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Simple Summary: Over the past few decades, advances in electroencephalography (EEG) re-
cordings and brain stimulation has permitted an unprecedented view of how specific brain
structures communicate as well as organize complex cognitive functions. Specifically, neuro-
transmitters (including norepinephrine, acetylcholine, and dopamine) have all been shown to
have an impact on neural oscillations throughout the brain, linking them to changes in cogni-
tive functions such as memory, attention, and executive function. While these interactions are
still widely unexplored, their appearance in neurological disorders through cross-frequency
coupling (CFC) brings light to the vital role they play in orchestrating healthy brain function.
This brief review serves to highlight the important role each neuromodulatory system plays in
changing widespread neural networks, emphasizing their involvement in health and disease to
help inform more translational brain stimulation technologies.

Abstract: Using EEG and local field potentials (LFP) as an index of large-scale neural activities,
research has been able to associate neural oscillations in different frequency bands with markers of
cognitive functions, goal-directed behavior, and various neurological disorders. While this gives us
a glimpse into how neurons communicate throughout the brain, the causality of these synchro-
nized network activities remains poorly understood. Moreover, the effect of the major neuromod-
ulatory systems (e.g. noradrenergic, cholinergic, and dopaminergic) on brain oscillations has
drawn much attention. More recent studies have suggested that cross-frequency coupling (CFC) is
heavily responsible for mediating network-wide communication across subcortical and cortical
brain structures, implicating the importance of neurotransmitters in shaping coordinated actions.
By bringing to light the role each neuromodulatory system plays in regulating brain-wide neural
oscillations, we hope to paint a clearer picture of the pivotal role neural oscillations play in a variety
of cognitive functions and neurological disorders, and how neuromodulation techniques can be
optimized as a means of controlling neural network dynamics. The aim of this review is to show-
case the important role that neuromodulatory systems play in large-scale neural network dynam-
ics, informing future studies to pay close attention to their involvement in specific features of
neural oscillations and associated behaviors.

Keywords: Neuromodulation; EEG; Noradrenergic System; Cholinergic System; Dopaminergic
System; Pupil-linked Arousal; Neural Oscillations; Cross-frequency Coupling; Vagus Nerve Stim-
ulation; Neurological Disorders

1. Introduction:

Neural oscillations are thought to be an essential driver of interaction, communica-
tion, and information transmission throughout the brain [1-3]. Evolution has maximized
the role these oscillations play in regulating and controlling neuronal functions, driving
the synchronization of widespread neural networks in the brain. The EEG provides the
most popular non-invasive methods to record neural oscillations, summating the local
field potentials of thousands of neurons in cortical structures [4,5]. Not only does this
tool characterize “global” brain state as a time-series of voltage potentials, but also allows
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researchers to analyze these oscillatory waveforms through frequency domain analysis.
Studies have suggested that distinct EEG frequency bands (Delta, Theta, Alpha, Beta,
Gamma) are generated from unique neural populations across a variety of brain regions
[6]. This characterization shows the ability of different brain structures to generate spe-
cific neural oscillatory patterns, permitting synchronization and frequency-coupling [6].
Assessing the effect of oscillatory changes both globally and locally throughout the brain
can uncover the important and/or causal role of various neuromodulatory processes [7].
Cross-frequency coupling (CFC), resulting from coupling between various neural circuits
and/or different types of neurons through chemical or electrical synapses, has recently
become a more prominent topic [8,9]. Components of CFC such as phase-phase and
phase-amplitude coupling have been shown to have a large influence on cognitive pro-
cesses including attention, learning, and short- and long-term memory [10,11]. Addi-
tionally, the phase-amplitude synchronization of these high and low frequency bands
plays a prominent role in facilitating neural communication and neural plasticity [12-15].
Neurological diseases and conditions can often be associated with an abnormal oscilla-
tory desynchronization or type of CFC, unveiling the importance that synchronized
neural networks have in carrying out normal brain function [16]. While largely misun-
derstood, this network-wide communication seems to be an instrumental part of the co-
ordination and regulation of cognitive abilities. More recently, neural stimulation tech-
niques such as vagus nerve stimulation (VNS) and deep brain stimulation (DBS) have
been incorporating types of CFC analysis to better understand the effects of
phase-coupled neuromodulation [17-20]. By leveraging the causal effects of neuromod-
ulation on cognitive functions, these tools are focusing on real-time oscillation analysis to
optimize the effectiveness of stimulation across brain regions [21].

The neuromodulatory systems, including the noradrenergic, cholinergic, and do-
paminergic systems, play a pivotal role in the regulation and synchronization of neural
oscillations. These systems provide direct axonal projections to most structures of the
brain, regulating various brain functions through the release of neurotransmitters [22-25]
(Figure 1a). Specifically, norepinephrine, acetylcholine, and dopamine are all implicated
in the formation of complex decision making and executive functions [26]. Through their
activation and inhibition, each neuromodulatory system has been seen to change the os-
cillatory behavior of widespread neural networks, implicating changes in cortical struc-
tures as well as in different frequency bands [27]. Recently, more work has been done that
focuses on how cross-frequency coupling can be affected by neuromodulation, with
phasic or tonic neurotransmitter release causing synchronization or desynchronization in
EEG waveform features such as power, amplitude, phase, and frequency [28]. These ex-
periments are often using optogenetic manipulation in conjunction with LFP recordings,
providing insights into how particular neuromodulatory centers can have a profound
effect on neural oscillations, even in indirectly coupled brain regions. Another
non-invasive biometric measure, pupil size, has also been implicated in having a key role
in indexing neuromodulation, potentially serving as a new indirect modality in under-
standing the widespread effect of different arousal states on neural oscillations and be-
havior [29-34].

This review will focus on how these three neuromodulatory systems can individu-
ally modulate neural oscillations, looking specifically at how their activation can change
large-scale neural network synchrony in cognitive functions and neurological disorders.
This phenomenon has yet to be fully understood, and looking at how each system’s ac-
tivation or inhibition affects large scale oscillatory patterns may help uncover the origin
and causality of complex behaviors and neurological disorders. These insights will
hopefully inform a new direction of research that looks to further investigate how neu-
romodulation could improve and/or shape brain functions through changing large-scale
neural oscillations.
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101 2. Neural Oscillations in Cognition and Neurological Disorders

102 2.1. Frequency Spectral Analysis:

103 Over the past few decades, an abundance of research has been conducted exploring
104 the role different frequency bands play in representing the neural signals behind cogni-
105 tion, behavior, and neurological disease. These have been characterized by abstracting
106 the frequency spectrum into five unique frequency bands: Delta (1-3 Hz), Theta (4-7 Hz),
107 Alpha (8-12 Hz), Beta (13-30 Hz), and Gamma (30-100 Hz) [35]. While an abundance of
108 studies has implicated each band in a variety of diseases and cognitive functions, gener-
109 ally, slow and high oscillations can be discriminated by specific behavioral outputs. It is
110 important to acknowledge that these oscillations are often shaped by the summations of
111 thousands of neurons in a particular brain region, making these associations highly de-
112 pendent upon the type of recording device (EEG, ECOG, invasive LFP) and their sig-
113 nal-to-noise ratio. Even with this in mind, looking at how each frequency band is impli-
114 cated throughout complex cognitive processes can make it easier to understand how
115 neuromodulation plays a vital role in shaping these neural oscillations.

116 2.1.1 Healthy Functions:

117 Throughout normal cognition, each oscillatory frequency band has been linked to a
118 specific behavioral correlate or executive function. Generally speaking, delta waves are
119 associated with a wide variety of cognitive functions. Studies have shown that the delta
120 oscillatory phase is correlated with the reaction time of behavior, playing a role in the
121 synchronization of neural populations across multiple brain regions [36]. Also, these os-
122 cillations are often associated with a resting state, with the slow oscillations (less than 1
123 Hz) having the ability to trigger thalamically-generated spindles [37]. Theta oscillations
124 are thought to play a vital role in almost every cognitive function and brain region. Stud-
125 ies have uncovered their critical role in learning, memory, and synaptic plasticity. It is also
126 a foundational band for cross-frequency coupling, synchronizing with the gamma band in
127 a phenomenon known as theta-gamma coupling that is heavily studied for its role in
128 working memory [38-41]. The alpha band is also one of the most studied frequency bands,
129 specifically for its clear role in attentional demands and visual perception as well as its
130 easily-triggered appearance in stimuli associated tasks [42-47]. The beta band has often
131 been associated with motor-induced events [48]. The synchronization of beta frequencies
132 has been an indicator for normal motor system functioning, and it has been shown to play
133 a role in working memory [49,50]. Finally, the gamma band, like the theta band, plays a
134 vital role in memory, as seen in theta-gamma coupled oscillations throughout the hippo-
135 campus and cortex [41]. Gamma also has appearances in attention, consciousness, and
136 wakefulness experiments [51-53].

137 2.1.2. Neurological Diseases:

138 While each frequency band is instrumental to maintain healthy brain function,
139 neurological diseases seem to alter specific oscillatory properties, oftentimes leading to
140 cognitive dysfunction. To begin, abnormal delta oscillations have often been linked to
141 neurological conditions associated with sleep. Specifically, non-rapid-eye-movement
142 sleep in both Schizophrenia and Alzheimer’s disease has been associated with a de-
143 pressed delta power when compared to healthy patients [54,55] Clinically, the theta band
144 has been linked to the maintenance of the healthy human brain. Studies have explored
145 the loss of long-range temporal correlations in theta oscillations in patients with major
146 depressive disorder as well as increased theta event-related synchronization in children
147 diagnosed with ADHD [56,57]. A slowing in spontaneous alpha oscillations has been
148 consistently linked to Alzheimer’s disease. Additionally, likely due to its prominent role
149 in attention, resting alpha power has been shown to be is reduced in adults with ADHD
150 [58,59]. Higher frequency oscillations have been largely linked to motor related condi-

151 tions like Parkinson’s tremors. The beta band has been reported to be desynchronized in



Biology 2022, 11, x FOR PEER REVIEW 40f24

152 Parkinson’s patients [48]. The modulation of beta oscillations through deep brain stimu-
153 lation has enabled new targeted therapeutic treatments, oftentimes reversing these motor
154 symptoms [60].Gamma oscillations have also appeared in Parkinson’s disease and dur-
155 ing dyskinesia [61]. Likewise, aberrant gamma oscillations have appeared in mouse
156 models of Alzheimer’s disease and Fragile X syndrome [62].

157 2.2. Cross-frequency Coupling Analysis:

158 While each frequency band seems to dissociate into a wide variety of behaviors or
159 cognitive functions, the synchrony between each band through cross-frequency coupling
160 (CFC) analysis has brought new light to the complexity of neural networks [63]. Recent
161 studies which uncover the coupling between distinct features of neural oscillations such
162 as phase, amplitude, and power between frequency bands have shown its critical im-
163 portance to network dynamics, learning, and complex behaviors [64-67]. CFC is thought
164 to be integral to the temporal and spatial activation of specific cortical circuits, with one
165 study showing how the magnitude of gamma oscillations are modulated by slower wave
166 rhythms [68]. By pairing each frequency interaction with another (i.e. power-power,
167 phase-phase, phase-frequency, phase-power, and phase-amplitude), each coupled oscil-
168 latory feature provides a unique effect on the synchronization of widespread neural
169 networks and changes in cognitive abilities [10,69-73]. For example, observed phenom-
170 ena such as theta-gamma coupling, known for its role in working memory, is only one of
171 many oscillatory patterns which has linked the important role of band coupling in neural
172 communication, synaptic plasticity, and executive functions [8,10,40,74-77] (Figure 1b).
173

174 2.2.1. Healthy Functions:

175 Previous studies show more instances of CFC playing a role in cognitive functions
176 across memory, learning, attention, and decision-making. Specifically, alpha-beta
177 phase-amplitude coupling (PAC) has been seen synchronized in the medial prefrontal
178 cortex during decision making, as well as the phase of delta and theta bands, suggesting
179 the role of PAC in feedback coding [78,79]. In decision making, CFC was seen to be
180 highly correlated with rodent behavioral performance, with CFC strength increasing
181 over time in hippocampal regions [65]. PAC was also seen between alpha and gamma
182 bands in response to visual grating stimuli [80]. Additionally, attention has been seen in a
183 wide variety of CFC phenomena, with purposeful synchronization across brain regions
184 driving the formation of neural ensembles associated with specific tasks. Specifically,
185 spatial attention experiments showcase two unique PAC clusters, with delta-gamma
186 PAC being sensitive to cue direction and theta-alpha and beta-gamma PAC associated
187 with future reaction times [81]. Similarly, delta rhythm synchronization was correlated
188 with the reaction time to anticipatory signals [36]. Alpha and gamma rhythm synchro-
189 nization has also been seen to contribute to selective attention, with a study showing in-
190 creased beta and alpha synchronization in rule directed task behaviors [82]. Delta-theta
191 phase high gamma amplitude coupling, triggered by attentional demands, was seen as a
192 mechanism for sub-second facilitation and coordination in the parietal cortex [83]. Like-
193 wise, the implementation of alpha oscillations in visual discrimination highlights the role
194 of CFC in filtering out stimuli distractors [84].

195 CFC is also thought to be the brain’s method of transferring large amounts of in-
196 formation across distant regions of the brain in an organized fashion, and it has been
197 shown to impact different forms of learning and memory across species. Theta oscillatory
198 synchronization between the prefrontal cortex (PFC) and the amygdala supports com-
199 munication across interneuron networks and is associated with fear learning [85]. Theta
200 band synchronization of the anterior limbic system was also shown to be associated with
201 long term memory, while alpha band desynchronization of the posterior-thalamic system
202 was associated with short-term memory [86]. Additionally, synchronization of the PFC
203 between 3 and 32 Hz aided in short term memory [87]. The large variety in synchroniza-

204 tion patterns found across short- and long-term memory could be a result of the lack of
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205 consistency in behavioral tasks and experimental methods used across diverse research
206 groups. Nevertheless, it could also showcase that optimal short- and long-term encoding
207 for unique memory tasks or objects occurs at very specific CFC patterns [87]. It is im-
208 portant to note that the CFC studies that we just described were characterized through-
209 out healthy brain function and observed during the natural rhythms of wide-spread
210 neural networks. While these oscillatory phenomena have uncovered interesting links to
211 cognitive functions, their causality is still mostly untested. It is possible that CFC is a
212 predictive biomarker of communications between distinct populations of neurons medi-
213 ating various brain functions, and is therefore subject to the influence of neuromodula-
214 tory systems.

215

216 2.2.2. Neurological Diseases:

217 In playing such a large role in neural physiology, it is no surprise that CFC has also
218 been involved in a variety of neurological diseases. Being most observed in working
219 memory studies, PAC has been associated with diseases including schizophrenia, obses-
220 sive-compulsive disorder, Alzheimer’s disease, epilepsy, and Parkinson’s disease. For
221 example, it has been suggested that CFC may play a role in Parkinson’s disease as exces-
222 sive PAC between beta and gamma bands has been observed in advanced stage patients
223 with movement deficits [64,88]. Abnormal theta-gamma CFC has been implicated in
224 Alzheimer’s disease, as coupled band synchronization plays a critical role in memory
225 functions [89,90]. Also, theta-phase gamma-amplitude coupling has been seen as a
226 marker of Attention-Deficit-Hyperactivity disorder (ADHD) in children [91]. Likewise,
227 schizophrenia studies have revealed adverse CFC in healthy patients as they suffer from
228 clear disruptions in theta and gamma oscillations in the temporal lobe and auditory cor-
229 tex [92,93]. Disease driven CFC is rooted in the loss of synchronization between fre-
230 quency bands that are in coordination in a healthy state. These disruptions are often a
231 product of pathological interference, preventing normal brain function due to a lack of
232 synaptic connections or adverse oscillatory rhythms. While CFC’s role in disease is far
233 from understood, future experimental models should make note of CFC changes, as
234 mapping out these oscillatory dynamics could help enable faster diagnosis and/or more
235 targeted brain stimulation treatment.

236 Cross-frequency coupling has been found in the synchronization across subcortical
237 and cortical regions, orchestrating a bottom-up circuit where deep brain regions such as
238 the hippocampus and neuromodulatory centers such as the locus coeruleus (LC), ventral
239 tegmental area (VTA), and basal forebrain (BF) have direct control of brain-wide neu-
240 ronal synchrony. However, this phenomenon has yet to be explored in patients, as inva-
241 sive stimulation and optogenetic/chemogenetic manipulations are challenging to conduct
242 in human studies. Future experiments using animal disease models would be better po-
243 sitioned to look into how specific brain structures modulate CFC to help uncover the
244 causal relationship between cognitive abilities and neural oscillations in health and dis-
245 ease.

246 3. The Neuromodulatory System’s role in Neural Oscillations

247 3.1. The Noradrenergic System:

248 The noradrenergic system plays a very important role in the modulation and regu-
249 lation of norepinephrine (NE) throughout the brain. The center of norepinephrine crea-
250 tion, the locus coeruleus, is a complex nucleus with projections to almost every area of
251 the cortex and subcortical areas [94-97]. Projections directly from the LC paired with di-
252 rected synchronous and asynchronous firing patterns of LC neurons have been shown to
253 allow for differentiated and targeted norepinephrine signaling throughout the cortex
254 [96,98] (Figure 1a). The LC releases norepinephrine via two patterns: tonic and phasic
255 firing. Phasic activation, which is commonly seen in rapid behavioral adaptation, is often

256 associated with a large-scale reorganization of targeted neural networks [99,100]. Tonic
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activation, in contrast, seems to have a prominent role in NE release but lacks the
desynchronization associated with phasic activation [101]. Differences within and across
phasic and tonic stimulation patterns in LC neurons is implicated in various types of
behavioral tasks and attentional processing [102].

Basal forebrain.~~ % PPT/LDT

\ S VTA/SN

.. — / % J \ /x’ NN 4 N Theta-Gamma PAC

100 ms

Figure 1. Anatomical representations of each neuromodulatory system & CFC visualization.
a) Anatomical locations and projections of the three neuromodulatory systems: the noradren-
ergic system (left), dopaminergic system (middle), and cholinergic system (right). b) A cartoon
illustrating theta-gamma phase-amplitude coupling (PAC).

While studies have not specifically defined the LC’s direct role in widespread neural
oscillations, experiments incorporating a type of LC modulation in conjunction with
electrophysiology recordings have unveiled the LC’s ability to control selective neural
oscillatory patterns all the way down to specific frequency bands in localized brain re-
gions. Phasic activation of the LC has shown to result in clear desynchronization in the
EEG spectrum [103,104]. For instance, phasic microstimulation of the LC of rats increased
the ratio of EEG power in high frequencies (10-100 Hz) to low frequencies (1-10 Hz),
desynchronizing cortical EEG [105] (Figure 2a&b). An abundance of work has also been
done focusing on the LC’s role in the hippocampus, with the LC-NE system seen driving
long term potentiation (LTP), increasing theta power, and with gamma power being re-
duced in rats that did not experience LTP [101]. Each type of noradrenergic receptor, al,
a2, and (1, has been implicated in theta oscillations and synchronization in the hippo-
campal formation [106-109]. Furthermore, studies have shown that theta activity was able
to be modulated by reboxetine, a norepinephrine reuptake inhibitor [110]. In regards to
cortex-specific cognitive functions, phasic release of norepinephrine has been seen to
change the EEG spectrum across the mPFC, guiding motor planning, decision making,
and sensory processing [111-113]. The activation and inhibition of subcortical regions has
led to alpha wave synchronization which facilitates in directing selective attention [114].
The bidirectional communication between the LC and PFC has been seen to act as a level
of control over excitatory input into the LC, marked by a high gamma frequency in the
PEC [28]. Optogenetic stimulation of the LC in conjunction with neural spike recording in
the mPFC saw increased neuronal firing and persistent spikes, present in high amplitude
and slow frequency oscillations (delta and theta waves). These increased depolarization
events are often associated with an enhancement of synaptic plasticity and memory
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Frequency (Hz)

consolidation [115]. Taken together, these results suggested that the coupling of phase,
amplitude, and power between different frequency bands may be directly influenced by
NE release from the LC, with specific stimulation parameters being essential for changes
in the synchronization of these oscillatory features. Some recent evidence showed that
blocking the noradrenergic system through administration of Clonidine, an alpha-2 ago-
nist, changed the phase-amplitude coupling in cortical EEG in mice (Figure 2c). Future
studies which look to selectively adjust the frequency and power of stimulation, directing
a graded release of NE, could potentially provide a type of control over neural oscilla-
tions or help restore CFC relationships that may have been lost to neurological disorders.
Although a substantial amount of research questions remains unanswered about the true
relationship between the noradrenergic system and neural oscillations, these previous
studies open the door to a clear causal relationship of the role NE plays in shaping cog-
nitive abilities through widespread oscillatory dynamics.

Pre- LC stim Post- LC stim b 1o C

S5 43241412 ! 4 5
LC sfim
Time (s)

Control Clonidine

.
@ 10°
2
g | _peoas . .
5 10 P05 i
L f Pre LC stim.
B 10+ Post LC stim .
c ! Recove S
2 t "
g |
8 107 B
= E
[l ' \1
10} Ny

Phase frequency Hz)

Amplitude frequency (Hz)
modu\atlan index

_ Normaiized EEG powsr ratio

Frequency (Hz)

Figure 2. The causal effect of the noradrenergic system on neural oscillation. a) Spectrogram of cortical EEG
around phasic LC stimulation. b) LC stimulation resulted in a significant increase in EEG power ratio in high
frequency (10-100 Hz) to low frequency (1-10 Hz). Adopted from [105]. ¢) Manipulation of the noradrenergic
system through Clonidine administration, an alpha-2 agonist, altered phase-amplitude coupling of cortical
EEG (2 mice, 9 sessions; unpublished data from the authors).

3.2. The Cholinergic System:

The cholinergic system, like the noradrenergic system, also plays a vital role in the
control of neural oscillations throughout the brain and cortical structures [116]. Studies
have already unveiled its contribution in central nervous system physiology and in var-
ious disorders such as dementia, epilepsy, and sleep disorders [117-119]. While acetyl-
choline (ACh) is more widespread and abundant in the brain than norepinephrine, its
neuromodulatory centers, including the pedunculopontine nucleus (PPT), laterodorsal
tegmental nucleus (LDT), and basal forebrain (BF), have direct projections to widespread
brain regions, allowing the cholinergic system to readily influence the oscillations of
neural networks [26]. Retrograde tracing has shown that the cortex has an abundance of
projections from the basal forebrain, connecting subcortical structures to the frontal,
cingulate, and medial parietal cortex [120,121] (Figure 1a). Specifically, the BF has been
seen implicated in direct regulation of attentional functions through multiple thalamic
and cortical projections [122]. Similar to the release of norepinephrine from the LC, ace-
tylcholine is also released throughout the brain in tonic and phasic patterns [123,124].
Studies have shown that tonic acetylcholine release in the prefrontal cortex was coordi-
nated with the hippocampus and was maximal during training on a working memory
task. Phasic release, in contrast, only occurred during the memory task and was localized
to reward delivery areas, independent of the trial outcome [125]. Although tonic, vol-
ume-based ACh release is traditionally viewed to be the driver, recent optogenetic stud-
ies suggested a link between phasic ACh activation in the cortex and its causal role in
behavioral changes [126].
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324 Like noradrenergic modulation, cholinergic modulation has not specifically been
325 studied in conjunction with cross-frequency coupled phenomena. Instead, studies uti-
326 lizing widespread neural recordings have looked to uncover the direct role of ACh in
327 behavior and erratic firing patterns associated with neurological disorders. Specific
328 low-frequency oscillations including delta, theta, and alpha have been seen to be sup-
329 pressed by brainstem cholinergic neurons, while high-frequency bands like beta and
330 gamma are accompanied by an increased release of ACh in the thalamus and cortex [127].
331 Supporting this notion, direct electrical stimulation of the nucleus basalis, the cholinergic
332 nucleus of the basal forebrain, increased the ratio of power in high frequency (10-100 Hz)
333 bands over low frequency (1-10 Hz) bands of cortical LFP [128] (Figure 3a&b). ACh re-
334 lease in cholinergic neurons has also been seen to discharge at higher rates during cortical
335 activation rather than during slow-wave cortical activity, with thalamo-cortical and
336 brainstem-cortical cholinergic activity initiating theta rhythms and influencing
337 task-specific cortical de-synchronization [129]. Cholinergic system modulation is also
338 highly dependent upon input from noradrenergic LC projections. A particular study ex-
339 plored that when noradrenaline was administered into the basal forebrain in
340 sleep-waking rats, it elicited an increase in fast gamma EEG oscillations and a diminution
341 of slow delta activity, but when neurotensin was administered, theta and gamma activity
342 were enhanced as well as wakefulness [130,131]. Furthermore, cholinergic neurons seem
343 to play a vital role in influencing theta oscillations in the hippocampus. Studies have
344 shown a direct relationship between ACh level and theta oscillations in hippocampal
345 neurons, as well as a direct impact on the amplitude of theta waves. This relationship
346 potentially influences neural computations responsible for memory encoding and re-
347 trieval [132-135]. Theta-gamma coupling also seems heavily dependent on ACh modula-
348 tion, with detected cues evoking phasic ACh release as well as neural synchrony between
349 frequency bands in the PFC [126,136]. Likewise, varying regions of high and low ACh
350 signaling lead to the emergence of localized gamma theta coupling, lending support to
351 the theory of cross communication between brain regions during attentional processes.
352 Specifically, studies have shown that stable gamma-modulated firing occurs in regions
353 with high ACh signaling, implicating its causal role in generating localized theta-gamma
354 rhythms. [51].

355 Oftentimes, ACh triggered neural synchrony has been explored using activation or
356 inhibition studies through optogenetics and pharmacological agents. Specifically, phasic
357 optogenetic stimulation of the basal forebrain has been seen to modulate the cortical to-
358 pography of auditory steady state responses, with phase-locked stimulation enhancing
359 the power of cortical responses and increasing their synchronization, as well as changing
360 broadband gamma power [137-139]. Also, stimulation applied to the pedunculopontine
361 tegmentum (PPT) significantly increased Ach release that drove desynchronization in the
362 cortical EEG [140]. The relationship between CFC and cholinergic modulation is still a
363 widely unexplored phenomenon, but future research specifically looking at how phasic
364 stimulation parameters could affect different aspects of CFC could provide new insights
365 into how the cholinergic system drives complex cognitive functions through widespread

366 neural oscillations.
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Figure 3. The causal effect of the cholinergic and dopaminergic system on neural oscillation. a) Spectrogram of

cortical LFP around nucleus basalis stimulation. b) LFP power ratio (power at 10-100 Hz over power at 1-10 Hz)

after nucleus basalis stimulation. Adopted from [128] with permission. ¢) Dopaminergic receptor activation

changed phase-amplitude coupling in mPFC. Adopted from [141].

3.3. The Dopaminergic System:

The dopaminergic system is critically important to the circuitry and control of cog-
nitive functions in the prefrontal cortex [142]. Like the other neuromodulators, dopamine
is synthesized in various centers across the brain including the ventral tegmental area
(VTA), the hypothalamus, and the substantia nigra (SN) [24] (Figure 1a). Theories have
proposed a complex neuronal microcircuit based on the known mechanism of action of
dopamine in the PFC, accounting for the diverse role of dopamine in executive functions
[143]. The direct projections from the VTA and SN via the mesocortical dopamine path-
way are responsible for functions such as working memory, attention, and decision
making [144]. Similar to the release of other neuromodulators, tonic and phasic dopa-
mine release has been shown to play different roles in mediating a wide range of brain
functions, including learning, motivation, and motor control, possibly through their dis-
tinct effects on dopaminergic receptors [145].

The dopaminergic system has been shown to be heavily involved in the shaping of
neural oscillations in a variety of cognitive functions and neurological disorders. Studies
utilizing electrophysiology recordings have demonstrated the vital role of dopamine ac-
tivation throughout the brain. Specifically, dopaminergic receptor activation has been
linked to weaker alpha and beta oscillations in the PFC, while depletion of dopamine has
been linked to increased power in beta oscillations in the cortex and subthalamic nucleus
of rats [146,147]. Dopamine also plays a role in working memory, with it facilitating low
theta oscillations in the PFC as well as acting as a trigger for latent theta oscillations [148].
Dopaminergic modulation through stimulation and pharmacology has also seen clear
effects on cortical state. Dopamine injections in the PFC of anesthetized rats, for example,
has been shown to provoke an increase in hippocampal and prefrontal coherence [149].
Stimulation of the VTA has been shown to induce reanimation from anesthesia, with
optogenetic stimulation of even a small portion of VTA dopamine neurons being suffi-
cient to induce this transition [150]. Also, the emergence of exaggerated beta oscillations
in the cortex, a key symptom of Parkinson’s disease, is marked by a disruption in dopa-
mine transmission [151]. The synchronization of beta frequencies facilitates normal motor
functioning, and dopamine levels largely impact beta synchronization to guide normal

function [49]. However, while beta oscillations in cortical and basal ganglia networks are
closely coupled to dopamine tone in humans, phase-amplitude coupling appeared not to
be directly regulated by dopamine levels. These findings have key implications for Par-
kinson’s patients, and future research is necessary to uncover how these findings can be
used to benefit patients” quality of life [152].
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402 The dopaminergic system clearly acts as a controller of large-scale neural oscilla-
403 tions, but its causal relationship with CFC is largely unknown. Looking at dopamine
404 triggered synchronization studies may help provide context to the role of dopamine in
405 CFC. In Parkinson’s patients, chronic dopaminergic transmission interruption promotes
406 excessive cortical beta synchronization that is seen in high coherence between motor and
407 somatosensory cortical activities [153]. Desynchronization in the cortex has been seen
408 through the stimulation of D1 dopamine receptors in behavioral arousal experiments in
409 rats and rabbits [154]. Looking into more specific phase and amplitude phenomena, do-
410 pamine release in the mPFC has led to shifts in phase-amplitude coupling from the the-
411 ta-gamma band to delta-gamma band, giving insight into how dopamine may regulate
412 function in the mPFC [72]. Interestingly, in this study, laser activation of RuBi-Dopa, a
413 light-sensitive caged compound, released dopamine and in turn increased activation of
414 dopamine receptors, resulting in a modulation of CFC throughout LEP recordings in the
415 mPFC but not LFP power in any frequency band [72] (Figure 2c). Furthermore, theta
416 phase coupling between the hippocampus and the mPFC may also be modulated by the
417 dopamine system and could be an underlying mechanism of cognitive dysfunction in
418 depression [155]. Recently, a study showed how phasic dopamine activation in the PFC
419 had a robust influence on coordinated gamma oscillations, initiating a gamma-theta
420 coupling which lasted for several minutes [156]. Overall, the relationship between
421 cross-frequency coupling and dopamine is still widely unclear. Future research studying
422 how stimulation of dopamine neuromodulatory centers and receptors impact select fea-
423 tures of neural oscillations could further help us understand the causality of cognitive
424 functions and neuropsychiatric disorders.

425 4. Pupil-linked Arousal and Neural Oscillations:

426 While future research needs to be done exploring each neuromodulatory system'’s
427 direct role in neural oscillations, looking at another non-invasive metric, such as the pu-
428 pil, could provide insight into the interaction between neuromodulation and cognition.
429 Previous work has showcased the ability for the pupil to be used as a non-invasive
430 readout of the central arousal state (pupil-linked arousal), with possible involvement of
431 the noradrenergic and cholinergic systems [29,30,32,105,157]. In both humans and ro-
432 dents, the pupil has been found to have a clear role in representing phasic arousal levels
433 in perceptual decision-making tasks [34,158-162]. While studies have not yet explored the
434 direct relationship between pupil and cross-frequency coupling, many have started to
435 use pupil/oculomotor dynamics as an additional readout of brain state. For example, a
436 study showcased how CFC between the phase-locked amplitudes of the gamma band
437 and delta band corresponded to success in a visual discrimination task [163]. However,
438 they failed to find that eye movements have any significant effect on the cross-frequency
439 coupling in the EEG. An additional study explored the pupil dynamics in LFP recordings
440 in the lateral hypothalamus, revealing a clear correlation between pupil dilation events
441 and delta power, opening the door to new questions around pupillary changes and brain
442 state transitions [164]. These studies raised new questions about the role of pupil-linked
443 arousal in mediating cognitive states, with pupil dynamics potentially serving as an in-
444 dicator of transition between neural oscillatory patterns resulting from neuromodulation.
445 5. Future Neuromodulation Technology

446 The functional outcomes of understanding the unique role each neuromodulatory
447 system plays in mediating cross-frequency coupling to facilitate certain brain functions
448 have immense potential. Already, researchers have been able to develop neural interfaces
449 to control and modulate a variety of neurological pathways [165]. More modern tech-
450 niques that pay attention to multiple modalities of data are now employing LFP or EEG
451 recordings in conjunction with neural stimulation technologies, including vagus nerve

452 stimulation (VNS), transcranial direct current stimulation, and ultrasound stimulation
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453 [166-172]. Techniques like focused ultrasound stimulation have the potential of deliver-
454 ing localized brain stimulation, allowing non-invasive selective activation of smaller
455 brain regions like the LC, BF, or VTA [170,173]. Likewise, more invasive techniques such
456 as CNS microsimulation with carefully designed patterns have enabled preferential ac-
457 tivation of axons and somas, permitting a targeted approach to the activation of local
458 neuronal circuits [174-177]. Additional invasive approaches are also currently in devel-
459 opment, with clinical trials of optogenetics in humans being explored as a method to treat
460 pain through selective neuronal activation, as well as through the activation of retinal
461 ganglion cells [178]. While invasive methods will always provide the greatest specificity
462 in neuronal activation, other non-invasive stimulation approaches are also proving to be
463 effective. Both tDCS and TMS have been seen as appropriate treatments for depression
464 and addiction, modulating prefrontal regions linked to cognitive symptoms [179,180].
465 Recently, studies have been utilizing current steering in conjunction with tDCS, enabling
466 selective activation of deeper brain structures without interfering with superficial cortical
467 regions [181,182].

468 While these methods are promising, VNS is proving to be one of the most effective
469 approaches to non-invasive neuromodulation. The vagus nerve projects to a variety of
470 brain regions, including neuromodulatory centers like the LC, and VNS has been shown
471 to be involved in phase-amplitude coupling [18,183]. These questions open the door to
472 potentially developing the therapeutic paradigm in which VNS is conducted, using re-
473 al-time neural oscillatory feedback as a form of optimization [18]. Additionally, other
474 noninvasive stimulation methods, including transcutaneous vagus nerve stimulation,
475 were shown to mimic VNS by modulating alpha EEG activity, suggesting that EEG can
476 provide higher real-time feedback regarding arousal and cognitive changes [19,184].
477 Future adaptations of stimulation devices may need to incorporate time-variant
478 phase-amplitude coupling, which could inform and decipher the role CFC plays in me-
479 diating or reflecting nervous system function [21]. While these enhancements may seem
480 quite positive, one study showcased how theta-gamma cross frequency coupling induced
481 by transcranial altering current stimulation actually worsened the ability of humans to
482 employ cognitive control in goal-directed behavior [185-187]. It is essential for future
483 devices, which aim to augment brain functions through control of cognitive states, to
484 optimize stimulation patterns based on real-time neural oscillatory dynamics to enable
485 more informed treatments and feedback.

486 Future work reliably assessing real time cross-frequency coupling relationships in
487 EEG and LFP signals could provide insight into how stimulation techniques can properly
488 modulate cognitive function and behavioral outcomes. Experiments looking at key EEG
489 features such as phase, amplitude, power, and frequency should be conducted in order to
490 further explain how neural oscillations change in response to different cognitive pro-
491 cesses. Selective neuromodulation of the noradrenergic, cholinergic, and dopaminergic
492 system may provide insight into how different CFC phenomena occur, guiding our un-
493 derstanding into how complex synchronous neural networks communicate and formu-
494 late complex circuits to direct cognitive functions [188]. Closed-loop stimulation of these
495 centers may provide a solution to uncovering the causality of CFC throughout the brain
496 [9]. Neurological disease research for Parkinson’s, Alzheimer's disease, schizophrenia,
497 ADHD, and epilepsy may benefit greatly from this research, as neuromodulation could
498 be used to change neural oscillatory patterns and network synchrony, potentially re-
499 storing or reversing erratic neural behavior caused by adverse neural synchronization
500 [189].

501 6. Conclusion

502 The role of the neuromodulatory systems in influencing neural oscillations is an
503 understudied topic. Decades of research have helped bring to light the relationship be-
504 tween neural oscillations and higher cognitive functions, but the causality behind these

505 signals remains poorly understood. By reviewing the literature of each of the three major
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neuromodulatory systems (noradrenergic, cholinergic, and dopaminergic) and their
representative cortical projections, effects on neural oscillations, and involvement in
cross-frequency coupling, the complex nature of these neural computations can hope-
fully be further explained. To enhance our understanding of this relationship, it is essen-
tial to look towards specific oscillatory features such as cross-frequency coupling to un-
derstand the intricacies within large-scale neural synchronization. Studies emphasizing
the importance of the activation and inhibition of these neuromodulatory centers in
conjunction with frequency domain analysis could prove critical to understanding the
causality of different behaviors and neurological disorders. These results could help in-
form the next generation of closed-loop neural stimulation devices with effective re-
al-time outcomes, prioritizing the role of neuromodulation in controlling large-scale
neural oscillations to restore or enhance brain functions.
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