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ABSTRACT 

Thermally dynamic building envelope is a promising technology to achieve building energy saving while improving thermal 

comfort. Their performance is highly dependent on the local climate conditions as well as on the way the dynamic properties 

are operated/controlled. The evaluation of whole building performance through building energy simulation can be useful to 

understand the potentials of different dynamic opaque envelope with active insulations in a specific context. This paper 

evaluates the potential to use model-free online reinforcement-learning (MFORL) control to regulate the behavior of 

dynamic building envelopes. Specifically, two control strategies were formulated and evaluated on dynamic opaque 

envelopes that consist of a concrete layer sandwiched between two active insulations on both sides of the thermal mass: (i) 

simple temperature-driven rule-based control, and (ii) MFORL control. The controllers were preliminarily tested in two 

scenarios with 10-day representative behavior under mild climate or during transitional seasons. The results show that 

MFORL control is promising in achieving adaptive thermal behavior for dynamic building envelopes and may have 

advantages over traditional rule-based controllers under complex environment. 

INTRODUCTION 

Responsive Building Envelopes 

The dynamic nature of forces and energies acting on our building stokes has prompted the emergence of high-

performance building skins that are interactive and responsive to the environment (Wigginton and Harris, 2002; Stec and 

Paassen, 2005; Biloria and Sumini, 2007; Joe et al., 2013; Loonen et al., 2013; Loonen, 2015). Increasingly, building façades 

are being developed as complex systems of material assemblies attuned to climate and energy optimization – they are 

equipped with new performative materials, sensors, actuators, and artificial intelligence that support automated and dynamic 

functionalities of buildings, such as regulating natural day lighting, air and sound transmission, thermal transfer, and interior 

air quality (Velikov K, 2013).  This paradigm shift from static building envelope to more intelligent ‘building skin’ that can 

sense and respond to environmental changes provides opportunities for energy saving, improving occupant comfort, and 

enabling adaptations to the changing climate. 

To date, several approaches have been taken to achieve the “responsive building envelope (RBE)” concept including 

the utilization of intrinsic material properties such as the thermoresponse of bimetals and shape-memory polymers for self-



ventilation and day-lighting control (Sung, 2010; Brigham, 2015; Rybkowski et al., 2015). In addition, recent research and 

development efforts have advanced materials and devices to achieve switchable or variable thermal properties in building 

envelope assemblies. Inspired by the response of animal skins to thermal environment variations, these variable insulations 

are designed to selectively transfer heat across the envelope, making it possible to insulate heat flux and dissipate/absorb heat 

on demand (Cui and Overend, 2019). Examples of “on-and-off” thermal switch include changing material thermal 

conductivity through hydration/dehydration, which leads to micro-structure change (Tomko et al., 2018); changing porosity; 

materials orientation (Wu et al., 2014) that can respond in a few seconds. Continuously variable thermal insulation can be 

achieved by variable-pressure vacuum insulated panel (VIP) (Berge et al., 2015). The variable thermal insulation may also be 

achieved through multi-layer retractable thermal insulation. Antretter et al. (Antretter, 2019) and Mumme et al. (Mumme and 

James, 2020) assessed the energy saving potential of several configurations of RBE with controllable active insulation 

systems (AISs), and it was found that significant reduction of total building energy consumption for heating and cooling was 

achieved in all climate zones. 

RBE Control Strategies 

The control of RBEs can be generally categorized into (i) intrinsic (passive) and (ii) extrinsic (active or semi-active) 

control schemes (Loonen et al., 2013). Passive control strategies utilize the intrinsic properties of materials or mechanisms 

that are automatically triggered by a stimulus (surface temperature, solar radiation, etc.). This level of intelligence is 

embedded in the material and the switching mechanism is activated by a variation in its internal energy. The intrinsic control 

is also referred to as “direct” or “open-loop” control. In contrast, extrinsic control refers to the presence of an external 

decision-making component that is able to trigger the adaptive mechanisms according to a feedback rule. This is so-referred 

as to the feedback (or closed-loop) control type. Common control strategies included: (i) rule-based control, (ii) model 

predictive control (MPC) and (iii) model-free control. For RBE applications, a number of studies have explored the rule-

based control strategy for RBEs as demonstrated in (Shekar and Krarti, 2017; Rupp and Krarti, 2019). While model-free 

control approaches have been mentioned in the scoping study for building control conducted by Yoon et al and Pinto et al 

(Yoon and Moon, 2019; Pinto et al., 2021), their implementation and research within RBE systems have been very limited. 

Reinforcement learning (RL) control is an application of a branch of machine learning that obtains an optimal control 

laws by maximizing a numerical delayed reward. RL control obtains the optimal control law without supervised learning and 

only by evaluating the immediate feedback from environment (i.e. the control system). The problem to be solved by 

reinforcement learning is normally defined as a Markov Decision Process (MDP), which is generally represented as a tuple 

(S, A, P, R), i.e. state, action, transition probability and reward function. Together with these elements, control 

system/environment and controller/agent comprise the basics of the whole problem. There are mainly two categories of RL 

algorithms for the agent, namely model-based RLs and model-free RLs. Model-based RLs find the optimal policy based on 

the model developed for the environment. However, learning characteristics of the whole environment and an accurate model 

might not necessarily provide better performance under dynamic conditions in real-time application. Model-free control 

refers to adaptive controllers which do not rely on any mathematical model of the real system (Michailidis et al., 2018). 

Model-free RLs are often more flexible in updating agents under fluctuated conditions. When the external environments are 

unknown to the agent, online control attempts to find optimal policy/control law directly and eliminates the need for detailed 

modeling of the environment. These controllers generate control laws for the system’s control inputs solely based on online 

state measurements collected from the system.  

For RBEs, since some responsive building envelopes achieve their dynamic thermal properties through complex 

mechanisms that are difficult to be represented by explicit physics-based models. The derivation of such physic-based models 

is time consuming and are computationally expensive. Model-free approaches provide possibilities to eliminate the need for 

formulating physics-based models (Liu and Henze, 2006). Some model-free control approaches such as reinforcement 

learning are based on neural network (NN (Zheng and Wang, 2002)) algorithms that support online learning, so that plug-

and-play (Baldi et al., 2015; Michailidis et al., 2018) controllers may be developed without computationally expensive offline 

training. 

This paper discusses different control strategies for responsive building envelope systems. Specifically, a thermal 

network model is first formulated for RBEs that are comprised of a concrete thermal mass sandwiched between two layers of 

controllable active insulations. Two control strategies are formulated for the control of active insulations: (1) a rule-based 



control approach is derived simply using surface temperatures as control variables to regulate the behavior of the active 

insulation layers. In addition, (2) a model-free reinforcement learning (MFRL) controller is formulated for the RBE. The 

thermal behavior of the RBEs under these two difference control strategies are compared under different climate conditions 

(Miami FL and Albuquerque NM). 

SIMULATION MODEL 

Thermal Network Model for RBEs 

A thermal network model based on a finite difference approach was developed for building envelope with dynamic 

thermal properties, where the discrete form of the 1-D heat transfer equation following the finite difference scheme can be 

expressed as: 
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where 
j

iC  is the thermal capacitance of node i at jth time step; 1,

j

i iH −  is the heat transfer coefficient representing conduction 

between node i-1 and node i with variable thermal properties at jth time step. For an active insulation system having 

negligible thermal mass (Benson, Potter and Tracy, 1994; Varga, Oliveira and Afonso, 2002; Kimber, Clark and Schaefer, 

2014; Loonen, Hoes and Hensen, 2014; Wu et al., 2014; Park, Srubar and Krarti, 2015; Pflug et al., 2015, 2018; Tomko et 

al., 2018), it may be represented by a ‘no-mass layer’ as: 
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The time-varying the heat transfer coefficient ,

j

k iH between node k and node i with variable insulation at time jt can be 

controlled to regulate the amount of heat flow going through the envelope. Based on the different actuation mechanisms (and 

material technologies), the heat transfer coefficient may be modeled either as a binary function or a continuous variable: 
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For this research, a dynamic building envelope layout is selected where a high thermal mass concrete layer is 

sandwiched between two AIS layers, see Figure 1, to allow for load shifting capabilities. In this configuration, the thermal 

conductivities of the active insulation layers (i.e., both exterior and interior AIS) can be separately controlled: during the 

heating season, the thermal conductivity of the external AIS layer can be increased when the exterior surface temperature is 

higher than the temperature of the thermal mass, otherwise the thermal conductivity of exterior AIS can be decreased to 

reduce the heat loss from the thermal mass. 

Detailed thermal network model formulations for the building envelope with thermal static properties, interior 

partitions, and indoor air can be found in the previous work of the authors (He et al., 2020). In numerical computation, long-

wave radiation is linearized using the same method as detailed in (Deardorff, 1978). The whole building model was coded 

using Matlab Simulink. Comparisons between the simulation results of the thermal network model and EnergyPlus for 

surface temperatures and indoor air temperature during representative days are presented in Figure 1 (d). The simulation 

results of the thermal network model match closely with those obtained from EnergyPlus. The CV-RMSE (coefficient of 

variation of the root mean square error) and NMBE (normalized mean bias error) of all the temperature items (surface 

temperature and indoor air temperature) and the energy consumption (district heating or cooling) are well under the 

ASHRAE Guideline 14 (Monetti et al., 2015) (i.e., <30% CV-RMSE and <10% NMBE for hourly data), indicating 

acceptable accuracy of the thermal network model. 

 



 

Figure 1 Configuration and control rule for RBE with concrete thermal mass sandwiched between two AIS layers: 

(a) illustrative showing the RBE configuration; (b) the thermal network model; (c) control rule for AIS (d) 

Comparison of simulation results between thermal network model and EnergyPlus 

Rule-based Control 

First a simple ‘rule-based’ controlled is formulated for the RBE as shown in Figure 1 (a). For a given moment when 

heating is needed and the temperature of the thermal mass is higher than the that of the interior surface, the thermal 

conductivity of interior AIS can be increased to enhance the heat flow. The same methodology applies to the cooling season 

with discharging of the thermal mass when external surface temperatures are lower than the thermal mass temperature and 

discharge of the thermal mass towards the zone whenever cooling is required, and the thermal mass temperature is lower than 

the internal surface temperature (Antretter and Boudreaux, 2019; Mumme and James, 2020). The AIS is assumed to able to 

change its-value between two values (‘on-and-off mode’). The representative nodal diagram for the thermal network model is 

represented in Figure 1 (b) and an example of the control rule (for the interior AIS) is shown in Figure 1 (c).  

Model-Free Online Reinforcement Learning Control 

In addition, a model-free online reinforcement learning (MFORL) controller is formulated for the RBE. In general, 

three approaches are available for model-free reinforcement learning: policy gradient, value-based, and actor-critic. Since the 

actor-critic method most closely relates to the optimal adaptive control, the actor-critic method was adopted for the studies of 

online control for the responsive building envelope in this paper. The actor and critic are neural networks that learn the 
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optimal control law. The actor learns to provide the best action given the current state with the policy function method. The 

critic learns to estimate the value of the state and the action generated by the actor. As Figure 2 shows, the actor chooses 

actions (thermal properties of the responsive envelope) and applies them to the environment/control system. With updated 

thermal properties, schedules and weather data, the environment/control system generates updated state and calculates the 

reward for the critic. Meanwhile, the critic identifies that action with predicted value for the current state and action pair. The 

critic uses the reward from the environment to determine the prediction accuracy. The critic uses the error to update itself for 

a better prediction. The actor also updates itself through feedback from the critic and learns to generate the correct actions. 

 

Figure 2 Schematic for reinforced learning framework for RBE 

To formulate the MFORL controller, the action space contains all the possible control actions that can be taken by the 

agent. The state space is a set of variables related to the environment which enables the agent to learn the optimal control 

policy to achieve the maximum reward. In this study, the agent is expected to generate an optimal control sequence to change 

the thermal properties of responsive building envelope in real-time to reduce the energy consumption and improve the 

thermal comfort in the building at the same time. Since many parameters (e.g. the structure of the NN chosen for the actor 

and/or critic) affect the achievement of a successful agent, different parameter settings were applied to train the agent for 

optimal control using offline training. The offline training showed that the key parameters required for training a robust agent 

were selected correctly. With the prerequisites and the selected parameter settings by the offline training analysis, online 

control strategy was designed. The agent was deployed in different climate zones to test its performance and study the 

behavior of online training and control. The thermal performance improvement for the building envelope with static thermal 

properties by the RBE under rule-based control was compared with the one under model free RL control by the online trained 

agent. 

In this study, there are two action variables: the thermal insulation of exterior AIS and interior AIS. Given the impact by 

dynamic characteristics of RBE and the outdoor and indoor environments, the solar radiation, outdoor and indoor air and 

surface temperatures, and the indoor relative humidity were chosen as the state variables to determine the optimal control 

actions. The simulation environment is developed using Simulink model based on the aforementioned thermal network 

model. The model provides the indices (e.g. surface and indoor air temperatures, PPD and AC load) for training and 

evaluation of reinforcement learning agent through energy simulations. Typical meteorological year 3 (TMY3) weather data 

were adopted for the training data for the offline training.  

The objective of the agent is to minimize the energy consumption while maintaining the thermal comfort performance 

of the indoor space within a desired range through taking real-time actions. The reward function was designed to ensure high 

sensitivity to the change in the states of the system. The initial design for the reward function contained two components 

concerning energy consumption and thermal comfort: the AC energy consumption demand and the Predicted Percentage of 

Dissatisfied. Different reward functions of these two indices (square function and integral of square function) were defined 

and calculated to see which one is more sensitive to change in system states. The reward consisting of the square of AC 

energy consumption demand and the square of PPD exhibited good sensitivity during training, but the sometimes actions 

showed fast switching during the control. Therefore, a third component was added to the reward function to decrease the 
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standard variation of adjacent actions. The reward function for the jth step is refined though sensitivity analysis and written as: 

( ) ( ) ( ) ( ) 2 2
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where ( )5 2,1var jR  and ( )5 1,var j

n nR −  are variance of exterior AIS and interior AIS thermal resistance within most recent 5 

control sampling steps. 1 , 2  and 3  are weights for the three components of the reward function. 

Trust Region Policy Optimization (TRPO) algorithm (Schulman et al., 2015, 2016; Mnih et al., 2016) was used for the 

training of the actor-critic controller. As Table 1 shows, artificial neural networks are designed to represent the actor and 

critic. The node number of the input layer is set as the size of the state space and the number of the output layer for the actor 

is set as the size of the action space. 

 

Table 1.   Architecture of artificial neural networks 

Layer Node number (Critic) Node number (Actor) 

Input layer 20 20 

Hidden layer 1 320 320 

Hidden layer 2 320 320 

Hidden layer 3 160 160 

Hidden layer 4 160 N.A. 

Output layer 1 100 

 

The online training and control strategy with pre-training is designed for the agent deployment. For the ith execution 

horizon of one day, two alternative agents for implementation available: one is obtained from online training using the past 1-

day weather data and system behavior, and the other is a pretrained agent from the offline training. The agent with higher 

accumulated reward was selected as the one for execution and the weights and bias for the neural network of the agent were 

saved as the initial condition for online training of the next execution horizon. 

Case Study 

To study the thermal behavior and energy saving potential of the RBE, energy simulation is conducted for a single 13 m 

/ 42.7 ft (L) × 8m / 24.2 ft (W) ×3.05 m / 10.0 ft (H) exterior thermal zone extracted from an intermediate floor for an 

apartment building. All interior walls which are assumed to be adiabatic (Jin, Favoino and Overend, 2017). The window-to-

wall ratio is 15% for the exterior wall. Some other simulation parameters considered include occupant activities, lighting, 

equipment schedules, and infiltration level as listed in Figure 3. The RBE composed of concrete (thermal mass) layer 

sandwiched between two opaque AISs is used for the case study. The thermal resistance of exterior or interior AIS ranges 

between Rmin equaling RSI-0.01 (R-0.06) and Rmax equaling RSI-5 (R-28.4). To provide comparisons of the thermal behavior 

and energy performance of RBE as compared to the static baseline, a baseline exterior wall is designed with the same layout 

as RBE where a concrete mass layer is sandwiched between two rigid foam insulation panels with the same overall thermal 

mass as the RBE cases. The overall thermal resistance of the static baseline set the same as RBE. Typical meteorological year 

3 (TMY3) weather data of Miami FL and Albuquerque NM were adopted for online training and control deployment. To 

study the online training and control performance of the agent, the thermal performance improvement by the RBE under 

model free online RL control was also compared with the one under rule-based control. For the simulation, it is assumed that 

the long-wave absorptivity and long-wave emissivity are the same for all wall surfaces. The indoor air temperature was 

controlled by HVAC with dual setpoint of 21.1℃ / 70.0 ℉ -23.9℃ / 75.0 ℉. The Predicted Mean Vote (PMV) and Predicted 

Percentage of Dissatisfied (PPD) based on Frager's model (ISO, 2005) are used to evaluate thermal comfort-time 

performance of the building. The Long-term Percentage of Dissatisfied (LPD) is used to assess occupants’ long-term thermal 

comfort (Carlucci, 2013). 

 



 

Figure 3 Simulation details 

RESULTS AND DISCUSSIONS 

First, the energy use for the baseline residential building is estimated for Albuquerque NM and Miami FL to assess the 

RBE’s contribution to heating and cooling loads reduction in different climate zones during representative days. Then, the 

operation of the RBE with concrete thermal mass and AISs is tested for specific days to verify the implementation of both the 

rule-based and MFORL controllers as introduced in the previous section. In particular, weather conditions of May 9th to May 

18th are selected as representative data for Albuquerque NM with high daily fluctuation in temperature, weather conditions of 

16th to February 25th are selected for Miami FL to investigate how RBE makes use of benefits from outdoor environment for 

passive cooling.  

The thermal network model is used to perform annual energy analysis when the baseline residential building is located 

in Albuquerque NM and Miami FL. In this analysis, static wall and roof insulations are considered with the layout same as 

the RBE – i.e., a concrete thermal mass layer is sandwiched between two layers of insulation foam panels with RSI-5 (R-

28.4). The energy consumption of the residential building for heating and cooling is found to be 409.3 MJ / 113.7 kWh and 

480.2 MJ / 133.4 kWh for Albuquerque NM and Miami FL during the representative days.  

To verify the operation of both the rule-based and MFORL control strategies for the RBE when applied to residential 

buildings, daily temperatures as well as heating and cooling thermal load profiles are presented for the representative days: 

when the RSI-0.01(R-0.06) /RSI-5 (R-28.4) switching option is considered for the AIS layers. The simulation results of 

RBEs with rule-based control and MFORL control are presented in Figure 4 and Figure 5 for Albuquerque NM and Miami 

FL, respectively. Specifically, Figure 4 (a) and Figure 5 (a) illustrate the hourly variation of exterior surface temperature, 

exterior concrete surface temperature, interior surface temperature and indoor air temperature as well as the thermal 

resistance settings for both the exterior and interior AIS layers under the rule-based control. As indicated in the profiles of 

Figure 4 (a), During the daytime of May 9th and May 13th to May 19th, the thermal resistance of the exterior AIS layer 

switches to Rmax only when the exterior surface temperature was higher than the concrete layer temperature to allow the 

concrete thermal mass to provide passive cooling to indoor space, as specified by the ruleset of Figure 2.  

Moreover, Figure 4 (a) also compares the cooling thermal load for the rule-based controlled RBE against that obtained 

using the baseline static RSI-10 (R-56.8) insulation. As clearly shown in Figure 4 (a), by switching to low thermal resistance 

during selective hours, the AIS layer enables the charge and discharge of thermal energy into and out of the indoor space to 

offset a significant portion of the AC load and hence allows the building to benefit from free outdoor heating/ cooling when 

desired. Figure 4 (b) presents the simulation results – i.e., temperature profiles, thermal resistance settings, and sensible AC 

load, under MFORL control. The simulation results show that RBE under MFORL control had substantially higher AC load 

reduction. The energy consumption under MFORL control is nearly zero (1.1 MJ / 0.3 kWh) during these representative days 

as compared to that obtained under rule-based control (40.0 MJ / 11.1 kWh). Since the rule-based controller is triggered by 

the surface temperatures of concrete thermal mass and AIS, it worked without considering overcooling problem. Under this 

logic, The AIS still kept as Rmin even when exterior surface temperature was lower than exterior concrete surface temperature 

when heating is needed, which undermined the beneficial thermal energy stored in the concrete layer during transitional 
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season. Since MFORL controller does not rely on a specific ‘rule’, rather it adjusts the behavior of AIS based on the overall 

energy performance of the thermal zone. As a result, with longer duration of Rmax for AISs than that under rule-based control, 

the concrete layer under MFORL control provided more beneficial heat flow to offset the AC load. It is worth noting that the 

AC demand under MFORL remained near-zero during these representative days.  

 

 

Figure 4 Simulation results for Albuquerque NM with responsive building envelope (RBE): (a) rule-based control; 

(b) MFORL control 

Figure 5 present the simulation results obtained for Miami FL. The energy consumption under MFORL control and 

rule-based control are 4.7 MJ / 1.3 kWh and 158.8 MJ / 44.1 kWh, respectively. Similar to the thermal performance of RBE 

in Albuquerque NM, MFORL controller also provided higher AC load reduction and energy savings compared with rule-

based controller. In this study, Rmax was set to a high value to study the demand for the thermal resistance upper limit of the 

AIS under different weather condition. During February 16th to February 17th, the interior AIS was maintained as low-level 

thermal resistance under MFORL control while the AIS under binary control switching to Rmax might lead to overheating 

effect. Hence, RBE under MFORL control allows more flexible charging and discharging of the concrete layer. The thermal 

resistance variation range of AIS also indicates that the upper thermal resistance limit has an effect on the overall energy 

saving potential for different climate.  

Table 2 presents the Long-term Percentage of Dissatisfied (LPD) in different scenarios during representative days 

shown in Figure 4 and Figure 5. RBEs under rule-based control and MFORL control provide 6% - 25% improvement for the 

LPD of baseline. The MFORL controller not only provide substantial AC load reduction but also improve thermal comfort as 

compared to the baseline in the case studies. 
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Figure 5 Simulation results for Miami FL with responsive building envelope (RBE): (a) rule-based control; (b) 

MFORL control 

Table 2.   LPD of the building in different scenarios 

City LPD (Baseline) LPD (RBE under rule-based control) LPD (RBE under MFORL control) 

Miami, FL 7.91 7.72 7.43 

Albuquerque, NM 8.16 5.90 6.10 

 

CONCLUSION 

Building energy simulations were performed on a representative residential thermal zone to test both a simple 

temperature-driven rule-based controller and a newly formulated model-free online reinforcement learning (MFORL) 

controller for responsive building envelopes (RBEs) that are consisted with a sensible thermal mass sandwiched between two 

active insulation layers (RSI = 0.01-5 m2K/W). For the residential building modeled, it was found that under certain 

condition (i.e., when outdoor environment can provide beneficial heat flow to offset AC loads), the use of AIS can lead to 

significant reduction in AC loads. As for the two control methods tested for RBEs, the MFORL controller showed higher 

energy saving potential than the rule-based controller during the tested durations. Since MFORL does not rely on the 

formulation of a physics-based model, it has shown significant promise to be used for RBE control, especially under complex 

environmental conditions such as those during transitional seasons. Future work is needed to demonstrate the energy saving 

potential of MFORL in different thermal zones and under different climate conditions. Other performance metrics such as 

thermal comfort and grid flexibility can also be considered in the formulation of MFORL controllers. 
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C =  Heat capacity of node 

H =  Heat transfer coefficient 

LPD =  Long-term Percentage of Dissatisfied 

PPD =  Predicted percentage of dissatisfied 

Q =  Heat rate 

R =  Thermal resistance 

t =  Time 

T =  Temperature 

γ =  weight for reward function  

Subscripts 

air_in =  Indoor Air 

i =  Node sequence 

max =  Maximum  

min =  Minimum  

Supercripts 

j =  Time step sequence 
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