DOI: 10.1111/puar.13697

VIEWPOINT

Building community resilience through cross-sector partnerships and interdisciplinary research

Yue "Gurt" Ge¹ | Naim Kapucu¹ | Christopher W. Zobel² | Samiul Hasan³ |
Jeremy L. Hall¹ | Haizhong Wang⁴ | Liqiang Wang⁵ | Yago Martín⁶ |
Michelle Cechowski⁷

Correspondence

Yue "Gurt" Ge, School of Public Administration, University of Central Florida, 528 W Livingston St, Suite 446, Orlando, FL 32801, USA. Email: yue.ge@ucf.edu

Abstract

Building community resilience has become a national imperative. Substantial uncertainties in dynamic environments of emergencies and crises require real-time information collection and dissemination based on big data analytics. These, in turn, require networked communities and cross-sector partnerships to build lasting resilience. This viewpoint article highlights an interdisciplinary approach to building community resilience through community-engaged research and partnerships. This perspective leverages existing community partnerships and network resources, undertakes an all-hazard and whole-community approach, and evaluates the use of state-of-the-art information communication technologies. In doing so, it reinforces the multifaceted intergovernmental and cross-sector networks through which resilience can be developed and sustained.

Evidence for practice

- Local communities can benefit from resources aggregated from different sectors and academia to enhance their capacity to plan, prepare for, and respond to emergencies.
- Interdisciplinary collaboration with community partners and stakeholders can help build community resilience in dealing with all hazards and public emergencies.
- Recent technological advancements can help improve real-time data collection and information sharing for networked and connected communities.

INTRODUCTION

As the scale and intensity of disasters continue to increase, building community resilience to all hazards has become a "national imperative" (NAS, 2012). This imperative highlights the need to build community capacity and coalitions, as well as to promote partnerships and networks across all levels of government, academia, and nonprofit and private sectors, to collectively respond to disasters and thus improve resilience (NRC, 2011). Community resilience is a shared responsibility among all sectors. It is critical for allowing a community to function during and after a crisis event, and it requires leveraging adaptive capacities built by partnerships and intra-community networks (Bloomfield, 2006). Technological advances in the big data era have enabled more effective preparedness for, and timely responses to, the

adverse impacts of natural and manmade disasters. However, decision and policy making for community resilience, as a complex socio-technical process, are often subject to short decision horizons within which collective and collaborative data collection, validation, and dissemination must take place. Modern technological capabilities coupled with an open governance partnership offers the potential for such decisions to be made more rationally (rather than intuitively) within the constraints of an emergency or a disaster.

For this viewpoint article, community resilience is considered as a function of a community's adaptive governance, which helps develop community capacity through adaptive management, continuous learning, and coalition building (Comfort et al., 2010; Kapucu et al., 2013). In this era of reduced-boundary governance (Hall & Battaglio, 2018a), collaborative and adaptive forms of network governance, as a

¹School of Public Administration, University of Central Florida, Orlando, Florida, USA

²Department of Business Information Technology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

³Department of Civil, Environmental, & Construction Engineering, University of Central Florida, Orlando, Florida, USA

⁴School of Civil & Construction Engineering, Oregon State University, Corvallis, Oregon, USA

⁵Department of Computer Science, University of Central Florida, Orlando, Florida, USA

⁶Departamento de Geografía, Historia y Filosofía, Universidad Pablo de Olavide, Sevilla, Spain

⁷East Central Florida Regional Planning Council, Orlando, Florida, USA

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

method of collective decision-making, promote the capacity of organizations and community stakeholders to adjust and adapt their evolving relationships in a dynamic and uncertain environment of disasters and crises (Comfort et al., 2020; Kapucu, 2006). Because performance is a function of capacity (Hall, 2007, 2008), communities need to adapt to external environmental factors and utilize their internal technical capabilities and community capital. Increasingly, scholars are recognizing that outcomes of public policies are coproduced and taking their actions and decisions into account is necessary for our models to accurately and adequately understand the factors that influence resilience performance. In the uncertainties of impending disasters, communities must develop the necessary infrastructures and adaptive capacity to respond to and recover from emergencies (FEMA, 2011).

Substantial uncertainties in dynamic environments of emergencies and crises require access to information based on real-time big data analyses and coordinated data analytics through networked communities and cross-sector partnerships. In the meantime, resilience assessment (Rus et al., 2018) has not explicitly considered uncertainties incurred from coupled disasters, such as a hurricane coupled with a pandemic. Some effective protective actions in hurricane response tend to congregate people (e.g., sharing a community shelter) while working against the social distancing requirement for infectious disease control as a public health emergency response. In addition, equitable resilience is a difficult task to be incorporated into the resilience planning and policy making process that considers how social vulnerability leads to disproportionate suffering of disaster impacts by different subpopulations (Coleman et al., 2020). These practical challenges urge a data-driven approach to conducting interdisciplinary and community-engaged resilience research, with long-term goals and integrated research protocols addressing the complex issues of public emergencies (Ge et al., 2021).

COMMUNITY RESILIENCE

Community resilience is a multifaceted and complicated concept. The complex challenge of supporting community disaster resilience reflects a series of overlapping and interconnected subsets of problems, cross-cutting multiple policy domains and engagement of different levels of government and community stakeholders. Stakeholders attempting to grapple with the complexities of resilience must contend with a range of perspectives, worldviews, political agendas, educational and professional backgrounds, programmatic responsibilities, and cultural traditions. To overcome these challenges, a comprehensive interdisciplinary approach to resilience is required—one that will leverage existing community partnerships, networks, and resources, adopt an allhazards perspective, and embrace state-of-the-art information and communication technologies (ICTs). This viewpoint article introduces such an approach by investigating such

partnerships among public, private, and nonprofit sector organizations, including academic institutions and community resilience functionalities, in the east central Florida (ECF) region (including 8 counties and 78 member towns/cities as shown in Figure 1). The discussion highlights ongoing regional interdisciplinary collaborative research in terms of its methodologies, data analytics, and resilience policy and planning implications as an exemplary case for both scholars and practitioners.

The selection of ECF as a testbed was inspired by the well-established community connectedness of this region through local and regional initiatives (e.g., the Regional Resiliency Action Plan by the East Central Florida Regional Planning Council (ECFRPC), the Future-Ready City Initiatives by the City of Orlando, and the Local Emergency Planning Committee (LEPC)) pertinent to emergency preparedness, response, and recovery. This effort emphasizes multi-scale (regional and local) ICT applications with a focus on cross-sector partnerships for community disaster resilience. Multiple stakeholder groups are engaged, including government officials, business operators, and nonprofit representatives in ECF, with respect to how they collaboratively communicate and coordinate their efforts as a team to make timely and effective decisions to strengthen community resilience to disasters including public health emergencies. With allhazard and whole-community approaches (see Figure 1), the natural hazards of hurricane, tornado, wildfire, and flood and manmade hazards of active assailant and hazardous materials spill are taken into consideration in the collaborative research initiative. Please note these identified hazards are not all-inclusive of all hazards identified as threats to Florida and ECF, specifically.

The National Research Council defines resilience to be "the continued ability of a person, group, or system to function during and after any sort of stress" (NRC, 2011, p. 3). They further note that building and maintaining a resilient community requires not only monitoring change but also adapting behaviors in such a way as to accommodate any changes that occur (NRC, 2011). This aligns very well with the perspective of Norris et al. (2008) who suggest not only that resilience is the process behind those adaptive behaviors, but also that the amount of resilience a community exhibits is directly related to the speed at which it returns to its pre-event level of functioning or better. In turn, this implies a need to measure not only the "pre-event functioning" but also the level of functioning during and after the event, to assess when the community has returned to its initial state or an even better position. It is important also to recognize that resisting the initial impacts of a disruptive event can contribute significantly to the community's ability to recover quickly, and thus to its resilience. Because community functioning is inherently multi-dimensional, any such measurement requires a multi-dimensional representation of resilience, including the social, technological, and cyber dimensions of community engagement (see Figure 2).

FIGURE 1 The East Central Florida (ECF) region with multi-hazards and multi-stakeholders.

Emergency communication and community resilience planning in response to the COVID-19 pandemic is even more of a challenge when coupled with the impacts of hurricanes and other natural or manmade disasters (Hasan et al., 2020; Sapat et al., 2023). The complexity that results from the cascading effects of multiple emergencies makes it necessary to (1) introduce an integrative paradigm of interdisciplinary community resilience (NASEM, 2005; NRC, 2006); (2) advocate a communityengaged research orientation for community resilience planning and policy making (Kapucu et al., 2021) (Murray-Tuite et al., 2021); and 3) address the importance of understanding multi-modal and multi-typed data when considering time, space, and effective decision-making agents for a coordinated response.

AN INTERDISCIPLINARY RESEARCH APPROACH TO COMMUNITY RESILIENCE

Community resilience is a process that connects networks of adaptive capacities to actions that may be taken in response to a disruptive event (Aldrich & Meyer, 2015; Norris et al., 2008). It is an interdisciplinary concept that bridges social science, engineering, science, and more

recently, data science. It is imperative that interdisciplinary and convergent research efforts (NASEM, 2005; NRC, 2006; Peek et al., 2020) be sought to study resilient communities (NAS, 2012) that have the capacity to anticipate risks, collect information, and then manage those risks, including climate-related hazards, geological hazards, public health crises, civil unrest, technological incidents, and other human-made and natural hazards. Recent events have witnessed the disruptive power of cascading crises such as the COVID-19 pandemic, the California wildfires, and major hurricanes along the Gulf Coast and Atlantic Coast. Communities increasingly need to demonstrate that they can provide a healthy, safe, secure, and equitable environment that is resilient to external shocks and stresses.

The ECF study offers an example of a convergent research effort that focuses on the use of smart technologies to strengthen the set of adaptive capacities associated with organizational and community-level information and communication. Specifically, it addresses the issues of incomplete and ineffective information sharing related to risks and vulnerabilities during a disaster situation, and the effects that lack of information has on decision making and cross-sector partnerships for building more resilient communities. The study benefits from interdisciplinary perspectives (Ge et al., 2021) with synergistic contributions from emergency

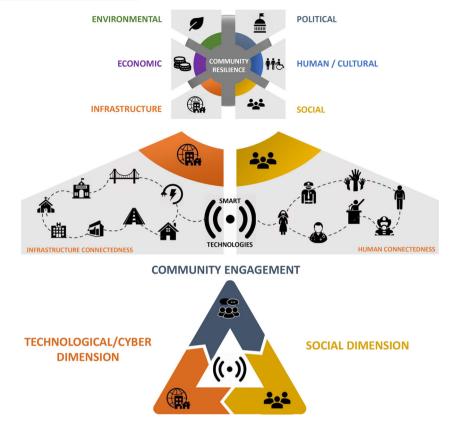


FIGURE 2 An interdisciplinary conceptual community-engaged framework.

management, public policy and governance, urban and regional planning, geographic information systems (GIS), computer science, information technology, and civil engineering. Several interrelated and complementary team-based subprojects leverage cross-disciplinary collaboration to address the complex, dynamic, and multifaceted nature of this regional study (Hall et al., 2018). The interdisciplinary approach helps to transcend the traditional "silos of knowledge" to explore the networks embedded within interdependent systems addressing community resilience challenges.

COMMUNITY-ENGAGED RESILIENCE RESEARCH

Building community resilience goes beyond simply acknowledging its multidimensionality and bringing together an interdisciplinary team of experts. Building resilient communities is a shared responsibility involving the recognition of different types of knowledge beyond formal academic scholarship and requiring the integration of both "bottom-up" approaches and "top-down" strategies. The involvement of a diverse group of stakeholders and community partners builds trust within the community and distributes the responsibility across the different groups in building resilience. Cross-sector partnerships, in particular, are a fundamental aspect of

the resilience process as they are thought to promote trust and to improve the efficiency and effectiveness of the applied strategies. The United Nations has emphasized the importance of these partnerships by dedicating as one of 17 sustainable development goals (SDGs) encouraging multi-stakeholder partnerships that mobilize and share knowledge, expertise, technology, and financial resources (United Nations, 2015).

Cross-sector partnerships among community organizations and government agencies can improve the efficiency of the response and recovery phases of an emergency. In the context of technological advancements in the ways communities manage resilience operations, emergency planning and management through partnerships in emergency communication has become a key component. However, collaborative decision-making among public or private organizations has not been sufficiently addressed (Jabbour et al., 2019). Furthermore, decision making and its relation to planning and public policy has heretofore been approached merely from an analytical standpoint, rather than as a dynamic relationship where both are influenced by the other in an interactive fashion. This unidimensional perspective has driven a wedge between logistics decision making and alternative logistics actions in the field of emergency management (Campbell & Clarke, 2018). As such, it is imperative to comprehend how to address important aspects of emergency preparedness and response to arrive at a collaborative partnership among

the public, private, and nonprofit sectors. For example, there is a recognized need for governmental agencies to work with the community before the onset of a disaster, and it is suggested that such agencies should share adequate, real-time information both with the private sector and with the community members. The overarching goal of such information sharing is to facilitate and strengthen partnerships among public, private, and nonprofit entities that can increase resilience by identifying potential risks, sharing information, or projecting consequences and effectively addressing them (Levy & Prizzia, 2018).

Collaborative community-engaged resilience research expects that communities and partners are participating in a "living lab" of the emergency communication system "where technological, and social advances, and educational research are staged iteratively through pilot studies in communities" (NSF, 2022). In this paradigm, stakeholders are extensively engaged in informational meetings, surveys, social media, simulated emergency drills, and other data collection endeavors. This provides for the exchange of integrated and synthesized emergency information among all sectors in the community.

The ECF region, in particular, benefits from smart technologies being employed and evaluated in the context of community resilience capacity building, above and beyond this convergent and integrative study. These benefits include improving timely and effective risk communication in the multiethnic and fast-growing metropolitan region, strengthening long-term collaboration and partnerships among sectors and reducing social vulnerabilities to natural, manmade, and public health disasters. Three integrative goals can be achieved in the ECF region—(1) integrating smart technologies and community emergency communications applications; (2) integrating scientific research with community engagement; and (3) integrating community efforts from cross-sector organizations in a multiethnic region. Ultimately, sustained partnerships and collaborations in emergency communication and coordination for community resilience are anticipated in the long run among organizations, sectors, and jurisdictions in the ECF region. This can be replicated in other similar areas in the country.

MULTI-MODAL AND MULTI-TYPED DATA ANALYTICS

Collecting data for better emergency communication and coordination at multiple spatiotemporal resolutions is a challenging task. We applied a multi-modal and multi-typed data collection and analysis effort under an integrative data-driven approach. Such an approach can be used to measure the multi-dimensional resilience of smart and connected communities with respect to their adaptive capacities for information collection, analysis, and communication via cross-sector partnerships. Resilience capacities related to the information and communication dimensions are measured

via cross-sectional data gathered from the existing policies, plans, and frameworks in the ECF region. Every county in the region has an updated comprehensive emergency management plan developed based on the federal and state guidelines. ECFPRC engages in planning and preparedness activities quarterly. Behavioral survey data from community stakeholders and emergency managers indicated regular (annually or biannually) updates of their respective planning documents. These documents were also practiced with the emergency management stakeholders.

Social media data from emergency management organizations, 311 non-emergency municipal services request data, and regional- and local-level exercise and drill data can also be used as indicators of how different aspects of community functionality change over time, as well as of any potential gaps between the planned and implemented actions. The approach introduced by Bruneau et al. (2003) and refined by Zobel (2011) can be used to capture a measure of actual or predicted resilience for each individual indicator by calculating the area under a time series curve of a given recovery process as a function of both loss and recovery time. Such a data-driven approach has strong potential to provide decision and policy makers with immediate and high-fidelity insights.

Finally, the cross-sectional (e.g., behavioral survey responses, planning and policy documents) and dynamic data (e.g., social media posts in text and images, 311 nonemergency calls) can be uploaded and visualized in a GISsupported web system. A master GIS database—LOTIS (Land Overlaid on Transportation Information System) has been developed by the ECFRPC, which compiles transportation and land use information for roadway segments and vacant parcels for the Orlando metropolitan area. The tool is delivered via a series of tailored applications that enhance the view of land use, transportation, emergency management, and other urban planning scenarios for community resilience. To extend LOTIS for large-scale distributed systems, a big-data real-time processing and collaborative decision support system—Community Resilience Data Depot (CoRD²)—is developed and optimized in the ECF region. The CoRD² is a regional data storage and retrieval platform for sharing and integrating resilience data among all sectors. It is supported by artificial intelligence (AI) techniques that enable large-scale data interpretation, categorization, and segmentation to improve resilience within and across communities. Emergency drills via a mobile app whose data will be loaded onto the CoRD² platform for rapid Al-aided realtime data analyses can also be considered for timely information collection, dissemination, and better stakeholder coordination for resilience.

A CHECKLIST FOR COORDINATED REGIONAL RESILIENCE

Our approach, outlined above, can be summarized by a number of steps. Keeping in mind that the following checklist aggregates a great deal of nuance and detail, it provides a meaningful guidepost for action where state, regional, or local governments wish to advance their disaster preparedness and resilience efforts to next generation capabilities. Furthermore, the list demonstrates the value of each analytical component and perspective in the cumulative picture, by revealing the range of information and communication capabilities necessary to make such an approach effectual.

The steps we followed include:

- 1. Analyze the policy documents to identify partnerships.
- 2. Survey the partnership organizations to clarify the nature of the partnerships in practice, and especially the roles played in building and implementing resilience capacities.
- 3. Collect non-emergency service request data to characterize the normal operations of the community and its interaction with government organizations.
- 4. Extend service request data analysis to consider the changes that occur in these relationships in times of crisis.
- 5. Collect Twitter data to obtain the community perspective of what's happening in the crisis, and to capture the behavioral attributes of human response to crises.
- 6. Aggregate these data streams to accentuate the datarich environment of CoRD² upon which the evacuation drills and information management can be built.

CONCLUSION

This viewpoint article has focused on identifying factors that contribute to community resilience, particularly the cross-sector partnerships and networks as "building blocks" of community capital and resilience capacity from an interdisciplinary and community-engaged perspective. It contributes to our understanding of the complex network governance and sociotechnical systems necessary to build and sustain community disaster resilience. First, the interdisciplinary approach to integrating multimodal multi-typed resilience functionality data instrumental to unveil the multifaceted organizational relationships across public, private, and nonprofit sectors in local and regional scales. Second, the community engagement activities for interdisciplinary community engaged research highlight the interplay of advanced information technology and community capitals and stakeholders that can influence building community resilience capacities. As public policy outcomes are increasingly coproduced, it stands to reason that incorporating citizen actions and decisions will result in better understanding of the processes and patterns that influence the effectiveness of resilience efforts. Finally, research synergies across different disciplines research input from various sectors in the ECF participatjurisdictions integrate the policy-driven

functionalities of community resilience with evaluative indicators at the organization, community, network, and systems levels. Generating data associated with disaster preparedness and response in this context will yield evidence that will inform the next generation of resilience policies in keeping with the high standards of evidencebased policy and practice (Hall & Battaglio, 2018b; Hall & Jennings, 2008; Jennings & Hall, 2012). The approach presented here can be used in other communities addressing community and organizational resilience in metropolitan areas and/or an extended region based on a metropolitan area where internal organizational technical capabilities and community capitals can be leveraged.

ENDNOTE

Not every community has a 311 system. And it is not a 24/7/365 resource for citizens but is only activated during certain emergency situations to help reduce call volumes to 911.

REFERENCES

- Aldrich, Daniel P., and Michelle A. Meyer. 2015. "Social Capital and Community Resilience." American Behavioral Scientist 59: 254-269.
- Bloomfield, Pamela. 2006. "The Challenging Business of Long-Term Public-Private Partnerships: Reflections on Local Experience." Public Administration Review 66(3): 400-411.
- Bruneau, Michel, Stephanie E. Chang, Ronald T. Eguchi, George C. Lee, Thomas D. O'Rourke, Andrei M. Reinhorn, Masahobu Shinozuka, Kathleen Tierney, William A. Wallace, and Detlof von Winterfeldt. 2003. "A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities." Earthquake Spectra 19(4): 733-752.
- Campbell, Leah, and Paul Knox Clarke. 2018. Making Operational Decisions in Humanitarian Response: A Literature Review. London: ALNAP Study, ALNAP/ODI.
- Coleman, Natalie, Amir Esmalian, and Ali Mostafavi. 2020. "Equitable Resilience in Infrastructure Systems: Empirical Assessment of Disparities in Hardship Experiences of Vulnerable Populations during Service Disruptions." Natural Hazards Review 21(4): 04020032. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000401.
- Comfort, Louise K., Arjen Boin, and Chris C. Demchak, eds. 2010. Designing Resilience: Preparing for Extreme Events. Pittsburgh: University of Pittsburgh Press.
- Comfort, Louise K., Naim Kapucu, Kilkon Ko, Scira Menoni, and Michael Siciliano. 2020. "Crisis Decision Making on a Global Scale: Transition from Cognition to Collective Action under Threat of COVID-19." Public Administration Review 80(4): 616-622.
- Federal Emergency Management Agency (FEMA). 2011. A Whole Community Approach to Emergency Management: Principles, Themes, and Pathways for Action https://www.fema.gov/sites/default/files/ 2020-07/whole_community_dec2011__2.pdf.
- Ge, Yue "Gurt", Christopher W. Zobel, Pamela Murray-Tuite, Roshanak Nateghi, and Haizhong Wang. 2021. "Building an Interdisciplinary Team for Disaster Response Research: A Data-Driven Approach." Risk Analysis 41(7): 1145-51.
- Hall, Jeremy L. 2007. "Informing State Economic Development Policy in the New Economy: A Theoretical Foundation and Empirical Examination of State Innovation in the United States." Public Administration Review 67: 630-645.
- Hall, Jeremy L. 2008. "The Forgotten Regional Organizations: Creating Capacity for Economic Development." Public Administration Review 68: 110-125.
- Hall, Jeremy L., and R. Paul Battaglio. 2018a. "Reduced-Boundary Governance: The Advantages of Working Together." Public Administration Review 78: 499-501.

- Hall, Jeremy L., and R. Paul Battaglio. 2018b. "Research, Evidence, and Decision Making: Charting PAR's Role in Evidence-Based Management." Public Administration Review 78: 181–82.
- Hall, Jeremy L., and Edward T. Jennings, Jr. 2008. "Taking Chances: Evaluating Risk as a Guide to Better Use of Best Practices." *Public Administration Review* 68: 695–708.
- Hall, Kara L., Amanda L. Vogel, Grace C. Huang, Katrina J. Serrano, Elise L. Rice, Sophia P. Tsakraklides, and Stephen M. Fiore. 2018. "The Science of Team Science: A Review of the Empirical Evidence and Research Gaps on Collaboration in Science." American Psychologist 73(4): 532–548.
- Hasan, Samiul, Yue Ge, Naveen Eluru, Zhijie (Sasha) Dong, Qian Hu, Manuel Cebrian, Kelly Stevens, et al. 2020. Assessing the Impacts of Social Distancing through Data Synthesis. COVID-19 Working Group for Public Health and Social Sciences Research, Research Agenda-Setting Paper. National Science Foundation-funded Social Science Extreme Events Research (SSEER) network and the CON-VERGE facility, Natural Hazards Center at the University of Colorado, Boulder.
- Jabbour, Charbel J. C., Vinicius A. Sobreiro, Ana B. L. de Sousa Jabbour, Lucila M. de Souza Campos, Enzo B. Mariano, and Douglas W. S. Renwick. 2019. "An Analysis of the Literature on Humanitarian Logistics and Supply Chain Management: Paving the Way for Future Studies." Annals of Operations Research 283: 209–307.
- Jennings, Edward T., Jr., and Jeremy L. Hall. 2012. "Evidence-Based Practice and the Use of Information in State Agency Decision Making." Journal of Public Administration Research and Theory 22(2): 245–266.
- Kapucu, Naim. 2006. "Interagency Communication Networks during Emergencies: Boundary Spanners in Multi-Agency Coordination." The American Review of Public Administration 36(2): 207–225.
- Kapucu, Naim, Yue "Gurt" Ge, Yago Martín, and Zoe Williamson. 2021.
 "Urban Resilience: Building a Sustainable and Safe Urban Environment." Urban Governance 1(1): 10–16.
- Kapucu, Naim, Christopher V. Hawkins, and Fernando I. Rivera. 2013. "Emerging Research in Disaster Resiliency and Sustainability: Implications for Policy and Practice." In *Disaster Resiliency: Interdisciplinary Perspectives*, edited by Naim Kapucu, Christopher V. Hawkins, and Fernando I. Rivera, 355–58. New York: Routledge.
- Levy, Jason, and Ross Prizzia. 2018. "Building Effective Emergency Management Public-Private Partnerships (PPP) for Information Sharing." In *Security by Design*, edited by Anthony J. Masys, 375–401. Cham, Switzerland: Springer.
- Murray-Tuite, Pamela, Yue "Gurt" Ge, Christopher W. Zobel, Roshanak Nateghi, and Haizhong Wang. 2021. "Critical Time, Space, and Decision-Making Agent Considerations in Human-Centered Interdisciplinary Hurricane-Related Research." *Risk Analysis* 41(7): 1218–26.
- National Academies of Sciences, Engineering, & Medicine (NASEM). 2005. Facilitating Interdisciplinary Research. Washington, DC: The National Academies Press.
- National Academy of Sciences (NAS). 2012. *Disaster Resilience: A National Imperative*. Washington, DC: The National Academies Press.
- National Research Council (NRC). 2006. "Interdisciplinary Hazards and Disaster Research." In *Facing Hazards and Disasters: Understanding Human Dimensions* 180–215. Washington, DC: The National Academies Press.
- National Research Council (NRC). 2011. *Building Community Disaster Resilience through Private-Public Collaboration*. Washington, DC: The National Academies Press.
- National Science Foundation (NSF). 2022. Smart and Connected Communities (S&CC) Program Solicitation (NSF 22-529) https://www.nsf.gov/pubs/2022/nsf22529/nsf22529.htm.
- Norris, Fran H., Susan P. Stevens, Betty Pfefferbaum, Karen F. Wyche, and Rose L. Pfefferbaum. 2008. "Community Resilience as a Metaphor, Theory, Set of Capacities, and Strategy for Disaster Readiness." *American Journal of Community Psychology* 41(1): 127–150.

- Peek, Lori, Jennifer Tobin, Rachel M. Adams, Wu Haorui, and Mason C. Mathews. 2020. "A Framework for Convergence Research in the Hazards and Disaster Field: The Natural Hazards Engineering Research Infrastructure CONVERGE Facility." Frontiers in Built Environment 6: 110.
- Rus, Katarina, Vojko Kilar, and David Koren. 2018. "Resilience Assessment of Complex Urban Systems to Natural Disasters: A New Literature Review." *International Journal of Disaster Risk Reduction* 31: 311–330.
- Sapat, Alka, Diana Mitsova, Karen D. Sweeting, Ann-Margaret Esnard, and Monica Escaleras. 2023. Concurrent Disasters: Perceived Administrative Burdens and Household Coping Capacities. *Public Administration Review*. Early View Articles. https://doi.org/10.1111/puar.13637.
- United Nations. 2015. Resolution Adopted by the General Assembly on 19 September 2016. A/RES/71/1, October 3, 2016 (The New York Declaration) https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_71_1.pdf.
- Zobel, Christopher W. 2011. "Representing Perceived Tradeoffs in Defining Disaster Resilience." *Decision Support Systems* 50(2): 394–403.

AUTHOR BIOGRAPHIES

Yue "Gurt" Ge, PhD, is an Associate Professor in the School of Public Administration at the University of Central Florida (UCF). He studies community resilience through public-private partnerships from an interdisciplinary and community-engaged perspective. He has led and been involved in numerous National Science Foundation and other funded projects on risk communication enhanced by advanced IT and Al and community partnerships, urban resilience and education hubs, and uncertainty in hurricane evacuation decision making.

Email: yue.ge@ucf.edu

Naim Kapucu, PhD, is a Pegasus Professor of Public Administration and Policy in the School of Public Administration, and a joint faculty with the School of Politics, Security, and International Affairs at UCF. Currently he serves as an Associate Dean for Research. He is an elected fellow of the National Academy of Public Administration. His main research interests are network governance, emergency and crisis management, decision-making in complex environments, and social inquiry and public policy.

Email: kapucu@ucf.edu

Christopher W. Zobel, PhD, is the R.B. Pamplin Professor of Business Information Technology in the Pamplin College of Business at Virginia Tech. His primary research interests include disaster operations management and humanitarian supply chain resilience. He is one of the founding faculty members of the graduate program in Disaster Resilience and Risk Management at Virginia Tech, and he is Co-PI on several US National Science Foundation grants that involve characterizing and quantifying multi-dimensional disaster resilience.

Email: czobel@vt.edu

Samiul Hasan, PhD, is an Associate Professor in the Department of Civil, Environmental, and Construction Engineering at UCF. His research interests include urban data science, social media analytics, transportation network modeling, infrastructure interdependencies, and hurricane evacuation.

Email: samiul.hasan@ucf.edu

Jeremy L. Hall, PhD, is Professor and Director of the PhD program in public affairs at UCF. He is a National Academy of Public Administration fellow, and immediate past president of the Southeastern Conference of Public Administration.

Email: jeremy.hall@ucf.edu

Haizhong Wang, PhD, is a Professor in the School of Civil and Construction Engineering at Oregon State University. He received M.S. and Ph.D. degrees from University of Massachusetts, Amherst in Applied Mathematics and Civil Engineering (Transportation), and B.S. and M.S. degrees from Hebei University of Technology and Beijing University of Technology, China. He conducts interdisciplinary research at the joint borders of civil engineering, social science, and natural hazards/disasters through an agent-based modeling and simulation framework.

Email: haizhong.wang@oregonstate.edu

Liqiang Wang, PhD, is a Professor in the Department of Computer Science at UCF. He is the director of Big Data Lab. He received Ph.D. in Computer Science from Stony Brook University in 2006. His research focuses on big data computing and analytics techniques including improving accuracy and security of deep learning models and optimizing performance and scalability of big data computing systems. He received NSF CAREER Award in 2011.

Email: ligiang.wang@ucf.edu

Yago Martín, PhD, received his PhD in Geography from the University of South Carolina (2019) through a Fulbright doctoral scholarship. His work as a researcher has focused on the use of geospatial tools and techniques for disaster risk reduction. Currently, he leads a project funded by the European Union through an individual Marie Skłodowska-Curie grant, which is based on the development of indicators to measure the adaptation of European cities to extreme heat.

Email: ymargon@upo.es

Michelle Cechowski, MS, is the Director of Emergency Preparedness for the East Central Florida Regional Planning Council. She is responsible for regional emergency management planning involving first responder training and exercises, hazard analysis, domestic security, and emergency preparedness. Since 2016, Michelle has taught at the University of Central Florida as an adjunct professor in the Emergency Management and Homeland Security programs. She is the Executive Director of the Florida Hazardous Materials Symposium, Inc.

Email: mcechowski@ecfrpc.org

How to cite this article: Ge, Yue "Gurt", Naim Kapucu, Christopher W. Zobel, Samiul Hasan, Jeremy L. Hall, Haizhong Wang, Ligiang Wang, Yago Martín, and Michelle Cechowski. 2023. "Building Community Resilience through cross-Sector Partnerships and Interdisciplinary Research." Public Administration Review 1-8. https:// doi.org/10.1111/puar.13697