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Abstract

In this paper, we focus on the approximation of smooth func-
tions f : [−π, π] → C, up to an unresolvable global phase
ambiguity, from a finite set of Short Time Fourier Transform
(STFT) magnitude (i.e., spectrogram) measurements. Two algorithms
are developed for approximately inverting such measurements, each
with theoretical error guarantees establishing their correctness. A
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detailed numerical study also demonstrates that both algorithms
work well in practice and have good numerical convergence behavior.

Keywords: Phase Retrieval, Ptychography, STFT Magnitude Measurements,
Spectrogram Measurements

1 Introduction

We consider the approximate recovery of a smooth function f : R → C,
supported inside of a compact interval I ⊂ R, from a finite set of noisy
spectrogram measurements of the form

Yω,` :=

∣∣∣∣∫ ∞
−∞

f(x)m̃

(
x− 2π

L
`

)
e
−ixωdx

∣∣∣∣2 + ηω,`. (1)

Here m̃ : R → C is a known mask, or window, and the ηω,` are arbitrary
additive measurement errors. Without loss of generality, we will assume that
I ⊂ (−π, π) and seek to characterize how well the function f , with its domain
restricted to [−π, π], can be approximated using dL measurements of this form
for d frequencies ω at each of L shifts `. Toward that end, we present two
algorithms which can provably approximate any such function f (belonging
to a general regularity class defined below in Definition 1.4) up to a global
phase multiple using spectrogram measurements of this type resulting from
two different types of masks m̃. As we shall see, both algorithms ultimately
work by approximating finitely many Fourier series coefficients of f |[−π,π].

1

Inverse problems of this type appear in many applications including optics
[1], astronomy [2], and speech signal processing [3, 4] to name just a few.
In this paper we are primarily motivated by phaseless imaging applications
such as ptychography [5], in which Fourier magnitude data is collected from
overlapping shifts of a mask/probe (e.g., a pinhole) across a specimen and then
used to recover the specimen’s image. Indeed, these types of phaseless imaging
applications directly motivate the types of masks m̃ : R→ C considered below.
In particular, we consider two types of masks m̃ including both (i) relatively
low-degree trigonometric polynomial masks representing masking the sample
f with shifts of a periodic structure/grating, and (ii) compactly supported
masks representing the translation of, e.g., an aperture/pinhole across the
sample during imaging. Note that first type of periodic masks are reminicent of
some of the Coded Diffraction Pattern type measurements for phase retrieval

1 Given f : R→ C, let f |[−π,π] be f with its domain restricted to [−π, π]. Note that the Fourier

transform of a function f ∈ L2(R) with support in (−π, π) yields, when evaluated on the integers,
the Fourier series coefficients of f |[−π,π] up to a 2π factor. Using this relationship, we aim herein
to approximate such functions on [−π, π] using trigonometric polynomials. In a minor abuse of

notation motivated by this strategy, we will use f̂ to refer to two related objects in this section: f̂
will refer to both the suitably renormalized Fourier transform of f as a function on R, and, when
restricted to Z, to the Fourier series coefficients of f |[−π,π] defined as per (9).
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analyzed by Candès et al. in the discrete (i.e., finite-dimensional f and m̃)
setting [6, 7]. (See Section 1 of [8] for a related discussion.) The second type
of compactly supported masks, on the other hand, correspond more closely to
standard ptychographic setups in which Fourier magnitude data is collected
from small overlapping portions of a large sample f in order to eventually
recover its global image.

Although a number of algorithms exhibiting great empirical success were
designed decades ago for phaseless imaging, e.g., [9], [10], [3], the mathematical
community has only recently begun to undertake the challenge of design-
ing measurement setups and corresponding recovery algorithms with provable
accuracy and reconstruction guarantees. The vast majority of those theoretical
works, which propose and analyze numerical algorithms, have only addressed
discrete (i.e., finite-dimensional) phase retrieval problems, (see e.g., [4], [11],
[6], [7], [12], [13]) where the signal of interest and measurement masks are
both discrete vectors and where the relevant measurement vectors are gener-
ally random and globally supported. (We do however note that there has been
a large body of work (such as [14–16]) on the non-algorithmic aspects of phase
retrieval in the continuous setting. For an overview of this work, please see [17]
and the references within.)

In this paper, we develop a provably accurate numerical method2 for
approximating smooth functions f : R → C from a finite set of Short-Time
Fourier Transform (STFT) magnitude measurements. Though there has been
general work concerning the uniqueness and stability of reconstruction from
STFT magnitude measurements in this setting (see, e.g., recent work by Alai-
fari, Cheng, Daubechies, and their collaborators [18], [19]), to the best of our
knowledge, no prior work exists concerning the development or analysis of
provably accurate numerical methods for actually carrying out such recon-
structions from a finite set of such measurements. Perhaps the closest prior
work is that of Thakur [20], who gives an algorithm for the reconstruction of
real-valued bandlimited functions up to a global sign from the absolute val-
ues of their point samples, and that of Gröchenig [21], who considers/surveys
similar results in shift-invariant spaces. Other related work includes that of
Alaifari et al. [22], which proves (among other things) that one can not hope to
stably recover a periodic function up to a single global phase using a trigono-
metric polynomial mask of degree ρ/2, as done below, unless its Fourier series
coefficients do not vanish on any ρ consecutive integer frequencies in between
two other frequencies with nonzero Fourier series coefficients. This helps to
motivate the function classes we consider recovering here. (In particular, if a
function f satisfies Definition 1.4 below, then any strings of zero Fourier series
coefficients in {f̂(n)}n∈Z longer than a certain finite length must be part of
an infinite string of zero Fourier coefficients associated with all frequencies
beyond a finite cutoff.) We also refer the reader to [23] and [19] for similar
considerations in the discrete setting.

2Numerical implementations of the methods proposed here are available at https://bitbucket.
org/charms/blockpr.

https://bitbucket.org/charms/blockpr
https://bitbucket.org/charms/blockpr
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1.1 Problem Setup and Main Results

Let m̃, f : R → C be Ck-functions for some k ≥ 2, d be an odd number, and
let K and L both divide d. Furthermore, let D = {−d−1

2 , . . . , 0, . . . , d−1
2 }, and

choose Ω,L′ ⊆ D with |Ω| = K and |L′| = L. Finally, let YK,L be the K × L
measurement matrix defined by

(YK,L)ω,` :=

∣∣∣∣∫
R
f(x)m̃

(
x− 2π

d
`

)
e
−ixωdx

∣∣∣∣2 + ηω,`, (2)

for all (ω, `) ∈ Ω × L′, where ηK,L = (ηω,`)(ω,`)∈Ω×L′ is an arbitrary additive
noise matrix on the acquired samples. The goal of this paper is to begin to
address the following question.

Question 1.1 Under what conditions on f , m̃, Ω, and L′ can we produce an efficient
and noise robust algorithm which provably recovers f from the K × L matrix YK,L

of acquired measurements?

In order to partially answer this question, we will assume that f satisfies a
regularity assumption defined below in Definition 1.4 and also that one of the
following two (mutually exclusive) assumptions holds:

Assumption 1.2 f is compactly supported with supp(f) ⊂ (−π, π) and m̃ is a
trigonometric polynomial given by

m̃(x) =

ρ/2∑
p=−ρ/2

m̂(p)eipx

for some even number ρ < d/2 and some m̂(−ρ/2), . . . , m̂(0), . . . , m̂(ρ/2) ∈ C.

Assumption 1.3 Both f and m̃ are compactly supported with supp(f ) ⊂ (−a, a)
and supp(m̃) ⊂ (−b, b) for some a and b such that a+ b ≤ π.

We will introduce a four-step method which relies on recovering the Fourier
coefficients of f . Our first step is to carefully discretize the problem. Rather
than simply constructing a vector from pointwise samples, our discretization
step is based up approximating the mask m̃ restricted to [−π, π] by a function
with finitely many nonzero Fourier series coefficients. Therefore, we effectively
regard the mask as being compactly supported in the frequency domain. As
mentioned above, several previous works, including [19], [22], and [23], have
noted that this implies that the recovery of f is impossible if f has many con-
secutive Fourier coefficients which are equal to zero followed by nonzero Fourier
coefficients at higher frequencies. Moreover, if there are many consecutive small
Fourier coefficients followed by larger coefficients at higher frequencies, the
problem is inherently unstable. Therefore, we will remove such pathological
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functions from consideration by assuming that our function f is a member
of the following function class for a suitable choice of β. This choice of β
will depend on whether f and m̃ satisfy Assumption 1.2 or Assumption 1.3,
respectively.

Definition 1.4 Let f ∈ L2(R) with supp(f) ⊂ (−π, π). Let β be a positive integer

and let Dn := maxm∈Z s.t. |m−n|<β/2 |f̂(m)| for all n ∈ Z. We say that f has

β Fourier decay if Dn ≥ Dn′ whenever |n| ≤ |n′|. Additionally, for k ≥ 1, we
shall let Ckβ denote the set of all compactly supported functions f : R → C with

supp(f) ⊂ (−π, π) that are Ck-smooth and have β Fourier Decay.

In particular, we note that if |f̂(n)| is decreasing in |n|, then the conditions
of Definition 1.4 are automatically satisfied for any β. We also note a useful
property of this function class, which follows immediately from the definition,
in the following remark.

Remark 1.5 Suppose f has β Fourier decay for some integer β, and let a, n ∈ Z
with |a| < |n|. Then, if β is odd, the string of β consecutive integers centered around

a contains an integer m such that |f̂(m)|≥ |f̂(n)|. Similarly, if β is even, then the
string of β − 1 consecutive integers centered around a contains an integer m such
that |f̂(m)|≥ |f̂(n)|.

We will show that functions satisfying Definition 1.4 can be reconstructed
from a matrix Y, whose entries Yω,` are defined as in (1), using the following
four-step approach:

1. Approximate the matrix of continuous measurements Y, defined in terms
of functions f and m̃, by a matrix of discrete measurements T defined in
terms of vectors corresponding to the first s Fourier coefficients of f and
the first r coefficients of m̃.

2. Apply a discrete Wigner distribution deconvolution method [8] to recover
a portion of the Fourier autocorrelation matrix x̂x̂∗, where x̂ is a vector
whose entries approximate the Fourier coefficients of f .

3. Recover x̂ via a greedy angular synchronization scheme along the lines of
the one used in [24].

4. Estimate f by a trigonometric polynomial with coefficients given by x̂.

The details of step 2 are quite different depending on whether f and m̃
satisfy Assumption 1.2 or Assumption 1.3. However, we emphasize that the
other three steps of the process are identical in either case. The result of this
approach is two algorithms which allow for the reconstruction of f under either
Assumption 1.2 or 1.3, as well as accompanying theoretical results providing
convergence guarantees. The following theorems are simplified variants of our
main results Corollaries 4.2 and 4.3 presented in Section 4. Details on how to
deduce these results from Corollaries 4.2 and 4.3 are provided in Section 4.
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Theorem 1.6 (Trigonometric Polynomial Masks) Let k and ρ be integers with k ≥ 5
and ρ even. Let K = d ≥ 2ρ + 6, and let L divide d with 2 + ρ ≤ L ≤ 2ρ. Let Yd,L

be the d × L measurement matrix defined in (2) with Ω and L′ chosen to be as in
(6). Then there exist degree ρ/2 trigonometric polynomial masks m̃ and an efficient
numerical algorithm (described in detail by Algorithm 1) such that for all f ∈ Ckρ/2
this algorithm outputs a trigonometric polynomial fe(x) guaranteed to satisfy

min
θ∈[0,2π]

∥∥∥eiθf − fe∥∥∥2

L2([−π,π])
≤ Cf,m

((
1

d

)k−9/2

+
d3

L1/2
‖ηd,L‖F

)
,

where ηd,L is the d×L additive noise matrix defined in (2), and Cf,m is a constant
only depending on f, m̃, and k.

Theorem 1.6 guarantees the existence of periodic masks which allow the
exact recovery of all sufficiently smooth f as above as d → ∞ in the noise-
less case (i.e., when ηd,L = 0). In particular, it is shown that a single mask
m̃ will work with all sufficiently large choices of d as long as d has a divi-
sor in [ρ+ 2, 2ρ]. Furthermore, Theorem 1.6 demonstrates that Algorithm 1 is
robust to small amounts of arbitrary additive noise on its measurements for
any fixed d. We note here that the d3 term in front of the noise term ‖ηd,L‖F
is almost certainly highly pessimistic, and the numerical results in Section 5
indicate that the method performs well with noisy measurements in practice.
We expect that this d3 dependence in our theory can be reduced, especially for
more restricted classes of functions f that are compatible with less naive angu-
lar synchronization approaches than the one utilized here. (See, for example,
recent work on angular synchronization approaches for phase retrieval by Fil-
bir et al. [25].) Finally we note that Theorem 1.6 may also be applied to masks
m̃ obtained by multiplying a trigonometric polynomial by 1[−3π,3π], the char-
acteristic function of the set [−3π, 3π]. Indeed, given that f is itself compactly
supported, any support restrictions on the mask m̃ which leave the support
of f entirely contained within the support of all the utilized shifts of m̃ will
not change our measurements (2). This suggests that periodic masks whose
physical extent includes the sample being imaged may be useful for phaseless
imaging in practice.

Focusing on the total number of STFT magnitude measurements (2) used
by Algorithm 1, we can see that Theorem 1.6 guarantees that KL ≤ 2dρ
will suffice for accurate reconstruction when the mask m̃ is a trigonometric
polynomial. In particular, this is linear in d for a fixed ρ. As we shall see below,
the situation appears more complicated when m̃ is compactly supported. In
particular, Theorem 1.8 stated below requires KL = d2/3 STFT magnitude
measurements in that setting (and more generally, the argument we give here
always requires KL ≥ Cbd2, where C is an absolute constant, and b is the
support size of the mask as per Assumption 1.3). Before stating Theorem 1.8,
we will introduce the following function class.
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Definition 1.7 For a ∈ (0, π − 3/4) and k ≥ 4, let C̃ka,β be the set of all compactly

supported functions f : R→ C with supp(f) ⊆ (−a, a) that are Ck-smooth and have
β Fourier decay.

Theorem 1.8 (Compactly Supported Masks) Let a ∈ (0, π − 3/4), b = 3/4, K =
d/3, and fix d = L to be a multiple of three large enough that all of the following hold:
β < ddb/2πe − 1/2, s = r = ddb/2πe < d/8− 1, and 5d/21 < δ = bdb/πc < d/4. Let
YK,d be the K × d measurement matrix defined in (2) with Ω and L′ chosen to be
as in (6). Then, there exists an efficient numerical algorithm (described in detail in
Algorithm 2), such that for any compactly supported mask m̃ with supp(m̃) ⊆ (−b, b)
and µ2 > 0 (see (36) and (13) for the definition of µ2) the trigonometric polynomial
fe(x) output this algorithm is guaranteed to satisfy

min
θ∈[0,2π]

∥∥∥eiθf − fe∥∥∥2

L2([−π,π])
≤ Cf,m

(
1

µ2σmin(W)dk
+
‖ηK,d‖F
µ2σmin(W)

+

(
1

d

)2k−2 )
for all f ∈ C̃ka,β , where Cf,m is a constant only depending on f, m̃, and k. Here
σmin(W) denotes the smallest singular value of the (2(d/3−b3d/4πc)−1)×ddb/2πe
partial Fourier matrix W defined in Section 3.2 and ηK,d is the K×d additive noise
matrix defined in (2).

Theorem 1.8 demonstrates that sufficiently smooth functions f can be
approximated well for measurement setups and masks having µ2 and σmin(W)
not too small. Furthermore, Proposition 3.4 demonstrates that masks exist for
which µ2 scales polynomially in d (independently of f and k). It remains an
open problem, however, to find a single compactly supported mask m̃ which
will provably allow recovery for all choices of d, as well as optimal constructions
of such masks more generally. Nonetheless, our numerical results in Section 5
demonstrate that Algorithm 2 does indeed work well in practice for a fixed
compactly supported mask and that the mask we evaluate has reasonable
values of µ2 for the range of choices of d evaluated there.

1.2 Notation

In this section, we introduce the most essential notation used throughout the
paper. We will also provide a table detailing the notation introduced in each
chapter at the end of this chapter.

We will denote matrices and vectors by bold letters. We will let Mj denote
the j-th column of a matrix M and, if x and y are vectors, we will let

x ◦ y and
x

y

denote their componentwise (Hadamard) product and their componentwise
quotient. For any odd number n, we will let

[n]c :=

[
1− n

2
,
n− 1

2

]
∩ Z
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be the set of n consecutive integers centered at the origin. In a slight abuse of
notation, if n is even, we will define [n]c := [n+ 1]c, so that in either case [n]c
is the smallest set of at least n consecutive integers centered about the origin.
We will let d be an odd number, let K and L divide d, and let

D := [d]c, K := [K]c, and L := [L]c.

For ` ∈ Z, we let S` : Cd → Cd be the circular shift operator defined for
x = (xp)p∈D by

(S`x)p = xp+`, (3)

where the addition p+ ` is interpreted to mean the unique element of D which
is equivalent to p+ ` modulo d.

If K and L are integers which divide d, and M = (Mk,`)k,`∈D is a d × d
matrix, we will let MK,L be the K × L matrix defined by effectively sub-
sampling M at equally spaced entries. That is, for k ∈ K and ` ∈ L, we
let

(MK,L)k,` = Mk dK ,`
d
L
. (4)

For the sake of notational convenience and ease of analysis, we will often
consider our K × L measurement matrix YK,L in (2) utilized herein to be
defined in terms of a subsampling operation applied to a larger d×d matrix Y
of potential samples in exactly this way. That is, let Y have entires given by

(Y)ω,` :=

∣∣∣∣∫
R
f(x)m̃

(
x− 2π

d
`

)
e
−ixωdx

∣∣∣∣2 + ηω,`, (5)

for all ω, ` ∈ D. Then, we will consider YK,L to be defined via (4) as a subsam-
pled version of a larger matrix of potential samples Y. Note that is equivalent
to the measurements defined in (2) with Ω and L′ chosen to be

Ω := {ωd/K}ω∈K and L′ := {`d/L}`∈L . (6)

Remark 1.9 Note that defining YK,L via (2) with Ω and L′ as per (6) is only
equivalent to subsampling a larger potential sample matrix Y above via (4) if one
ignores the noise ηω,` on the unsampled entires of Y. Indeed, with slight abuse of
notation, and for consistency, we will use this subsampling notation (4) even when
referring to a K×L noise matrix. However, there is no subsampling process for noise
assumed/used herein, and the notation refers exclusively to the dimensions of the
noise matrix when used (with the entries of the noise matrix our algorithms actually
utilize defined as per (2) with Ω and L′ chosen as in (6)).

We let Fd be the d× d Fourier matrix with entries given by

(Fd)j,k =
1

d
e
−2πijk

d
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for j, k ∈ D, and similarly let FL and FK be the L × L and K × K Fourier
matrices with indices in L and K, respectively. Finally, we will often use
generic constants whose values change from line to line, but whose dependen-
cies on other quantities are explicitly tracked and noted. These constants will
be denoted by capital C and have subscripts that indicate the mathematical
objects on which they depend.

2 Discretization

Let m̃, f : R→ C be Ck-functions for some k ≥ 2 such that supp(f) ⊆ [−π, π],
and assume that either Assumption 1.2 or Assumption 1.3 holds. We will define
m to be a periodic function which coincides with m̃ on [−π, π]. Specifically,
we let

m(x) :=

{
m̃(x) if Assumption 1.2 holds,∑

n∈Z m̃(x+ 2πn) if Assumption 1.3 holds.

As in Section 1, let D be the set of d consecutive integers centered at the
origin, and define Z = (Zω,`)ω,`∈D to be the d×d matrix with entries given by

Zω,` :=

∣∣∣∣∫
R
f(x)m̃

(
x− 2π

d
`

)
e
−ixωdx

∣∣∣∣2 .
Our goal is to recover f from the matrix Y = (Yω,`)ω,`∈D of noisy
measurements given by

Yω,` := Zω,` + ηω,`,

where η = (ηω,`)ω,`∈D is an arbitrary additive noise matrix. Since the support
of f is contained in [−π, π], we note that

Zω,` =

∣∣∣∣∫ π

−π
f(x)m̃

(
x− 2π

d
`

)
e
−ixωdx

∣∣∣∣2 . (7)

Furthermore, under either Assumption 1.2 or Assumption 1.3, we note that
we may replace m̃ with m in (7), i.e.,

Zω,` =

∣∣∣∣∫ π

−π
f(x)m

(
x− 2π

d
`

)
e
−ixωdx

∣∣∣∣2 . (8)

Under Assumption 1.2, this is immediate since m̃(x) = m(x) by definition.
Under Assumption 1.3, we note that

supp(m̃−m) ⊆ (−∞, b− 2π] ∪ [2π − b,∞)

and that
∣∣ 2π`
d

∣∣ < π for all ` ∈ D. Therefore, we have that

m̃

(
x− 2π

d
`

)
−m

(
x− 2π

d
`

)
= 0 for all |x| < π − b.
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Notation Notes

Basic notation
Mj j-th column of a matrix M
[n]c set of n consecutive integers centered at the origin
D = [d]c for odd d
K = [K]c for odd K dividing d
L = [L]c for odd L dividing d
MK,L K × L sub-matrix of M = (Mk,`)k,`∈D; see (4)
S` circular shift operator; see (3)
Fd d× d Fourier matrix
x̂ := Fdx discrete Fourier transform of a vector x
Y finite set of noisy spectrogram measurements; see (5)
YK,L K × L measurement matrix; see (2)
ηK,L K × L additive noise matrix; see below (2)
Ckβ set of all compactly supported Ck-smooth functions f : R→ C

with supp(f) ⊂ (−π, π) and β Fourier Decay

C̃ka,β set of all compactly supported Ck-smooth functions f : R→ C
with supp(f) ⊆ (−a, a) and β Fourier decay

f̂ either suitably renormalized Fourier transform of a function f
or Fourier series coefficients of f |[−π,π] (see (9))

Introduced in Chapter 2
m(x) mask m̃ or 2π-periodic extension of m̃
Z matrix with noisless measurements; see (7)
η additive noise matrix with Y = Z + η
PA Fourier projection operator for a set A ⊆ Z; see (11)
R := [r]c, S := [s]c for odd numbers r, s, and d with r + s < d
T matrix of measurements truncated by Fourier projection; see (12)

x := (xp)p∈D xp := PSf
(

2πp
d

)
y := (yp)p∈D, yp := PRm

(
2πp
d

)
z := (zp)p∈D zp = m

(
2πp
d

)
T′ approximation of T depending on z instead of y; see (15)

Introduced in Chapter 3
E total error matrix, i.e. E := Y −T′ = (Z−T′) + η

Ẽ Ẽ := FLEK,L
TFK

T

T̃ analog to Ẽ based on T′K,L, see (16)

µ1 mask-dependent constant under Assumption 1.2; see (22)
µ2 mask-dependent constant under Assumption 1.3; see (36)
σmin(·) smallest singular value of a matrix
Tκ restriction operator, Tκ(M)ij = Mi,j for |i− j| ≤ κ− 1 and 0 else
R(M) d× (2κ− 1) matrix with entries defined by R(M)i,j = Mi,i+j

H Hermitianizing operator; see (30)
Λ reshaping operator with (Λ(M))i,j = Mi,j−i
C (2κ− 1)× (2s− 1) matrix for s ≤ 2κ− 1 with

Cω,` = T̃−`,ω · (4π2d(Fd(ẑ ◦ S−`ẑ))ω)−1

B, D matrices with B = C + D defined in (39)
W (2κ− 1)× s partial Fourier matrix with entries Wj,k = (Fd)j,k

Introduced in Chapter 4
Tγ(x̂x̂∗) = A + N (see (44)) depending on Assumptions

Under Assumption 1.2:

γ = κ and A := H(X) and N := H(Ñ)

with X and Ñ defined in (27) and (28)
Under Assumption 1.3:
γ = 2s− 1 and A := H(Λ(W†C)) and N := H(Λ(W†D))
where W† is the pseudoinverse of W

fe trigonometric polynomial approximating f ; see (48)
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As a result, the assumptions that the support of f is contained in (−a, a) and
that a < π − b imply that∫ π

−π
f(x)

(
m̃

(
x− 2π

d
`

)
−m

(
x− 2π

d
`

))
e
−ixωdx = 0

and so (8) follows.
For any C2-smooth function g : R→ C, we will define

ĝ(n) :=
1

2π

∫ π

−π
g(x)e−inxdx (9)

for all n ∈ Z, and note that, if g is 2π-periodic, we may use Fourier series to
write

g(x) =
∑
n∈Z

ĝ(n)einx. (10)

We also note that, if g is not 2π-periodic, but its support is contained in
(−π, π), then (10) still holds for all x ∈ (−π, π) since we may view {ĝ(n)}n∈Z
as the Fourier coefficients of the periodized version of g. For any set A ⊆ Z,
we define PA to be the Fourier projection operator given by

PAg(x) :=
∑
n∈A

ĝ(n)einx. (11)

Now, let r, s, and d be odd numbers with r+s < d. Let R := [r]c, S := [s]c,
and D = [d]c be the sets of r, s, and d consecutive integers centered at the
origin. Let T := (Tω,`)ω,`∈D denote the matrix of measurements obtained by
replacing f with PSf and m with PRm in (8), i.e., the matrix whose entries
are given by

Tω,` :=

∣∣∣∣∫ π

−π
PSf(x)PRm

(
x− 2π

d
`

)
e
−ixωdx

∣∣∣∣2 . (12)

If Assumption 1.2 holds, we will assume that r > ρ+1 which implies PRm(x) =
m(x).

The following lemma provides a bound on the `∞-norm of the error matrix
Z−T.

Lemma 2.1 Let r, s, and d be odd numbers with r + s < d, and let m̃ : R→ C and
f : R→ C be Ck-smooth functions for some k ≥ 2. Then, under Assumption 1.2, we
have

‖Z−T‖∞ ≤ Cf,m
(

1

s

)k−1

,

and, under Assumption 1.3, we have

‖Z−T‖∞ ≤ Cf,m
((

1

s

)k−1

+

(
1

r

)k−1 )
.
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In either case, Cf,m ∈ R+ is a generic constant that depends only on f , m̃, and k
(and, in particular, is independent of s, r and d).

To prove Lemma 2.1, we need the following auxiliary lemma whose proof is
classical. In particular, in the first inequality of Lemma 2.2, it is straightforward
to check that one may choose Cg to be ‖g‖A(T ) :=

∑
ω∈Z |ĝ(ω)|, which is finite

since Dirichlet’s theorem implies that the Fourier series of a C1 function is
absolutely summable. The second inequality follows by verifying that |ĝ(ω)| ≤
‖g(k)‖1ω−k and summing over ω ≥ (n + 1)/2. We also note that Lemma 2.2
can be applied both to 2π-periodic functions and to functions whose support
is contained in (−π, π).

Lemma 2.2 Let k ≥ 2, and let g : R → C be a Ck-smooth function such that (10)
holds for all x ∈ (−π, π). Let n ≥ 3 be an odd number, let N := [n]c, and let A be
any subset of Z. Then, there exists a constant depending only on g and k such that

‖PAg‖L∞([−π,π]) ≤ Cg and ‖g − PN g‖L∞([−π,π]) ≤ Cg
(

1

n

)k−1

,

where PA and PN are the Fourier projection operators defined as in (11).

The Proof of Lemma 2.1 We note that the measurements given in (8) and (12) may
be written as

Zω,` = |Mω,`|2 and Tω,` = |Uω,`|2,
where

Mω,` :=

∫ π

−π
f(x)m

(
x− 2π

d
`

)
e
−ixωdx and

Uω,` :=

∫ π

−π
PSf(x)PRm

(
x− 2π

d
`

)
e
−ixωdx.

Lemma 2.2 implies

‖PRm‖L∞([−π,π]) ≤ Cm and ‖PSf‖L∞([−π,π]) ≤ Cf .
Therefore,

|Uω,`| ≤ 2π‖PRm‖L∞([−π,π])‖PSf‖L∞([−π,π]) ≤ Cf,m.

Next, letting ˜̀= 2π`/d, we note that

Mω,` − Uω,` =

∫ π

−π

(
f(x)− PSf(x)

)
m(x− ˜̀)e−iωxdx+∫ π

−π
PSf(x)

(
m(x− ˜̀)− PRm(x− ˜̀)

)
e
−iωxdx.

Therefore, by Lemma 2.2 and the triangle inequality, we get

|Mω,` − Uω,`| ≤ Cf,m
((

1

s

)k−1

+ ‖m− PRm‖L∞([−π,π])

)
.

Thus, we may use the difference of squares formula to see

|Zω,` − Tω,`| = (|Mω,`|+ |Uω,`|)||Mω,`| − |Uω,`||
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≤ (2|Uω,`|+ |Mω,` − Uω,`|)|Mω,` − Uω,`|

≤ Cf,m
(

1 +

(
1

s

)k−1

+ ‖m− PRm‖L∞([−π,π])

)
·((

1

s

)k−1

+ ‖m− PRm‖L∞([−π,π])

)
.

Under Assumption 1.2, we have ‖m− PRm‖L∞([−π,π]) = 0, and thus,

|Zω,` − Tω,`| ≤ Cf,m
(

1 +

(
1

s

)k−1 )(
1

s

)k−1

≤ Cf,m
(

1

s

)k−1

.

Likewise, under Assumption 1.3, Lemma 2.2 implies ‖m − PRm‖L∞([−π,π]) ≤

Cm
(

1
r

)k−1
, and so

|Zω,` − Tω,`| ≤ Cf,m
(

1 +

(
1

s

)k−1

+

(
1

r

)k−1 )((
1

s

)k−1

+

(
1

r

)k−1 )
≤ Cf,m

((
1

s

)k−1

+

(
1

r

)k−1 )
.

�

Algorithms 1 and 2 rely on discretizing the integrals used in the definitions
of our measurements. Towards this end, we define three vectors x := (xp)p∈D,
y := (yp)p∈D, and z := (zp)p∈D by

xp := PSf

(
2πp

d

)
, yp := PRm

(
2πp

d

)
, and zp = m

(
2πp

d

)
. (13)

We note that under Assumption 1.2, we have PRm(x) = m(x) and therefore
y = z. Under Assumption 1.3, we have that supp(m) ∩ [−π, π] ⊆ (−b, b).
Therefore, supp(z) ⊆ [δ + 1]c, where δ := b bπdc. The following lemma shows
that the integral used in the definition of T can be rewritten as a discrete sum.
Please see Appendix A for a proof.

Lemma 2.3 Let x = (xp)p∈D and y = (yp)p∈D be defined as in (13). Then, for all

ω ∈ D, ` ∈ Z, and ˜̀= 2π`
d , we have that∫ π

−π
PSf(x)PRm(x− ˜̀)e−ixωdx =

2π

d

∑
p∈D

xpyp−`e
−2πiωp/d,

and as a consequence,

Tω,` =
4π2

d2

∣∣∣∣ ∑
p∈D

xpyp−`e
−2πiωp/d

∣∣∣∣2. (14)

The matrix T depends on the vector y which is obtained by sampling
the trigonometric polynomial PRm. By construction, y is not compactly sup-
ported, i.e., its nonzero entries are not contained in interval which is short
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relative to the length of the vector (even under Assumption 1.3). In Section
3, we will apply a Wigner Deconvolution method based on [8] to invert our
discretized measurements. In order to do this, we will need to use the vector
z which is obtained by subsampling m rather than PRm. (By construction,
z will be compactly supported under Assumption 1.3, and under Assump-
tion 1.2, we have y = z and so this makes no difference.) This motivates
the following lemma which shows that T is well-approximated by the matrix
T′ = (T ′ω,`)ω,`∈D obtained by replacing y with z in (14), i.e.,

T ′ω,` =
4π2

d2

∣∣∣∣∑
p∈D

xpzp−`e
−2πiωp/d

∣∣∣∣2. (15)

Lemma 2.4 Let T and T′ be the matrices defined in (12) and (15). Then, under
Assumption 1.2, we have

‖T−T′‖∞ = 0,

and under Assumption 1.3,

‖T−T′‖∞ ≤ Cf,m
(

1

r

)k−1

.

Proof Under Assumption 1.2, we have y = z. Thus by (14) and (15) we have T = T′

and therefore the first claim is immediate. To prove the second claim, we will assume
Assumption 1.3 holds and use arguments similar to those used in the proof of Lemma
2.1. Let

Uω,` =
2π

d

∑
p∈D

xpyp−`e
−2πiωp/d and U ′ω,` =

2π

d

∑
p∈D

xpzp−`e
−2πiωp/d.

Then by Lemma 2.3 we have

Tω,` = |Uω,`|2 and T ′ω,` = |U ′ω,`|
2.

By Lemma 2.2 and the fact that m is a continuous periodic function, we see

‖x‖∞ ≤ ‖PBf‖L∞([−π,π]) ≤ Cf ,

‖y‖∞ ≤ ‖PRm‖L∞([−π,π]) ≤ Cm, and

‖z‖∞ ≤ ‖m‖L∞([−π,π]) ≤ Cm.

Therefore,
|Uω,`|+ |U ′ω,`| ≤ Cf,m.

To bound |Uω,` − U ′ω,`|, we may again apply Lemma 2.2, to see

|Uω,` − U ′ω,`| ≤ 2π‖x‖∞‖y − z‖∞ ≤ Cf‖m− PRm‖L∞([−π,π]) ≤ Cf,m
(

1

r

)k−1

.

Therefore, by the same reasoning as in the proof of Lemma 2.1, we have

|Tω,` − T ′ω,`| ≤ (|Uω,`|+ |U ′ω,`|)(|Uω,` − U
′
ω,`|) ≤ Cf,m

(
1

r

)k−1

.

�
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3 Wigner Deconvolution

In this section, we will use a Wigner Deconvolution method based on [8] to
recover x from the matrix T′ defined in (15). For the sake of exposition, we
briefly outline this method as used in the discrete setting in [8] in the simple
case where there is no noise and no subsampling, i.e., ηω,` = 0 and K = L = d.
Under these settings, the measurements considered in [8] took the form

Yk,` = |〈S`mk,x〉|2,

for k, ` ∈ D where the mk are a sequence of measurement masks each of which
are obtained as modulations of a single base mask, i.e., (mk)j = e

2πijk/dmj .
Given this setup, one may compute (see Lemma 7 of [8]3)

Yk,` = d3(Fd(x̂ ◦ S−kx̂))`(Fd(m̂ ◦ Skm̂))`,

where x̂ := Fdx and m̂ := Fdm are the discrete Fourier transforms of x and
m. Therefore, under proper assumptions on m we have

(Fd(x̂ ◦ S−kx̂))` =
Yk,`

d3(Fd(m̂ ◦ Skm̂))`
.

Taking the inverse Fourier transform, we may compute x̂ ◦ S−kx̂ for all k.

Therefore, we have recovered the Fourier autocorrelation matrix x̂x̂
∗

since each

x̂ ◦ S−kx̂ is a diagonal band of the x̂x̂
∗
. Noting that

(x̂x̂
∗
)i,j = x̂ix̂j ,

we observe that the magnitudes of x̂, |x̂i|, are the square roots of the diagonal

entries of x̂x̂
∗
. Moreover, we may compute the phase differences of x̂, Arg(x̂i)−

Arg(x̂j) from the off-diagonal entries since Arg(x̂ix̂j) = Arg(x̂i) − Arg(x̂j).
Since we only aim to recover x up to a global phase, we may assumeArg(x̂0) =
0, and therefore we have all the information we need in order to reconstruct
x̂. Finally, we may then solve for x via Fourier inversion.

Our method is based on taking the ideas discussed above and adapting
them to our more complicated setting, carefully accounted for measurement
noise, discretization error, and computational difficulties introduced from sub-
sampling. In order to do this, we let E be the total error matrix defined
by

E := Y −T′.

We note that E can be decomposed by

E = (Z−T′) + η,

3[8] used a different normalization of the Fourier transform than we use here, so their Lemma
7 will have a different power of d.
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where (Z−T′) is the error due to discretization and η is measurement noise.
Let K and L divide d. Let EK,L and T′K,L be the K × L matrices obtained
by subsampling the columns of E and T′ as in (4), and let let ηK,L be the
K × L matrix of noise entries on the sampled measurements. Similarly to [8],
we introduce the quantities Ẽ and T̃ defined by

Ẽ := FLEK,L
TFK

T and T̃ := FL(T′K,L)TFK
T . (16)

Since
√
LFL and

√
KFK are unitary, we have

‖Ẽ‖F = ‖FLEK,L
TFK

T ‖F ≤
1√
KL
‖EK,L‖F ≤ ‖Z−T′‖∞ +

1√
KL
‖ηK,L‖F .

Therefore, Lemmas 2.1 and 2.4 imply that under Assumption 1.2 we have

‖Ẽ‖F ≤ Cf,m
(

1

s

)k−1

+
1√
KL
‖ηK,L‖F , (17)

and that under Assumption 1.3 we have

‖Ẽ‖F ≤ Cf,m
((

1

s

)k−1

+

(
1

r

)k−1)
+

1√
KL
‖ηK,L‖F . (18)

It follows from Theorem 4 of [8] (restated in Appendix E as Theorem E.1) that

T̃`,ω = 4π2d
∑

q∈[ dL ]
c

∑
p∈[ dK ]

c

(
Fd

(
x̂ ◦ SqL−`x̂

))
ω−pK

(
Fd

(
ẑ ◦ S`−qLẑ

))
ω−pK

+ Ẽ`,ω

(19)

=
4π2

d

∑
q∈[ dL ]

c

∑
p∈[ dK ]

c

(Fd (x ◦ Sω−pKx))`−qL (Fd (z ◦ Sω−pKz))qL−` + Ẽ`,ω,

(20)

where, as noted in Section 1.2, ◦ denotes the componentwise multiplication
product and S denotes the circular shift operator defined as in (3). In Sections
3.1 and 3.2, we will be able to use (19) and (20) to recover a portion of the
Fourier autocorrelation matrix x̂x̂∗. (Note that [8] uses a different normaliza-
tion of the discrete Fourier transform and consequently (19) and (20) have
different powers of d than the corresponding equations there.)

3.1 Wigner Deconvolution Under Assumption 1.2

In this subsection, we will assume our mask m̃(x) satisfies Assumption 1.2,
i.e., that it is a trigonometric polynomial with at most ρ nonzero coefficients
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for some ρ ≤ r − 1. We also assume that K = d, that L divides d, and that
L = ρ+ κ for some 2 ≤ κ ≤ ρ.

Since K = d, equation (19) simplifies to

T̃`,ω = 4π2d
∑

q∈[ dL ]
c

(
Fd

(
x̂ ◦ SqL−`x̂

))
ω

(
Fd

(
ẑ ◦ S`−qLẑ

))
ω

+ Ẽ`,ω.

To further simplify this expression, we use the following lemma.

Lemma 3.1 Assume the mask m̃(x) satisfies Assumption 1.2, that K = d, that L
divides d, and that L = ρ + κ for some 2 ≤ κ ≤ ρ. Then, if 1 − κ ≤ ` ≤ κ − 1 and

q ∈
[
d
L

]
c
, q 6= 0, we have

ẑ ◦ S`−qLẑ = 0.

Proof Since m̃(x) satisfies Assumption 1.2, and z is defined as in (13), we have

supp(ẑ) ⊆ [ρ + 1]c. Therefore, it suffices to show that for q ∈
[
d
L

]
c
, q 6= 0, we have

ρ+ 1 ≤ |`− qL| ≤ d− ρ− 1. When q > 0, we have |`− qL| = qL− ` since ` < κ < L.
Thus we see

|`− qL| = qL− ` ≥ L− (κ− 1) = ρ+ 1,

and

|`− qL| = qL− ` ≤
d
L − 1

2
L− (1− κ) =

d

2
− ρ− κ

2
− 1 ≤ d

2
− 1 ≤ d− ρ− 1,

where in the last line we used the fact that ρ ≤ d/2 by Assumption 1.2. The case
where q < 0 is similar. �

Lemma 3.1 implies that if 1− κ ≤ ` ≤ κ− 1, we have

ẑ ◦ S`−qLẑ = 0

except for when q = 0. Thus,

T̃`,ω = 4π2d
(
Fd

(
x̂ ◦ S−`x̂

))
ω

(
Fd

(
ẑ ◦ S`ẑ

))
ω

+Ẽ`,ω for all vert`| ≤ κ−1.

(21)

In order use (21) to solve for
(
Fd

(
x̂ ◦ S−`x̂

))
ω

, we must divide by(
Fd

(
ẑ ◦ S`ẑ

))
ω

. This motivates us to introduce a mask-dependent constant

defined by

µ1 := min
|p|≤κ−1,q∈D

∣∣∣∣ (Fd

(
ẑ ◦ Spẑ

))
q

∣∣∣∣. (22)

Proposition 3.2 shows that it is relatively simple to construct a trigonomet-
ric polynomial m̃(x) such that µ1 is strictly positive. For a proof, please see
Appendix B.
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Proposition 3.2 Assume that m̃ satisfies Assumption 1.2. Further assume∣∣∣m̂(−ρ
2

)∣∣∣ > 2ρ
∣∣∣m̂(−ρ

2
+ 1
)∣∣∣ (23)

and ∣∣∣m̂(−ρ
2

+ 1
)∣∣∣ ≥ ∣∣∣m̂(−ρ

2
+ 2
)∣∣∣ ≥ . . . ≥ ∣∣∣m̂(ρ

2

)∣∣∣ > 0. (24)

Then the mask-dependent constant µ1 defined as in (22) satisfies

µ1 ≥
1

2d

∣∣∣m̂(−ρ
2

)∣∣∣ ∣∣∣m̂(−ρ
2

+ κ− 1
)∣∣∣ > 0.

For the rest of this section, we will assume that µ1 is non-zero. Therefore,
we may make a change of variables `→ −` in (21) to see that

(
Fd

(
x̂ ◦ S`x̂

))
ω

=
1

4π2d

(
T̃−`,ω − Ẽ−`,ω

(Fd(ẑ ◦ S−`ẑ))ω

)
=

1

4π2d

(
T̃−`,ω

(Fd(ẑ ◦ S−`ẑ))ω

)
− 1

4π2d

(
Ẽ−`,ω

(Fd(ẑ ◦ S−`ẑ))ω

)
for all 1− κ ≤ ` ≤ κ− 1. Writing the above equation in column form, we have

Fd

(
x̂ ◦ S`x̂

)
=

1

4π2d

(
T̃T
−`

Fd(ẑ ◦ S−`ẑ)

)
− 1

4π2d

(
ẼT−`

Fd(ẑ ◦ S−`ẑ)

)
and so

x̂ ◦ S`x̂ =
1

4π2d
Fd
−1

(
T̃T
−`

Fd(ẑ ◦ S−`ẑ))

)
− 1

4π2d
Fd
−1

(
ẼT−`

Fd(ẑ ◦ S−`ẑ

)
, (25)

where, as mentioned in Section 1, the division of vectors is defined componen-
twise and Mj denotes the j-th column of a matrix M.

Let Tκ : Cd×d → Cd×d be the restriction operator defined for M ∈ Cd×d by

Tκ(M)ij =

{
Mi,j if |i− j| ≤ κ− 1,

0 otherwise.

Then, we may rewrite (25) in matrix form as

Tκ(x̂x̂∗) = X + Ñ, (26)

where the matrices X = (Xi,j)i,j∈D and Ñ = (Ñi,j)i,j∈D have entries defined
by

Xi,j =

 1
4π2d

(
Fd
−1

(
T̃Ti−j

Fd(ẑ◦Si−j ẑ)

))
i

if |i− j| ≤ κ− 1,

0 otherwise,

(27)
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and

Ñi,j =

 −1
4π2d

(
Fd
−1

(
ẼTi−j

Fd(ẑ◦Si−j ẑ)

))
i

if |i− j| ≤ κ− 1,

0 otherwise.

(28)

For a d × d matrix, M = (Mi,j)i,j∈D, let R(M) = (R(M)i,j)i∈D,j∈[2κ−1]c

be the d× (2κ− 1) matrix with entries defined by

R(M)i,j = Mi,i+j .

Note that the columns of R(M) are the diagonal bands of M which are near
the main diagonal, and that in particular, the middle column, column zero,
is the main diagonal. Since Ñ is a banded matrix whose nonzero terms are
within κ of the main diagonal, we see

‖Ñ‖F = ‖R(Ñ)‖F .

Therefore, since 1√
d
Fd
−1 is unitary, we may bound the `2-norm of the columns

of R(Ñ) by

‖R(Ñ)j‖2 =

∥∥∥∥ 1

4π2d
Fd
−1

(
ẼT−j

Fd(ẑ ◦ S−j ẑ)

)∥∥∥∥
2

≤ 1

4π2d1/2

∥∥∥∥ ẼT−j

Fd(ẑ ◦ S−j ẑ)

∥∥∥∥
2

≤ 1

4π2d1/2µ1
‖ẼT−j‖2,

where µ1 is the mask-dependent constant defined in (22). Therefore, by (17)
with K = d, we have

‖Ñ‖F = ‖R(Ñ)‖F ≤ C
1

d1/2µ1
‖Ẽ‖F ≤ Cf,m

1

d1/2µ1

((
1

s

)k−1

+
1√
dL
‖ηd,L‖F

)
.

(29)
Let H : Cd×d → Cd×d be the Hermitianizing operator

H(M) =
M + M∗

2
. (30)

Since Tκ(xx∗) is Hermitian, applying H to both sides of (26) yields

Tκ(x̂x̂∗) = A + N, (31)

where
A := H(X) and N := H(Ñ). (32)
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We note that by (29) and the triangle inequality, we have

‖N‖F ≤ ‖Ñ‖F ≤ Cf,m
1

d1/2µ1

((
1

s

)k−1

+
1√
dL
‖ηd,L‖F

)
. (33)

3.2 Wigner Deconvolution Under Assumption 1.3

In this subsection, we assume f(x) and m̃(x) satisfy Assumption 1.3, i.e., that
supp(f) ⊆ (−a, a) and supp(m̃) ⊆ (−b, b) with a + b < π. Note that, by
construction, this implies that the vector z defined in (13) satisfies supp(z) ⊆
[δ + 1]c, where δ = b bdπ c. We also assume that L = d, that K divides d and
that K = δ + κ for some 2 ≤ κ ≤ δ. Furthermore, we let s < 2κ− 1.

Since L = d, equation (20) simplifies to

T̃`,ω =
4π2

d

∑
p∈[ dK ]

c

(Fd (x ◦ Sω−pKx))` (Fd (z ◦ Sω−pKz))−` + Ẽ`,ω.

Furthermore, if |ω| ≤ κ − 1, then by the same reasoning as in Lemma 11
and Remark 1 of [8], all terms in the above sum are zero except for the term
corresponding to p = 0. Therefore,

T̃`,ω =
4π2

d
(Fd (x ◦ Sωx))` (Fd (z ◦ Sωz))−` + Ẽ`,ω for all |ω| ≤ κ− 1. (34)

The following lemma is a restatement of Lemma 3 of [8], although we note
that our result appears slightly different due to the fact that we use a different
normalization of the discrete Fourier transform.

Lemma 3.3 For all ` and ω, we have

(Fd (x ◦ Sωx))` = de2πiω`/d
(
Fd

(
x̂ ◦ S−`x̂

))
ω
.

Applying Lemma 3.3 to (34), we see that

T̃`,ω = 4π2d
(
Fd

(
x̂ ◦ S−`x̂

))
ω

(
Fd

(
ẑ ◦ S`ẑ

))
ω

+ Ẽ`,ω (35)

for all |ω| ≤ κ− 1. In order to solve for
(
Fd

(
x̂ ◦ S−`x̂

))
ω
, we need to divide

by
(
Fd

(
ẑ ◦ S`ẑ

))
ω

. This motivates us to introduce a second mask-dependent

constant given by

µ2 := min
ω∈[2κ−1]c,`∈[2s−1]c

∣∣∣∣ (Fd

(
ẑ ◦ S`ẑ

))
ω

∣∣∣∣. (36)
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Proposition 3.4 shows that, for any given d, it is relatively simple to construct
a mask m̃(x) such that µ2 is strictly positive. For a proof please see Appendix
B.

Proposition 3.4 Assume that m̃(x) satisfies Assumption 1.3. Let z = (zp)p∈D be

the vector defined as in (13) by zp = m
(

2πp
d

)
, and let δ = b bπ dc. Let δ̃ ≤ δ + 1 and

assume that supp(z) = {n, n + 1, . . . , n + δ̃ − 1} for some κ ≤ δ̃ ≤ δ + 1. Further
assume that

|zn| > 2δ̃|zn+1| (37)

and that
|zn+1| ≥ |zn+2| ≥ . . . |zn+δ̃−1| > 0. (38)

Then the mask-dependent constant µ2 defined in (36) satisfies

µ2 ≥
1

2d2
|zn||zn+κ−1| > 0.

Remark 3.5 Given any vector z = (zp)p∈D, one may construct, e.g., through spline

interpolation, a function m̃(x) such that m̃
(

2πp
d

)
= zp for all p ∈ D.

For the rest of this section, we will assume that µ2 is not equal to zero.
Therefore, we may make a change of variables `→ −` in (35) to see that

(
Fd

(
x̂ ◦ S`x̂

))
ω

=
1

4π2d

(
T̃−`,ω − Ẽ−`,ω

(Fd(ẑ ◦ S−`ẑ))ω

)
=

1

4π2d

(
T̃−`,ω

(Fd(ẑ ◦ S−`ẑ))ω

)
− 1

4π2d

(
Ẽ−`,ω

(Fd(ẑ ◦ S−`ẑ))ω

)
.

Now, recall that s ≤ 2κ− 1, and let B := (Bω,`),C := (Cω,`), and D := (Dω,`)
be (2κ− 1)× (2s− 1) matrices with entries defined by

Bω,` =
(
Fd

(
x̂ ◦ S`x̂

))
ω
, Cω,` =

1

4π2d

(
T̃−`,ω

(Fd(ẑ ◦ S−`ẑ))ω

)
, and (39)

Dω,` =
−1

4π2d

(
Ẽ−`,ω

(Fd(ẑ ◦ S−`ẑ))ω

)
for ω ∈ [2κ− 1]c and ` ∈ [2s− 1]c so that

B = C + D.

Note that

‖D‖F ≤
1

4π2dµ2
‖Ẽ‖F , (40)

where µ2 is the mask-dependent constant defined in (36).
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Next observe that we may factor B = WV, where V := (Vj,k)j∈S,k∈[2s−1]c

is the s × (2s − 1) matrix with entries defined by Vj,k = (x̂ ◦ Skx̂)j and
W := (Wj,k)j∈[2κ−1]c,k∈S is the (2κ−1)×s partial Fourier matrix with entries

Wj,k = (Fd)j,k. Since s ≤ 2κ − 1, we may let W† := (W∗W)−1W∗ be the
pseudoinverse of W and see

V = W†C + W†D.

Now, let Λ : Cs×(2s−1) → Cd×d be the reshaping operator defined by

(Λ(M))i,j = Mi,j−i.

Note that the columns of M are diagonal bands of Λ(M ) with the middle
column on the main diagonal. By construction, we have T2s−1(x̂x̂∗) = Λ(V).
Therefore, since T2s−1(x̂x̂∗) is Hermitian, we have

T2s−1(x̂x̂∗) = H(Λ(V)),

where H is the Hermitianizing operator introduced in (30). Therefore,

T2s−1(x̂x̂∗) = A + N, (41)

where
A := H(Λ(W†C)) and N := H(Λ(W†D)). (42)

Since H is contractive, (40) implies

‖N‖F ≤ ‖Λ(W†D)‖ = ‖W†D‖F ≤
1

σmin(W)
‖D‖F ≤

1

4π2dµ2σmin(W)
‖Ẽ‖F ,

where σmin(W) is the smallest singular value of W. Combining this with (18)
yields

‖N‖F ≤ Cf,m
1

dµ2σmin(W)

((
1

s

)k−1

+

(
1

r

)k−1

+
1√
Kd
‖ηK,d‖F

)
. (43)

4 Convergence Guarantees

In this section, we will provide convergence guarantees for Algorithms 1 and
2. Specifically, we will prove Theorem 4.1 which guarantees that we can
reconstruct f(x) from a noisy Fourier autocorrelation matrix. Corollaries 4.2
and 4.3, which guarantee the convergence of our algorithms, will then follow
immediately from (31), (33), (41), and (43), which are proved in Section 3.
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Algorithm 1 Signal Recovery with Trigonometric Polynomial Masks

Inputs

1. Trigonometric polynomial mask m̃ satisfying Assumption 1.2.
2. Matrix Y = (Yω,`)ω∈D,`∈L of spectrogram measurements defined as in (2).

Steps

1. Define vector z = (zp)p∈D by zp = m̃
(

2πp
d

)
.

2. Let κ = L− ρ, and for 1− κ ≤ ` ≤ κ− 1, estimate

Fd

(
x̂ ◦ S`x̂

)
≈ 1

4π2Ld2

(
(FLY

TFd
T )−`

Fd(ẑ ◦ S−`ẑ)

)
.

3. Apply an inverse Fourier transform to estimate the vectors x̂ ◦ S`x̂.
4. Organize these vectors into a banded matrix X = (Xi,j)i,j∈D described as

in (27).
5. Hermitianize X to obtain the matrix A = (Ai,j)i,j∈D as described in (32).

6. Estimate |f̂(n)| ≈ an =
√
|An,n|.

7. For n ∈ S = [s]c, choose {n`}ζ`=0 according to Algorithm 3 (where ζ ≤ d
β is

as in Algorithm 3).
8. Approximate

arg
(
f̂(n)

)
≈ αn =

ζ−1∑
`=0

arg
(
An`+1,n`

)
.

Output
An approximation of f given by

fe(x) =
∑
n∈S

ane
iαne

inx.

For the rest of this section, we will assume that there exists 1 ≤ γ ≤ d such
that

Tγ(x̂x̂∗) = A + N. (44)

Here, A = (Ai,j)i,j∈D is a known approximation of the partial Fourier auto-
correlation matrix Tγ(x̂x̂∗) and N ∈ Cd×d is an arbitrary noise matrix. We
note that, under Assumption 1.2, equation (31) shows that (44) holds with
γ = κ. Similarly, under Assumption 1.3, equation (41) shows that (44) holds
with γ = 2s− 1. We also remark that (33) and (43) provide bounds on ‖N‖F
in these cases. We will also assume for the remainder of this section that there
exists β < γ/2 such that f belongs to the class of functions with β Fourier
decay introduced in Definition 1.4.
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Algorithm 2 Signal Recovery with Compactly Supported Masks

Inputs

1. Compactly supported mask m̃ satisfying Assumption 1.3.
2. Matrix Y = (Yω,`)ω∈K,`∈D of spectrogram measurements defined as in (2).

Steps

1. Define vector z = (zp)p∈D by zp = m̃
(

2πp
d

)
.

2. Let κ = K − δ, and for 1− κ ≤ ω ≤ κ− 1, 1− s ≤ ` ≤ s− 1 estimate

Fd

(
x̂ ◦ S`x̂

)
≈ 1

4π2Kd2

(
(FdY

TFK
T )−`

(Fd(ẑ ◦ S−`ẑ))

)
.

3. Form the matrix C according to (39).
4. Compute V = W†C, where W = ((Fd)j,k)j∈[2κ−1]c,k∈S is the (2κ− 1)× s

partial Fourier matrix.
5. Apply reshaping operator Λ.
6. Hermitianize Λ(V) to obtain the matrix A = (Ai,j)i,j∈D as described in

(42).

7. Estimate |f̂(n)| ≈ an =
√
|An,n|.

8. For n ∈ S = [s]c, choose {n`}ζ`=0 according to Algorithm 3 (where ζ ≤ d
β is

as in Algorithm 3).
9. Approximate

arg
(
f̂(n)

)
≈ αn =

ζ−1∑
`=0

arg
(
An`+1,n`

)
.

Output
An approximation of f given by

fe(x) =
∑
n∈S

ane
iαne

inx.

By construction, the discrete Fourier transform of the vector x defined in
(13) satisfies

x̂n = f̂(n) for all n ∈ S,

and so the square magnitudes of the Fourier coefficients of f lie on the main
diagonal of the matrix Tγ(x̂x̂∗). Therefore, we view an :=

√
|An,n| as an

approximation of |x̂n|. More specifically, Lemma 3 of [24] shows that∣∣∣an − |f̂(n)|
∣∣∣2 ≤ 3‖N‖∞. (45)
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Algorithm 3 Entry Selection

Inputs

1. Vector of amplitudes a = (an)n∈D, an =
√
|An,n|.

2. Entry n ∈ S = [s]c.

Steps

1. Choose n0 = arg maxn∈S an.
2. Let ζ = 0.
3. While: |n− nζ | ≥ γ (see (44)).

If: n > nζ , let nζ+1 ← arg maxnζ+γ−β≤m<nζ+γ am.
If: n < nζ , let nζ+1 ← arg maxnζ−γ<m≤nζ−γ+β am.
ζ ← ζ + 1.

4. nζ ← n.

Output
A sequence {n`}ζ`=0, |n`+1 − n`| < 2β, nζ = n, ζ ≤ d

β .

In addition to our estimate on the magnitudes of f̂(n), |f̂(n)| ≈ an =√
An,n, we also need an estimate on the phase of each entry. In order to

do this, we let n0 = arg maxn∈S an and for n ∈ D we construct a sequence
of indices {n0, n1, . . . , nζ = n} such that ζ ≤ d

β and each of the an` are as

large as possible subject to the constraints that (i) |n`+1 − n`| ≤ 2β and (ii)
|n`+1−n| < |n`−n|. Full details on this construction are provided in Algorithm
3. We note that while superficially it appears that Algorithm 3 needs to be run
repeatedly for every n, upon inspection, it is clear that it will select the same
n` every time, except possibly for the last entry. Therefore, for computational
savings, one may first compute sequences going from n0 to (d − 1)/2 and n0

to −(d−1)/2. Then, one may use subsequences of these two longest sequences
to contruct sequences from n0 to any intermediate n’s.

After constructing the sequence {n0, . . . , nζ = n}, we then define

αn :=

ζ−1∑
l=0

arg
(
An`+1,n`

)
. (46)

To understand this definition, we let

θ0 := arg(f̂(n0)) and τn :=

ζ−1∑
l=0

arg
(
(x̂x̂∗)n`+1,n`

)
. (47)

By construction, τn = arg
(
f̂(n)

)
− θ0. Therefore

e
−iθ0 f̂(n) = |f̂(n)|eiτn
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for all n ∈ S. (Note that n0 does not depend on n.) Since A is a noisy approx-
imation of (a portion of) x̂x̂∗, we intuitively view αn as a noisy approximation
of τn (up to a phase shift θ0). Lemma 4.5 will show that this intuition is cor-

rect when |f̂(n)| is sufficiently large. Therefore, in light of (45), we define a
trigonometric polynomial, fe(x), which estimates f(x) by

fe(x) :=
∑
n∈S

ane
iαne

inx. (48)

The following theorem shows that fe(x) is a good approximation of f(x).

Theorem 4.1 Assume that f(x) has β Fourier decay for some β < γ/2. For n ∈ S,
let αn be defined as in (46), let an =

√
An,n, and let fe(x) be the trigonometric

polynomial defined as in (48). Then,

min
θ∈[0,2π]

‖eiθf − fe‖2L2([−π,π]) ≤ C s
(
d

γ

)2

‖N‖∞ + Cf

(
1

s

)2k−2

.

Before proving Theorem 4.1, we recall that γ = κ under Assumption 1.2
and γ = 2s− 1 under Assumption 1.3. Therefore, (33), (43), and the fact that
‖N‖∞ ≤ ‖N‖F , immediately lead to the following corollaries.

Corollary 4.2 (Convergence Guarantees for Algorithm 1) Let s+ r < d, let K = d,
and let L divide d. Assume that f(x) and m̃(x) satisfy Assumption 1.2, that ρ ≤ r−1,
and that L = ρ + κ for some 2 ≤ κ ≤ ρ. Then the trigonometric polynomial fe(x)
output by Algorithm 1 satisfies

min
θ∈[0,2π]

‖eiθf − fe‖2L2([−π,π])

≤Cf,m
(
sd3/2

κ2µ1

((
1

s

)k−1

+
1√
dL
‖ηd,L‖F

)
+

(
1

s

)2k−2 )
,

where µ1 is the mask-dependent constant defined in (22). Moreover, if s > d/2, then

min
θ∈[0,2π]

‖eiθf − fe‖2L2([−π,π])

≤Cf,m
(

1

κ2µ1

(
1

d

)k−7/2

+
d2

κ2L1/2µ1
‖ηd,L‖F +

(
1

d

)2k−2 )
.

Corollary 4.3 (Convergence Guarantees for Algorithm 2) Let s+ r < d, let L = d,
and let K divide d. Assume f(x) and m̃(x) satisfy Assumption 1.3 and let δ = b bdπ c.
Further, assume that K = δ + κ for some 2 ≤ κ ≤ δ and that s < 2κ − 1. Then the
trigonometric polynomial fe(x) output by Algorithm 2, satisfies

min
θ∈[0,2π]

‖eiθf − fe‖2L2([−π,π])

≤ Cf,m
(

d

sµ2σmin(W)

((
1

s

)k−1

+

(
1

r

)k−1

+
1√
Kd
‖ηK,d‖F

)
+

(
1

s

)2k−2 )
,
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where µ2 is the mask-dependent constant defined in (36). Moreover, if s, r ≥ db
2π , then

min
θ∈[0,2π]

‖eiθf − fe‖2L2([−π,π])

≤ Cf,m
(

1

µ2σmin(W)bk−1dk
+

d1/2

K1/2µ2σmin(W)
‖ηK,d‖F +

(
1

bd

)2k−2 )
.

In order to prove Theorem 4.1, we need the following lemma which pro-
vides us with an estimate of ‖e−iθ0PSf − fe‖L2([−π,π]) as well as the uniform
convergence of Fourier series.

Lemma 4.4 Assume that f(x) has β Fourier decay for some β < γ/2. For n ∈ S,
let αn be defined as in (46), let an =

√
An,n, and let fe(x) be the trigonometric

polynomial defined as in (48) by
fe(x) =

∑
n∈S ane

iαne
inx. Then,∥∥∥e−iθ0PSf − fe∥∥∥2

L2([−π,π])
≤ C s

(
d

γ

)2

‖N‖∞.

In order to prove Lemma 4.4, we need the following lemma, which is a
modification of [24, Lemma 4]. It shows that αn is a good approximation of τn
for all n such that |f̂(n)| is sufficiently large. For a proof, please see Appendix
C.

Lemma 4.5 Suppose that f has β Fourier decay for some β ≤ γ/2, and let Lf be
the set of indices corresponding to large Fourier coefficients defined by

Lf := {n ∈ S : |f̂(n)|2 ≥ 48‖N‖∞}. (49)

Let n ∈ Lf , and let τn and αn be as in (46) and (47). Then

|eiτn − eiαn | ≤ 4πd

γ

‖N‖∞
|f̂(n)|2

.

The Proof of Lemma 4.4 Recall that x̂n = f̂(n) for all n ∈ S, and let x̂|S be a vector
of length s obtained by restricting x̂ to indices in S. Define vectors u = (un)n∈S and
v = (vn)n∈S by

un = ane
iαn and vn = |f̂(n)|eiαn .

By Parseval’s identity, we see∥∥∥e−iθ0PSf(x)−
∑
n∈S

ane
iαn

e
inx
∥∥∥
L2([−π,π])

=
∥∥∥e−iθ0 ∑

n∈S
f̂(n)einx −

∑
n∈S

une
inx
∥∥∥
L2([−π,π])

≤
√

2π
∥∥∥e−iθ0 x̂|S − u

∥∥∥
`2
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≤
√

2π
∥∥∥e−iθ0 x̂|S − v

∥∥∥
`2

+
√

2π‖u− v‖`2

=:I1 + I2.

To estimate I2, we recall (45) and note

I2
2 = 2π

∑
n∈S
|un − vn|2

= 2π
∑
n∈S

∣∣∣aneiαn − |f̂(n)|eiαn
∣∣∣2

= 2π
∑
n∈S

∣∣∣an − |x̂n|∣∣∣2
≤ 6πs‖N‖∞. (50)

Using Lemma 4.5 and the fact that |eiτn − eiαn | ≤ 2, we have

I2
1 = 2π

∑
n∈S
|f̂(n)|2|eiτn − eiαn |2

≤ C
∑

n∈S\Lf

|f̂(n)|2 + C
∑
n∈Lf

(
d

γ

)2

‖N‖2∞ |f̂(n)|−2

≤ C s ‖N‖∞ + C
∑
n∈Lf

(
d

γ

)2

‖N‖∞

≤ C s
(
d

γ

)2

‖N‖∞,

where Lf is the set of indices corresponding to large Fourier coefficients introduced
in (49). Combining this with (50) yields∥∥∥e−iθ0PSf(x)−

∑
n∈S

ane
inx
e
iαn
∥∥∥2

L2([−π,π])
≤ C s

(
d

γ

)2

‖N‖∞

as desired. �

Theorem 4.1 now follows readily via Lemmas 2.2 and 4.5

The Proof of Theorem 4.1 For all θ ∈ [0, 2π], we have∥∥∥eiθf(x)−
∑
n∈S

ane
iαn

e
inx
∥∥∥
L2([−π,π])

≤
∥∥∥eiθf(x)− eiθPSf(x)

∥∥∥
L2([−π,π])

+
∥∥∥eiθPSf(x)−

∑
n∈S

ane
iαn

e
inx
∥∥∥
L2([−π,π])

=‖f(x)− PSf(x)‖L2([−π,π]) +
∥∥∥e−iθPSf(x)−

∑
n∈S

ane
iαn

e
inx
∥∥∥
L2([−π,π])

.

Thus, letting θ0 = arg(f̂(n0)). Then we get

min
θ∈[0,2π]

∥∥∥eiθf(x)−
∑
n∈S

ane
iαn

e
inx
∥∥∥
L2([−π,π])

≤‖f(x)− PSf(x)‖L2([−π,π]) +
∥∥∥e−iθ0PSf(x)−

∑
n∈S

ane
iαn

e
inx
∥∥∥
L2([−π,π])

.
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By Lemma 4.4, we know that∥∥∥e−iθ0PSf(x)−
∑
n∈S

ane
iαn

e
inx
∥∥∥2

L2([−π,π])
≤ C s

(
d

γ

)2

‖N‖∞.

Therefore, we conclude by applying Lemma 2.2 to see

‖f − PSf‖2L2([−π,π]) ≤ 2π‖f − PSf‖2L∞([−π,π]) ≤ Cf
(

1

s

)2k−2

.

�

We will now finally prove Theorems 1.6 and 1.8.

Proof of Theorem 1.6 Apply Corollary 4.2 with s = d(d+ 1)/2e and r = d− s− 1 ≥
d/2 − 2. The assumption that d ≥ 2ρ + 6, implies that ρ ≤ r − 1. Noting now that
κ := L− ρ ≥ 2 and applying Proposition 3.2 for choices of m̃ satisfying (23) with κ
replaced by ρ (since ρ ≥ κ), we have that µ−1

1 ≤ Cmd for a mask-dependent constant
Cm. �

Proof of Theorem 1.8 We first note that δ + (s+ 1)/2 < 5d/16 ≤ K ≤ 10d/21 < 2δ.
Next, we apply Corollary 4.3 with s, r, δ, and all other parameters set as above.
Next, we observe that W will be full rank given that it is a Vandermonde matrix.
Therefore, σmin(W) > 0 will always hold. Finally, we note that, for any choice of d
and b ≤ π − a, Proposition 3.4 guarantees the existence of a smooth and compactly
supported mask m̃ with µ2 > 0. �

5 Empirical Evaluation

We now present numerical results demonstrating the efficiency and robust-
ness of Algorithms 1 and 2. All code is publicly available for the sake of
reproducibility.4

5.1 Empirical Evaluation of Algorithm 1

We begin by investigating the empirical performance of Algorithm 1 in recov-
ering the following class of compactly supported C∞-smooth test functions,

f(x) :=

J∑
j=1

αj ξc1,c2(x− νj). (51)

Here J ∈ N, αj ∈ C, νj ∈ [−π, π], and ξc1,c2 denotes a C∞-smooth bump
function with ξc1,c2(x) > 0 in (c1, c2) and ξc1,c2(x) = 0 for x /∈ [c1, c2]. We may
generate such a bump function (see, for example [30, Chapter 2]) as follows:

ξc1,c2(x) = ξ

(
−2 + 4

x− c1
c2 − c1

)
, ξ(x) =

h(2− |x|)
h(2− |x|) + h(|x| − 1)

, (52)

4Numerical implementations of the methods proposed here are available at https://bitbucket.
org/charms/blockpr.

https://bitbucket.org/charms/blockpr
https://bitbucket.org/charms/blockpr
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where

h(x) =

{
e
−1/x2

, x > 0,

0, x ≤ 0.

For the experiments below, we set J = 4, c1 = −π/5, c2 = π/5, and
choose αj such that its real and complex components are both i.i.d. uniform
random variables U [−1, 1]. The shifts νj are selected uniformly at random

(without repetition) from the set {−νmax + j(2νmax/(2J − 1))}2J−1
j=0 where

νmax = 0.9π −max{|c1|, |c2|} so that supp(f) ⊆ [−π, π]. A representative plot
of (the real and imaginary parts of) such a test function is provided in Fig. 1a.
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1

(a) Test Function (with
supp(f) ⊆ [−π, π])

-3 -2 -1 0 1 2 3
-10

-5

0

5

10

(b) Mask (Trigonometric Polynomial;
ρ = 20)

Fig. 1: Representative Test Function and Mask Satisfying Assumption 1.

To generate masks satisfying Assumption 1 (see Section 1.1), we choose the
Fourier coefficients m̂ from a zero mean, unit variance i.i.d. complex Gaussian
distribution and empirically verify that the mask-dependent constant µ1 (as
defined in (22) is strictly positive. Fig. 1b plots such a (complex) trigonometric
mask for ρ = 20, where ρ+ 1 is the (two-sided) bandwidth of the mask. Table
1 lists the empirically calculated µ1 values, and averaged over 100 trials) for
such masks. The left two columns of the table list µ1 for a fixed discretization
size (d = 211) and varying ρ; they show that µ1 is approximately constant for
fixed d. The right two columns list µ1 values for fixed ρ and varying d; they
show µ1 decreases slowly with d (roughly proportional to 1/d). This verifies
that constructing admissible (i.e., with µ1 6= 0) trigonometric masks as per
Assumption 1 is indeed possible for reasonable values of d and ρ.

Finding closed form analytical expressions for the integral in (7) is non-
trivial. Therefore, we use numerical quadrature computations on an equispaced
fine grid (of 10, 001 points) in [−π, π] to generate phaseless measurements
corresponding to (7) under both Assumptions 1 and 2.

We now investigate the noise robustness of Algorithm 1. For the results
shown in Fig. 2a (where each data point is generated by averaging the results
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(d = 211, ρ) µ1 (Average over 100 trials) (d, ρ = 50) µ1 (Average over 100 trials)

(211, 20) 1.957× 10−4 (111, 50) 4.825× 10−4

(211, 40) 1.704× 10−4 (223, 50) 1.560× 10−4

(211, 60) 1.563× 10−4 (447, 50) 6.199× 10−5

(211, 80) 1.500× 10−4 (895, 50) 2.162× 10−5

(211, 100) 1.530× 10−4 (1791, 50) 8.247× 10−6

Table 1: Empirically evaluated µ1 values (mask constant) for Algorithm 1.
(Fourier coefficients of mask chosen as i.i.d. complex standard normal entries.
Left two columns show µ1 values for fixed d, right two columns show µ1 values
for fixed ρ.)

of 100 trials), we add i.i.d. random (real) Gaussian noise to the phaseless
measurements (7) at desired signal to noise ratios (SNRs). In particular, the
noise matrix ηK,L ∈ Rd×L in Section 3 is chosen to be i.i.d. N (0, σ2I). The
variance σ2 is chosen such that

SNR (dB) = 10 log10

(
‖Z‖2F
dLσ2

)
where Z denotes the corresponding matrix of perfect (noiseless) measurements.
Errors in the recovered signal are also reported in dB with

Error (dB) = 10 log10

(
h
∑N

i=0 |f(xi)− fe(xi)|2

h
∑N

i=0 |f(xi)|2

)
,

where f and fe denote the true and recovered functions respectively, and xi
denotes (equispaced) grid points in [−π, π], i.e. xi = −π+ hi with h := 2π/N .
Errors reported in this section use N = 2003. MATLAB code used to generate
these numerical results is freely available at [26].

Fig. 2a plots the error in recovering a test function using Algorithm 1 (for
d = 257, ρ = 32, κ = ρ−1 and (2ρ−1)d total measurements) over a wide range
of SNRs. For reference, we also include results using an improved reconstruc-
tion method based on Algorithm 1, as well as the popular HIO+ER alternating
projection algorithm [9, 27, 28]. Refinements over Algorithm 1 included use
of an improved eigenvector-based magnitude estimation procedure in place of
Step 6 (see [29, Section 6.1] for details), and (exponential) low-pass filtering5

in the output Fourier partial sum reconstruction step of Algorithm 1. Fig. 2b
plots the execution time (in seconds, averaged over 100 trials) to recover a test
signal using dL measurements, where d is the discretization size, L = 2ρ − 1
and ρ = min{(d− 5)/2, 2blog2(d)c}. Both Algorithm 1 and its refined variant
are essentially O(dL), where dL is the number of measurements acquired, with
Algorithm 1 performing much faster than the HIO+ER procedure. Finally,
we note that reconstruction error can be reduced by increasing the number

5With filter order increasing with SNR; we used a 2nd-order filter at 10dB SNR and a 12th-order
filter at 60dB SNR.
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Fig. 2: Empirical Evaluation of Algorithm 1. Note in Fig. 2a that the refined
version of Alg. 1 achieves lower reconstruction errors than HIO+ER. In Fig. 2b
one can also see that Alg. 1 with no refinements is much faster than HIO+ER
thereby demonstrating its value as a provably accurate way to quickly initialize
such iterative methods.

of shifts L acquired (and consequently, the total number of measurements).
Fig. 2c plots the error in reconstructing a test signal discretized using d = 257
points, κ = ρ − 1 and Ld = (2ρ − 1)d measurements for different values of ρ
(and correspondingly L). As expected, we see that noise performance improves
as L increases.

For results utilizing the HIO+ER algorithm, we chose the zero vector as
an initial guess, although use of a random starting guess did not change the
qualitative nature of the results. As is common practice, (see for example [9])
we implemented the HIO+ER algorithm in “blocks” of eight HIO iterations
followed by two ER iterations in order to accelerate convergence of the algo-
rithm. Fig. 3a – which plots the HIO+ER reconstruction error (for the problem
setting corresponding to Algorithm 1) against the total number of HIO+ER
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iterations – illustrates the choice of these parameters. To minimize computa-
tional cost while ensuring convergence, the total number of HIO+ER iterations
was limited to 30.
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(a) Selection of HIO+ER Iteration
parameters for Algorithm 1
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(b) Selection of HIO+ER Iteration
parameters for Algorithm 2

Fig. 3: Selection of HIO+ER Parameters for Algorithms 1 and 2. The nota-
tion (HIO,ER)=(x,y) denotes implementation of the HIO+ER algorithm in
“blocks” of x iterations of the HIO algorithm followed by y iterations of the
ER algorithm. A total of 30 and 100 iterations were used respectively for the
simulations in Fig. 2 and Fig. 5 (in blocks of 8 HIO iterations followed by 2
ER iterations).

In summary, Algorithm 1 is significantly faster than the popular HIO+ER
algorithm, although the reconstruction error is a bit larger. This demonstrates
a trade off between speed and noise robustness. In practice, one might use a
hybrid method in which one first applies Algorithm 1 as a computationally
efficient initializer before then applying an iterative method such as HIO+ER.
Alternatively, one could also use the modified version of Algorithm 1. Our
experiments show that this modified algorithm is more accurate than HIO+ER
while having nearly identical computational cost. Additional numerical exper-
iments studying the convergence behavior of Algorithm 1 (in the absence of
measurement errors) can be found in Appendix D.

5.2 Empirical Evaluation of Algorithm 2

We next present empirical simulations evaluating the robustness and efficiency
of Algorithm 2. As detailed in Assumption 2 (see Section 1.1), we recover
compactly supported test functions with supp(f ) ⊆ (−a, a) using compactly
supported masks which satisfy supp(m̃) ⊆ (−b, b), where a + b < π. For
experiments in this section, we choose b = 3/4 and a = 0.9(π − 3/4). The
test functions are generated as detailed in (51) of Section 5.1, as a (complex)
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weighted sum of shifted C∞-smooth bump functions, but with a maximum
shift of νmax = a− b. A representative test function is plotted in Fig. 4a. The
corresponding compactly supported masks are generated as the product of a
trigonometric polynomial and a bump function using

m̃(x) = ξ−b,b(x) ·

 ρ/2∑
p=−ρ/2

m̂(p)eipx/b

 , (53)

where ξ−b,b is the C∞-smooth bump function described in Section 5.1, and
the term in the parenthesis describes a (complex) 2b-periodic trigonometric
polynomial. A representative example of such as mask is provided in Fig. 4b
with ρ = 16 and the coefficients m̂ chosen from a zero mean, unit variance
i.i.d. complex Gaussian distribution.
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(b) Mask
(supp(m̃) ⊆ (−b, b) = (−3/4, 3/4))

Fig. 4: Representative Test Function and Mask Satisfying Assumption 2.

(d = 189, κ) µ2 (Average over 100 trials) (d, κ = 27) µ2 (Average over 100 trials)

(189, 3) 2.563× 10−3 (165, 27) 9.722× 10−5

(189, 10) 2.873× 10−4 (223, 27) 8.866× 10−5

(189, 31) 8.331× 10−5 (495, 27) 4.686× 10−5

(189, 94) 2.642× 10−19 (1045, 27) 2.448× 10−5

Table 2: Empirically evaluated µ2 values (mask constant) for Algorithm 2.
The left two columns show µ2 values for fixed d, right two columns show µ2

values for fixed κ. Here, δ = κ+ 1 and s = κ− 1.

Representative values of the mask constant µ2 (as defined in (36) and aver-
aged over 100 trials) are listed in Table 2. The first two columns list µ2 values
for fixed discretization size d, while the last two columns list µ2 values for fixed
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κ. In both cases, we set K = 2κ+1 and ensure that K divides d. We note that
κ denotes the number of modes used in the Wigner deconvolution procedure
(Step 2) in Algorithm 2. Since the masks constructed using (53) are compactly
supported and smooth, we expect the autocorrelation of their Fourier trans-
forms (and the corresponding Fourier coefficients of this autocorrelation) to
decay rapidly. Therefore, we expect µ2 to be small for large κ values; indeed,
this is seen in the last row of Table 2 where the µ2 value is essentially zero when
d = 189, κ = 94. However, as the functions we expect to recover also exhibit
rapid decay in Fourier coefficients, we only require a small number of their
Fourier modes to ensure accurate reconstructions. Hence, small to moderate κ
values suffice. As seen in Table 2, it is feasible to construct admissible masks
(i.e., µ2 > 0) for such (d, κ) pairs. Experiments have also been conducted with
m̃ chosen to be the bump function ξ−b,b and a (truncated) Gaussian, However,
these experiments yield smaller mask constants µ2, which make the resulting
reconstructions more susceptible to noise. Selection of “optimal” and physi-
cally realizable compactly supported masks is an open problem which we defer
to future research.

We note that due to the equivalence of (34) and (35), the Wigner decon-
volution step (Step 2) in Algorithm 2 may be instead evaluated using (34).
While theoretical analysis of this equivalent procedure is more involved, it
offers computational advantages since it does not require solving6 the Van-
dermonde system of Step 4 in Algorithm 2. The corresponding µ2 values for
this procedure also follow the qualitative behavior in Table 2. This variant of
Algorithm 2 is used in generating some of the plots in Appendix D, while Fig.
5 provides a comparison of Algorithm 2 and this alternate implementation.

We now study the robustness and computational efficiency of Algorithm 2.
Fig. 5a plots the error in recovering a test function (with each data point aver-
aged over 100 trials) for discretization size d = 189, δ = 32, κ = δ − 1, s = 29
and d/3 total measurements over a wide range of SNRs. For reference, we also
include results using the HIO+ER alternating projection algorithm, as well
as the alternate implementation of Algorithm 2 (using (34) to implement the
Wigner deconvolution Step 2). As in Section 5.1, the alternate implementation
of Algorithm 2 and the HIO+ER implementations utilize (exponential) low-
pass filtering. The HIO+ER algorithm is implemented in blocks of eight HIO
iterations followed by two ER iterations in order to accelerate the convergence
of the algorithm, with a total of 100 iterations used to ensure convergence
while minimizing computational cost (see Fig. 3b). Additionally, we also pro-
vide results using a post-processed implementation of Algorithm 2 using just
10 iterations of HIO+ER. Since this method only uses 10 HIO+ER iterations
(rather than 100), it has a lower overall computational cost than the pure
HIO+ER method. Therefore, in this context, we can view the proposed method
as an initializer which accelerates the convergence of alternating projection
algorithms such as HIO+ER. Finally, Fig. 5b, which plots the execution time

6We use the Iterated Tikhonov method (see [31], [8, Algorithm 3]) to invert the Vandermonde
system in Step 4 of Alg. 2.
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Fig. 5: Empirical Evaluation of Algorithm 2. In Fig. 4a Algorithm 2 with
alternate implementation and post-processing (red dotted curve) demonstrates
that using Alg. 2 to initialize HIO+ER allows just 10 subsequent iterations of
HIO+ER to converge to a more accurate approximation than 100 iterations
of HIO+ER with standard initialization (yellow dashed curve). In addition
to achieving a lower reconstruction error, Fig. 4b shows that the Algorithm
2 initialized version of HIO+ER is also faster than the standard initialized
version. The end result is that initializing HIO+ER with Algorithm 2 allows
better reconstructions more quickly than standard initialization does.

(in seconds, averaged over 100 trials) to recover a test signal, shows that the
proposed method in Algorithm 2 and its alternate implementation are com-
putationally efficient, with all implementations running in O(dK) time where
dK is the number of measurements acquired. Overall, similar to Algorithm 1,
we see that Algorithm 2 is significantly faster than HIO+ER. Moreover, the
modified version which includes post-processing has slightly better accuracy
than HIO+ER while also having a slightly lower computational cost.
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Appendix A The Proofs of Lemma 2.3

Proof Let g := PSf and h := PRm, where PS and PR are the Fourier projection
operators defined as in (11). Since g and h are trigonometric polynomials and R+S ⊆
D, we may write∫ π

−π
g(x)h(x− ˜̀)e−ixωdx
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=
∑
m∈R

∑
n∈S

ĝ(n)ĥ(m)e−im
˜̀
∫ π

−π
e
i(m+n−ω)xdx

=
∑
m∈R

∑
n∈S

ĝ(n)ĥ(m)e−im
˜̀2π

d

∑
p∈D

e
2πip(n+m−ω)/d

=
2π

d

∑
p∈D

∑
n∈S

ĝ(n)e2πipn/d

∑
m∈R

ĥ(m)e(( 2πim
d )(p−`))

 e−2πimpω/d

=
2π

d

∑
p∈D

g

(
2πp

d

)
h

(
2π(p− `)

d

)
e
−2πipω/d

=
2π

d

∑
p∈D

xpyp−`e
−2πiωp/d.

�

Appendix B The Proofs of Propositions 3.2
and 3.4

The Proof of Proposition 3.2 We first note that

ẑq =

{
m̂(q) if |q| ≤ ρ/2,
0 if |q| > ρ/2.

Therefore, for all |p| ≤ κ− 1, we have(
ẑ ◦ Spẑ

)
q

=

{
m̂(q)m̂(p+ q) if − ρ/2 ≤ q, p+ q ≤ ρ/2,
0 otherwise.

For any |p| ≤ κ− 1, let

Ip := {q ∈ D : −ρ/2 ≤ q ≤ ρ/2 and − ρ/2 ≤ q + p ≤ ρ/2}.
One may check that

Ip =

{[
−ρ2 − p,

ρ
2

]
∩ Z if p < 0[

−ρ2 ,
ρ
2 − p

]
∩ Z if p ≥ 0

.

Therefore, making a simple change of variables in the case p < 0, we have that

Fd

(
ẑ ◦ Spẑ

)
q

=
1

d

∑
`∈Ip

m̂(`)m̂(p+ `)e−2πiq`/d =
1

d

ρ/2−|p|∑
`=−ρ/2

m̂(`)m̂ (`+ |p|) eiφp,q,` ,

where eiφp,q,` is a unimodular complex number depending on p, q and `. Using the
assumptions (23) and (24), we see that∣∣∣∣1d

ρ/2−|p|∑
`=−ρ/2+1

m̂(`)m̂(`+ |p|)eiφp,q,`
∣∣∣∣ ≤ ρ

d

∣∣∣m̂(−ρ
2

+ 1
)∣∣∣ ∣∣∣m̂(−ρ

2
+ 1 + |p|

)∣∣∣
≤ 1

2d

∣∣∣m̂(−ρ
2

)∣∣∣ ∣∣∣m̂(−ρ
2

+ |p|
)∣∣∣ .

With this, we may use the reverse triangle inequality to see∣∣∣∣Fd

(
ẑ ◦ Spẑ

)
q

∣∣∣∣ =

∣∣∣∣1d
ρ/2−|p|∑
`=−ρ/2

m̂(`)m̂(`+ |p|)eiφp,q,`
∣∣∣∣
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≥ 1

d

∣∣∣∣m̂(−ρ2 )
∣∣∣∣ ∣∣∣m̂(−ρ2 + |p|

)∣∣∣− 1

d

∣∣∣∣ ρ/2−|p|∑
`=−ρ/2+1̂

m(`)m̂(`+ |p|)eiφp,q,`
∣∣∣∣

≥ 1

2d

∣∣∣m̂(−ρ
2

)∣∣∣ ∣∣∣m̂(−ρ
2

+ |p|
)∣∣∣

≥ 1

2d

∣∣∣m̂(−ρ
2

)∣∣∣ ∣∣∣m̂(−ρ
2

+ κ− 1|
)∣∣∣ .

�

The Proof of Proposition 3.4 First, we note that by applying Lemma 3.3, and setting
p = ω, q = `, we have

µ2 = inf
ω∈[2κ−1]c,`∈[2s−1]c

|(Fd(ẑ ◦ S`ẑ))ω|

=
1

d
inf

ω∈[2κ−1]c,`∈[2s−1]c
|(Fd(z ◦ Sωz))`|

=
1

d
inf

p∈[2κ−1]c,q∈[2s−1]c
|(Fd(z ◦ Spz))q|.

For |p| ≤ κ− 1, we have

(z ◦ Spz)q =

{
zqzp+q if n ≤ q, p+ q ≤ n+ δ̃ − 1,

0 otherwise.

For any |p| ≤ κ− 1, let

Ip := {q ∈ D : n ≤ q ≤ n+ δ̃ − 1 and n ≤ q + p ≤ n+ δ̃ − 1}.
One may check that

Ip =

{
[n− p, n+ δ̃ − 1] ∩ Z if p < 0,

[n, n+ δ̃ − 1− p] ∩ Z if p ≥ 0.

Therefore, making a simple change of variables in the case p < 0, we have that in
either case∣∣∣Fd (z ◦ Spz)q

∣∣∣ =
1

d

∣∣∣∣ ∑
`∈Ip

z`zp+`e
−2πi`q/d

∣∣∣∣ =
1

d

∣∣∣∣ n+δ̃−1−|p|∑
`=n

z`z`+|p|e
iφp,q,`

∣∣∣∣,
where eiφp,q,` is a unimodular complex number depending on p, q and `. Using the
assumptions (37) and (38) we see that∣∣∣∣1d

n+δ̃−1−|p|∑
`=n+1

z`z`+|p|e
iφp,q,`

∣∣∣∣ ≤ δ̃

d
|zn+1|

∣∣∣zn+1+|p|

∣∣∣ ≤ 1

2d
|zn||zn+|p||.

With this, ∣∣∣Fd (z ◦ Spz)q

∣∣∣ =

∣∣∣∣1d
n+δ̃−1−|p|∑

`=n

z`z`+|p|e
iφp,q,`

∣∣∣∣
≥ 1

d
|zn||zn+|p|| −

∣∣∣∣1d
n+δ̃−1−|p|∑
`=n+1

z`z`+|p|e
iφp,q,`

∣∣∣∣
≥ 1

2d
|zn||zn+|p|| ≥

1

2d
|zn||zn+κ−1|.

Thus, the proof is complete. �
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Fig. C1: Triangle in the complex domain.

Appendix C The Proof of Lemma 4.5

Proof Our proof requires the following sublemma which shows that, if n ∈ Lf , then
Algorithm 3 used in the definition of αn will only select indices n` corresponding to
large Fourier coefficients.

Lemma C.1 Let n ∈ Lf , and let n0, . . . , nζ be the sequence of indices as introduced
in the definition of αn. Then

|f̂(n`)| ≥
|f̂(n)|

2
for all 0 ≤ ` ≤ ζ.

Proof When ` = ζ, the claim is immediate from the fact that nζ = n. For all
0 ≤ ` ≤ ζ − 1, the definition of n` implies that there exists an interval I`, centered
at some point a with |a| ≤ |n|, such that the length of I` is at most β and

an` = max
m∈I`

am.

Letting ε =
√

3‖N‖∞, we see that by (45) and Remark 1.5

|f̂(n`)| ≥ an` − ε = max
m∈I`

am − ε ≥ max
m∈I`

|f̂(m)| − 2ε ≥ |f̂(n)| − 2ε.

The result now follows from noting that ε <
|f̂(n)|

4 for all n ∈ Lf . �

With Lemma C.1 established, we may now prove Lemma 4.5. Let n ∈ Lf and
let n0, . . . nζ be the sequence describe in the definition of αn. For 0 ≤ ` ≤ ζ − 1, let

t` := f̂(n`+1)f̂(n`), a
′
` := f̂(n`+1)f̂(n`) + Nn`+1,n` , and N ′` := Nn`+1,n` . Consider

the triangle with sides a′`, t`, and N ′` with angles θ` = | arg(a′`) − arg(t`)| and
φ` = | arg(a′`)− arg(N ′`)|, as illustrated in Figure C1.

By the law of sines and Lemma C.1, we get that

| sin(θ`)| =
∣∣∣∣N ′`t` sin(φ`)

∣∣∣∣ ≤ ‖N‖∞
|f̂(n`)||f̂(n`+1)|

≤ 4‖N‖∞
|f̂(n)|2

(C1)

for all 0 ≤ ` ≤ ζ. By the definition of Lf and Lemma C.1, we have that for all `

|N ′`| ≤ ‖N‖∞ ≤
|f̂(n)|2

4
≤ |f̂(n`)||f̂(n`+1)| = |t`|.
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Therefore, 0 ≤ θ` ≤ π
2 , and so by (C1), we have

|θ`| ≤
π

2
| sin(θ`)| ≤ 2π

‖N‖∞
|f̂(n)|2

.

By definition τn =
∑ζ−1
`=0 arg(t`) and αn =

∑ζ−1
l=0 arg(a′`). Therefore, we have

|eiτn − eiαn | ≤ |αn − τn| =
∣∣∣∣ ζ−1∑
`=0

arg(a′`)− arg(t`)

∣∣∣∣ =

∣∣∣∣ ζ−1∑
`=0

θ`

∣∣∣∣ ≤ 2πb
‖N‖∞
|f̂(n)|2

.

From the definition of n`, we have

|n` − n`−1| ≥ γ − β ≥
γ

2

for all 1 ≤ ` ≤ ζ − 1. Therefore, the path length ζ is bounded by

ζ ≤ |n− n0|
min |n` − n`−1|

≤ 2d

γ
.

Thus, we have

|eiτn − eiαn | ≤ 2πb
‖N‖∞
|f̂(n)|2

≤ 4πd

γ

‖N‖∞
|f̂(n)|2

as desired.
�

Appendix D Additional Experiments

In this section, we provide additional numerical simulations studying the
empirical convergence behavior of Algorithms 1 and 2. We start with a
study of the convergence behavior of Algorithm 1. Here, we reconstruct the
same test function using different discretization sizes d (with ρ chosen to be
min{(d−5)/2, 16blog2(d)c} and κ = ρ−1), where the total number of phaseless
measurements used is Ld = (2ρ−1)d. Fig. D2 plots representative reconstruc-
tions (of the real part of the test function) for two choices of d (d = 33 and
d = 1025). We note that the (smooth) test function illustrated in the figure
has several sharp and closely separated gradients, making the reconstruction
process challenging. This is evident in the partial Fourier sums (PNf) plotted
for reference alongside the reconstructions from Algorithm 1 (fe). For small d
and ρ, we observe oscillatory behavior similar to that seen in the Gibbs phe-
nomenon. Nevertheless, we see that the proposed algorithm closely tracks the
performance of the partial Fourier sum, with reconstruction quality improving
significantly as d (and ρ) increases.

We next evaluate the convergence behavior of Algorithm7 2 by reconstruct-
ing the same test function using different discretization sizes d (with K = d/3,
δ = (K + 1)/2, κ = δ − 1 and s = κ− 1). Fig. D3 plots representative recon-
structions (of the real part of the test function) for two choices of d (d = 57
and d = 921). As in Fig. D2, we note that the (smooth) test function has

7using the alternate implementation – with (34) utilized in place of (35) in Step 2 of the
Algorithm – as described in Section 5
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Fig. D2: Evaluating the convergence behavior of Algorithm 1. Figure plots
reconstructions of the real part of the test function at d = 33 and d = 1025
(along with an expanded view of the reconstruction in [0, 1]) on a discrete
equispaced grid in [−π, π] of 7003 points; we set ρ = min{(d−5)/2, 16blog2(d)c}
and κ = ρ− 1.

several sharp and closely separated gradients, making the reconstruction pro-
cess challenging. Again, the partial Fourier sums (PNf) plotted alongside the
reconstructions from Algorithm 2 (fe) exhibit Gibbs-like oscillatory behavior
for small d and κ. Nevertheless, we see that the proposed algorithm closely
tracks the performance of the partial Fourier sum, with reconstruction quality
improving significantly as d (and δ, κ) increases.

Appendix E Results from Previous Work

The following is a restatement of Theorem 4 of [8] updated to use the notation
of this paper. Notably, in this paper we use a different normalization of the
Fourier transform (our Fd is equal to the Fd from [8] divided by d). We also
note that the measurements T′ considered here differ by a factor of 4π

d2 from
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Fig. D3: Evaluating the convergence behavior of Algorithm 2. Figure plots
reconstructions of the real part of the test function at d = 57 and d = 921
(along with an expanded view of the reconstruction in [0, 1]) on a discrete
equispaced grid in [−π, π] of 7003 points; we set K = d/3, δ = (K + 1)/2 and
κ = δ − 1.

the measurements Y considered in [8]. Lastly, we note that the summations
in [8] take place over a different string of d consecutive integers. However, this
makes no difference do the the periodicity of the complex exponential function.

Theorem E.1 (Theorem 4 of [8]) Let T̃ be as in (16). Then for any ω ∈ [K]c and
` ∈ [L]c,

T̃`,ω − Ñ`,ω
4π2

=d
∑

p∈[ dK ]
c

∑
q∈[ dL ]

c

(
Fd

(
x̂ ◦ SqL−`x̂

))
ω−pK

(
Fd

(
m̂ ◦ S`−qLm̂

))
ω−pK

=
1

d

∑
p∈[ dK ]

c

∑
q∈[ dL ]

c

e
−2πi(qL−`)(ω−pK)/d

(
Fd

(
x̂ ◦ SqL−`x̂

))
ω−pK

(
Fd

(
m ◦ Sω−pKm

))
qL−`
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=
1

d

∑
p∈[ dK ]

c

∑
q∈[ dL ]

c

e
2πi(qL−`)(ω−pK)/d (Fd

(
x ◦ Sω−pKx

))
`−qL

(
Fd

(
m̂ ◦ S`−qLm̂

))
ω−pK

=
1

d

∑
p∈[ dK ]

c

∑
q∈[ dL ]

c

(
Fd

(
x ◦ Sω−pKx

))
`−qL

(
Fd

(
m ◦ Sω−pKm

))
qL−` .
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