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ABSTRACT

Thermally dynamic building envelope is a promising technology to achieve building energy saving while improving thermal
comfort. Their performance is highly dependent on the local climate conditions as well as on the way the dynamic properties
are operated/controlled. The evaluation of whole building performance through building energy simulation can be useful to
understand the potentials of different dynamic opaque envelope with active insulations in a specific context. This paper
evaluates the potential to use model-free online reinforcement-learning (MFORL) control to regulate the behavior of
dynamic building envelopes. Specifically, two control strategies were formulated and evaluated on dynamic opaque
envelopes that consist of a concrete layer sandwiched between two active insulations on both sides of the thermal mass: (i)
simple temperature-driven rule-based control, and (ii) MFORL control. The controllers were preliminarily tested in two
scenarios with 10-day representative behavior under mild climate or during transitional seasons. The results show that
MFORL control is promising in achieving adaptive thermal behavior for dynamic building envelopes and may have
advantages over traditional rule-based controllers under complex environment.

INTRODUCTION

Responsive Building Envelopes

The dynamic nature of forces and energies acting on our building stokes has prompted the emergence of high-
performance building skins that are interactive and responsive to the environment (Wigginton and Harris, 2002; Stec and
Paassen, 2005; Biloria and Sumini, 2007; Joe et al., 2013; Loonen et al., 2013; Loonen, 2015). Increasingly, building facades
are being developed as complex systems of material assemblies attuned to climate and energy optimization — they are
equipped with new performative materials, sensors, actuators, and artificial intelligence that support automated and dynamic
functionalities of buildings, such as regulating natural day lighting, air and sound transmission, thermal transfer, and interior
air quality (Velikov K, 2013). This paradigm shift from static building envelope to more intelligent ‘building skin’ that can
sense and respond to environmental changes provides opportunities for energy saving, improving occupant comfort, and
enabling adaptations to the changing climate.

To date, several approaches have been taken to achieve the “responsive building envelope (RBE)” concept including
the utilization of intrinsic material properties such as the thermoresponse of bimetals and shape-memory polymers for self-
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ventilation and day-lighting control (Sung, 2010; Brigham, 2015; Rybkowski et al., 2015). In addition, recent research and
development efforts have advanced materials and devices to achieve switchable or variable thermal properties in building
envelope assemblies. Inspired by the response of animal skins to thermal environment variations, these variable insulations
are designed to selectively transfer heat across the envelope, making it possible to insulate heat flux and dissipate/absorb heat
on demand (Cui and Overend, 2019). Examples of “on-and-off” thermal switch include changing material thermal
conductivity through hydration/dehydration, which leads to micro-structure change (Tomko ef al., 2018); changing porosity;
materials orientation (Wu et al., 2014) that can respond in a few seconds. Continuously variable thermal insulation can be
achieved by variable-pressure vacuum insulated panel (VIP) (Berge et al., 2015). The variable thermal insulation may also be
achieved through multi-layer retractable thermal insulation. Antretter et al. (Antretter, 2019) and Mumme et al. (Mumme and
James, 2020) assessed the energy saving potential of several configurations of RBE with controllable active insulation
systems (AISs), and it was found that significant reduction of total building energy consumption for heating and cooling was
achieved in all climate zones.

RBE Control Strategies

The control of RBEs can be generally categorized into (i) intrinsic (passive) and (ii) extrinsic (active or semi-active)
control schemes (Loonen et al., 2013). Passive control strategies utilize the intrinsic properties of materials or mechanisms
that are automatically triggered by a stimulus (surface temperature, solar radiation, etc.). This level of intelligence is
embedded in the material and the switching mechanism is activated by a variation in its internal energy. The intrinsic control
is also referred to as “direct” or “open-loop” control. In contrast, extrinsic control refers to the presence of an external
decision-making component that is able to trigger the adaptive mechanisms according to a feedback rule. This is so-referred
as to the feedback (or closed-loop) control type. Common control strategies included: (i) rule-based control, (ii) model
predictive control (MPC) and (iii) model-free control. For RBE applications, a number of studies have explored the rule-
based control strategy for RBEs as demonstrated in (Shekar and Krarti, 2017; Rupp and Krarti, 2019). While model-free
control approaches have been mentioned in the scoping study for building control conducted by Yoon ef al and Pinto et al
(Yoon and Moon, 2019; Pinto et al., 2021), their implementation and research within RBE systems have been very limited.

Reinforcement learning (RL) control is an application of a branch of machine learning that obtains an optimal control
laws by maximizing a numerical delayed reward. RL control obtains the optimal control law without supervised learning and
only by evaluating the immediate feedback from environment (i.e. the control system). The problem to be solved by
reinforcement learning is normally defined as a Markov Decision Process (MDP), which is generally represented as a tuple
(S, A, P, R), i.e. state, action, transition probability and reward function. Together with these elements, control
system/environment and controller/agent comprise the basics of the whole problem. There are mainly two categories of RL
algorithms for the agent, namely model-based RLs and model-free RLs. Model-based RLs find the optimal policy based on
the model developed for the environment. However, learning characteristics of the whole environment and an accurate model
might not necessarily provide better performance under dynamic conditions in real-time application. Model-free control
refers to adaptive controllers which do not rely on any mathematical model of the real system (Michailidis ef al., 2018).
Model-free RLs are often more flexible in updating agents under fluctuated conditions. When the external environments are
unknown to the agent, online control attempts to find optimal policy/control law directly and eliminates the need for detailed
modeling of the environment. These controllers generate control laws for the system’s control inputs solely based on online
state measurements collected from the system.

For RBEs, since some responsive building envelopes achieve their dynamic thermal properties through complex
mechanisms that are difficult to be represented by explicit physics-based models. The derivation of such physic-based models
is time consuming and are computationally expensive. Model-free approaches provide possibilities to eliminate the need for
formulating physics-based models (Liu and Henze, 2006). Some model-free control approaches such as reinforcement
learning are based on neural network (NN (Zheng and Wang, 2002)) algorithms that support online learning, so that plug-
and-play (Baldi et al., 2015; Michailidis et al., 2018) controllers may be developed without computationally expensive oftline
training.

This paper discusses different control strategies for responsive building envelope systems. Specifically, a thermal
network model is first formulated for RBEs that are comprised of a concrete thermal mass sandwiched between two layers of
controllable active insulations. Two control strategies are formulated for the control of active insulations: (1) a rule-based



control approach is derived simply using surface temperatures as control variables to regulate the behavior of the active
insulation layers. In addition, (2) a model-free reinforcement learning (MFRL) controller is formulated for the RBE. The
thermal behavior of the RBEs under these two difference control strategies are compared under different climate conditions
(Miami FL and Albuquerque NM).

SIMULATION MODEL

Thermal Network Model for RBEs

A thermal network model based on a finite difference approach was developed for building envelope with dynamic
thermal properties, where the discrete form of the 1-D heat transfer equation following the finite difference scheme can be
expressed as:
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where C/ is the thermal capacitance of node i at /" time step; H

i1; 1s the heat transfer coefficient representing conduction
between node i-1 and node i with variable thermal properties at ;" time step. For an active insulation system having
negligible thermal mass (Benson, Potter and Tracy, 1994; Varga, Oliveira and Afonso, 2002; Kimber, Clark and Schaefer,
2014; Loonen, Hoes and Hensen, 2014; Wu et al., 2014; Park, Srubar and Krarti, 2015; Pflug et al., 2015, 2018; Tomko et

al., 2018), it may be represented by a ‘no-mass layer’ as:
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The time-varying the heat transfer coefficient #7, i between node k and node i with variable insulation at time z/ can be

controlled to regulate the amount of heat flow going through the envelope. Based on the different actuation mechanisms (and
material technologies), the heat transfer coefficient may be modeled either as a binary function or a continuous variable:
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For this research, a dynamic building envelope layout is selected where a high thermal mass concrete layer is
sandwiched between two AIS layers, see Figure 1, to allow for load shifting capabilities. In this configuration, the thermal
conductivities of the active insulation layers (i.e., both exterior and interior AIS) can be separately controlled: during the
heating season, the thermal conductivity of the external AIS layer can be increased when the exterior surface temperature is
higher than the temperature of the thermal mass, otherwise the thermal conductivity of exterior AIS can be decreased to
reduce the heat loss from the thermal mass.

Detailed thermal network model formulations for the building envelope with thermal static properties, interior
partitions, and indoor air can be found in the previous work of the authors (He et al., 2020). In numerical computation, long-
wave radiation is linearized using the same method as detailed in (Deardorff, 1978). The whole building model was coded
using Matlab Simulink. Comparisons between the simulation results of the thermal network model and EnergyPlus for
surface temperatures and indoor air temperature during representative days are presented in Figure 1 (d). The simulation
results of the thermal network model match closely with those obtained from EnergyPlus. The CV-RMSE (coefficient of
variation of the root mean square error) and NMBE (normalized mean bias error) of all the temperature items (surface
temperature and indoor air temperature) and the energy consumption (district heating or cooling) are well under the
ASHRAE Guideline 14 (Monetti et al., 2015) (i.e., <30% CV-RMSE and <10% NMBE for hourly data), indicating
acceptable accuracy of the thermal network model.
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Figure 1  Configuration and control rule for RBE with concrete thermal mass sandwiched between two AIS layers:
(a) illustrative showing the RBE configuration; (b) the thermal network model; (c) control rule for AIS (d)
Comparison of simulation results between thermal network model and EnergyPlus

Rule-based Control

First a simple ‘rule-based’ controlled is formulated for the RBE as shown in Figure 1 (a). For a given moment when
heating is needed and the temperature of the thermal mass is higher than the that of the interior surface, the thermal
conductivity of interior AIS can be increased to enhance the heat flow. The same methodology applies to the cooling season
with discharging of the thermal mass when external surface temperatures are lower than the thermal mass temperature and
discharge of the thermal mass towards the zone whenever cooling is required, and the thermal mass temperature is lower than
the internal surface temperature (Antretter and Boudreaux, 2019; Mumme and James, 2020). The AIS is assumed to able to
change its-value between two values (‘on-and-off mode’). The representative nodal diagram for the thermal network model is
represented in Figure 1 (b) and an example of the control rule (for the interior AIS) is shown in Figure 1 (c).

Model-Free Online Reinforcement Learning Control

In addition, a model-free online reinforcement learning (MFORL) controller is formulated for the RBE. In general,
three approaches are available for model-free reinforcement learning: policy gradient, value-based, and actor-critic. Since the
actor-critic method most closely relates to the optimal adaptive control, the actor-critic method was adopted for the studies of
online control for the responsive building envelope in this paper. The actor and critic are neural networks that learn the



optimal control law. The actor learns to provide the best action given the current state with the policy function method. The
critic learns to estimate the value of the state and the action generated by the actor. As Figure 2 shows, the actor chooses
actions (thermal properties of the responsive envelope) and applies them to the environment/control system. With updated
thermal properties, schedules and weather data, the environment/control system generates updated state and calculates the
reward for the critic. Meanwhile, the critic identifies that action with predicted value for the current state and action pair. The
critic uses the reward from the environment to determine the prediction accuracy. The critic uses the error to update itself for
a better prediction. The actor also updates itself through feedback from the critic and learns to generate the correct actions.

Weather data Schedules
States Actor/Agent Building States{;é
(Controller) Update RBE (Controlled system)
*thermal properties e e
Agent “ #"Update Environment
Critic
Reward
(Optimal control
function

cost function)

States

Figure 2 Schematic for reinforced learning framework for RBE

To formulate the MFORL controller, the action space contains all the possible control actions that can be taken by the
agent. The state space is a set of variables related to the environment which enables the agent to learn the optimal control
policy to achieve the maximum reward. In this study, the agent is expected to generate an optimal control sequence to change
the thermal properties of responsive building envelope in real-time to reduce the energy consumption and improve the
thermal comfort in the building at the same time. Since many parameters (e.g. the structure of the NN chosen for the actor
and/or critic) affect the achievement of a successful agent, different parameter settings were applied to train the agent for
optimal control using offline training. The offline training showed that the key parameters required for training a robust agent
were selected correctly. With the prerequisites and the selected parameter settings by the offline training analysis, online
control strategy was designed. The agent was deployed in different climate zones to test its performance and study the
behavior of online training and control. The thermal performance improvement for the building envelope with static thermal
properties by the RBE under rule-based control was compared with the one under model free RL control by the online trained
agent.

In this study, there are two action variables: the thermal insulation of exterior AIS and interior AIS. Given the impact by
dynamic characteristics of RBE and the outdoor and indoor environments, the solar radiation, outdoor and indoor air and
surface temperatures, and the indoor relative humidity were chosen as the state variables to determine the optimal control
actions. The simulation environment is developed using Simulink model based on the aforementioned thermal network
model. The model provides the indices (e.g. surface and indoor air temperatures, PPD and AC load) for training and
evaluation of reinforcement learning agent through energy simulations. Typical meteorological year 3 (TMY3) weather data
were adopted for the training data for the offline training.

The objective of the agent is to minimize the energy consumption while maintaining the thermal comfort performance
of the indoor space within a desired range through taking real-time actions. The reward function was designed to ensure high
sensitivity to the change in the states of the system. The initial design for the reward function contained two components
concerning energy consumption and thermal comfort: the AC energy consumption demand and the Predicted Percentage of
Dissatisfied. Different reward functions of these two indices (square function and integral of square function) were defined
and calculated to see which one is more sensitive to change in system states. The reward consisting of the square of AC
energy consumption demand and the square of PPD exhibited good sensitivity during training, but the sometimes actions
showed fast switching during the control. Therefore, a third component was added to the reward function to decrease the



standard variation of adjacent actions. The reward function for the j% step is refined though sensitivity analysis and written as:
: . 2 2 . .
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where var,(R/,) and var, (R/,,) are variance of exterior AIS and interior AIS thermal resistance within most recent 5

control sampling steps. J;, ¥, and }; are weights for the three components of the reward function.

Trust Region Policy Optimization (TRPO) algorithm (Schulman et al., 2015, 2016; Mnih ef al., 2016) was used for the
training of the actor-critic controller. As Table 1 shows, artificial neural networks are designed to represent the actor and
critic. The node number of the input layer is set as the size of the state space and the number of the output layer for the actor
is set as the size of the action space.

Table 1. Architecture of artificial neural networks

Layer Node number (Critic) Node number (Actor)
Input layer 20 20
Hidden layer 1 320 320
Hidden layer 2 320 320
Hidden layer 3 160 160
Hidden layer 4 160 N.A.
Output layer 1 100

The online training and control strategy with pre-training is designed for the agent deployment. For the i execution
horizon of one day, two alternative agents for implementation available: one is obtained from online training using the past 1-
day weather data and system behavior, and the other is a pretrained agent from the offline training. The agent with higher
accumulated reward was selected as the one for execution and the weights and bias for the neural network of the agent were
saved as the initial condition for online training of the next execution horizon.

Case Study

To study the thermal behavior and energy saving potential of the RBE, energy simulation is conducted for a single 13 m
/427 ft (L) x 8m / 24.2 ft (W) x3.05 m / 10.0 ft (H) exterior thermal zone extracted from an intermediate floor for an
apartment building. All interior walls which are assumed to be adiabatic (Jin, Favoino and Overend, 2017). The window-to-
wall ratio is 15% for the exterior wall. Some other simulation parameters considered include occupant activities, lighting,
equipment schedules, and infiltration level as listed in Figure 3. The RBE composed of concrete (thermal mass) layer
sandwiched between two opaque AISs is used for the case study. The thermal resistance of exterior or interior AIS ranges
between Rmin equaling RSI-0.01 (R-0.06) and Rmax equaling RSI-5 (R-28.4). To provide comparisons of the thermal behavior
and energy performance of RBE as compared to the static baseline, a baseline exterior wall is designed with the same layout
as RBE where a concrete mass layer is sandwiched between two rigid foam insulation panels with the same overall thermal
mass as the RBE cases. The overall thermal resistance of the static baseline set the same as RBE. Typical meteorological year
3 (TMY3) weather data of Miami FL and Albuquerque NM were adopted for online training and control deployment. To
study the online training and control performance of the agent, the thermal performance improvement by the RBE under
model free online RL control was also compared with the one under rule-based control. For the simulation, it is assumed that
the long-wave absorptivity and long-wave emissivity are the same for all wall surfaces. The indoor air temperature was
controlled by HVAC with dual setpoint of 21.1°C / 70.0 °F -23.9°C / 75.0 °F. The Predicted Mean Vote (PMV) and Predicted
Percentage of Dissatisfied (PPD) based on Frager's model (ISO, 2005) are used to evaluate thermal comfort-time
performance of the building. The Long-term Percentage of Dissatisfied (LPD) is used to assess occupants’ long-term thermal
comfort (Carlucci, 2013).
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Figure 3  Simulation details

RESULTS AND DISCUSSIONS

First, the energy use for the baseline residential building is estimated for Albuquerque NM and Miami FL to assess the
RBE’s contribution to heating and cooling loads reduction in different climate zones during representative days. Then, the
operation of the RBE with concrete thermal mass and AISs is tested for specific days to verify the implementation of both the
rule-based and MFORL controllers as introduced in the previous section. In particular, weather conditions of May 9 to May
18™ are selected as representative data for Albuquerque NM with high daily fluctuation in temperature, weather conditions of
16™ to February 25™ are selected for Miami FL to investigate how RBE makes use of benefits from outdoor environment for
passive cooling.

The thermal network model is used to perform annual energy analysis when the baseline residential building is located
in Albuquerque NM and Miami FL. In this analysis, static wall and roof insulations are considered with the layout same as
the RBE — i.e., a concrete thermal mass layer is sandwiched between two layers of insulation foam panels with RSI-5 (R-
28.4). The energy consumption of the residential building for heating and cooling is found to be 409.3 MJ / 113.7 kWh and
480.2 MJ / 133.4 kWh for Albuquerque NM and Miami FL during the representative days.

To verify the operation of both the rule-based and MFORL control strategies for the RBE when applied to residential
buildings, daily temperatures as well as heating and cooling thermal load profiles are presented for the representative days:
when the RSI-0.01(R-0.06) /RSI-5 (R-28.4) switching option is considered for the AIS layers. The simulation results of
RBEs with rule-based control and MFORL control are presented in Figure 4 and Figure 5 for Albuquerque NM and Miami
FL, respectively. Specifically, Figure 4 (a) and Figure 5 (a) illustrate the hourly variation of exterior surface temperature,
exterior concrete surface temperature, interior surface temperature and indoor air temperature as well as the thermal
resistance settings for both the exterior and interior AIS layers under the rule-based control. As indicated in the profiles of
Figure 4 (a), During the daytime of May 9" and May 13" to May 19%, the thermal resistance of the exterior AIS layer
switches to Rmax only when the exterior surface temperature was higher than the concrete layer temperature to allow the
concrete thermal mass to provide passive cooling to indoor space, as specified by the ruleset of Figure 2.

Moreover, Figure 4 (a) also compares the cooling thermal load for the rule-based controlled RBE against that obtained
using the baseline static RSI-10 (R-56.8) insulation. As clearly shown in Figure 4 (a), by switching to low thermal resistance
during selective hours, the AIS layer enables the charge and discharge of thermal energy into and out of the indoor space to
offset a significant portion of the AC load and hence allows the building to benefit from free outdoor heating/ cooling when
desired. Figure 4 (b) presents the simulation results — i.e., temperature profiles, thermal resistance settings, and sensible AC
load, under MFORL control. The simulation results show that RBE under MFORL control had substantially higher AC load
reduction. The energy consumption under MFORL control is nearly zero (1.1 MJ / 0.3 kWh) during these representative days
as compared to that obtained under rule-based control (40.0 MJ / 11.1 kWh). Since the rule-based controller is triggered by
the surface temperatures of concrete thermal mass and AIS, it worked without considering overcooling problem. Under this
logic, The AIS still kept as Rmin €ven when exterior surface temperature was lower than exterior concrete surface temperature
when heating is needed, which undermined the beneficial thermal energy stored in the concrete layer during transitional



season. Since MFORL controller does not rely on a specific ‘rule’, rather it adjusts the behavior of AIS based on the overall
energy performance of the thermal zone. As a result, with longer duration of Rmax for AISs than that under rule-based control,
the concrete layer under MFORL control provided more beneficial heat flow to offset the AC load. It is worth noting that the
AC demand under MFORL remained near-zero during these representative days.
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Figure 4  Simulation results for Albuquerque NM with responsive building envelope (RBE): (a) rule-based control;
(b) MFORL control

Figure 5 present the simulation results obtained for Miami FL. The energy consumption under MFORL control and
rule-based control are 4.7 MJ / 1.3 kWh and 158.8 MJ / 44.1 kWh, respectively. Similar to the thermal performance of RBE
in Albuquerque NM, MFORL controller also provided higher AC load reduction and energy savings compared with rule-
based controller. In this study, Rmax Was set to a high value to study the demand for the thermal resistance upper limit of the
AIS under different weather condition. During February 16" to February 17, the interior AIS was maintained as low-level
thermal resistance under MFORL control while the AIS under binary control switching to Rmax might lead to overheating
effect. Hence, RBE under MFORL control allows more flexible charging and discharging of the concrete layer. The thermal
resistance variation range of AIS also indicates that the upper thermal resistance limit has an effect on the overall energy
saving potential for different climate.

Table 2 presents the Long-term Percentage of Dissatisfied (LPD) in different scenarios during representative days
shown in Figure 4 and Figure 5. RBEs under rule-based control and MFORL control provide 6% - 25% improvement for the
LPD of baseline. The MFORL controller not only provide substantial AC load reduction but also improve thermal comfort as
compared to the baseline in the case studies.
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Figure 5  Simulation results for Miami FL with responsive building envelope (RBE): (a) rule-based control; (b)
MFORL control
Table 2. LPD of the building in different scenarios
City LPD (Baseline) LPD (RBE under rule-based control) LPD (RBE under MFORL control)
Miami, FL 7.91 7.72 7.43
Albuquerque, NM 8.16 5.90 6.10
CONCLUSION

Building energy simulations were performed on a representative residential thermal zone to test both a simple
temperature-driven rule-based controller and a newly formulated model-free online reinforcement learning (MFORL)
controller for responsive building envelopes (RBEs) that are consisted with a sensible thermal mass sandwiched between two
active insulation layers (RSI = 0.01-5 m?K/W). For the residential building modeled, it was found that under certain
condition (i.e., when outdoor environment can provide beneficial heat flow to offset AC loads), the use of AIS can lead to
significant reduction in AC loads. As for the two control methods tested for RBEs, the MFORL controller showed higher
energy saving potential than the rule-based controller during the tested durations. Since MFORL does not rely on the
formulation of a physics-based model, it has shown significant promise to be used for RBE control, especially under complex
environmental conditions such as those during transitional seasons. Future work is needed to demonstrate the energy saving
potential of MFORL in different thermal zones and under different climate conditions. Other performance metrics such as
thermal comfort and grid flexibility can also be considered in the formulation of MFORL controllers.
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NOMENCLATURE



C = Heat capacity of node

H = Heat transfer coefficient

LPD = Long-term Percentage of Dissatisfied

PPD = Predicted percentage of dissatisfied

O = Heatrate

R = Thermal resistance

t = Time

T = Temperature

y = weight for reward function
Subscripts

air_in = Indoor Air

i = Node sequence

max= Maximum

min= Minimum
Supercripts

j = Time step sequence
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