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 7 

Simple Summary: Over the past few decades, advances in electroencephalography (EEG) re-8 

cordings and brain stimulation has permitted an unprecedented view of how specific brain 9 

structures communicate as well as organize complex cognitive functions. Specifically, neuro-10 

transmitters (including norepinephrine, acetylcholine, and dopamine) have all been shown to 11 

have an impact on neural oscillations throughout the brain, linking them to changes in cogni-12 

tive functions such as memory, attention, and executive function. While these interactions are 13 

still widely unexplored, their appearance in neurological disorders through cross-frequency 14 

coupling (CFC) brings light to the vital role they play in orchestrating healthy brain function. 15 

This brief review serves to highlight the important role each neuromodulatory system plays in 16 

changing widespread neural networks, emphasizing their involvement in health and disease to 17 

help inform more translational brain stimulation technologies. 18 

 19 

Abstract: Using EEG and local field potentials (LFP) as an index of large-scale neural activities, 20 

research has been able to associate neural oscillations in different frequency bands with markers of 21 

cognitive functions, goal-directed behavior, and various neurological disorders. While this gives us 22 

a glimpse into how neurons communicate throughout the brain, the causality of these synchro-23 

nized network activities remains poorly understood. Moreover, the effect of the major neuromod-24 

ulatory systems (e.g. noradrenergic, cholinergic, and dopaminergic) on brain oscillations has 25 

drawn much attention. More recent studies have suggested that cross-frequency coupling (CFC) is 26 

heavily responsible for mediating network-wide communication across subcortical and cortical 27 

brain structures, implicating the importance of neurotransmitters in shaping coordinated actions. 28 

By bringing to light the role each neuromodulatory system plays in regulating brain-wide neural 29 

oscillations, we hope to paint a clearer picture of the pivotal role neural oscillations play in a variety 30 

of cognitive functions and neurological disorders, and how neuromodulation techniques can be 31 

optimized as a means of controlling neural network dynamics. The aim of this review is to show-32 

case the important role that neuromodulatory systems play in large-scale neural network dynam-33 

ics, informing future studies to pay close attention to their involvement in specific features of 34 

neural oscillations and associated behaviors. 35 

Keywords: Neuromodulation; EEG; Noradrenergic System; Cholinergic System; Dopaminergic 36 

System; Pupil-linked Arousal; Neural Oscillations; Cross-frequency Coupling; Vagus Nerve Stim-37 

ulation; Neurological Disorders 38 

 39 

1. Introduction: 40 

Neural oscillations are thought to be an essential driver of interaction, communica-41 

tion, and information transmission throughout the brain [1-3]. Evolution has maximized 42 

the role these oscillations play in regulating and controlling neuronal functions, driving 43 

the synchronization of widespread neural networks in the brain. The EEG provides the 44 

most popular non-invasive methods to record neural oscillations, summating the local 45 

field potentials of thousands of neurons in cortical structures [4,5]. Not only does this 46 

tool characterize “global” brain state as a time-series of voltage potentials, but also allows 47 
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researchers to analyze these oscillatory waveforms through frequency domain analysis. 48 

Studies have suggested that distinct EEG frequency bands (Delta, Theta, Alpha, Beta, 49 

Gamma) are generated from unique neural populations across a variety of brain regions 50 

[6]. This characterization shows the ability of different brain structures to generate spe-51 

cific neural oscillatory patterns, permitting synchronization and frequency-coupling [6]. 52 

Assessing the effect of oscillatory changes both globally and locally throughout the brain 53 

can uncover the important and/or causal role of various neuromodulatory processes [7]. 54 

Cross-frequency coupling (CFC), resulting from coupling between various neural circuits 55 

and/or different types of neurons through chemical or electrical synapses, has recently 56 

become a more prominent topic [8,9]. Components of CFC such as phase-phase and 57 

phase-amplitude coupling have been shown to have a large influence on cognitive pro-58 

cesses including attention, learning, and short- and long-term memory [10,11]. Addi-59 

tionally, the phase-amplitude synchronization of these high and low frequency bands 60 

plays a prominent role in facilitating neural communication and neural plasticity [12-15]. 61 

Neurological diseases and conditions can often be associated with an abnormal oscilla-62 

tory desynchronization or type of CFC, unveiling the importance that synchronized 63 

neural networks have in carrying out normal brain function [16]. While largely misun-64 

derstood, this network-wide communication seems to be an instrumental part of the co-65 

ordination and regulation of cognitive abilities. More recently, neural stimulation tech-66 

niques such as vagus nerve stimulation (VNS) and deep brain stimulation (DBS) have 67 

been incorporating types of CFC analysis to better understand the effects of 68 

phase-coupled neuromodulation [17-20]. By leveraging the causal effects of neuromod-69 

ulation on cognitive functions, these tools are focusing on real-time oscillation analysis to 70 

optimize the effectiveness of stimulation across brain regions [21]. 71 

The neuromodulatory systems, including the noradrenergic, cholinergic, and do-72 

paminergic systems, play a pivotal role in the regulation and synchronization of neural 73 

oscillations. These systems provide direct axonal projections to most structures of the 74 

brain, regulating various brain functions through the release of neurotransmitters [22-25] 75 

(Figure 1a). Specifically, norepinephrine, acetylcholine, and dopamine are all implicated 76 

in the formation of complex decision making and executive functions [26]. Through their 77 

activation and inhibition, each neuromodulatory system has been seen to change the os-78 

cillatory behavior of widespread neural networks, implicating changes in cortical struc-79 

tures as well as in different frequency bands [27]. Recently, more work has been done that 80 

focuses on how cross-frequency coupling can be affected by neuromodulation, with 81 

phasic or tonic neurotransmitter release causing synchronization or desynchronization in 82 

EEG waveform features such as power, amplitude, phase, and frequency [28]. These ex-83 

periments are often using optogenetic manipulation in conjunction with LFP recordings, 84 

providing insights into how particular neuromodulatory centers can have a profound 85 

effect on neural oscillations, even in indirectly coupled brain regions. Another 86 

non-invasive biometric measure, pupil size, has also been implicated in having a key role 87 

in indexing neuromodulation, potentially serving as a new indirect modality in under-88 

standing the widespread effect of different arousal states on neural oscillations and be-89 

havior [29-34]. 90 

This review will focus on how these three neuromodulatory systems can individu-91 

ally modulate neural oscillations, looking specifically at how their activation can change 92 

large-scale neural network synchrony in cognitive functions and neurological disorders. 93 

This phenomenon has yet to be fully understood, and looking at how each system’s ac-94 

tivation or inhibition affects large scale oscillatory patterns may help uncover the origin 95 

and causality of complex behaviors and neurological disorders. These insights will 96 

hopefully inform a new direction of research that looks to further investigate how neu-97 

romodulation could improve and/or shape brain functions through changing large-scale 98 

neural oscillations.99 

 100 
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2. Neural Oscillations in Cognition and Neurological Disorders 101 

2.1. Frequency Spectral Analysis: 102 

Over the past few decades, an abundance of research has been conducted exploring 103 

the role different frequency bands play in representing the neural signals behind cogni-104 

tion, behavior, and neurological disease. These have been characterized by abstracting 105 

the frequency spectrum into five unique frequency bands: Delta (1–3 Hz), Theta (4–7 Hz), 106 

Alpha (8–12 Hz), Beta (13–30 Hz), and Gamma (30–100 Hz) [35]. While an abundance of 107 

studies has implicated each band in a variety of diseases and cognitive functions, gener-108 

ally, slow and high oscillations can be discriminated by specific behavioral outputs. It is 109 

important to acknowledge that these oscillations are often shaped by the summations of 110 

thousands of neurons in a particular brain region, making these associations highly de-111 

pendent upon the type of recording device (EEG, ECOG, invasive LFP) and their sig-112 

nal-to-noise ratio. Even with this in mind, looking at how each frequency band is impli-113 

cated throughout complex cognitive processes can make it easier to understand how 114 

neuromodulation plays a vital role in shaping these neural oscillations.  115 

2.1.1 Healthy Functions: 116 

Throughout normal cognition, each oscillatory frequency band has been linked to a 117 

specific behavioral correlate or executive function. Generally speaking, delta waves are 118 

associated with a wide variety of cognitive functions. Studies have shown that the delta 119 

oscillatory phase is correlated with the reaction time of behavior, playing a role in the 120 

synchronization of neural populations across multiple brain regions [36]. Also, these os-121 

cillations are often associated with a resting state, with the slow oscillations (less than 1 122 

Hz) having the ability to trigger thalamically-generated spindles [37]. Theta oscillations 123 

are thought to play a vital role in almost every cognitive function and brain region. Stud-124 

ies have uncovered their critical role in learning, memory, and synaptic plasticity. It is also 125 

a foundational band for cross-frequency coupling, synchronizing with the gamma band in 126 

a phenomenon known as theta-gamma coupling that is heavily studied for its role in 127 

working memory [38-41]. The alpha band is also one of the most studied frequency bands, 128 

specifically for its clear role in attentional demands and visual perception as well as its 129 

easily-triggered appearance in stimuli associated tasks [42-47]. The beta band has often 130 

been associated with motor-induced events [48]. The synchronization of beta frequencies 131 

has been an indicator for normal motor system functioning, and it has been shown to play 132 

a role in working memory [49,50]. Finally, the gamma band, like the theta band, plays a 133 

vital role in memory, as seen in theta-gamma coupled oscillations throughout the hippo-134 

campus and cortex [41]. Gamma also has appearances in attention, consciousness, and 135 

wakefulness experiments [51-53]. 136 

     2.1.2. Neurological Diseases: 137 

While each frequency band is instrumental to maintain healthy brain function, 138 

neurological diseases seem to alter specific oscillatory properties, oftentimes leading to 139 

cognitive dysfunction. To begin, abnormal delta oscillations have often been linked to 140 

neurological conditions associated with sleep. Specifically, non-rapid-eye-movement 141 

sleep in both Schizophrenia and Alzheimer’s disease has been associated with a de-142 

pressed delta power when compared to healthy patients [54,55] Clinically, the theta band 143 

has been linked to the maintenance of the healthy human brain. Studies have explored 144 

the loss of long-range temporal correlations in theta oscillations in patients with major 145 

depressive disorder as well as increased theta event-related synchronization in children 146 

diagnosed with ADHD [56,57]. A slowing in spontaneous alpha oscillations has been 147 

consistently linked to Alzheimer’s disease. Additionally, likely due to its prominent role 148 

in attention, resting alpha power has been shown to be is reduced in adults with ADHD 149 

[58,59]. Higher frequency oscillations have been largely linked to motor related condi-150 

tions like Parkinson’s tremors. The beta band has been reported to be desynchronized in 151 
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Parkinson’s patients [48]. The modulation of beta oscillations through deep brain stimu-152 

lation has enabled new targeted therapeutic treatments, oftentimes reversing these motor 153 

symptoms [60].Gamma oscillations have also appeared in Parkinson’s disease and dur-154 

ing dyskinesia [61]. Likewise, aberrant gamma oscillations have appeared in mouse 155 

models of Alzheimer’s disease and Fragile X syndrome [62]. 156 

2.2. Cross-frequency Coupling Analysis: 157 

While each frequency band seems to dissociate into a wide variety of behaviors or 158 

cognitive functions, the synchrony between each band through cross-frequency coupling 159 

(CFC) analysis has brought new light to the complexity of neural networks [63]. Recent 160 

studies which uncover the coupling between distinct features of neural oscillations such 161 

as phase, amplitude, and power between frequency bands have shown its critical im-162 

portance to network dynamics, learning, and complex behaviors [64-67]. CFC is thought 163 

to be integral to the temporal and spatial activation of specific cortical circuits, with one 164 

study showing how the magnitude of gamma oscillations are modulated by slower wave 165 

rhythms [68]. By pairing each frequency interaction with another (i.e. power-power, 166 

phase-phase, phase-frequency, phase-power, and phase-amplitude), each coupled oscil-167 

latory feature provides a unique effect on the synchronization of widespread neural 168 

networks and changes in cognitive abilities [10,69-73]. For example, observed phenom-169 

ena such as theta-gamma coupling, known for its role in working memory, is only one of 170 

many oscillatory patterns which has linked the important role of band coupling in neural 171 

communication, synaptic plasticity, and executive functions [8,10,40,74-77] (Figure 1b). 172 

 173 

     2.2.1. Healthy Functions: 174 

Previous studies show more instances of CFC playing a role in cognitive functions 175 

across memory, learning, attention, and decision-making. Specifically, alpha-beta 176 

phase-amplitude coupling (PAC) has been seen synchronized in the medial prefrontal 177 

cortex during decision making, as well as the phase of delta and theta bands, suggesting 178 

the role of PAC in feedback coding [78,79]. In decision making, CFC was seen to be 179 

highly correlated with rodent behavioral performance, with CFC strength increasing 180 

over time in hippocampal regions [65]. PAC was also seen between alpha and gamma 181 

bands in response to visual grating stimuli [80]. Additionally, attention has been seen in a 182 

wide variety of CFC phenomena, with purposeful synchronization across brain regions 183 

driving the formation of neural ensembles associated with specific tasks. Specifically, 184 

spatial attention experiments showcase two unique PAC clusters, with delta-gamma 185 

PAC being sensitive to cue direction and theta-alpha and beta-gamma PAC associated 186 

with future reaction times [81]. Similarly, delta rhythm synchronization was correlated 187 

with the reaction time to anticipatory signals [36]. Alpha and gamma rhythm synchro-188 

nization has also been seen to contribute to selective attention, with a study showing in-189 

creased beta and alpha synchronization in rule directed task behaviors [82]. Delta-theta 190 

phase high gamma amplitude coupling, triggered by attentional demands, was seen as a 191 

mechanism for sub-second facilitation and coordination in the parietal cortex [83]. Like-192 

wise, the implementation of alpha oscillations in visual discrimination highlights the role 193 

of CFC in filtering out stimuli distractors [84].  194 

CFC is also thought to be the brain’s method of transferring large amounts of in-195 

formation across distant regions of the brain in an organized fashion, and it has been 196 

shown to impact different forms of learning and memory across species. Theta oscillatory 197 

synchronization between the prefrontal cortex (PFC) and the amygdala supports com-198 

munication across interneuron networks and is associated with fear learning [85]. Theta 199 

band synchronization of the anterior limbic system was also shown to be associated with 200 

long term memory, while alpha band desynchronization of the posterior-thalamic system 201 

was associated with short-term memory [86]. Additionally, synchronization of the PFC 202 

between 3 and 32 Hz aided in short term memory [87]. The large variety in synchroniza-203 

tion patterns found across short- and long-term memory could be a result of the lack of 204 
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consistency in behavioral tasks and experimental methods used across diverse research 205 

groups. Nevertheless, it could also showcase that optimal short- and long-term encoding 206 

for unique memory tasks or objects occurs at very specific CFC patterns [87]. It is im-207 

portant to note that the CFC studies that we just described were characterized through-208 

out healthy brain function and observed during the natural rhythms of wide-spread 209 

neural networks. While these oscillatory phenomena have uncovered interesting links to 210 

cognitive functions, their causality is still mostly untested. It is possible that CFC is a 211 

predictive biomarker of communications between distinct populations of neurons medi-212 

ating various brain functions, and is therefore subject to the influence of neuromodula-213 

tory systems. 214 

 215 

     2.2.2. Neurological Diseases: 216 

In playing such a large role in neural physiology, it is no surprise that CFC has also 217 

been involved in a variety of neurological diseases. Being most observed in working 218 

memory studies, PAC has been associated with diseases including schizophrenia, obses-219 

sive-compulsive disorder, Alzheimer’s disease, epilepsy, and Parkinson’s disease. For 220 

example, it has been suggested that CFC may play a role in Parkinson’s disease as exces-221 

sive PAC between beta and gamma bands has been observed in advanced stage patients 222 

with movement deficits [64,88]. Abnormal theta-gamma CFC has been implicated in 223 

Alzheimer’s disease, as coupled band synchronization plays a critical role in memory 224 

functions [89,90]. Also, theta-phase gamma-amplitude coupling has been seen as a 225 

marker of Attention-Deficit-Hyperactivity disorder (ADHD) in children [91]. Likewise, 226 

schizophrenia studies have revealed adverse CFC in healthy patients as they suffer from 227 

clear disruptions in theta and gamma oscillations in the temporal lobe and auditory cor-228 

tex [92,93]. Disease driven CFC is rooted in the loss of synchronization between fre-229 

quency bands that are in coordination in a healthy state. These disruptions are often a 230 

product of pathological interference, preventing normal brain function due to a lack of 231 

synaptic connections or adverse oscillatory rhythms. While CFC’s role in disease is far 232 

from understood, future experimental models should make note of CFC changes, as 233 

mapping out these oscillatory dynamics could help enable faster diagnosis and/or more 234 

targeted brain stimulation treatment.   235 

Cross-frequency coupling has been found in the synchronization across subcortical 236 

and cortical regions, orchestrating a bottom-up circuit where deep brain regions such as 237 

the hippocampus and neuromodulatory centers such as the locus coeruleus (LC), ventral 238 

tegmental area (VTA), and basal forebrain (BF) have direct control of brain-wide neu-239 

ronal synchrony. However, this phenomenon has yet to be explored in patients, as inva-240 

sive stimulation and optogenetic/chemogenetic manipulations are challenging to conduct 241 

in human studies. Future experiments using animal disease models would be better po-242 

sitioned to look into how specific brain structures modulate CFC to help uncover the 243 

causal relationship between cognitive abilities and neural oscillations in health and dis-244 

ease.  245 

3. The Neuromodulatory System’s role in Neural Oscillations 246 

3.1. The Noradrenergic System: 247 

The noradrenergic system plays a very important role in the modulation and regu-248 

lation of norepinephrine (NE) throughout the brain. The center of norepinephrine crea-249 

tion, the locus coeruleus, is a complex nucleus with projections to almost every area of 250 

the cortex and subcortical areas [94-97]. Projections directly from the LC paired with di-251 

rected synchronous and asynchronous firing patterns of LC neurons have been shown to 252 

allow for differentiated and targeted norepinephrine signaling throughout the cortex 253 

[96,98] (Figure 1a). The LC releases norepinephrine via two patterns: tonic and phasic 254 

firing. Phasic activation, which is commonly seen in rapid behavioral adaptation, is often 255 

associated with a large-scale reorganization of targeted neural networks [99,100]. Tonic 256 
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activation, in contrast, seems to have a prominent role in NE release but lacks the 257 

desynchronization associated with phasic activation [101]. Differences within and across 258 

phasic and tonic stimulation patterns in LC neurons is implicated in various types of 259 

behavioral tasks and attentional processing [102].  260 

 261 

 262 

 

Figure 1. Anatomical representations of each neuromodulatory system & CFC visualization. 

a) Anatomical locations and projections of the three neuromodulatory systems: the noradren-

ergic system (left), dopaminergic system (middle), and cholinergic system (right). b) A cartoon 

illustrating theta-gamma phase-amplitude coupling (PAC). 

 263 

While studies have not specifically defined the LC’s direct role in widespread neural 264 

oscillations, experiments incorporating a type of LC modulation in conjunction with 265 

electrophysiology recordings have unveiled the LC’s ability to control selective neural 266 

oscillatory patterns all the way down to specific frequency bands in localized brain re-267 

gions. Phasic activation of the LC has shown to result in clear desynchronization in the 268 

EEG spectrum [103,104]. For instance, phasic microstimulation of the LC of rats increased 269 

the ratio of EEG power in high frequencies (10–100 Hz) to low frequencies (1–10 Hz), 270 

desynchronizing cortical EEG [105] (Figure 2a&b). An abundance of work has also been 271 

done focusing on the LC’s role in the hippocampus, with the LC-NE system seen driving 272 

long term potentiation (LTP), increasing theta power, and with gamma power being re-273 

duced in rats that did not experience LTP [101]. Each type of noradrenergic receptor, α1, 274 

α2, and β1, has been implicated in theta oscillations and synchronization in the hippo-275 

campal formation [106-109]. Furthermore, studies have shown that theta activity was able 276 

to be modulated by reboxetine, a norepinephrine reuptake inhibitor [110]. In regards to 277 

cortex-specific cognitive functions, phasic release of norepinephrine has been seen to 278 

change the EEG spectrum across the mPFC, guiding motor planning, decision making, 279 

and sensory processing [111-113]. The activation and inhibition of subcortical regions has 280 

led to alpha wave synchronization which facilitates in directing selective attention [114]. 281 

The bidirectional communication between the LC and PFC has been seen to act as a level 282 

of control over excitatory input into the LC, marked by a high gamma frequency in the 283 

PFC [28]. Optogenetic stimulation of the LC in conjunction with neural spike recording in 284 

the mPFC saw increased neuronal firing and persistent spikes, present in high amplitude 285 

and slow frequency oscillations (delta and theta waves). These increased depolarization 286 

events are often associated with an enhancement of synaptic plasticity and memory 287 
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consolidation [115]. Taken together, these results suggested that the coupling of phase, 288 

amplitude, and power between different frequency bands may be directly influenced by 289 

NE release from the LC, with specific stimulation parameters being essential for changes 290 

in the synchronization of these oscillatory features. Some recent evidence showed that 291 

blocking the noradrenergic system through administration of Clonidine, an alpha-2 ago-292 

nist, changed the phase-amplitude coupling in cortical EEG in mice (Figure 2c). Future 293 

studies which look to selectively adjust the frequency and power of stimulation, directing 294 

a graded release of NE, could potentially provide a type of control over neural oscilla-295 

tions or help restore CFC relationships that may have been lost to neurological disorders. 296 

Although a substantial amount of research questions remains unanswered about the true 297 

relationship between the noradrenergic system and neural oscillations, these previous 298 

studies open the door to a clear causal relationship of the role NE plays in shaping cog-299 

nitive abilities through widespread oscillatory dynamics. 300 

 301 

 

Figure 2. The causal effect of the noradrenergic system on neural oscillation. a) Spectrogram of cortical EEG 

around phasic LC stimulation. b) LC stimulation resulted in a significant increase in EEG power ratio in high 

frequency (10-100 Hz) to low frequency (1-10 Hz). Adopted from [105]. c) Manipulation of the noradrenergic 

system through Clonidine administration, an alpha-2 agonist, altered phase-amplitude coupling of cortical 

EEG (2 mice, 9 sessions; unpublished data from the authors). 

 

3.2. The Cholinergic System: 302 

The cholinergic system, like the noradrenergic system, also plays a vital role in the 303 

control of neural oscillations throughout the brain and cortical structures [116]. Studies 304 

have already unveiled its contribution in central nervous system physiology and in var-305 

ious disorders such as dementia, epilepsy, and sleep disorders [117-119]. While acetyl-306 

choline (ACh) is more widespread and abundant in the brain than norepinephrine, its 307 

neuromodulatory centers, including the pedunculopontine nucleus (PPT), laterodorsal 308 

tegmental nucleus (LDT), and basal forebrain (BF), have direct projections to widespread 309 

brain regions, allowing the cholinergic system to readily influence the oscillations of 310 

neural networks [26]. Retrograde tracing has shown that the cortex has an abundance of 311 

projections from the basal forebrain, connecting subcortical structures to the frontal, 312 

cingulate, and medial parietal cortex [120,121] (Figure 1a). Specifically, the BF has been 313 

seen implicated in direct regulation of attentional functions through multiple thalamic 314 

and cortical projections [122]. Similar to the release of norepinephrine from the LC, ace-315 

tylcholine is also released throughout the brain in tonic and phasic patterns [123,124]. 316 

Studies have shown that tonic acetylcholine release in the prefrontal cortex was coordi-317 

nated with the hippocampus and was maximal during training on a working memory 318 

task. Phasic release, in contrast, only occurred during the memory task and was localized 319 

to reward delivery areas, independent of the trial outcome [125]. Although tonic, vol-320 

ume-based ACh release is traditionally viewed to be the driver, recent optogenetic stud-321 

ies suggested a link between phasic ACh activation in the cortex and its causal role in 322 

behavioral changes [126]. 323 
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Like noradrenergic modulation, cholinergic modulation has not specifically been 324 

studied in conjunction with cross-frequency coupled phenomena. Instead, studies uti-325 

lizing widespread neural recordings have looked to uncover the direct role of ACh in 326 

behavior and erratic firing patterns associated with neurological disorders. Specific 327 

low-frequency oscillations including delta, theta, and alpha have been seen to be sup-328 

pressed by brainstem cholinergic neurons, while high-frequency bands like beta and 329 

gamma are accompanied by an increased release of ACh in the thalamus and cortex [127]. 330 

Supporting this notion, direct electrical stimulation of the nucleus basalis, the cholinergic 331 

nucleus of the basal forebrain, increased the ratio of power in high frequency (10–100 Hz) 332 

bands over low frequency (1–10 Hz) bands of cortical LFP [128] (Figure 3a&b). ACh re-333 

lease in cholinergic neurons has also been seen to discharge at higher rates during cortical 334 

activation rather than during slow-wave cortical activity, with thalamo-cortical and 335 

brainstem-cortical cholinergic activity initiating theta rhythms and influencing 336 

task-specific cortical de-synchronization [129]. Cholinergic system modulation is also 337 

highly dependent upon input from noradrenergic LC projections. A particular study ex-338 

plored that when noradrenaline was administered into the basal forebrain in 339 

sleep-waking rats, it elicited an increase in fast gamma EEG oscillations and a diminution 340 

of slow delta activity, but when neurotensin was administered, theta and gamma activity 341 

were enhanced as well as wakefulness [130,131]. Furthermore, cholinergic neurons seem 342 

to play a vital role in influencing theta oscillations in the hippocampus. Studies have 343 

shown a direct relationship between ACh level and theta oscillations in hippocampal 344 

neurons, as well as a direct impact on the amplitude of theta waves. This relationship 345 

potentially influences neural computations responsible for memory encoding and re-346 

trieval [132-135]. Theta-gamma coupling also seems heavily dependent on ACh modula-347 

tion, with detected cues evoking phasic ACh release as well as neural synchrony between 348 

frequency bands in the PFC [126,136]. Likewise, varying regions of high and low ACh 349 

signaling lead to the emergence of localized gamma theta coupling, lending support to 350 

the theory of cross communication between brain regions during attentional processes. 351 

Specifically, studies have shown that stable gamma-modulated firing occurs in regions 352 

with high ACh signaling, implicating its causal role in generating localized theta-gamma 353 

rhythms. [51].  354 

Oftentimes, ACh triggered neural synchrony has been explored using activation or 355 

inhibition studies through optogenetics and pharmacological agents. Specifically, phasic 356 

optogenetic stimulation of the basal forebrain has been seen to modulate the cortical to-357 

pography of auditory steady state responses, with phase-locked stimulation enhancing 358 

the power of cortical responses and increasing their synchronization, as well as changing 359 

broadband gamma power [137-139]. Also, stimulation applied to the pedunculopontine 360 

tegmentum (PPT) significantly increased Ach release that drove desynchronization in the 361 

cortical EEG [140]. The relationship between CFC and cholinergic modulation is still a 362 

widely unexplored phenomenon, but future research specifically looking at how phasic 363 

stimulation parameters could affect different aspects of CFC could provide new insights 364 

into how the cholinergic system drives complex cognitive functions through widespread 365 

neural oscillations. 366 
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Figure 3. The causal effect of the cholinergic and dopaminergic system on neural oscillation. a) Spectrogram of 

cortical LFP around nucleus basalis stimulation. b) LFP power ratio (power at 10–100 Hz over power at 1–10 Hz) 

after nucleus basalis stimulation. Adopted from [128] with permission. c) Dopaminergic receptor activation 

changed phase-amplitude coupling in mPFC. Adopted from [141]. 

 

3.3. The Dopaminergic System: 367 

The dopaminergic system is critically important to the circuitry and control of cog-368 

nitive functions in the prefrontal cortex [142]. Like the other neuromodulators, dopamine 369 

is synthesized in various centers across the brain including the ventral tegmental area 370 

(VTA), the hypothalamus, and the substantia nigra (SN) [24] (Figure 1a). Theories have 371 

proposed a complex neuronal microcircuit based on the known mechanism of action of 372 

dopamine in the PFC, accounting for the diverse role of dopamine in executive functions 373 

[143]. The direct projections from the VTA and SN via the mesocortical dopamine path-374 

way are responsible for functions such as working memory, attention, and decision 375 

making [144]. Similar to the release of other neuromodulators, tonic and phasic dopa-376 

mine release has been shown to play different roles in mediating a wide range of brain 377 

functions, including learning, motivation, and motor control, possibly through their dis-378 

tinct effects on dopaminergic receptors [145]. 379 

The dopaminergic system has been shown to be heavily involved in the shaping of 380 

neural oscillations in a variety of cognitive functions and neurological disorders. Studies 381 

utilizing electrophysiology recordings have demonstrated the vital role of dopamine ac-382 

tivation throughout the brain. Specifically, dopaminergic receptor activation has been 383 

linked to weaker alpha and beta oscillations in the PFC, while depletion of dopamine has 384 

been linked to increased power in beta oscillations in the cortex and subthalamic nucleus 385 

of rats [146,147]. Dopamine also plays a role in working memory, with it facilitating low 386 

theta oscillations in the PFC as well as acting as a trigger for latent theta oscillations [148]. 387 

Dopaminergic modulation through stimulation and pharmacology has also seen clear 388 

effects on cortical state. Dopamine injections in the PFC of anesthetized rats, for example, 389 

has been shown to provoke an increase in hippocampal and prefrontal coherence [149]. 390 

Stimulation of the VTA has been shown to induce reanimation from anesthesia, with 391 

optogenetic stimulation of even a small portion of VTA dopamine neurons being suffi-392 

cient to induce this transition [150]. Also, the emergence of exaggerated beta oscillations 393 

in the cortex, a key symptom of Parkinson’s disease, is marked by a disruption in dopa-394 

mine transmission [151]. The synchronization of beta frequencies facilitates normal motor 395 

functioning, and dopamine levels largely impact beta synchronization to guide normal 396 

function [49]. However, while beta oscillations in cortical and basal ganglia networks are 397 

closely coupled to dopamine tone in humans, phase-amplitude coupling appeared not to 398 

be directly regulated by dopamine levels. These findings have key implications for Par-399 

kinson’s patients, and future research is necessary to uncover how these findings can be 400 

used to benefit patients’ quality of life [152]. 401 
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The dopaminergic system clearly acts as a controller of large-scale neural oscilla-402 

tions, but its causal relationship with CFC is largely unknown. Looking at dopamine 403 

triggered synchronization studies may help provide context to the role of dopamine in 404 

CFC. In Parkinson’s patients, chronic dopaminergic transmission interruption promotes 405 

excessive cortical beta synchronization that is seen in high coherence between motor and 406 

somatosensory cortical activities [153]. Desynchronization in the cortex has been seen 407 

through the stimulation of D1 dopamine receptors in behavioral arousal experiments in 408 

rats and rabbits [154]. Looking into more specific phase and amplitude phenomena, do-409 

pamine release in the mPFC has led to shifts in phase-amplitude coupling from the the-410 

ta-gamma band to delta-gamma band, giving insight into how dopamine may regulate 411 

function in the mPFC [72]. Interestingly, in this study, laser activation of RuBi-Dopa, a 412 

light-sensitive caged compound, released dopamine and in turn increased activation of 413 

dopamine receptors, resulting in a modulation of CFC throughout LFP recordings in the 414 

mPFC but not LFP power in any frequency band [72] (Figure 2c). Furthermore, theta 415 

phase coupling between the hippocampus and the mPFC may also be modulated by the 416 

dopamine system and could be an underlying mechanism of cognitive dysfunction in 417 

depression [155]. Recently, a study showed how phasic dopamine activation in the PFC 418 

had a robust influence on coordinated gamma oscillations, initiating a gamma-theta 419 

coupling which lasted for several minutes [156]. Overall, the relationship between 420 

cross-frequency coupling and dopamine is still widely unclear. Future research studying 421 

how stimulation of dopamine neuromodulatory centers and receptors impact select fea-422 

tures of neural oscillations could further help us understand the causality of cognitive 423 

functions and neuropsychiatric disorders. 424 

4. Pupil-linked Arousal and Neural Oscillations: 425 

While future research needs to be done exploring each neuromodulatory system’s 426 

direct role in neural oscillations, looking at another non-invasive metric, such as the pu-427 

pil, could provide insight into the interaction between neuromodulation and cognition. 428 

Previous work has showcased the ability for the pupil to be used as a non-invasive 429 

readout of the central arousal state (pupil-linked arousal), with possible involvement of 430 

the noradrenergic and cholinergic systems [29,30,32,105,157]. In both humans and ro-431 

dents, the pupil has been found to have a clear role in representing phasic arousal levels 432 

in perceptual decision-making tasks [34,158-162]. While studies have not yet explored the 433 

direct relationship between pupil and cross-frequency coupling, many have started to 434 

use pupil/oculomotor dynamics as an additional readout of brain state. For example, a 435 

study showcased how CFC between the phase-locked amplitudes of the gamma band 436 

and delta band corresponded to success in a visual discrimination task [163]. However, 437 

they failed to find that eye movements have any significant effect on the cross-frequency 438 

coupling in the EEG. An additional study explored the pupil dynamics in LFP recordings 439 

in the lateral hypothalamus, revealing a clear correlation between pupil dilation events 440 

and delta power, opening the door to new questions around pupillary changes and brain 441 

state transitions [164]. These studies raised new questions about the role of pupil-linked 442 

arousal in mediating cognitive states, with pupil dynamics potentially serving as an in-443 

dicator of transition between neural oscillatory patterns resulting from neuromodulation. 444 

5. Future Neuromodulation Technology 445 

The functional outcomes of understanding the unique role each neuromodulatory 446 

system plays in mediating cross-frequency coupling to facilitate certain brain functions 447 

have immense potential. Already, researchers have been able to develop neural interfaces 448 

to control and modulate a variety of neurological pathways [165]. More modern tech-449 

niques that pay attention to multiple modalities of data are now employing LFP or EEG 450 

recordings in conjunction with neural stimulation technologies, including vagus nerve 451 

stimulation (VNS), transcranial direct current stimulation, and ultrasound stimulation 452 
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[166-172]. Techniques like focused ultrasound stimulation have the potential of deliver-453 

ing localized brain stimulation, allowing non-invasive selective activation of smaller 454 

brain regions like the LC, BF, or VTA [170,173]. Likewise, more invasive techniques such 455 

as CNS microsimulation with carefully designed patterns have enabled preferential ac-456 

tivation of axons and somas, permitting a targeted approach to the activation of local 457 

neuronal circuits [174-177]. Additional invasive approaches are also currently in devel-458 

opment, with clinical trials of optogenetics in humans being explored as a method to treat 459 

pain through selective neuronal activation, as well as through the activation of retinal 460 

ganglion cells [178]. While invasive methods will always provide the greatest specificity 461 

in neuronal activation, other non-invasive stimulation approaches are also proving to be 462 

effective. Both tDCS and TMS have been seen as appropriate treatments for depression 463 

and addiction, modulating prefrontal regions linked to cognitive symptoms [179,180]. 464 

Recently, studies have been utilizing current steering in conjunction with tDCS, enabling 465 

selective activation of deeper brain structures without interfering with superficial cortical 466 

regions [181,182].  467 

While these methods are promising, VNS is proving to be one of the most effective 468 

approaches to non-invasive neuromodulation. The vagus nerve projects to a variety of 469 

brain regions, including neuromodulatory centers like the LC, and VNS has been shown 470 

to be involved in phase-amplitude coupling [18,183]. These questions open the door to 471 

potentially developing the therapeutic paradigm in which VNS is conducted, using re-472 

al-time neural oscillatory feedback as a form of optimization [18]. Additionally, other 473 

noninvasive stimulation methods, including transcutaneous vagus nerve stimulation, 474 

were shown to mimic VNS by modulating alpha EEG activity, suggesting that EEG can 475 

provide higher real-time feedback regarding arousal and cognitive changes [19,184]. 476 

Future adaptations of stimulation devices may need to incorporate time-variant 477 

phase-amplitude coupling, which could inform and decipher the role CFC plays in me-478 

diating or reflecting nervous system function [21]. While these enhancements may seem 479 

quite positive, one study showcased how theta-gamma cross frequency coupling induced 480 

by transcranial altering current stimulation actually worsened the ability of humans to 481 

employ cognitive control in goal-directed behavior [185-187]. It is essential for future 482 

devices, which aim to augment brain functions through control of cognitive states, to 483 

optimize stimulation patterns based on real-time neural oscillatory dynamics to enable 484 

more informed treatments and feedback. 485 

Future work reliably assessing real time cross-frequency coupling relationships in 486 

EEG and LFP signals could provide insight into how stimulation techniques can properly 487 

modulate cognitive function and behavioral outcomes. Experiments looking at key EEG 488 

features such as phase, amplitude, power, and frequency should be conducted in order to 489 

further explain how neural oscillations change in response to different cognitive pro-490 

cesses. Selective neuromodulation of the noradrenergic, cholinergic, and dopaminergic 491 

system may provide insight into how different CFC phenomena occur, guiding our un-492 

derstanding into how complex synchronous neural networks communicate and formu-493 

late complex circuits to direct cognitive functions [188]. Closed-loop stimulation of these 494 

centers may provide a solution to uncovering the causality of CFC throughout the brain 495 

[9]. Neurological disease research for Parkinson’s, Alzheimer's disease, schizophrenia, 496 

ADHD, and epilepsy may benefit greatly from this research, as neuromodulation could 497 

be used to change neural oscillatory patterns and network synchrony, potentially re-498 

storing or reversing erratic neural behavior caused by adverse neural synchronization 499 

[189]. 500 

6. Conclusion 501 

The role of the neuromodulatory systems in influencing neural oscillations is an 502 

understudied topic. Decades of research have helped bring to light the relationship be-503 

tween neural oscillations and higher cognitive functions, but the causality behind these 504 

signals remains poorly understood. By reviewing the literature of each of the three major 505 
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neuromodulatory systems (noradrenergic, cholinergic, and dopaminergic) and their 506 

representative cortical projections, effects on neural oscillations, and involvement in 507 

cross-frequency coupling, the complex nature of these neural computations can hope-508 

fully be further explained. To enhance our understanding of this relationship, it is essen-509 

tial to look towards specific oscillatory features such as cross-frequency coupling to un-510 

derstand the intricacies within large-scale neural synchronization. Studies emphasizing 511 

the importance of the activation and inhibition of these neuromodulatory centers in 512 

conjunction with frequency domain analysis could prove critical to understanding the 513 

causality of different behaviors and neurological disorders. These results could help in-514 

form the next generation of closed-loop neural stimulation devices with effective re-515 

al-time outcomes, prioritizing the role of neuromodulation in controlling large-scale 516 

neural oscillations to restore or enhance brain functions. 517 
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