodulatory role of the noradrenergic and cholinergic systems and their interplay in cognitive functions: a focused review

Cody Slater^{1,2}, Yuxiang Liu¹, Evan Weiss¹, Kunpeng Yu¹, and Qi Wang¹

¹ Department of Biomedical Engineering, Columbia University

² Vagelos College of Physicians and Surgeons, Columbia University

Correspondence should be addressed to:

Professor Qi Wang
Department of Biomedical Engineering
Columbia University
ET 351, 500 W. 120th Street, New York, NY 10027
Phone: 212.854.3657
Email: qi.wang@columbia.edu

Keywords: Locus coeruleus, the noradrenergic system, the cholinergic system, neuromodulation, norepinephrine, acetylcholine

1 **Abstract**

2 Noradrenergic and cholinergic modulation of functionally distinct regions of the brain has
3 become one of the primary organizational principles behind understanding the contribution of
4 each system to the diversity of neural computation in the central nervous system. Decades of
5 work has shown that a diverse family of receptors stratified across different brain regions and
6 circuit-specific afferent and efferent projections play a critical role in helping such widespread
7 neuromodulatory systems obtain substantial heterogeneity in their role in neural information
8 processing. This review briefly discusses the anatomical layout of both the noradrenergic and
9 cholinergic systems, as well as the types and distributions of relevant receptors for each system.
10 Previous work characterizing direct and indirect interaction between these two systems is
11 discussed, especially in the context of high order cognitive functions such as attention, learning,
12 and the decision making process. Though a substantial amount of work has been done to
13 characterize the role of each neuromodulator, a cohesive understanding of the region-specific
14 cooperation of these two systems is not yet fully realized. For the field to progress, new
15 experiments will need to be conducted that capitalize on the modular subdivisions of the brain
16 and systematically explore the role of norepinephrine and acetylcholine in each of these subunits
17 and across the full range of receptors expressed in different cell types in these regions.

18 **Introduction**

19 The central nervous system performs an incredibly large number of continuous
20 computations, the result of which is to efficiently process the external world and execute a relevant
21 response. In the human brain, an estimated 10^{11} neurons make approximately 1000 average
22 connections to other neurons, forming up to 10^{14} distinct sites for information transmission. That
23 is likely an order of magnitude higher than the total number of cells in the entire human body¹.
24 Even this staggering number of physical connections understates the complexity of information
25 handling in the brain. Beyond simple neuron-to-neuron connections, multiple subtypes of glial
26 cells are also known to play a role in synaptic transmission^{2,3}. This ever-shifting structural
27 background, across which the flow of information proceeds throughout an individual's life, is then
28 capable of giving rise to a diverse array of orchestral melodies through the 100+ endogenous
29 substances that play a role in modulating synaptic transmission⁴. Some of these substances,
30 known as neurotransmitters, can act over varying physical distances through their interaction with
31 a much larger number of receptors.

32 Since the discovery of the first neurotransmitter, acetylcholine, in 1926 by Otto Loewi,
33 there has been an explosion in the identification and understanding of chemical
34 neurotransmission. Conceptually simplified, information transfer occurs in two modes: electrical
35 propagation within neurons or chemical propagation outside neurons. Neurotransmitters are the
36 chemicals that traverse the physical division between cells connecting the postsynaptic cell with
37 information from the presynaptic cell. This is primarily mediated through an array of specific
38 receptors on the postsynaptic cell. For any given neuron the combination of presynaptic inputs
39 will determine if a message is electrically transcribed and transmitted. If it is transmitted, an action
40 potential will travel down the length of a neuron, resulting in the release of extracellular
41 neurotransmitter onto the dendrites of postsynaptic cells. The substances released are usually
42 tightly regulated and reuptaken or degraded to limit the action of the substance on its target.

43 Generally, neurotransmitters may have excitatory, inhibitory, and neuromodulatory effects
44 on neurons through the action of their receptors. Excitatory receptors, when activated by
45 corresponding neurotransmitters, result in a membrane depolarization and the propagation of an
46 action potential. Glutamate is the neurotransmitter that predominate mediates excitatory effects
47 through its receptor, which is nearly ubiquitously expressed in all types of neurons and many
48 types of glial cells⁵. Inhibitory receptors exert an opposing effect, with the binding of corresponding
49 neurotransmitters resulting in a membrane hyperpolarization that limits the ability of a neuron to
50 initiate an action potential. In the mature brain, γ -aminobutyric acid (GABA) is the primary
51 neurotransmitter that exerts inhibitory effects on neurons through GABAergic receptors⁶. The
52 interplay between these two competing systems has been studied in a variety of contexts⁷⁻⁹ and
53 provides the foundation for how neurotransmission is thought to occur in the brain. The
54 summation of excitatory and inhibitory inputs at every connection point in the brain determines
55 the direction and pattern of information propagation in complex networks of neurons. The third
56 type of neurotransmitters, known as neuromodulators, add an additional, but important,
57 complexity to this paradigm by altering the balance of transmission on a micro-, meso-, or
58 macroscale.

59 There are four primary neuromodulatory systems: acetylcholine, norepinephrine,
60 dopamine, and serotonin. Each of these four molecules play an important function in altering basic
61 synaptic transmission patterns. The groups of neurons responsible for delivery of these four
62 neuromodulators are known as ascending neuromodulatory systems due to the fact each of these
63 neurotransmitters originates in the brainstem, midbrain, or basal forebrain and projects to various
64 brain structures. While early work characterized these ascending modulatory systems as highly
65 collateralized and largely exerting their influence through global regulation of neural activity^{10,11},
66 more recent work has emphasized the subdivision of these systems into cortical-region-specific
67 sub-systems that can differentially influence information processing^{12,13}. Subsequently there has
68 been a shift away from viewing neuromodulatory systems as mere “state-setting” or “gating”

69 systems towards a framework in which there is also an understanding that a subset of highly
70 specific neuromodulatory projections to the forebrain, especially the cortex, are necessary for
71 specific cognitive functions¹⁴.

72 This review will focus specifically on the role of two of these neuromodulatory systems,
73 the noradrenergic and cholinergic systems, in modulating cognitive functions. Acetylcholine (ACh)
74 is an important neuromodulator long implicated in learning, memory, and synaptic plasticity^{15,16}.
75 More recent work, however, has also highlighted the role of ACh in attentional effort, orienting,
76 and detection of behaviorally significant stimuli^{17,18}. Norepinephrine (NE) has classically been
77 viewed as a major mediator of arousal that plays an important role in regulating the efficiency of
78 external sensory processing¹⁹⁻²⁵. Recent work expanding on this has revealed a varied and
79 complex role for the noradrenergic system in everything from memory formation²⁶, to executive
80 function and attention^{27,28}, to cognitive flexibility^{29,30}, to decision making³¹⁻³³. Dysfunction in either
81 of these two neuromodulatory systems or in the coordinated interaction between them is heavily
82 implicated in numerous neurodegenerative and neuropsychiatric diseases³⁴⁻⁴¹.

83 Understanding the complex and dynamic roles of neuromodulation on sophisticated
84 behavioral outcomes requires not only understanding the full range of impact of each
85 neuromodulator and its various anatomically distinct subdivisions, but also an understanding of
86 the interplay between multiple neuromodulatory systems. These interactions could occur at the
87 functional level seen in an organism's behavior, the anatomic level through connectomic
88 communication, the cellular level through intertwined signaling pathways, or even at the synaptic
89 level when important brain regions experience the release of multiple neurotransmitters. A more
90 complete understanding of the role that neuromodulation plays in brain functions will require a
91 better understanding of when and how two systems, such as the cholinergic and noradrenergic
92 systems, collectively work together. The implications will be critical for better understanding and
93 predicting normal brain function and for providing novel treatment strategies for aberrant brain
94 function.

95

96 **Anatomical Overview**

97 *Cholinergic System*

98 Sources

99 The cholinergic system is primarily comprised of groups of cells in the basal forebrain and
100 midbrain that send diffuse but sparse projections to the rest of the brain⁴²⁻⁵². Only the striatum
101 differs with a local supply of cholinergic neurons for local transmission⁵³. In primates, the
102 cholinergic input to the cerebral cortex originates almost entirely from the nucleus basalis of
103 Meynert (NBM), located in the basal forebrain⁵⁴. These neurons are large with extensive dendritic
104 trees, and a single neuron can innervate multiple brain regions, though there is minimal overlap
105 in the axonal fields^{50,55}. While cholinergic projections are widespread throughout the cortex,
106 multiple studies have shown that there is a distinct pattern of segmented innervation depending
107 on which nuclei in the basal forebrain the cholinergic neuron originates from^{17,51,56-58}.

108 A second major cholinergic source is found in the continuous array of multipolar neurons
109 in the medial septum (MS)⁴⁶ and diagonal band of Broca (DB)^{59,60}. A whole-brain atlas of
110 projections from these regions in the mouse has found that cholinergic neurons were distributed
111 in an uneven pattern between different brain regions, with neuronal density varying more than 10-
112 fold across various structures⁵⁰. Additionally, soma volume of cholinergic neurons varied by up to
113 8-fold across the examined regions⁵⁰. Taken together, this work has demonstrated the existence
114 of region-specific subtypes of cholinergic neurons that perform varying functions, though unlike in
115 the nucleus basalis, there does not seem to be a specific relationship between soma location in
116 the nuclei and the location of projections⁵⁰.

117

118 Inputs

119 Cholinergic neurons in the nucleus basalis (NB) receives dopaminergic input from the
120 ventral tegmental area and substantia nigra, serotonergic input from the raphe nuclei, and

121 noradrenergic input from the locus coeruleus^{47,61}. The main cholinergic afferents to the nucleus
122 basalis arrive from the midbrain pedunculopontine (PPT), the lateral dorsal tegmental (LDT)
123 nuclei, and the limbic cortex⁶²⁻⁶⁴. There is also GABAergic input in the form of symmetric
124 synapses, which could represent local inhibitory neurons or projections from other brain regions⁶⁵⁻
125 ⁶⁷. It has been shown in multiple studies that the cholinergic neurons originating in NB and
126 projecting to the cortex are regulated through GABAergic receptors^{47,61,65-67}. There is also
127 extensive bidirectional communication between the nucleus basalis and the prefrontal cortex, and
128 in the mouse the rostral-caudal distribution of cholinergic cells in the basal forebrain is associated
129 with projection to the superficial-deep layers of the ventral medial prefrontal cortex, respectively⁴⁹.

130 Both the PPT and LDT nuclei receive afferent projections from a widespread number of
131 common structures, most predominately the reticular formation in the brainstem, the midbrain
132 central gray region, and the lateral hypothalamus-zona incerta region^{68,69}. Retrograde tracing
133 studies have shown inputs arriving in the LDT nucleus from the midbrain reticular formation, the
134 periaqueductal gray, the medial preoptic nucleus, the anterior hypothalamic nucleus, the
135 perifornical and lateral hypothalamic areas, the premammillary nucleus, paraventricular
136 hypothalamic nucleus, zona incerta, and the lateral habenular nucleus^{46,70}. The PPT nucleus
137 receives afferent inputs from the wide range of regions, reviewed more in depth by Martinez-
138 Gonzalez in 2011⁷¹, but most notably including afferent connections from the cortex^{69,72,73}, various
139 locations in the basal ganglia^{69,74-81}, the locus coeruleus⁸², and the dorsal raphe⁸³.

140 The MS receives noradrenergic inputs from the locus coeruleus^{45,84} and serotonergic
141 inputs from the raphe nuclei⁸⁵, as well as additional inputs from several other brainstem nuclei⁸⁵.
142 Afferent projections to the DB have not been well characterized, partly due to its poorly defined
143 margins. Some studies have shown afferent connections arriving from the supermammillary
144 nucleus⁸⁶ and reciprocal connections with the CA2 subfield of the hippocampus⁵⁹.

145

146 Outputs

147 The nucleus basalis is an important source of ACh to the cerebral cortex^{43,51,52,56,57}, with
148 efferent cholinergic projections that terminate on both pyramidal and GABAergic cells⁵⁵. The
149 nucleus basalis also supplies several thalamic nuclei with ACh, including the intralaminar nuclei,
150 medial dorsal nucleus, and reticular nucleus^{44,87}. Additional cells arise from the nucleus basalis
151 that terminate throughout the amygdala, though most of these projections are GABAergic, with a
152 minority being cholinergic^{88,89}.

153 The cholinergic nuclei in the midbrain, the PPT and LDT, have primary outputs that project
154 to the nucleus accumbens, hypothalamus, raphe, and pontine and medullary reticular formations.
155 They also project to the nucleus basalis, all thalamic nuclei, the amygdala, and the primary visual
156 cortex^{48,90}. The PPT, specifically, has long been thought to act as an interface between the basal
157 ganglia and motor systems, though more recent work highlights the role of the varied neuronal
158 subtypes and projections to play a central role in updating behavioral states⁹¹. The LDT appears
159 to play a significant role in activating the mesolimbic reward system⁹².

160

161 *Noradrenergic System*

162 Sources

163 Noradrenergic projection to the forebrain is exclusively provided by a single source: the
164 locus coeruleus (LC), which is a small, bilateral nucleus located in the pons⁹³⁻⁹⁷. A complete review
165 of the LC was provided by Poe et al in 2020⁹⁸, but a brief description will be provided here.
166 Traditional investigations of the LC presumed it to be a broadly acting, primarily homogenous
167 source of NE with broad implications^{93,94,99,100}, but more recent research has shown that the LC is
168 composed of many distinct modules with highly specific functional roles throughout the brain⁹⁸.
169 There are two major, complementary theories on how a diffusely projecting single source of
170 norepinephrine can achieve such disparate functional results. The first is that the function of NE
171 release relies on regional differences in postsynaptic receptor distribution and resulting

172 differences in spatiotemporal NE reuptake¹⁰¹⁻¹⁰³. The second is a corollary to the function of the
173 noradrenergic system in the periphery, in which the sympathetic nervous system has discrete
174 efferent limbs that are organ specific but capable of acting in a unified manner^{104,105}. In this theory,
175 the LC provides localized neuromodulation to well-defined target regions and spiking is
176 synchronized in highly specific subsets of LC neurons. For a more complete review see Totah et
177 al, 2019¹⁰⁶.

178 Inputs

179 An important step in understanding the regional and modular functionality of the LC was
180 achieved through an in-depth characterization of the afferent and efferent projections to and from
181 the LC. The LC itself consists of a small, dense core, where cell bodies are found, and a peri-LC
182 shell in which LC dendrites reside¹⁰⁷⁻¹⁰⁹. There are prominent afferent inputs to the LC core
183 originating from the paragigantocellularis nucleus and the prepositus hypoglossi nuclei, both
184 structures in the rostral medulla¹¹⁰. There are also additional inputs from the insular cortex, central
185 nucleus of the amygdala, preoptic area, and the lateral and paraventricular hypothalamic
186 areas^{108,111,112}. Cerebellar Purkinje cells and neurons from deep cerebellar nuclei also provide
187 synaptic inputs onto the core of the LC¹⁰⁸.

188 Although the projections of sensory afferents from the mesencephalic trigeminal sensory
189 nucleus (Me5)^{113,114} and the nucleus of tractus solitarius (NTS)¹¹⁵ to the LC exert influences on
190 cognitive functions¹¹⁶, an important regulatory component on the core noradrenergic neurons in
191 the LC include the peri-LC afferent innervations. Noradrenergic LC neurons possess long
192 dendrites that pass through the surrounding small nuclei-like regions around the LC, which
193 receive separate inputs from a variety of brain regions, including the prefrontal and infralimbic
194 cortex, the amygdala, and the dorsal raphe nucleus¹¹⁷. There are additionally cholinergic,
195 serotonergic, and adrenergic inputs to the peri-LC area, representing potential points of indirect
196 regulation from other neuromodulatory systems^{98,112}. The peri-LC zone also gives rise to a number
197 of GABAergic inputs into the LC^{118,119}.

198

199 Outputs

200 The efferent projections from the LC are widespread but nonuniform to the neocortex in
201 both rodents¹⁰² and primates^{120,121}. Collateral axons from the LC are distributed in a coordinated
202 fashion to target circuits with a specific function^{98,108,122-126}. The efferent projections from the LC
203 travel throughout the brain, providing NE input to the cortex, insula, hippocampus, thalamus,
204 amygdala, and cerebellum. A full review of this system was provided by Schwarz and Luo in
205 2015²¹. Though the projections are widespread, the selective activation of specifically patterned
206 noradrenergic neurons is poorly understood and likely involves a complex interplay between
207 inputs into the LC and interacting systems²¹. Nevertheless, it has been shown that genetically
208 distinct groups of noradrenergic neurons projects to regionally and functionally specific circuits¹²⁷.
209 Understanding the anatomically distinct efferent circuits underlying specific functional
210 consequences is an ongoing area of research that will likely improve our understanding of the
211 role of the LC in the context of localized function.

212 An important aspect of neuromodulation, the LC also directly projects to serotonergic,
213 cholinergic, and dopaminergic nuclei, providing a centralized locus of control over, or feedback
214 with, other neuromodulators^{63,128}.

215

216 *Direct Communication between the Cholinergic and Noradrenergic Systems*

217 Direct interactions between the cholinergic and noradrenergic systems are complex and
218 likely highly dependent on regional context. Some example experiments have shed an early
219 understanding of some of these direct actions. Post-synaptic NE release inhibits approximately
220 90% of rat brainstem cholinergic neurons through direct activation of inwardly rectifying K⁺
221 currents, most likely through the α_2 adrenoreceptor¹²⁹. In striatal cholinergic neurons, NE mediates
222 depolarization, through β_1 adrenoreceptor activation¹³⁰. It is also interesting to note, that the LC
223 has unidirectional input into the basal forebrain, where a mix of α_1 and β_1 adrenoceptors are found

224 on cholinergic neurons^{131,132}. In the same region however, GABAergic cells express α_2 , the
225 activation of which suppresses neural activity. Overall, the net effect of LC modulation on the
226 basal forebrain is enhancement of ACh release in the cortex^{21,133,134}, though more sophisticated
227 studies should be performed to determine the binding preference and net effect with varying levels
228 of NE input¹³⁵.

229 Conversely, ACh acting on noradrenergic neurons is mediated primarily through α_3
230 nicotinic receptors, leading to depolarization and NE release and activation of the hypothalamic-
231 pituitary-adrenal axis¹³⁶. In the hippocampus, nicotinic receptors are also responsible for releasing
232 NE from LC neuron terminals, likely through the NO/cGMP pathway^{136,137}. Beyond evidence for
233 local modulation of noradrenergic neurons by ACh^{138,139}, cholinergic receptors, presumed to be
234 muscarinic, on LC neurons can act to centrally modulate LC firing. ACh induces increased firing
235 rates, though the cholinergic source is not well understood.

236 These direct forms of interactive modulation demonstrate that even in the simplest
237 scenarios in which cholinergic or noradrenergic activity occurs, the other system is being
238 engaged. Whether or not this results in a synergistic or antagonistic effect likely depends on the
239 extent to which each system is activated, the distribution of receptors in targeted regions, and the
240 relative concentrations of each.

241

242 *Indirect Communication of Cholinergic and Noradrenergic Systems*

243 Cholinergic and noradrenergic projections to the prefrontal cortex are important for a
244 variety of cognitive and executive functions. As such, neuromodulatory connections to distinct
245 areas in the cortex such as the anterior cingulate cortex, medial prefrontal cortex, and orbitofrontal
246 cortex control important aspects of an animal's behavior¹⁴⁰⁻¹⁴³. An important study by Chandler et
247 al in 2014, showed that, while both cholinergic and noradrenergic neurons projected to the cortex
248 from their respective nuclei, their pattern of distribution varied across subregions in the prefrontal
249 cortex¹⁴⁴. Cholinergic neurons appeared to occur throughout all regions in a relatively equal

250 distribution, while noradrenergic neurons projected to much more defined locations, which did not
251 overlap with other monoaminergic projections¹⁴⁴.

252 Much of what is currently known about cholinergic and noradrenergic interaction has been
253 researched in the context of various functional outcomes or neurological disease models. In a
254 sheep model of chronic pain concentrations of ACh and NE in the cerebral spinal fluid were
255 measured, and found to only be correlated to one another in those animals with pain¹⁴⁵. In
256 Alzheimer's disease (AD), the close interplay between ACh and NE is being increasingly
257 investigated under a theory that AD is a broad neuromodulatory disorder as opposed to a
258 dysfunction of primarily the cholinergic system^{34,146}. Locomotor activity, a process often disrupted
259 in a wide array of neurological disorders, has also been shown to be mediated through cholinergic
260 interaction with the noradrenergic system¹⁴⁷. In attentional disorders, there is evidence indicating
261 deficits in norepinephrine-mediated control of the cholinergic system in the parietal cortex¹⁴⁸.

262 An extremely important, though substantially under-researched mode by which indirect
263 interactions between these neuromodulatory systems occur is in their differential effect in glial
264 cells such as astrocytes. Specifically, it has been shown that each neuromodulator has a specific
265 effect on astrocyte potassium clearance, thereby regulating the extracellular potassium
266 concentration and influencing local synaptic transmission¹⁴⁹.

267 There are also examples in literature of the indirect engagement of the noradrenergic
268 system that is likely mediated by α_7 nicotinic receptors on GABAergic neurons and a resulting
269 disinhibitory effect¹⁵⁰. Supporting this is direct measurement of increased ACh and NE in the rat
270 cortex after administration of a nicotinic agonist¹⁵¹. It is important to note here though, that a simple
271 increase and decrease in neurotransmitter level is not enough to discern the role of that change
272 in a functional capacity. A more thorough understanding of the location, receptors, and other
273 systems involved is needed to unravel functional consequences.

274

275 **Role of Acetylcholine in the Brain**

276 *Major Cholinergic Receptor Subtypes and Function*

277 The cholinergic system exerts its action by binding to two distinct receptor classes:
278 nicotinic and muscarinic. Nicotinic acetylcholine receptors (nAChRs) are composed of five
279 subunits arranged around a central core, forming a transmembrane channel that conducts Na^+ ,
280 K^+ , and Ca^{2+} when bound to ACh, leading to a local membrane depolarization¹⁵². The assembled
281 receptor is constructed using two primary families of α and β subunits¹⁵². The standard neuronal
282 configuration includes combinations of $\alpha 2$ through $\alpha 6$ and $\beta 2$ through $\beta 4$ proteins^{153,154}. There are
283 additional homomeric configurations composed of $\alpha 7$ through $\alpha 9$ subunits¹⁵⁵. The central nervous
284 system appears to be predominately composed of $\alpha 4\beta 2$ or $\alpha 7$ nAChRs, of which the former has
285 a higher affinity for ACh¹⁵⁶. In the adult rat brain, there is little anatomical overlap between the
286 heteromeric and homomeric nAChR types, indicating two distinct modes of ACh activity within
287 distinct anatomical regions¹⁵⁷. Overall, nAChRs are distributed widely, but sparsely, throughout
288 the hippocampus and cortex at both pre- and postsynaptic locations¹⁵² and expressed on
289 interneurons, pyramidal cells, and stellate cells¹⁵⁸⁻¹⁶¹. A series of previous experiments have
290 shown that layers I, III, and V in the human cortex exhibit the highest binding of ACh. This was
291 slightly different in the primary somatosensory cortex, where binding in layer III was highest, and
292 in the primary motor cortex, where layers III and V were the highest¹⁶². The $\alpha 7$ receptors are
293 expressed broadly across almost all glutaminergic and GABAergic neurons, though regional
294 differences have been noted. The presence of a presynaptic nAChR almost universally results in
295 an increased neurotransmitter release, across multiple types of neurotransmitters^{152,163}.

296 Muscarinic receptors (MACHR) are expressed throughout all layers of the cortex though
297 layers II and V exhibit the highest concentration¹⁶⁴. There are a total of five known muscarinic
298 receptors types, M_1 to M_5 . In general, M_1 receptors are most abundant in the neocortex,
299 hippocampus, and striatum¹⁶⁵; M_2 receptors are located throughout the entire brain¹⁶⁶; M_3
300 receptors only have a low level of expression throughout the brain¹⁶⁴; M_4 receptors are localized

301 in the striatum¹⁶⁷; and M₅ receptors are also widely distributed across the brain¹¹⁸. These receptors
302 have a seven transmembrane region that is highly conserved in G-protein coupled receptors
303 (GPCRs) and activate multiple intracellular signaling pathways, including phospholipase C (by
304 M₁, M₃, M₅), inhibition of adenylyl cyclase (by M₂ and M₄), and regulation of several ion
305 channels^{168,169}. MACHRs also activate mitogen-activated protein kinases (MAPKs), which
306 regulates cell survival, differentiation, and synaptic plasticity¹⁷⁰⁻¹⁷².

307

308 *Cholinergic Involvement in Learning and Decision Making*

309 The cholinergic system plays an important role in higher cognitive functions, specifically
310 in decision making and the learning process. Neuromodulation by acetylcholine is generally
311 orchestrated through the differential activation of the nicotinic and muscarinic receptors. The
312 nicotinic receptor, for example, has been shown to be easily desensitized and up-regulated
313 through the presence of nicotine, inducing long term alterations in the decision-making process¹⁷³.
314 Nicotine has also been implicated in increasing impulsivity and disinhibition in decision making¹⁷⁴.
315 Studies have also shown how nAChRs seem to be important in adapting appropriate choices to
316 a specific outcome¹⁷⁵. Specifically, the nAChR α 7 receptor has been implicated in slowing learning
317 rates in mice during knockout experiments⁴, as well as cognitive improvement during enhanced
318 activation¹⁷⁶.

319 Both nAChRs and MACHRs have been identified to contribute to risk and uncertainty¹⁷⁷,
320 with several studies showing that a complex interaction between these two receptors contributes
321 to cholinergic interneuron patterned activity^{178,179}. This interaction seems to have a larger
322 implication for network dynamics across different brain regions. Specifically, studies where
323 MACHRs or nAChRs were activated or blocked demonstrated changes in neural synchrony
324 across multiple EEG bands, invoking the emergence of theta-gamma coupling in the cortex and
325 exhibiting a correlation to increased learning performance in item-context association
326 behaviors^{180,181}.

327 Acetylcholine on a global level in the brain has been found to be relevant in almost every
328 decision-making paradigm. Lesioning studies of the basal forebrain have shown disruptions in
329 reversal learning in marmosets¹⁸², as well as being implicated in memory storage^{183,184}. The role
330 of ACh in memory has been shown to act as a modulator of update speed and as a controller of
331 metalearning¹⁸⁵. Here ACh modulates different neural systems throughout learning, regulating the
332 appropriate amount of ACh in specific brain regions to appropriately and effectively learn and
333 formulate memories¹⁸⁶.

334

335 *Cholinergic Involvement in Attention*

336 Cholinergic release primarily mediates attentional processing in the brain^{17,187}. In a 5-
337 choice serial reaction time task (5-CSRTT), the nicotinic facilitation of attention was found to exist
338 and the magnitude of this facilitation was dependent on the level of attentional engagement¹⁸⁸. In
339 addition, by using the 5-CSRT, Robbins and colleagues demonstrated that nicotinic β 2 subunits
340 in the prelimbic cortex are crucial for mice to successfully detect the cue¹⁸⁹. In an operant
341 sustained attention task (SAT), both the detection of signals and the attentional performance were
342 enhanced by the α 4 β 2 nAChR agonist-evoked ACh increases in the mPFC¹⁹⁰. In a knockout
343 study, it was shown that task performance which relies on highly attentive control was impaired
344 in a group of mice lacking the β 2 subunit in the mPFC, in comparison with their wild-type
345 littermates¹⁹¹. Similarly, genetic deletion of this special subtype of nAChRs also results in
346 compromised performance in an auditory discrimination paradigm¹⁹⁰, suggesting its critical role in
347 selective auditory attention.

348 In addition, there is evidence implicating that the muscarinic system plays a role in
349 directing attentional selection mechanisms¹⁹²⁻¹⁹⁴. Specifically, muscarinic receptors are believed
350 to primarily modulate higher-level visual stimulus processing¹⁹⁴. Attending to the receptive field of
351 certain V1 neurons evokes an increase in these neurons' firing rates and scopolamine, a
352 muscarinic antagonist, reduces this attentional modulation¹⁹⁵. Interestingly, nicotinic antagonist

353 does not exert systematic effect¹⁹⁵. Yet another aspect which can also be associated with
354 attentional control is adaptive behavioral control¹⁹⁶. Various genotypes of M₂ modulate the high-
355 level inhibitory control processes that require the processing of prior information and suppression
356 of irrelevant information¹⁹⁶.

357

358 **Role of Norepinephrine in the Brain**

359 *Major Noradrenergic Receptor Subtypes*

360 The noradrenergic system exerts influence over brain function through three receptor
361 classes: α₁, α₂, and β receptors. Each of these receptors has control over specific processes of
362 neurotransmission and sympathetic nervous system regulation. α₁ receptors are members of the
363 adrenoreceptor family, a subset of G-protein coupled receptors¹⁹⁷. They have been further
364 classified into three distinct subtypes: α_{1A}, α_{1B}, and α_{1D}. Each subreceptor has demonstrated
365 unique quantitative differences in effect¹⁹⁷. Several experiments have explored the different
366 concentrations of these subtypes throughout the brain. Specifically, it has been shown that α_{1B}
367 was more prominent in the thalamus, lateral amygdaloid nuclei, and cortical laminar areas, while
368 α_{1A} was higher in the entorhinal cortex, amygdala, and general cerebral cortex areas¹⁹⁸.
369 Furthermore, transgenic mouse experiments have allowed for specific receptors to be knocked
370 out, uncovering that both α_{1A} and α_{1B} has similar expression throughout the central nervous
371 system, just with different abundances¹⁹⁹. Around 55% of the brain was shown to express α_{1A},
372 35% α_{1B}, and less than 10% α_{1D}²⁰⁰⁻²⁰². The function of α₁ receptors is implicated in a variety of
373 cognitive processes and synaptic efficacies. Beginning with synaptic involvement, α₁ receptors
374 have been shown to increase the firing frequency of pyramidal and somatosensory neurons of
375 the visual cortex through the protein kinase C signaling (PKC) pathway^{203,204}. They have also
376 been implicated in the enhancement of glutamate and acetylcholine release as well as neuronal
377 excitation via PKC pathways, calcium pathways, and excitatory synapses²⁰⁵⁻²⁰⁹. α₁ has also been
378 shown to affect non-neuronal function as well, with modulation of synaptic transmission through

379 astrocytes and glial cells²¹⁰⁻²¹². In regards to cognitive functions, α_1 receptors have been shown
380 to be implicated in memory, motor and motivational behavior, memory retention, and storage, but
381 most of these are associated with general norepinephrine release in the brain²¹³.

382 α_2 receptors are also a type of G-protein coupled adrenoreceptor, classified into three
383 subtypes: α_{2A} , α_{2B} , and α_{2C} . Specifically α_2 receptors have been implicated in orchestrating the
384 presynaptic inhibition of norepinephrine in the central and peripheral nervous system²¹⁴⁻²¹⁶. This
385 inhibition is critical for regulation of normal involuntary processes including physiological functions
386 of the heart, vision, and gastrointestinal systems. Using pharmacological agents such as prazosin
387 or oxymetazoline, α_{2A} and α_{2B} receptors have been shown to have significant control over
388 sympathetic outflow and blood pressure²¹⁶. Several other studies have shown α_{2A} receptor
389 agonists enhance both serotonin and norepinephrine release²¹⁶. Interestingly, the abundance of
390 α_2 receptor subtypes is much more localized than α_1 . While literature here is limited, studies have
391 shown that α_{2B} receptors are found almost exclusively in the thalamus; α_{2C} in the olfactory bulb,
392 cerebral cortex, hippocampal formation, and dorsal root ganglia²¹⁷.

393 The final type of noradrenergic receptors, classified as β , are also a G-protein coupled
394 receptor, divided into three subtypes: β_1 , β_2 , β_3 ²¹⁶. There have been studies linking β receptors
395 to synaptic plasticity, with norepinephrine acting on β receptors to dictate synaptic strength in
396 hippocampal neurons, as well as NE released from the locus coeruleus enhancing LTD-related
397 memory processing²¹⁸.

398

399 *Noradrenergic Involvement in Learning and Decision Making*

400 The noradrenergic system has been implicated in a variety of decision-making paradigms
401 as well as throughout the learning process. Studies using optogenetics, pharmacological agents,
402 and lesioning have brought to light the effect norepinephrine has on cognition and higher-order
403 thought processes. One theory regarding the role of NE in decision making involves the idea of
404 network reset, acting as an “internal interrupt” signal^{219,220}. Here it is explained that the phasic

405 activation of locus coeruleus noradrenergic neurons, causes an increase of NE throughout the
406 cortex, invoking cognitive shifts and potential reorganization of neural networks²²¹. This shifted
407 brain state is hypothesized to be better equipped for rapid behavioral adaptation and enhanced
408 decision making²²¹. Other theories point out how stimulus-induced firing patterns of the LC are
409 closely attuned to behavioral performance, hypothesized from LC primate recordings in visual
410 discrimination tasks²²². Similar phasic activation in primates has shown how the LC can respond
411 to specific task-related decisions, modulating NE release and adapting future task-relevant
412 decisions¹⁸⁶, as well as showcasing coordinated activity patterns in cortical networks derived from
413 ascending NE projections²²³. Studies invoking NE release through an agonist have shown
414 enhancement in sensory stimulation, allowing more rapid synaptic plasticity and faster behavioral
415 responses²²⁴.

416 Several pharmacological experiments have investigated the specific role α_2 receptors play
417 in the decision-making process. Studies using NE antagonists have shown α_{2A} receptor knockout
418 leading to more risk-on behavior, with rats exhibiting greedier decisions²²⁵. α_{2A} agonists have been
419 proven to enhance the efficiency of working memory and reduce impulsivity in primates²²⁶. This
420 increased receptor uptake in the prefrontal cortex seems to be part of the shifted network brain
421 state described earlier. The agonist guanfacine, another α_{2A} agent, was also shown to improve
422 visual object discrimination performance during a reversal learning paradigm in primates²²⁷.

423

424 *Noradrenergic Involvement in Attention*

425 Noradrenergic modulation of attention has been studied for several decades²²⁸⁻²³⁰. Studies
426 have established the theory that the LC-NE system regulates the efficacy of information
427 processing during neuronal coding of detected cues^{20,231,232}. During behavioral tasks, selective
428 attention enhances neuronal responsiveness to sensory cues^{233,234}. The firing rates of LC neurons
429 is correlated with attentive behavior in an odd-ball task²³⁵, in which either high or low tonic firing
430 rates corresponds to inattentive states, and medium firing rates associates with animals' best

431 performance. In a novel environment where more adaptive behaviors are required, changes in
432 electrotonic coupling among LC neurons regulates the goal-directed exploration and preserves
433 attentional selectivity²⁸. In addition, some studies have investigated the effects of NE agonists. It
434 is shown that in a cued target detection task (CTD), the application of α_2 receptor agonists
435 clonidine or guanfacine significantly impaired alerting behavior and the effect was dose-
436 dependent²³⁶, while the effect was blocked by the α_2 antagonists idazoxan or yohimbine.

437 Most recent studies also show an association between the NE system and impulsivity
438 control²³⁷⁻²³⁹. It was observed from the superior frontal theta band activity that the NE system
439 dynamically gains and loses relevance to regulate inhibitory control under different responding
440 modes²³⁹. This work has led to the use of the NE-specific reuptake inhibitor atomoxetine as a
441 treatment of pediatric attention-deficit/hyperactivity disorder (ADHD)²³⁷. Furthermore, it is
442 demonstrated that ADHD patients have a higher positron emission tomography (PET)-measured
443 NET availability in comparison to healthy individuals, suggesting that there are underlying genetic
444 and epigenetic mechanisms.

445

446 **Functional Interplay between the Cholinergic and Noradrenergic Systems**

447 *ACh and NE in Attention*

448 It has been widely acknowledged that both cholinergic and noradrenergic systems show
449 graded and transient increases in their response to increased attention to environmental cues²⁴⁰⁻
450 ²⁴³. Noradrenergic axon activity starts ~1 s prior to the peak of pupil dilation while cholinergic axon
451 activity lags ~0.5 s behind the peak, suggesting pupil-linked alertness, attention and mental effort
452 are controlled differentially by the two neuromodulatory transmitter systems²⁴⁴. Studies have
453 shown that basal forebrain (BF) and brainstem cholinergic systems interact differently with LC-
454 NE system related to attention^{42,245}. It was demonstrated that sustained attentional performance
455 necessarily requires the integrity of BF cholinergic projections but not their noradrenergic
456 afferents^{246,247}. However, for thalamocortical information processing, ACh activation produces a

457 noisy broadband signal detection mode, while NE activation sets to a noise-free high-frequency
458 signal detection mode, which seems to be more optimized for selective attention than brainstem
459 cholinergic activation²⁴⁵.

460 Generally, cortical ACh-NE interaction plays a significant role in the modulation of
461 attention²⁴⁸⁻²⁵⁰. Using fluorescent retrograde tracers in ACC, mPFC and OFC, it was uncovered
462 that subsets of LC neurons might be responsible for modulating individual prefrontal subregions
463 independently, yet subsets of NB neurons might produce universal influence in prefrontal
464 subregions²⁴⁸, providing insights respecting prefrontal cortex's role of allocating attentional
465 reserves. In a attentional set shifting task, McGaughy and colleagues pointed out that the specific
466 impairments in animals' ability to shift attentional set were produced by noradrenergic instead of
467 cholinergic deafferentation in prefrontal cortex²⁵⁰. Indeed, the cortical cholinergic system is very
468 likely to be involved in aspects of established attentional performance while NE system is more
469 competent in detecting shifts in the predictive relationship between action and reinforcement²⁴⁹.

470 Future studies are highly encouraged to explore the ACh-NE interaction in the contexts of
471 their complementary roles regarding attention modulation. Systematic characterization and
472 manipulation of the cholinergic and NE projections at biochemical, genetic, pharmacological and
473 physiological levels would largely facilitate our understanding of the interaction between the two
474 systems and inform the development of potential therapeutics for certain neurodegenerative and
475 psychiatric diseases.

476

477 *ACh and NE in Learning and Decision Making*

478 The interplay between the noradrenergic and cholinergic systems in the decision making and
479 learning processes is highly complex. Each neuromodulatory system plays a pivotal role in
480 creating these complex cognitive brain states, integrating sensory information with positive and
481 negative feedback loops through multiple brain regions. For example, the visual system of a
482 macaque primate has integration and circuitry across all neuromodulators, inhibiting and exciting

483 different neurons, changing gene expression, and modulating synaptic circuitry²⁵¹. Due to the
484 complexity of decision making, the unpredictability of environments, and the uncertainty of risk-
485 taking during exploration, the relationship between neuromodulators is not yet well understood²⁵².
486 Even with this challenge, there have been studies which attempted to look at isolated NE and
487 ACh interaction in specific decision-making tasks. In isolated behaviors, specific neuromodulators
488 can be seen regulating specific sub-tasks. In metalearning, NE can be seen contributing to the
489 randomness of action selection, while ACh seems to solely dictate the speed of specific memory
490 updates¹⁸⁵. Both neuromodulators also have been implicated in the information transmission
491 during different behaviors^{19,253}. Theoretical modeling has been used to further understand the role
492 both NE and ACh play in uncertainty, behaving both synergistically and antagonistically, enabling
493 complex learning in challenging adaptive environments²⁵⁴. Understanding how both of these
494 neuromodulators interact with one another in a variety of decision making and learning paradigms
495 will be critical for developing translational treatments for neurological conditions that involve these
496 neurotransmitters.

497

498 **Future Directions**

499 The functional consequences of overlapping and interacting neuromodulatory systems are
500 as numerous as they are behaviorally important. An understanding has been slowly emerging
501 over at least two decades that a diversity of functionally distinct circuits and heterogeneously
502 distributed receptor subpopulations between neuromodulatory systems gives rise to many of the
503 most interesting aspects of neural processing and adaptive behavioral outcomes. The differential
504 influence of each neuromodulator on a specific circuit of interest is highly complex though and
505 requires a very careful experimental framework in order to begin unraveling a more complete
506 understanding of the influence of ACh and NE on specific behaviors. As has been demonstrated
507 by the work covered in this review, overlapping, segmented receptive fields, non-uniform receptor
508 distributions and the wide-range of actions of ACh and NE, in a spatially and temporally dependent

509 manner, make broad conclusions about each system difficult to generalize. It is critical for future
510 work to use a modern arsenal of tools to dissect the role of these two systems in isolated circuits
511 that have important behavioral relevance.

512 Given the highly region-dependent action of these neuromodulatory systems, future work
513 may begin with the identification and isolation of a specific target. An example of such an isolation
514 would be to examine the role of the regions comprising the mPFC in decision making^{175,255-258}. In
515 order to understand the possible functional role of ACh and NE in modulating these regions,
516 experiments should be devised to further characterize noradrenergic and cholinergic inputs to the
517 mPFC. Initial experiments should also provide a basic characterization of the density and
518 distribution of cholinergic and noradrenergic receptors in the target region using either traditional
519 receptor expression profiling tools or the integration of new tools such as spatial single cell
520 sequencing. Once the neuromodulatory input into the region of interest has been quantified and
521 the range of receptors expressed summarized, an experimental framework can be established to
522 systematically isolate one variable at a time.

523 Under this framework, a functionally important region of cortex can be isolated with respect
524 to its neuromodulatory input and the relevant molecular targets identified. At this point systematic
525 exploration of the release of NE and ACh in a representative behavioral task will provide the
526 foundation for understanding the differential presence of each system in the specified brain region
527 during normal behavior. More sophisticated single-unit electrophysiology or calcium imaging
528 experiments that explore the change in network dynamics in response to neuromodulator release
529 can be paired with selective cholinergic and noradrenergic activation or silencing to observe the
530 response not only of the animal and the neuronal connectivity, but also in the response of the
531 other neurotransmitter system. Systematic knock outs or implementation of inducible/repressible
532 receptor expression in the specified region will also provide insights into how functional modules
533 in the cortex are regulated by multiple neuromodulators.

534 The result of conducting many of these experiments in parallel will be an improved
535 understanding of how broadly acting neuromodulator networks contribute to subdivided, and not
536 necessarily unified, responses throughout the brain. Understanding the influence of ACh and NE
537 on specific modules, and the afferent source of these neuromodulators, will provide improved
538 targets for functional neural stimulation and greater degrees of freedom for higher bandwidth
539 communication and dynamic network control through neural interfaces²⁵⁹.

540

541 **Conclusion**

542 Cholinergic and noradrenergic modulation of functionally distinct regions of the brain has
543 become one of the primary organizational principles behind understanding the contribution of
544 each system to the diversity of neural computation in the central nervous system. Decades of
545 work has shown that a diverse family of receptors, which stratify across different brain regions,
546 and afferent and efferent projections that can be selectively activated, are critical in helping
547 widespread neuromodulatory systems obtain substantial heterogeneity in the sophistication of
548 their role in neural processes. The end result of such a complicated interplay between two diffuse
549 modulatory systems is a dynamic and highly context dependent role for brain regions important
550 in learning, memory, attention, and decision making. To further improve our understanding of
551 these systems, it is essential to adopt approaches that are built on previous work to identify the
552 interplay, at the receptor, circuit, and functional levels, between these systems in an isolated
553 circuit that can be tied to a behaviorally functional outcome. The results will allow greater
554 understanding and control over wide-ranging behaviors.

555

556 **Acknowledgements**

557 This work was supported by NIH R01MH112267, R01NS119813, R01AG075114,
558 R21MH125107, and NSF CBET 1847315.

559

560 **Disclaimer**

561 Q.W. is the co-founder of Sharper Sense, a company developing methods of enhancing sensory
562 processing with neural interfaces.

563

564 **References**

- 565 1 Bianconi, E. *et al.* An estimation of the number of cells in the human body. *Ann Hum Biol* **40**, 463-471, doi:10.3109/03014460.2013.807878 (2013).
- 566 2 Newman, E. A. New roles for astrocytes: regulation of synaptic transmission. *Trends Neurosci* **26**, 536-542, doi:10.1016/S0166-2236(03)00237-6 (2003).
- 567 3 Marinelli, S., Basilico, B., Marrone, M. C. & Raguzzino, D. Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission. *Semin Cell Dev Biol* **94**, 138-151, doi:10.1016/j.semcd.2019.05.017 (2019).
- 568 4 Hyman, S. E. Neurotransmitters. *Curr Biol* **15**, R154-158, doi:10.1016/j.cub.2005.02.037 (2005).
- 569 5 Nedergaard, M., Takano, T. & Hansen, A. J. Beyond the role of glutamate as a neurotransmitter. *Nat Rev Neurosci* **3**, 748-755, doi:10.1038/nrn916 (2002).
- 570 6 Owens, D. F. & Kriegstein, A. R. Is there more to GABA than synaptic inhibition? *Nat Rev Neurosci* **3**, 715-727, doi:10.1038/nrn919 (2002).
- 571 7 Kurcyus, K. *et al.* Opposite Dynamics of GABA and Glutamate Levels in the Occipital Cortex during Visual Processing. *J Neurosci* **38**, 9967-9976, doi:10.1523/JNEUROSCI.1214-18.2018 (2018).
- 572 8 Carlsson, A. *et al.* Interactions Between Monoamines, Glutamate, and GABA in Schizophrenia: New Evidence. *Annual Review of Pharmacology and Toxicology* **41**, 237-260, doi:10.1146/annurev.pharmtox.41.1.237 (2001).
- 573 9 Marmigere, F., Rage, F. & Tapia-Arancibia, L. GABA-glutamate interaction in the control of BDNF expression in hypothalamic neurons. *Neurochem Int* **42**, 353-358, doi:10.1016/s0197-0186(02)00100-6 (2003).
- 574 10 Katz, P. & Edwards, D. *Beyond neurotransmission*. (Oxford University Press New York, 1999).
- 575 11 Agnati, L. F. *et al.* Volume transmission and wiring transmission from cellular to molecular networks: history and perspectives. *Acta Physiol (Oxf)* **187**, 329-344, doi:10.1111/j.1748-1716.2006.01579.x (2006).
- 576 12 Zaborszky, L. in *Progress in Brain Research* Vol. 136 359-372 (Elsevier, 2002).
- 577 13 Golmayo, L., Nunez, A. & Zaborszky, L. Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. *Neuroscience* **119**, 597-609, doi:10.1016/s0306-4522(03)00031-9 (2003).
- 578 14 Briand, L. A., Gritton, H., Howe, W. M., Young, D. A. & Sarter, M. Modulators in concert for cognition: modulator interactions in the prefrontal cortex. *Prog Neurobiol* **83**, 69-91, doi:10.1016/j.pneurobio.2007.06.007 (2007).
- 579 15 Blokland, A. Acetylcholine: a neurotransmitter for learning and memory? *Brain Research Reviews* **21**, 285-300 (1995).

602 16 Sarter, M. & Bruno, J. P. Cognitive functions of cortical acetylcholine: toward a unifying
603 hypothesis. *Brain Res Brain Res Rev* **23**, 28-46, doi:10.1016/s0165-0173(96)00009-4
604 (1997).

605 17 Parikh, V., Kozak, R., Martinez, V. & Sarter, M. Prefrontal acetylcholine release controls
606 cue detection on multiple timescales. *Neuron* **56**, 141-154,
607 doi:10.1016/j.neuron.2007.08.025 (2007).

608 18 Goard, M. & Dan, Y. Basal forebrain activation enhances cortical coding of natural
609 scenes. *Nat Neurosci* **12**, 1444-1449, doi:10.1038/nn.2402 (2009).

610 19 Rodenkirch, C. & Wang, Q. Rapid and transient enhancement of thalamic information
611 transmission induced by vagus nerve stimulation. *J Neural Eng* **17**, 026027,
612 doi:10.1088/1741-2552/ab6b84 (2020).

613 20 Rodenkirch, C., Liu, Y., Schriver, B. J. & Wang, Q. Locus coeruleus activation enhances
614 thalamic feature selectivity via norepinephrine regulation of intrathalamic circuit
615 dynamics. *Nat Neurosci* **22**, 120-133, doi:10.1038/s41593-018-0283-1 (2019).

616 21 Schwarz, L. A. & Luo, L. Organization of the locus coeruleus-norepinephrine system.
617 *Curr Biol* **25**, R1051-R1056, doi:10.1016/j.cub.2015.09.039 (2015).

618 22 Devilbiss, D. M., Page, M. E. & Waterhouse, B. D. Locus Ceruleus Regulates Sensory
619 Encoding by Neurons and Networks in Waking Animals. *The Journal of Neuroscience*
620 **26**, 9860-9872, doi:10.1523/jneurosci.1776-06.2006 (2006).

621 23 Vazey, E. M., Moorman, D. E. & Aston-Jones, G. Phasic locus coeruleus activity
622 regulates cortical encoding of salience information. *Proceedings of the National
623 Academy of Sciences* **115**, E9439, doi:10.1073/pnas.1803716115 (2018).

624 24 Yang, H., Bari, B. A., Cohen, J. Y. & O'Connor, D. H. Locus coeruleus spiking differently
625 correlates with S1 cortex activity and pupil diameter in a tactile detection task. *eLife* **10**,
626 e64327, doi:10.7554/eLife.64327 (2021).

627 25 Liu, Y., Narasimhan, S., Schriver, B. J. & Wang, Q. Perceptual Behavior Depends
628 Differently on Pupil-Linked Arousal and Heartbeat Dynamics-Linked Arousal in Rats
629 Performing Tactile Discrimination Tasks. *Frontiers in systems neuroscience* **14**, 614248-
630 614248, doi:10.3389/fnsys.2020.614248 (2021).

631 26 O'Dell, T. J., Connor, S. A., Guglietta, R. & Nguyen, P. V. beta-Adrenergic receptor
632 signaling and modulation of long-term potentiation in the mammalian hippocampus.
633 *Learn Mem* **22**, 461-471, doi:10.1101/lm.031088.113 (2015).

634 27 Spencer, R. C. & Berridge, C. W. Receptor and circuit mechanisms underlying
635 differential procognitive actions of psychostimulants. *Neuropsychopharmacology* **44**,
636 1820-1827, doi:10.1038/s41386-019-0314-y (2019).

637 28 Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J. & Aston-Jones, G. The
638 Role of Locus Coeruleus in the Regulation of Cognitive Performance. *Science* **283**, 549-
639 554, doi:10.1126/science.283.5401.549 (1999).

640 29 Janitzky, K. *et al.* Optogenetic silencing of locus coeruleus activity in mice impairs
641 cognitive flexibility in an attentional set-shifting task. *Frontiers in Behavioral
642 Neuroscience* **9**, 286, doi:10.3389/fnbeh.2015.00286 (2015).

643 30 Aston-Jones, G., Rajkowski, J. & Cohen, J. in *Progress in Brain Research* Vol. Volume
644 126 (eds H.B.M. Uylings *et al.*) 165-182 (Elsevier, 2000).

645 31 Kalwani, R. M., Joshi, S. & Gold, J. I. Phasic Activation of Individual Neurons in the
646 Locus Ceruleus/Subceruleus Complex of Monkeys Reflects Rewarded Decisions to Go
647 But Not Stop. *The Journal of Neuroscience* **34**, 13656-13669,
648 doi:10.1523/jneurosci.2566-14.2014 (2014).

649 32 Schriver, B., Bagdasarov, S. & Wang, Q. Pupil-linked arousal modulates behavior in rats
650 performing a whisker deflection direction discrimination task. *Journal of Neurophysiology*
651 **120**, 1655-1670, doi:10.1152/jn.00290.2018 (2018).

652 33 Schriver, B. J., Perkins, S. M., Sajda, P. & Wang, Q. Interplay between components of
653 pupil-linked phasic arousal and its role in driving behavioral choice in Go/No-Go

654 655 perceptual decision-making. *Psychophysiology*, e13565, doi:10.1111/psyp.13565
(2020).

656 34 Slater, C. & Wang, Q. Alzheimer's disease: An evolving understanding of noradrenergic
657 involvement and the promising future of electroceutical therapies. *Clinical and*
658 *Translational Medicine* **11**, e397, doi:<https://doi.org/10.1002/ctm2.397> (2021).

659 35 Furey, M. L. The prominent role of stimulus processing: cholinergic function and
660 dysfunction in cognition. *Curr Opin Neurol* **24**, 364-370,
661 doi:10.1097/WCO.0b013e328348bda5 (2011).

662 36 Bohnen, N. I. & Albin, R. L. The cholinergic system and Parkinson disease. *Behavioural*
663 *Brain Research* **221**, 564-573, doi:<https://doi.org/10.1016/j.bbr.2009.12.048> (2011).

664 37 Yamamoto, K.-i., Shinba, T. & Yoshii, M. Psychiatric symptoms of noradrenergic
665 dysfunction: A pathophysiological view. *Psychiatry and Clinical Neurosciences* **68**, 1-20,
666 doi:<https://doi.org/10.1111/pcn.12126> (2014).

667 38 Marien, M. R., Colpaert, F. C. & Rosenquist, A. C. Noradrenergic mechanisms in
668 neurodegenerative diseases: a theory. *Brain Research Reviews* **45**, 38-78,
669 doi:<https://doi.org/10.1016/j.brainresrev.2004.02.002> (2004).

670 39 Doppler, C. E. J. *et al.* Microsleep disturbances are associated with noradrenergic
671 dysfunction in Parkinson's disease. *Sleep* **44**, doi:10.1093/sleep/zsab040 (2021).

672 40 Weinshenker, D. Long Road to Ruin: Noradrenergic Dysfunction in Neurodegenerative
673 Disease. *Trends in Neurosciences* **41**, 211-223,
674 doi:<https://doi.org/10.1016/j.tins.2018.01.010> (2018).

675 41 Gannon, M. *et al.* Noradrenergic dysfunction in Alzheimer's disease. *Frontiers in*
676 *Neuroscience* **9** (2015).

677 42 Sarter, M. & Bruno, J. P. Cortical cholinergic inputs mediating arousal, attentional
678 processing and dreaming: differential afferent regulation of the basal forebrain by
679 telencephalic and brainstem afferents. *Neuroscience* **95**, 933-952,
680 doi:[https://doi.org/10.1016/S0306-4522\(99\)00487-X](https://doi.org/10.1016/S0306-4522(99)00487-X) (1999).

681 43 Lehmann, J., Nagy, J. I., Atmadia, S. & Fibiger, H. C. The nucleus basalis
682 magnocellularis: the origin of a cholinergic projection to the neocortex of the rat.
683 *Neuroscience* **5**, 1161-1174, doi:10.1016/0306-4522(80)90195-5 (1980).

684 44 Levey, A. I., Hallanger, A. E. & Wainer, B. H. Cholinergic nucleus basalis neurons may
685 influence the cortex via the thalamus. *Neuroscience Letters* **74**, 7-13,
686 doi:[https://doi.org/10.1016/0304-3940\(87\)90042-5](https://doi.org/10.1016/0304-3940(87)90042-5) (1987).

687 45 Bergado, J. A., Frey, S., Lopez, J., Almaguer-Melian, W. & Frey, J. U. Cholinergic
688 afferents to the locus coeruleus and noradrenergic afferents to the medial septum
689 mediate LTP-reinforcement in the dentate gyrus by stimulation of the amygdala.
690 *Neurobiol Learn Mem* **88**, 331-341, doi:10.1016/j.nlm.2007.05.003 (2007).

691 46 Satoh, K. & Fibiger, H. C. Cholinergic neurons of the laterodorsal tegmental nucleus:
692 efferent and afferent connections. *J Comp Neurol* **253**, 277-302,
693 doi:10.1002/cne.902530302 (1986).

694 47 Mesulam, M. M. Cholinergic circuitry of the human nucleus basalis and its fate in
695 Alzheimer's disease. *J Comp Neurol* **521**, 4124-4144, doi:10.1002/cne.23415 (2013).

696 48 Higo, S., Matsuyama, T. & Kawamura, S. Direct projections from the pedunculopontine
697 and laterodorsal tegmental nuclei to area 17 of the visual cortex in the cat. *Neurosci Res*
698 **26**, 109-118, doi:10.1016/s0168-0102(96)01079-6 (1996).

699 49 Bloem, B. *et al.* Topographic mapping between basal forebrain cholinergic neurons and
700 the medial prefrontal cortex in mice. *J Neurosci* **34**, 16234-16246,
701 doi:10.1523/JNEUROSCI.3011-14.2014 (2014).

702 50 Li, X. *et al.* Generation of a whole-brain atlas for the cholinergic system and mesoscopic
703 projectome analysis of basal forebrain cholinergic neurons. *Proc Natl Acad Sci U S A*
704 **115**, 415-420, doi:10.1073/pnas.1703601115 (2018).

705 51 Woolf, N. J. Cholinergic systems in mammalian brain and spinal cord. *Prog Neurobiol*
706 37, 475-524, doi:10.1016/0301-0082(91)90006-m (1991).

707 52 Rye, D. B., Wainer, B. H., Mesulam, M. M., Mufson, E. J. & Saper, C. B. Cortical
708 projections arising from the basal forebrain: a study of cholinergic and noncholinergic
709 components employing combined retrograde tracing and immunohistochemical
710 localization of choline acetyltransferase. *Neuroscience* 13, 627-643, doi:10.1016/0306-
711 4522(84)90083-6 (1984).

712 53 Kaneko, S. *et al.* Synaptic integration mediated by striatal cholinergic interneurons in
713 basal ganglia function. *Science* 289, 633-637, doi:10.1126/science.289.5479.633 (2000).

714 54 Bickford, M. E., Gunluk, A. E., Van Horn, S. C. & Sherman, S. M. GABAergic projection
715 from the basal forebrain to the visual sector of the thalamic reticular nucleus in the cat. *J
716 Comp Neurol* 348, 481-510, doi:10.1002/cne.903480402 (1994).

717 55 van der Zee, E. A. & Luiten, P. G. Muscarinic acetylcholine receptors in the
718 hippocampus, neocortex and amygdala: a review of immunocytochemical localization in
719 relation to learning and memory. *Prog Neurobiol* 58, 409-471, doi:10.1016/s0301-
720 0082(98)00092-6 (1999).

721 56 Kim, J.-H. *et al.* Selectivity of Neuromodulatory Projections from the Basal Forebrain and
722 Locus Ceruleus to Primary Sensory Cortices. *The Journal of Neuroscience* 36, 5314-
723 5327, doi:10.1523/jneurosci.4333-15.2016 (2016).

724 57 Chavez, C. & Zaborszky, L. Basal Forebrain Cholinergic-Auditory Cortical Network:
725 Primary Versus Nonprimary Auditory Cortical Areas. *Cereb Cortex* 27, 2335-2347,
726 doi:10.1093/cercor/bhw091 (2017).

727 58 Fournier, G. N., Semba, K. & Rasmusson, D. D. Modality- and region-specific
728 acetylcholine release in the rat neocortex. *Neuroscience* 126, 257-262,
729 doi:<https://doi.org/10.1016/j.neuroscience.2004.04.002> (2004).

730 59 Liu, A. K. L. & Gentleman, S. M. in *Handbook of Clinical Neurology* Vol. 179 (eds Dick
731 F. Swaab *et al.*) 175-187 (Elsevier, 2021).

732 60 Mechawar, N., Cozzari, C. & Descarries, L. Cholinergic innervation in adult rat cerebral
733 cortex: A quantitative immunocytochemical description. *Journal of Comparative
734 Neurology* 428, 305-318, doi:[https://doi.org/10.1002/1096-
735 9861\(20001211\)428:2<305::AID-CNE9>3.0.CO;2-Y](https://doi.org/10.1002/1096-9861(20001211)428:2<305::AID-CNE9>3.0.CO;2-Y) (2000).

736 61 Smiley, J. F. & Mesulam, M. M. Cholinergic neurons of the nucleus basalis of Meynert
737 receive cholinergic, catecholaminergic and GABAergic synapses: an electron
738 microscopic investigation in the monkey. *Neuroscience* 88, 241-255, doi:10.1016/s0306-
739 4522(98)00202-4 (1999).

740 62 Mesulam, M. M. The cholinergic innervation of the human cerebral cortex. *Prog Brain
741 Res* 145, 67-78, doi:10.1016/S0079-6123(03)45004-8 (2004).

742 63 Samuels, E. R. & Szabadi, E. Functional neuroanatomy of the noradrenergic locus
743 coeruleus: its roles in the regulation of arousal and autonomic function part II:
744 physiological and pharmacological manipulations and pathological alterations of locus
745 coeruleus activity in humans. *Current neuropharmacology* 6, 254-285,
746 doi:10.2174/157015908785777193 (2008).

747 64 Jones, B. E. & Cuello, A. C. Afferents to the basal forebrain cholinergic cell area from
748 pontomesencephalic--catecholamine, serotonin, and acetylcholine--neurons.
749 *Neuroscience* 31, 37-61, doi:10.1016/0306-4522(89)90029-8 (1989).

750 65 Khateb, A. *et al.* GABAergic input to cholinergic nucleus basalis neurons. *Neuroscience*
751 86, 937-947, doi:10.1016/s0306-4522(98)00094-3 (1998).

752 66 Rodriguez-Garcia, G. & Miranda, M. I. Opposing Roles of Cholinergic and GABAergic
753 Activity in the Insular Cortex and Nucleus Basalis Magnocellularis during Novel
754 Recognition and Familiar Taste Memory Retrieval. *J Neurosci* 36, 1879-1889,
755 doi:10.1523/JNEUROSCI.2340-15.2016 (2016).

756 67 Casamenti, F., Deffenu, G., Abbamondi, A. L. & Pepeu, G. Changes in cortical
757 acetylcholine output induced by modulation of the nucleus basalis. *Brain Res Bull* **16**,
758 68 689-695, doi:10.1016/0361-9230(86)90140-1 (1986).

759 68 Semba, K., Reiner, P. B., McGeer, E. G. & Fibiger, H. C. Brainstem afferents to the
760 magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and
761 electrophysiology in the rat. *J Comp Neurol* **267**, 433-453, doi:10.1002/cne.902670311
762 (1988).

763 69 Semba, K. & Fibiger, H. C. Afferent connections of the laterodorsal and the
764 pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and
765 immunohistochemical study. *J Comp Neurol* **323**, 387-410, doi:10.1002/cne.903230307
766 (1992).

767 70 Brudzynski, S. M., Kadishevitz, L. & Fu, X. W. Mesolimbic component of the ascending
768 cholinergic pathways: electrophysiological-pharmacological study. *J Neurophysiol* **79**,
769 1675-1686, doi:10.1152/jn.1998.79.4.1675 (1998).

770 71 Martinez-Gonzalez, C., Bolam, J. P. & Mena-Segovia, J. Topographical organization of
771 the pedunculopontine nucleus. *Front Neuroanat* **5**, 22, doi:10.3389/fnana.2011.00022
772 (2011).

773 72 Matsumura, M. *et al.* Organization of somatic motor inputs from the frontal lobe to the
774 pedunculopontine tegmental nucleus in the macaque monkey. *Neuroscience* **98**, 97-110,
775 doi:10.1016/s0306-4522(00)00099-3 (2000).

776 73 Schofield, B. R. & Motts, S. D. Projections from auditory cortex to cholinergic cells in the
777 midbrain tegmentum of guinea pigs. *Brain Res Bull* **80**, 163-170,
778 doi:10.1016/j.brainresbull.2009.06.015 (2009).

779 74 Florio, T. *et al.* High-frequency stimulation of the subthalamic nucleus modulates the
780 activity of pedunculopontine neurons through direct activation of excitatory fibres as well
781 as through indirect activation of inhibitory pallidal fibres in the rat. *Eur J Neurosci* **25**,
782 1174-1186, doi:10.1111/j.1460-9568.2007.05360.x (2007).

783 75 Granata, A. R. & Kitai, S. T. Intracellular analysis of excitatory subthalamic inputs to the
784 pedunculopontine neurons. *Brain Res* **488**, 57-72, doi:10.1016/0006-8993(89)90693-8
785 (1989).

786 76 Granata, A. R. & Kitai, S. T. Inhibitory substantia nigra inputs to the pedunculopontine
787 neurons. *Exp Brain Res* **86**, 459-466, doi:10.1007/BF00230520 (1991).

788 77 Hammond, C., Rouzaire-Dubois, B., Feger, J., Jackson, A. & Crossman, A. R.
789 Anatomical and electrophysiological studies on the reciprocal projections between the
790 subthalamic nucleus and nucleus tegmenti pedunculopontinus in the rat. *Neuroscience*
791 **9**, 41-52, doi:10.1016/0306-4522(83)90045-3 (1983).

792 78 Smith, Y., Bolam, J. P. & Von Krosigk, M. Topographical and Synaptic Organization of
793 the GABA-Containing Pallidosubthalamic Projection in the Rat. *Eur J Neurosci* **2**, 500-
794 511, doi:10.1111/j.1460-9568.1990.tb00441.x (1990).

795 79 Moriizumi, T. & Hattori, T. Separate neuronal populations of the rat globus pallidus
796 projecting to the subthalamic nucleus, auditory cortex and pedunculopontine tegmental
797 area. *Neuroscience* **46**, 701-710, doi:10.1016/0306-4522(92)90156-v (1992).

798 80 Haber, S. N., Lynd, E., Klein, C. & Groenewegen, H. J. Topographic organization of the
799 ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. *J
800 Comp Neurol* **293**, 282-298, doi:10.1002/cne.902930210 (1990).

801 81 Noda, T. & Oka, H. Nigral inputs to the pedunculopontine region: intracellular analysis.
802 *Brain Res* **322**, 332-336, doi:10.1016/0006-8993(84)90128-8 (1984).

803 82 Jones, B. E. & Yang, T. Z. The efferent projections from the reticular formation and the
804 locus coeruleus studied by anterograde and retrograde axonal transport in the rat. *J
805 Comp Neurol* **242**, 56-92, doi:10.1002/cne.902420105 (1985).

806 83 Steininger, T. L., Rye, D. B. & Wainer, B. H. Afferent projections to the cholinergic
807 pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the

808 albino rat. I. Retrograde tracing studies. *J Comp Neurol* **321**, 515-543,
809 doi:10.1002/cne.903210403 (1992).

810 84 Segal, M. Brain stem afferents to the rat medial septum. *J Physiol* **261**, 617-631,
811 doi:10.1113/jphysiol.1976.sp011577 (1976).

812 85 Vertes, R. P. Brainstem afferents to the basal forebrain in the rat. *Neuroscience* **24**, 907-
813 935, doi:10.1016/0306-4522(88)90077-2 (1988).

814 86 Borhegyi, Z., Magloczky, Z., Acsady, L. & Freund, T. F. The supramammillary nucleus
815 innervates cholinergic and GABAergic neurons in the medial septum-diagonal band of
816 Broca complex. *Neuroscience* **82**, 1053-1065, doi:10.1016/s0306-4522(97)00301-1
817 (1998).

818 87 Steriade, M., Datta, S., Pare, D., Oakson, G. & Curro Dossi, R. C. Neuronal activities in
819 brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical
820 systems. *J Neurosci* **10**, 2541-2559 (1990).

821 88 Steriade, M., Parent, A., Pare, D. & Smith, Y. Cholinergic and non-cholinergic neurons of
822 cat basal forebrain project to reticular and mediodorsal thalamic nuclei. *Brain Res* **408**,
823 372-376, doi:10.1016/0006-8993(87)90408-2 (1987).

824 89 Mesulam, M. M., Mufson, E. J., Levey, A. I. & Wainer, B. H. Cholinergic innervation of
825 cortex by the basal forebrain: cytochemistry and cortical connections of the septal area,
826 diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the
827 rhesus monkey. *J Comp Neurol* **214**, 170-197, doi:10.1002/cne.902140206 (1983).

828 90 Steckler, T., Inglis, W., Winn, P. & Sahgal, A. The pedunculopontine tegmental nucleus:
829 a role in cognitive processes? *Brain Res Brain Res Rev* **19**, 298-318, doi:10.1016/0165-
830 0173(94)90016-7 (1994).

831 91 Mena-Segovia, J. & Bolam, J. P. Rethinking the Pedunculopontine Nucleus: From
832 Cellular Organization to Function. *Neuron* **94**, 7-18, doi:10.1016/j.neuron.2017.02.027
833 (2017).

834 92 Kami, K., Tajima, F. & Senba, E. Activation of mesolimbic reward system via laterodorsal
835 tegmental nucleus and hypothalamus in exercise-induced hypoalgesia. *Sci Rep* **8**,
836 11540, doi:10.1038/s41598-018-29915-4 (2018).

837 93 Grzanna, R. & Molliver, M. E. The locus coeruleus in the rat: an immunohistochemical
838 delineation. *Neuroscience* **5**, 21-40, doi:10.1016/0306-4522(80)90068-8 (1980).

839 94 Swanson, L. W. & Hartman, B. K. The central adrenergic system. An
840 immunofluorescence study of the location of cell bodies and their efferent connections in
841 the rat utilizing dopamine-beta-hydroxylase as a marker. *J Comp Neurol* **163**, 467-505,
842 doi:10.1002/cne.901630406 (1975).

843 95 Sara, S. J. & Bouret, S. Orienting and reorienting: the locus coeruleus mediates
844 cognition through arousal. *Neuron* **76**, 130-141, doi:10.1016/j.neuron.2012.09.011
845 (2012).

846 96 Foote, S. L., Bloom, F. E. & Aston-Jones, G. Nucleus locus ceruleus: new evidence of
847 anatomical and physiological specificity. *Physiological Reviews* **63**, 844-914,
848 doi:10.1152/physrev.1983.63.3.844 (1983).

849 97 Dahlström, A. & Fuxe, K. *Demonstration of monoamines in the cell bodies of brain stem
850 neurons.* (Verlag nicht ermittelbar, 1964).

851 98 Poe, G. R. et al. Locus coeruleus: a new look at the blue spot. *Nature Reviews
852 Neuroscience* **21**, 644-659, doi:10.1038/s41583-020-0360-9 (2020).

853 99 Fallon, J. H., Koziell, D. A. & Moore, R. Y. Catecholamine innervation of the basal
854 forebrain. II. Amygdala, suprarhinal cortex and entorhinal cortex. *J Comp Neurol* **180**,
855 509-532, doi:10.1002/cne.901800308 (1978).

856 100 Morrison, J. H., Molliver, M. E., Grzanna, R. & Coyle, J. T. Noradrenergic innervation
857 patterns in three regions of medial cortex: an immunofluorescence characterization.
858 *Brain Res Bull* **4**, 849-857, doi:10.1016/0361-9230(79)90022-4 (1979).

859 101 Berridge, C. W. & Waterhouse, B. D. The locus coeruleus-noradrenergic system:
860 modulation of behavioral state and state-dependent cognitive processes. *Brain Res*
861 *Brain Res Rev* **42**, 33-84, doi:10.1016/s0165-0173(03)00143-7 (2003).

862 102 Agster, K. L., Mejias-Aponte, C. A., Clark, B. D. & Waterhouse, B. D. Evidence for a
863 regional specificity in the density and distribution of noradrenergic varicosities in rat
864 cortex. *J Comp Neurol* **521**, 2195-2207, doi:10.1002/cne.23270 (2013).

865 103 Giustino, T. F. & Maren, S. Noradrenergic Modulation of Fear Conditioning and
866 Extinction. *Front Behav Neurosci* **12**, 43, doi:10.3389/fnbeh.2018.00043 (2018).

867 104 Jänig, W. *Integrative Action of the Autonomic Nervous System: Neurobiology of*
868 *Homeostasis*. (Cambridge University Press, 2006).

869 105 Farmer, D. G. S. *et al.* On the presence and functional significance of sympathetic
870 premotor neurons with collateralized spinal axons in the rat. *J Physiol* **597**, 3407-3423,
871 doi:10.1113/JP277661 (2019).

872 106 Totah, N. K. B., Logothetis, N. K. & Eschenko, O. Noradrenergic ensemble-based
873 modulation of cognition over multiple timescales. *Brain Res* **1709**, 50-66,
874 doi:10.1016/j.brainres.2018.12.031 (2019).

875 107 Shipley, M. T., Fu, L., Ennis, M., Liu, W.-L. & Aston-Jones, G. Dendrites of locus
876 coeruleus neurons extend preferentially into two pericoerulear zones. *Journal of*
877 *Comparative Neurology* **365**, 56-68, doi:[https://doi.org/10.1002/\(SICI\)1096-9861\(19960129\)365:1<56::AID-CNE5>3.0.CO;2-I](https://doi.org/10.1002/(SICI)1096-9861(19960129)365:1<56::AID-CNE5>3.0.CO;2-I) (1996).

879 108 Schwarz, L. A. *et al.* Viral-genetic tracing of the input-output organization of a central
880 noradrenaline circuit. *Nature* **524**, 88-92, doi:10.1038/nature14600 (2015).

881 109 Totah, N. K., Neves, R. M., Panzeri, S., Logothetis, N. K. & Eschenko, O. The Locus
882 Coeruleus Is a Complex and Differentiated Neuromodulatory System. *Neuron* **99**, 1055-
883 1068.e1056, doi:<https://doi.org/10.1016/j.neuron.2018.07.037> (2018).

884 110 Aston-Jones, G., Ennis, M., Pieribone, V. A., Nickell, W. T. & Shipley, M. T. The brain
885 nucleus locus coeruleus: restricted afferent control of a broad efferent network. *Science*
886 **234**, 734-737 (1986).

887 111 Cedarbaum, J. M. & Aghajanian, G. K. Afferent projections to the rat locus coeruleus as
888 determined by a retrograde tracing technique. *Journal of Comparative Neurology* **178**, 1-
889 15, doi:<https://doi.org/10.1002/cne.901780102> (1978).

890 112 Aston-Jones, G. *et al.* in *Progress in Brain Research* Vol. 88 (eds C. D. Barnes & O.
891 Pompeiano) 47-75 (Elsevier, 1991).

892 113 De Cicco, V. *et al.* Trigeminal, Visceral and Vestibular Inputs May Improve Cognitive
893 Functions by Acting through the Locus Coeruleus and the Ascending Reticular Activating
894 System: A New Hypothesis. *Frontiers in neuroanatomy* **11**,
895 doi:10.3389/fnana.2017.00130 (2018).

896 114 Tramonti Fantozzi, M. P. *et al.* Trigeminal input, pupil size and cognitive performance:
897 From oral to brain matter. *Brain Research* **1751**, 147194,
898 doi:<https://doi.org/10.1016/j.brainres.2020.147194> (2021).

899 115 Rodenkirch, C., Carmel, J. & Wang, Q. Rapid Effects of Vagus Nerve Stimulation on
900 Sensory Processing Through Activation of Neuromodulatory Systems. *Frontiers in*
901 *Neuroscience* **in press**, doi:10.3389/fnins.2022.922424 (2022).

902 116 Tramonti Fantozzi, M. P. *et al.* Chewing and Cognitive Improvement: The Side Matters.
903 *Frontiers in Systems Neuroscience* **15** (2021).

904 117 Luppi, P. H., Aston-Jones, G., Akaoka, H., Chouvet, G. & Jouvet, M. Afferent projections
905 to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with
906 cholera-toxin B subunit and Phaseolus vulgaris leucoagglutinin. *Neuroscience* **65**, 119-
907 160 (1995).

908 118 Abrams, P. *et al.* Muscarinic receptors: their distribution and function in body systems,
909 and the implications for treating overactive bladder. *Br J Pharmacol* **148**, 565-578,
910 doi:10.1038/sj.bjp.0706780 (2006).

911 119 Breton-Provencher, V. & Sur, M. Active control of arousal by a locus coeruleus
912 GABAergic circuit. *Nature Neuroscience* **22**, 218-228, doi:10.1038/s41593-018-0305-z
913 (2019).

914 120 Lewis, D. A. & Morrison, J. H. Noradrenergic innervation of monkey prefrontal cortex: a
915 dopamine-beta-hydroxylase immunohistochemical study. *J Comp Neurol* **282**, 317-330,
916 doi:10.1002/cne.902820302 (1989).

917 121 Morrison, J. H. & Foote, S. L. Noradrenergic and serotonergic innervation of cortical,
918 thalamic, and tectal visual structures in Old and New World monkeys. *J Comp Neurol*
919 **243**, 117-138, doi:10.1002/cne.902430110 (1986).

920 122 Kebschull, J. M. *et al.* High-Throughput Mapping of Single-Neuron Projections by
921 Sequencing of Barcoded RNA. *Neuron* **91**, 975-987, doi:10.1016/j.neuron.2016.07.036
922 (2016).

923 123 Hirschberg, S., Li, Y., Randall, A., Kremer, E. J. & Pickering, A. E. Functional dichotomy
924 in spinal- vs prefrontal-projecting locus coeruleus modules splits descending
925 noradrenergic analgesia from ascending aversion and anxiety in rats. *eLife* **6**,
926 doi:10.7554/eLife.29808 (2017).

927 124 Chandler, D. J., Gao, W. J. & Waterhouse, B. D. Heterogeneous organization of the
928 locus coeruleus projections to prefrontal and motor cortices. *Proc Natl Acad Sci U S A*
929 **111**, 6816-6821, doi:10.1073/pnas.1320827111 (2014).

930 125 Zerbi, V. *et al.* Rapid Reconfiguration of the Functional Connectome after Chemogenetic
931 Locus Coeruleus Activation. *Neuron* **103**, 702-718 e705,
932 doi:10.1016/j.neuron.2019.05.034 (2019).

933 126 Liu, Y., Rodenkirch, C., Moskowitz, N., Schriver, B. & Wang, Q. Dynamic Lateralization
934 of Pupil Dilation Evoked by Locus Coeruleus Activation Results from Sympathetic, Not
935 Parasympathetic, Contributions. *Cell reports* **20**, 3099-3112,
936 doi:<https://doi.org/10.1016/j.celrep.2017.08.094> (2017).

937 127 Robertson, S. D., Plummer, N. W., de Marchena, J. & Jensen, P. Developmental origins
938 of central norepinephrine neuron diversity. *Nat Neurosci* **16**, 1016-1023,
939 doi:10.1038/nn.3458 (2013).

940 128 Jones, B. E. in *Progress in Brain Research* Vol. 88 (eds C. D. Barnes & O. Pompeiano)
941 15-30 (Elsevier, 1991).

942 129 Williams, J. A. & Reiner, P. B. Noradrenaline hyperpolarizes identified rat mesopontine
943 cholinergic neurons in vitro. *J Neurosci* **13**, 3878-3883 (1993).

944 130 Pisani, A. *et al.* Activation of β 1-Adrenoceptors Excites Striatal Cholinergic Interneurons
945 through a cAMP-Dependent, Protein Kinase-Independent Pathway. *The Journal of
946 Neuroscience* **23**, 5272-5282, doi:10.1523/jneurosci.23-12-05272.2003 (2003).

947 131 Manns, I. D., Lee, M. G., Modirrousta, M., Hou, Y. P. & Jones, B. E. Alpha 2 adrenergic
948 receptors on GABAergic, putative sleep-promoting basal forebrain neurons. *European
949 Journal of Neuroscience* **18**, 723-727, doi:<https://doi.org/10.1046/j.1460-9568.2003.02788.x> (2003).

951 132 Szabadi, E. Functional neuroanatomy of the central noradrenergic system. *Journal of
952 Psychopharmacology* **27**, 659-693, doi:10.1177/0269881113490326 (2013).

953 133 Carter, M. E. *et al.* Tuning arousal with optogenetic modulation of locus coeruleus
954 neurons. *Nature Neuroscience* **13**, 1526-1533, doi:<https://doi.org/10.1038/nn.2682>
955 (2010).

956 134 Xu, M. *et al.* Basal forebrain circuit for sleep-wake control. *Nature Neuroscience* **18**,
957 1641-1647, doi:10.1038/nn.4143 (2015).

958 135 Rho, H.-J., Kim, J.-H. & Lee, S.-H. Function of Selective Neuromodulatory Projections in
959 the Mammalian Cerebral Cortex: Comparison Between Cholinergic and Noradrenergic
960 Systems. *Frontiers in Neural Circuits* **12**, doi:10.3389/fncir.2018.00047 (2018).

961 136 Lena, C. *et al.* Diversity and distribution of nicotinic acetylcholine receptors in the locus
962 ceruleus neurons. *Proc Natl Acad Sci U S A* **96**, 12126-12131,
963 doi:10.1073/pnas.96.21.12126 (1999).

964 137 Woo, R. S. *et al.* Mechanism of nicotine-evoked release of 3H-noradrenaline in human
965 cerebral cortex slices. *Br J Pharmacol* **137**, 1063-1070, doi:10.1038/sj.bjp.0704975
966 (2002).

967 138 El-Etri, M. M., Ennis, M., Griff, E. R. & Shipley, M. T. Evidence for cholinergic regulation
968 of basal norepinephrine release in the rat olfactory bulb. *Neuroscience* **93**, 611-617,
969 doi:[https://doi.org/10.1016/S0306-4522\(99\)00169-4](https://doi.org/10.1016/S0306-4522(99)00169-4) (1999).

970 139 Lomax, P., Foster, R. S. & Kirkpatrick, W. E. Cholinergic and adrenergic interactions in
971 the thermoregulatory centers of the rat. *Brain Research* **15**, 431-438,
972 doi:[https://doi.org/10.1016/0006-8993\(69\)90165-6](https://doi.org/10.1016/0006-8993(69)90165-6) (1969).

973 140 Brown, V. J. & Bowman, E. M. Rodent models of prefrontal cortical function. *Trends
974 Neurosci* **25**, 340-343, doi:10.1016/s0166-2236(02)02164-1 (2002).

975 141 Dalley, J. W., Cardinal, R. N. & Robbins, T. W. Prefrontal executive and cognitive
976 functions in rodents: neural and neurochemical substrates. *Neurosci Biobehav Rev* **28**,
977 771-784, doi:10.1016/j.neubiorev.2004.09.006 (2004).

978 142 Furuyashiki, T. & Gallagher, M. Neural encoding in the orbitofrontal cortex related to
979 goal-directed behavior. *Ann N Y Acad Sci* **1121**, 193-215, doi:10.1196/annals.1401.037
980 (2007).

981 143 Robbins, T. W. Chemical neuromodulation of frontal-executive functions in humans and
982 other animals. *Exp Brain Res* **133**, 130-138, doi:10.1007/s002210000407 (2000).

983 144 Chandler, D. J., Lamperski, C. S. & Waterhouse, B. D. Identification and distribution of
984 projections from monoaminergic and cholinergic nuclei to functionally differentiated
985 subregions of prefrontal cortex. *Brain Res* **1522**, 38-58,
986 doi:10.1016/j.brainres.2013.04.057 (2013).

987 145 Eisenach, J. C., Detweiler, D. J., Tong, C., D'Angelo, R. & Hood, D. D. Cerebrospinal
988 Fluid Norepinephrine and Acetylcholine Concentrations During Acute Pain. *Anesthesia &
989 Analgesia* **82** (1996).

990 146 Decker, M. W. & McGaugh, J. L. The role of interactions between the cholinergic system
991 and other neuromodulatory systems in learning and memory. *Synapse* **7**, 151-168,
992 doi:<https://doi.org/10.1002/syn.890070209> (1991).

993 147 Mason, S. T. & Fibiger, H. C. Interaction between noradrenergic and cholinergic systems
994 in the rat brain: Behavioural function in locomotor activity. *Neuroscience* **4**, 517-525,
995 doi:[https://doi.org/10.1016/0306-4522\(79\)90128-3](https://doi.org/10.1016/0306-4522(79)90128-3) (1979).

996 148 Beane, M. & Marrocco, R. T. Norepinephrine and acetylcholine mediation of the
997 components of reflexive attention: implications for attention deficit disorders. *Progress in
998 Neurobiology* **74**, 167-181, doi:<https://doi.org/10.1016/j.pneurobio.2004.09.001> (2004).

999 149 Wotton, C. A., Cross, C. D. & Bekar, L. K. Serotonin, norepinephrine, and acetylcholine
1000 differentially affect astrocytic potassium clearance to modulate somatosensory signaling
1001 in male mice. *Journal of Neuroscience Research* **98**, 964-977,
1002 doi:<https://doi.org/10.1002/jnr.24597> (2020).

1003 150 Barik, J. & Wonnacott, S. Indirect Modulation by $\alpha 7$ Nicotinic Acetylcholine Receptors of
1004 Noradrenaline Release in Rat Hippocampal Slices: Interaction with Glutamate and
1005 GABA Systems and Effect of Nicotine Withdrawal. *Molecular Pharmacology* **69**, 618-
1006 628, doi:10.1124/mol.105.018184 (2006).

1007 151 Summers, K. L. & Giacobini, E. Effects of local and repeated systemic administration of
1008 ($-$)nicotine on extracellular levels of acetylcholine, norepinephrine, dopamine, and
1009 serotonin in rat cortex. *Neurochemical Research* **20**, 753-759, doi:10.1007/BF01705545
1010 (1995).

1011 152 Dani, J. A. Overview of nicotinic receptors and their roles in the central nervous system.
1012 *Biol Psychiatry* **49**, 166-174, doi:10.1016/s0006-3223(00)01011-8 (2001).

1013 153 Colquhoun, L. M. & Patrick, J. W. Pharmacology of neuronal nicotinic acetylcholine
1014 receptor subtypes. *Adv Pharmacol* **39**, 191-220, doi:10.1016/s1054-3589(08)60072-1
1015 (1997).

1016 154 Le Novere, N. & Changeux, J. P. Molecular evolution of the nicotinic acetylcholine
1017 receptor: an example of multigene family in excitable cells. *J Mol Evol* **40**, 155-172,
1018 doi:10.1007/BF00167110 (1995).

1019 155 McGehee, D. S. & Role, L. W. Physiological diversity of nicotinic acetylcholine receptors
1020 expressed by vertebrate neurons. *Annu Rev Physiol* **57**, 521-546,
1021 doi:10.1146/annurev.ph.57.030195.002513 (1995).

1022 156 Charpentier, E., Barneoud, P., Moser, P., Besnard, F. & Sgard, F. Nicotinic acetylcholine
1023 subunit mRNA expression in dopaminergic neurons of the rat substantia nigra and
1024 ventral tegmental area. *Neuroreport* **9**, 3097-3101, doi:10.1097/00001756-199809140-
1025 00033 (1998).

1026 157 Tribollet, E., Bertrand, D., Marguerat, A. & Raggenbass, M. Comparative distribution of
1027 nicotinic receptor subtypes during development, adulthood and aging: an
1028 autoradiographic study in the rat brain. *Neuroscience* **124**, 405-420,
1029 doi:10.1016/j.neuroscience.2003.09.028 (2004).

1030 158 Alkondon, M., Pereira, E. F., Eisenberg, H. M. & Albuquerque, E. X. Nicotinic receptor
1031 activation in human cerebral cortical interneurons: a mechanism for inhibition and
1032 disinhibition of neuronal networks. *J Neurosci* **20**, 66-75 (2000).

1033 159 Frazier, C. J., Buhler, A. V., Weiner, J. L. & Dunwiddie, T. V. Synaptic potentials
1034 mediated via alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat
1035 hippocampal interneurons. *J Neurosci* **18**, 8228-8235 (1998).

1036 160 Porter, J. T. *et al.* Selective excitation of subtypes of neocortical interneurons by nicotinic
1037 receptors. *J Neurosci* **19**, 5228-5235 (1999).

1038 161 Levy, R. B. & Aoki, C. Alpha7 nicotinic acetylcholine receptors occur at postsynaptic
1039 densities of AMPA receptor-positive and -negative excitatory synapses in rat sensory
1040 cortex. *J Neurosci* **22**, 5001-5015 (2002).

1041 162 Sihver, W., Gillberg, P. G. & Nordberg, A. Laminar distribution of nicotinic receptor
1042 subtypes in human cerebral cortex as determined by [³H](-)nicotine, [³H]cytisine and
1043 [³H]epibatidine in vitro autoradiography. *Neuroscience* **85**, 1121-1133,
1044 doi:10.1016/s0306-4522(97)00652-0 (1998).

1045 163 Albuquerque, E. X. *et al.* Properties of neuronal nicotinic acetylcholine receptors:
1046 pharmacological characterization and modulation of synaptic function. *J Pharmacol Exp
1047 Ther* **280**, 1117-1136 (1997).

1048 164 Smythies, J. *The Neuromodulators*. Vol. 64 (2005).

1049 165 Adem, A., Jolkkonen, M., Bogdanovic, N., Islam, A. & Karlsson, E. Localization of M1
1050 muscarinic receptors in rat brain using selective muscarinic toxin-1. *Brain Res Bull* **44**,
1051 597-601, doi:10.1016/s0361-9230(97)00281-5 (1997).

1052 166 Mrzljak, L., Levey, A. I., Belcher, S. & Goldman-Rakic, P. S. Localization of the m2
1053 muscarinic acetylcholine receptor protein and mRNA in cortical neurons of the normal
1054 and cholinergically deafferented rhesus monkey. *J Comp Neurol* **390**, 112-132 (1998).

1055 167 Wei, J., Walton, E. A., Milici, A. & Buccafusco, J. J. m1-m5 muscarinic receptor
1056 distribution in rat CNS by RT-PCR and HPLC. *J Neurochem* **63**, 815-821,
1057 doi:10.1046/j.1471-4159.1994.63030815.x (1994).

1058 168 Marino, M. J., Rouse, S. T., Levey, A. I., Potter, L. T. & Conn, P. J. Activation of the
1059 genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA)
1060 receptor currents in hippocampal pyramidal cells. *Proc Natl Acad Sci U S A* **95**, 11465-
1061 11470, doi:10.1073/pnas.95.19.11465 (1998).

1062 169 Fisahn, A. *et al.* Muscarinic induction of hippocampal gamma oscillations requires
1063 coupling of the M1 receptor to two mixed cation currents. *Neuron* **33**, 615-624,
1064 doi:10.1016/s0896-6273(02)00587-1 (2002).

1065 170 Hamilton, S. E. & Nathanson, N. M. The M1 receptor is required for muscarinic activation
1066 of mitogen-activated protein (MAP) kinase in murine cerebral cortical neurons. *J Biol
1067 Chem* **276**, 15850-15853, doi:10.1074/jbc.M011563200 (2001).

1068 171 Berkeley, J. L. *et al.* M1 muscarinic acetylcholine receptors activate extracellular signal-
1069 regulated kinase in CA1 pyramidal neurons in mouse hippocampal slices. *Mol Cell
1070 Neurosci* **18**, 512-524, doi:10.1006/mcne.2001.1042 (2001).

1071 172 Berkeley, J. L. & Levey, A. I. Muscarinic activation of mitogen-activated protein kinase in
1072 PC12 cells. *J Neurochem* **75**, 487-493, doi:10.1046/j.1471-4159.2000.0750487.x (2000).

1073 173 Naude, J., Dongelmans, M. & Faure, P. Nicotinic alteration of decision-making.
1074 *Neuropharmacology* **96**, 244-254, doi:10.1016/j.neuropharm.2014.11.021 (2015).

1075 174 Kolokotroni, K. Z., Rodgers, R. J. & Harrison, A. A. Acute nicotine increases both
1076 impulsive choice and behavioural disinhibition in rats. *Psychopharmacology (Berl)* **217**,
1077 455-473, doi:10.1007/s00213-011-2296-2 (2011).

1078 175 Pittaras, E. C. *et al.* Neuronal Nicotinic Receptors Are Crucial for Tuning of E/I Balance
1079 in Prelimbic Cortex and for Decision-Making Processes. *Front Psychiatry* **7**, 171,
1080 doi:10.3389/fpsyg.2016.00171 (2016).

1081 176 Thomsen, M. S., Hansen, H. H., Timmerman, D. B. & Mikkelsen, J. D. Cognitive
1082 improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal
1083 models to human pathophysiology. *Curr Pharm Des* **16**, 323-343,
1084 doi:10.2174/138161210790170094 (2010).

1085 177 Mendez, I. A., Gilbert, R. J., Bizon, J. L. & Setlow, B. Effects of acute administration of
1086 nicotinic and muscarinic cholinergic agonists and antagonists on performance in different
1087 cost-benefit decision making tasks in rats. *Psychopharmacology (Berl)* **224**, 489-499,
1088 doi:10.1007/s00213-012-2777-y (2012).

1089 178 Goldberg, J. A., Ding, J. B. & Surmeier, D. J. Muscarinic modulation of striatal function
1090 and circuitry. *Handb Exp Pharmacol*, 223-241, doi:10.1007/978-3-642-23274-9_10
1091 (2012).

1092 179 Silveira, M. M., Malcolm, E., Shoaib, M. & Winstanley, C. A. Scopolamine and
1093 amphetamine produce similar decision-making deficits on a rat gambling task via
1094 independent pathways. *Behav Brain Res* **281**, 86-95, doi:10.1016/j.bbr.2014.12.029
1095 (2015).

1096 180 Howe, W. M. *et al.* Acetylcholine Release in Prefrontal Cortex Promotes Gamma
1097 Oscillations and Theta-Gamma Coupling during Cue Detection. *J Neurosci* **37**, 3215-
1098 3230, doi:10.1523/jneurosci.2737-16.2017 (2017).

1099 181 Tort, A. B., Komorowski, R. W., Manns, J. R., Kopell, N. J. & Eichenbaum, H. Theta-
1100 gamma coupling increases during the learning of item-context associations. *Proc Natl
1101 Acad Sci U S A* **106**, 20942-20947, doi:10.1073/pnas.0911331106 (2009).

1102 182 Ridley, R. M., Baker, H. F., Drewett, B. & Johnson, J. A. Effects of ibotenic acid lesions
1103 of the basal forebrain on serial reversal learning in marmosets. *Psychopharmacology
1104 (Berl)* **86**, 438-443, doi:10.1007/BF00427905 (1985).

1105 183 Groman, S. M. The Neurobiology of Impulsive Decision-Making and Reinforcement
1106 Learning in Nonhuman Animals. *Curr Top Behav Neurosci* **47**, 23-52,
1107 doi:10.1007/7854_2020_127 (2020).

1108 184 Hasselmo, M. E. & Bower, J. M. Acetylcholine and memory. *Trends Neurosci* **16**, 218-
1109 222, doi:10.1016/0166-2236(93)90159-j (1993).

1110 185 Doya, K. Metalearning and neuromodulation. *Neural Netw* **15**, 495-506,
1111 doi:10.1016/s0893-6080(02)00044-8 (2002).

1112 186 Gold, P. E. Acetylcholine modulation of neural systems involved in learning and memory.
1113 *Neurobiol Learn Mem* **80**, 194-210, doi:10.1016/j.nlm.2003.07.003 (2003).

1114 187 Passetti, F., Dalley, J. W., O'Connell, M. T., Everitt, B. J. & Robbins, T. W. Increased
1115 acetylcholine release in the rat medial prefrontal cortex during performance of a visual

1116 attentional task. *Eur J Neurosci* **12**, 3051-3058, doi:10.1046/j.1460-9568.2000.00183.x
1117 (2000).

1118 188 Mirza, N. R. & Stolerman, I. P. The role of nicotinic and muscarinic acetylcholine
1119 receptors in attention. *Psychopharmacology (Berl)* **148**, 243-250,
1120 doi:10.1007/s002130050048 (2000).

1121 189 Robbins, T. W. The 5-choice serial reaction time task: behavioural pharmacology and
1122 functional neurochemistry. *Psychopharmacology (Berl)* **163**, 362-380,
1123 doi:10.1007/s00213-002-1154-7 (2002).

1124 190 Howe, W. M. *et al.* Enhancement of attentional performance by selective stimulation of
1125 alpha4beta2(*) nAChRs: underlying cholinergic mechanisms.
1126 *Neuropsychopharmacology* **35**, 1391-1401, doi:10.1038/npp.2010.9 (2010).

1127 191 Guillem, K. *et al.* Nicotinic acetylcholine receptor beta2 subunits in the medial prefrontal
1128 cortex control attention. *Science* **333**, 888-891, doi:10.1126/science.1207079 (2011).

1129 192 Furey, M. L., Pietrini, P., Haxby, J. V. & Drevets, W. C. Selective effects of cholinergic
1130 modulation on task performance during selective attention. *Neuropsychopharmacology*
1131 **33**, 913-923, doi:10.1038/sj.npp.1301461 (2008).

1132 193 Erskine, F. F. *et al.* Evidence for synergistic modulation of early information processing
1133 by nicotinic and muscarinic receptors in humans. *Hum Psychopharmacol* **19**, 503-509,
1134 doi:10.1002/hup.613 (2004).

1135 194 Mantis, M. J. *et al.* Muscarinic versus nicotinic modulation of a visual task. a pet study
1136 using drug probes. *Neuropsychopharmacology* **25**, 555-564, doi:10.1016/S0893-
1137 133X(01)00264-0 (2001).

1138 195 Herrero, J. L. *et al.* Acetylcholine contributes through muscarinic receptors to attentional
1139 modulation in V1. *Nature* **454**, 1110-1114, doi:10.1038/nature07141 (2008).

1140 196 Zink, N., Bensmann, W., Arning, L., Stock, A. K. & Beste, C. CHRM2 Genotype Affects
1141 Inhibitory Control Mechanisms During Cognitive Flexibility. *Mol Neurobiol* **56**, 6134-6141,
1142 doi:10.1007/s12035-019-1521-6 (2019).

1143 197 Ahlquist, R. P. A study of the adrenotropic receptors. *Am J Physiol* **153**, 586-600,
1144 doi:10.1152/ajplegacy.1948.153.3.586 (1948).

1145 198 Blendy, J. A., Grimm, L. J., Perry, D. C., West-Johnsrud, L. & Kellar, K. J.
1146 Electroconvulsive shock differentially increases binding to alpha-1 adrenergic receptor
1147 subtypes in discrete regions of rat brain. *J Neurosci* **10**, 2580-2586,
1148 doi:10.1523/jneurosci.10-08-02580.1990 (1990).

1149 199 Papay, R. *et al.* Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain:
1150 alpha1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte
1151 progenitors. *J Comp Neurol* **497**, 209-222, doi:10.1002/cne.20992 (2006).

1152 200 Tanoue, A. *et al.* The α 1D-adrenergic receptor directly regulates arterial blood pressure
1153 via vasoconstriction. *The Journal of Clinical Investigation* **109**, 765-775,
1154 doi:10.1172/JCI14001 (2002).

1155 201 Cavalli, A. *et al.* Decreased blood pressure response in mice deficient of the
1156 α 1b-adrenergic receptor. *Proceedings of the National
1157 Academy of Sciences* **94**, 11589-11594, doi:doi:10.1073/pnas.94.21.11589 (1997).

1158 202 Rokosh, D. G. & Simpson, P. C. Knockout of the α 1A/C-adrenergic receptor
1159 subtype: The α 1A/C is expressed in resistance arteries and is required to
1160 maintain arterial blood pressure. *Proceedings of the National Academy of Sciences* **99**,
1161 9474-9479, doi:doi:10.1073/pnas.132552699 (2002).

1162 203 Kobayashi, M. *et al.* Presynaptic and postsynaptic modulation of glutamatergic synaptic
1163 transmission by activation of α 1- and β -adrenoceptors in layer V pyramidal neurons of
1164 rat cerebral cortex. *Synapse* **63**, 269-281, doi:<https://doi.org/10.1002/syn.20604> (2009).

1165 204 Mouradian, R. D., Sessler, F. M. & Waterhouse, B. D. Noradrenergic potentiation of
1166 excitatory transmitter action in cerebrocortical slices: evidence for mediation by an α 1

1167 receptor-linked second messenger pathway. *Brain Research* **546**, 83-95,
1168 doi:[https://doi.org/10.1016/0006-8993\(91\)91162-T](https://doi.org/10.1016/0006-8993(91)91162-T) (1991).

1169 205 Gordon, G. R. J. & Bains, J. S. Priming of Excitatory Synapses by α ₁
1170 Adrenoceptor-Mediated Inhibition of Group III Metabotropic Glutamate Receptors. *The
1171 Journal of Neuroscience* **23**, 6223-6231, doi:10.1523/jneurosci.23-15-06223.2003
1172 (2003).

1173 206 Luo, F., Tang, H., Li, B.-m. & Li, S.-h. Activation of α 1-adrenoceptors enhances
1174 excitatory synaptic transmission via a pre- and postsynaptic protein kinase C-dependent
1175 mechanism in the medial prefrontal cortex of rats. *European Journal of Neuroscience* **39**,
1176 1281-1293, doi:<https://doi.org/10.1111/ejn.12495> (2014).

1177 207 Velásquez-Martinez, M. C., Vázquez-Torres, R. & Jiménez-Rivera, C. A. Activation of
1178 alpha1-adrenoceptors enhances glutamate release onto ventral tegmental area
1179 dopamine cells. *Neuroscience* **216**, 18-30,
1180 doi:<https://doi.org/10.1016/j.neuroscience.2012.03.056> (2012).

1181 208 Chen, Q., Li, D.-P. & Pan, H.-L. Presynaptic α ₁ Adrenergic Receptors
1182 Differentially Regulate Synaptic Glutamate and GABA Release to Hypothalamic
1183 Presympathetic Neurons. *Journal of Pharmacology and Experimental Therapeutics* **316**,
1184 733-742, doi:10.1124/jpet.105.094797 (2006).

1185 209 Marek, G. J. & Aghajanian, G. K. 5-HT2A receptor or α 1-adrenoceptor activation induces
1186 excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex.
1187 *European Journal of Pharmacology* **367**, 197-206, doi:[https://doi.org/10.1016/S0014-2999\(98\)00945-5](https://doi.org/10.1016/S0014-2999(98)00945-5) (1999).

1188 210 Shao, Y. & Sutin, J. Expression of adrenergic receptors in individual astrocytes and
1189 motor neurons isolated from the adult rat brain. *Glia* **6**, 108-117,
1190 doi:<https://doi.org/10.1002/glia.440060205> (1992).

1191 211 Bekar, L. K., He, W. & Nedergaard, M. Locus Coeruleus α -Adrenergic-Mediated
1192 Activation of Cortical Astrocytes In Vivo. *Cerebral Cortex* **18**, 2789-2795,
1193 doi:10.1093/cercor/bhn040 (2008).

1194 212 Kulik, A., Haentzsch, A., Lückermann, M., Reichelt, W. & Ballanyi, K. Neuron-Glia
1195 Signaling via α ₁ Adrenoceptor-Mediated Ca^{2+} Release in
1196 Bergmann Glial Cells *In Situ*. *The Journal of Neuroscience* **19**, 8401-8408,
1197 doi:10.1523/jneurosci.19-19-08401.1999 (1999).

1198 213 Perez, D. M. alpha1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity,
1199 and Cognition. *Front Pharmacol* **11**, 581098, doi:10.3389/fphar.2020.581098 (2020).

1200 214 Trendelenburg, A. U., Limberger, N. & Rump, L. C. Alpha 2-adrenergic receptors of the
1201 alpha 2c subtype mediate inhibition of norepinephrine release in human kidney cortex.
1202 *Molecular Pharmacology* **45**, 1168-1176 (1994).

1203 215 Giovannitti, J. A., Jr., Thoms, S. M. & Crawford, J. J. Alpha-2 adrenergic receptor
1204 agonists: a review of current clinical applications. *Anesth Prog* **62**, 31-39,
1205 doi:10.2344/0003-3006-62.1.31 (2015).

1206 216 Bylund, D. B. in *xPharm: The Comprehensive Pharmacology Reference* (eds S. J.
1207 Enna & David B. Bylund) 1-9 (Elsevier, 2007).

1208 217 Philipp, M., Brede, M. & Hein, L. Physiological significance of alpha(2)-adrenergic
1209 receptor subtype diversity: one receptor is not enough. *Am J Physiol Regul Integr Comp
1210 Physiol* **283**, R287-295, doi:10.1152/ajpregu.00123.2002 (2002).

1211 218 Hagen, H., Hansen, N. & Manahan-Vaughan, D. β -Adrenergic Control of Hippocampal
1212 Function: Subserving the Choreography of Synaptic Information Storage and Memory.
1213 *Cerebral Cortex* **26**, 1349-1364, doi:10.1093/cercor/bhv330 (2016).

1214 219 Dayan, P. & Yu, A. J. Phasic norepinephrine: a neural interrupt signal for unexpected
1215 events. *Network* **17**, 335-350, doi:10.1080/09548980601004024 (2006).

1216

1217 220 Ego-Stengel, V., Bringuier, V. & Shulz, D. E. Noradrenergic modulation of functional
1218 selectivity in the cat visual cortex: an in vivo extracellular and intracellular study.
1219 *Neuroscience* **111**, 275-289, doi:10.1016/s0306-4522(02)00011-8 (2002).

1220 221 Bouret, S. & Sara, S. J. Network reset: a simplified overarching theory of locus coeruleus
1221 noradrenaline function. *Trends Neurosci* **28**, 574-582, doi:10.1016/j.tins.2005.09.002
1222 (2005).

1223 222 Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J. & Aston-Jones, G. The role
1224 of locus coeruleus in the regulation of cognitive performance. *Science* **283**, 549-554,
1225 doi:10.1126/science.283.5401.549 (1999).

1226 223 Joshi, S. & Gold, J. I. Context-dependent relationships between locus coeruleus firing
1227 patterns and coordinated neural activity in the anterior cingulate cortex. *eLife* **11**,
1228 e63490, doi:10.7554/eLife.63490 (2022).

1229 224 Gu, Q. Neuromodulatory transmitter systems in the cortex and their role in cortical
1230 plasticity. *Neuroscience* **111**, 815-835, doi:10.1016/s0306-4522(02)00026-x (2002).

1231 225 Montes, D. R., Stopper, C. M. & Floresco, S. B. Noradrenergic modulation of risk/reward
1232 decision making. *Psychopharmacology (Berl)* **232**, 2681-2696, doi:10.1007/s00213-015-
1233 3904-3 (2015).

1234 226 Kim, S., Bobeica, I., Gamo, N. J., Arnsten, A. F. & Lee, D. Effects of alpha-2A adrenergic
1235 receptor agonist on time and risk preference in primates. *Psychopharmacology (Berl)*
1236 **219**, 363-375, doi:10.1007/s00213-011-2520-0 (2012).

1237 227 Steere, J. C. & Arnsten, A. F. The alpha-2A noradrenergic receptor agonist guanfacine
1238 improves visual object discrimination reversal performance in aged rhesus monkeys.
1239 *Behav Neurosci* **111**, 883-891, doi:10.1037/0735-7044.111.5.883 (1997).

1240 228 Aston-Jones, G., Chiang, C. & Alexinsky, T. Discharge of noradrenergic locus coeruleus
1241 neurons in behaving rats and monkeys suggests a role in vigilance. *Prog Brain Res* **88**,
1242 501-520 (1991).

1243 229 Foote, S. L., Berridge, C. W., Adams, L. M. & Pineda, J. A. Electrophysiological
1244 evidence for the involvement of the locus coeruleus in alerting, orienting, and attending.
1245 *Prog Brain Res* **88**, 521-532, doi:10.1016/s0079-6123(08)63831-5 (1991).

1246 230 Aston-Jones, G. & Bloom, F. E. Activity of norepinephrine-containing locus coeruleus
1247 neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. *J Neurosci* **1**,
1248 876-886 (1981).

1249 231 Livingstone, M. S. & Hubel, D. H. Effects of sleep and arousal on the processing of
1250 visual information in the cat. *Nature* **291**, 554-561, doi:10.1038/291554a0 (1981).

1251 232 McCormick, D. A., Pape, H. C. & Williamson, A. in *Progress in Brain Research* Vol. 88
1252 (eds C. D. Barnes & O. Pompeiano) 293-305 (Elsevier, 1991).

1253 233 Mountcastle, V. B., Andersen, R. A. & Motter, B. C. The influence of attentive fixation
1254 upon the excitability of the light- sensitive neurons of the posterior parietal cortex. *The
1255 Journal of Neuroscience* **1**, 1218, doi:10.1523/JNEUROSCI.01-11-01218.1981 (1981).

1256 234 Hyvarinen, J., Poranen, A. & Jokinen, Y. Influence of attentive behavior on neuronal
1257 responses to vibration in primary somatosensory cortex of the monkey. *J Neurophysiol*
1258 **43**, 870-882, doi:10.1152/jn.1980.43.4.870 (1980).

1259 235 Aston-Jones, G., Chiang, C. & Alexinsky, T. in *Progress in Brain Research* Vol. 88 (eds
1260 C. D. Barnes & O. Pompeiano) 501-520 (Elsevier, 1991).

1261 236 Coull, J. T., Nobre, A. C. & Frith, C. D. The Noradrenergic α 2 Agonist Clonidine
1262 Modulates Behavioural and Neuroanatomical Correlates of Human Attentional Orienting
1263 and Alerting. *Cerebral Cortex* **11**, 73-84, doi:10.1093/cercor/11.1.73 (2001).

1264 237 Spencer, T. et al. An open-label, dose-ranging study of atomoxetine in children with
1265 attention deficit hyperactivity disorder. *J Child Adolesc Psychopharmacol* **11**, 251-265,
1266 doi:10.1089/10445460152595577 (2001).

1267 238 Sigurdardottir, H. L. *et al.* Association of norepinephrine transporter methylation with in
1268 vivo NET expression and hyperactivity-impulsivity symptoms in ADHD measured with
1269 PET. *Mol Psychiatry* **26**, 1009-1018, doi:10.1038/s41380-019-0461-x (2021).

1270 239 Dippel, G., Mückschel, M., Ziemssen, T. & Beste, C. Demands on response inhibition
1271 processes determine modulations of theta band activity in superior frontal areas and
1272 correlations with pupillometry – Implications for the norepinephrine system during
1273 inhibitory control. *NeuroImage* **157**, 575-585,
1274 doi:<https://doi.org/10.1016/j.neuroimage.2017.06.037> (2017).

1275 240 Eggermann, E., Kremer, Y., Crochet, S. & Petersen, Carl C. H. Cholinergic Signals in
1276 Mouse Barrel Cortex during Active Whisker Sensing. *Cell Reports* **9**, 1654-1660,
1277 doi:<https://doi.org/10.1016/j.celrep.2014.11.005> (2014).

1278 241 Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine
1279 function: adaptive gain and optimal performance. *Annu Rev Neurosci* **28**, 403-450,
1280 doi:10.1146/annurev.neuro.28.061604.135709 (2005).

1281 242 in *Brain Control of Wakefulness and Sleep* 35-54 (Springer US, 2005).

1282 243 in *Brain Control of Wakefulness and Sleep* 55-138 (Springer US, 2005).

1283 244 Reimer, J. *et al.* Pupil fluctuations track rapid changes in adrenergic and cholinergic
1284 activity in cortex. *Nat Commun* **7**, 13289, doi:10.1038/ncomms13289 (2016).

1285 245 Hirata, A., Aguilar, J. & Castro-Alamancos, M. A. Noradrenergic activation amplifies
1286 bottom-up and top-down signal-to-noise ratios in sensory thalamus. *J Neurosci* **26**,
1287 4426-4436, doi:10.1523/jneurosci.5298-05.2006 (2006).

1288 246 Koger, S. M. & Mair, R. G. Depletion of cortical norepinephrine in rats by 6-
1289 hydroxydopamine does not impair performance of a delayed-nonmatching-to-sample
1290 task. *Behavioral Neuroscience* **106**, 718-721, doi:10.1037/0735-7044.106.4.718 (1992).

1291 247 McGaughy, J., Sandstrom, M., Ruland, S., Bruno, J. P. & Sarter, M. Lack of effects of
1292 lesions of the dorsal noradrenergic bundle on behavioral vigilance. *Behav Neurosci* **111**,
1293 646-652, doi:10.1037/0735-7044.111.3.646 (1997).

1294 248 Chandler, D. & Waterhouse, B. D. Evidence for broad versus segregated projections
1295 from cholinergic and noradrenergic nuclei to functionally and anatomically discrete
1296 subregions of prefrontal cortex. *Front Behav Neurosci* **6**, 20,
1297 doi:10.3389/fnbeh.2012.00020 (2012).

1298 249 Dalley, J. W. *et al.* Distinct Changes in Cortical Acetylcholine and Noradrenaline Efflux
1299 during Contingent and Noncontingent Performance of a Visual Attentional Task. *The
1300 Journal of Neuroscience* **21**, 4908, doi:10.1523/JNEUROSCI.21-13-04908.2001 (2001).

1301 250 McGaughy, J., Ross, R. S. & Eichenbaum, H. Noradrenergic, but not cholinergic,
1302 deafferentation of prefrontal cortex impairs attentional set-shifting. *Neuroscience* **153**,
1303 63-71, doi:<https://doi.org/10.1016/j.neuroscience.2008.01.064> (2008).

1304 251 Disney, A. A. Neuromodulatory Control of Early Visual Processing in Macaque. *Annu
1305 Rev Vis Sci* **7**, 181-199, doi:10.1146/annurev-vision-100119-125739 (2021).

1306 252 Doya, K. Modulators of decision making. *Nat Neurosci* **11**, 410-416, doi:10.1038/nn2077
1307 (2008).

1308 253 Sethuramanujam, S. *et al.* Rapid multi-directed cholinergic transmission in the central
1309 nervous system. *Nat Commun* **12**, 1374, doi:10.1038/s41467-021-21680-9 (2021).

1310 254 Yu, A. J. & Dayan, P. Uncertainty, neuromodulation, and attention. *Neuron* **46**, 681-692,
1311 doi:<https://doi.org/10.1016/j.neuron.2005.04.026> (2005).

1312 255 Deppe, M., Schwindt, W., Kugel, H., Plaßmann, H. & Kenning, P. Nonlinear Responses
1313 Within the Medial Prefrontal Cortex Reveal When Specific Implicit Information Influences
1314 Economic Decision Making. *Journal of Neuroimaging* **15**, 171-182,
1315 doi:<https://doi.org/10.1111/j.1552-6569.2005.tb00303.x> (2005).

1316 256 Euston, David R., Gruber, Aaron J. & McNaughton, Bruce L. The Role of Medial
1317 Prefrontal Cortex in Memory and Decision Making. *Neuron* **76**, 1057-1070,
1318 doi:<https://doi.org/10.1016/j.neuron.2012.12.002> (2012).

1319 257 Orsini, C. A. *et al.* Contributions of medial prefrontal cortex to decision making involving
1320 risk of punishment. *Neuropharmacology* **139**, 205-216,
1321 doi:<https://doi.org/10.1016/j.neuropharm.2018.07.018> (2018).

1322 258 Sul, J. H., Kim, H., Huh, N., Lee, D. & Jung, M. W. Distinct Roles of Rodent Orbitofrontal
1323 and Medial Prefrontal Cortex in Decision Making. *Neuron* **66**, 449-460,
1324 doi:<https://doi.org/10.1016/j.neuron.2010.03.033> (2010).

1325 259 Rodenkirch, C., Schriver, B. & Wang, Q. in *Neural Engineering* (eds L. Zhang & D.
1326 Kaplan) (Springer, 2016).

1327