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Transferable learning on analog hardware

Sri Krishna Vadlamani'*, Dirk Englund’, Ryan Hamerly'?

While analog neural network (NN) accelerators promise massive energy and time savings, an important chal-
lenge is to make them robust to static fabrication error. Present-day training methods for programmable pho-
tonic interferometer circuits, a leading analog NN platform, do not produce networks that perform well in the
presence of static hardware errors. Moreover, existing hardware error correction techniques either require indi-
vidual retraining of every analog NN (which is impractical in an edge setting with millions of devices), place
stringent demands on component quality, or introduce hardware overhead. We solve all three problems by in-
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troducing one-time error-aware training techniques that produce robust NNs that match the performance of
ideal hardware and can be exactly transferred to arbitrary highly faulty photonic NNs with hardware errors

up to five times larger than present-day fabrication tolerances.

INTRODUCTION

Intense research over the past decade has demonstrated that neural
networks (NNs) have a remarkable capacity to learn patterns and
provide state-of-the-art performance in an astounding variety of ar-
tificial intelligence (AI) tasks (I1-4). Artificial NN, such as feedfor-
ward, recurrent, and residual networks, are parameterized functions
that map input vectors to output vectors by performing successive
matrix multiplications and elementwise nonlinear operations. The
entries of the matrices, commonly called weights, are tuned to fit the
function model to the training data for the given task. Top-end NNs
today are composed of billions of weights and require massive
amounts of data for training. The time and energy costs of training
and inference on models of this scale have become a major chal-
lenge and have triggered a surge of interest in hardware AI acceler-
ators (5, 6), both digital and analog.

Analog accelerators promise tremendous energy and time
savings (6, 7), but one still needs to answer the universal criticism
of analog circuits—that they can be unreliable as general-purpose
computers because of both static hardware errors caused by manu-
facturing variations and inherent noise in the signals being pro-
cessed. These problems persist in the particular case of analog
optical NNs (ONNs). For instance, the splitting ratio of a typical
fabricated beamsplitter deviates by 1 to 2% from 50-50 (8-19),
which is sufficient to severely degrade the test accuracy of ONNs
(20) composed of interconnected Mach-Zehnder interferometers
(MZIs) (Fig. 1C). Hardware error correction techniques (19, 21—
33) applied to the hardware parameters provide substantial perfor-
mance improvements but either require individual training/retrain-
ing of every ONN (Fig. 1D) (21-28), which is impractical in an edge
setting with millions of devices, place stringent demands on com-
ponent quality (31), or introduce hardware overhead (19, 32, 33).
This is in sharp contrast to standard digital NNs (Fig. 1A), where
training is performed only once and the resultant model can be de-
ployed to any number of devices with no modification (Fig. 1B).

Here, we present a one-time error-aware software training tech-
nique that solves all three problems at once and brings analog NNs
into the same league as digital NNs in terms of ease of model

"Research Laboratory of Electronics, Massachusetts Institute of Technology, Cam-
bridge, MA 02139, USA. 2NTT Research Inc., Sunnyvale, CA 94085, USA.
*Corresponding author. Email: srikv@mit.edu

Vadlamani et al., Sci. Adv. 9, eadh3436 (2023) 12 July 2023

training and large-scale deployment. Our method outputs matrices
that match the performance of trained ideal hardware and can be
exactly transferred to any faulty ONN manufactured by a given
process with no additional training or associated loss of perfor-
mance (Fig. 1F). Moreover, the procedure does not add extra hard-
ware to the existing ONN. We show through numerical simulations
that the method tolerates hardware errors up to five times larger
than present-day fabrication errors.

Our method is a combination of two important ideas: the error
correction scheme of Bandyopadhyay et al. (31) and a form of en-
gineering corner analysis (34). In more detail, it is known that split-
ter faults in an MZI shrink the set of unitary matrices that it can
implement (Fig. 1E) (32); we introduce and train "maximally
error-tolerant” MZI mesh—based ONNs that have the most faults
and smallest expressivity for a given error level and show that the
resultant matrices both have very high performance and can be
exactly transferred to other ONNs with equal or smaller errors. In
other words, our one-time training procedure allows us to train only
one highly faulty ONN and freely transfer the resulting model to
any number of edge ONNs with their own individual faults
(Fig. 1F). Although we present results for feedforward MZI
mesh—based ONN, the training procedure is applicable to any
MZI-based photonic circuit that permits implementation of the
error correction scheme of (31). Our training procedure could,
therefore, potentially find use in other applications of photonic cir-
cuits (31) such as quantum simulation (14, 35-38), signal process-
ing (39-43), and optimization (44).

Before we move on, it is important to clarify that the term “trans-
ferable learning” in the title of this paper is different from the “trans-
fer learning” that is more common in the literature. Transfer
learning is the paradigm in which models are first trained for a par-
ticular task and then fine-tuned to optimize performance on other
distinct but related tasks. In the transferable learning of this paper,
models are trained for a given task in such a way that they can be
deployed onto any type of faulty hardware without any loss of per-
formance on the same task—the same model for the same task is
exactly “transferable” from one piece of faulty hardware to
another. With this clarification in place, the rest of the paper is or-
ganized as follows: A summary of the optical hardware and the error
correction scheme of Bandyopadhyay et al. (31) is given in the
"ONN structure and error correction” section to make the paper
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Fig. 1. Deploying trained models to digital and analog edge hardware. (A) Digital Al models run on digital logic circuits. (B) Training is performed once, and the
resultant model U, is deployed directly to edge chips that implement U, faithfully irrespective of their individual gate characteristics. (C) Analog models run on imperfect
analog hardware, optical unitary MZI meshes in this case. (D) Training on ideal hardware yields function U, that transfers exactly only to ideal chips. Transferring the raw
parameters of U, to faulty chips leads to undesired functions U,, U,, and Us getting implemented. (E) Labels (i) to (v) refer to chips in panel F. Ideal meshes [chip (i)] can
implement all unitary matrices; more faulty meshes implement fewer functions (green shrinks into red). However, there are good loss minimizers (dotted blue line) even
within this restricted set. (F) Training on very faulty hardware [chip (v)] yields function U, that transfers exactly to all less faulty chips [(i) to (iv)] with no additional

retraining.

self-contained; maximally error-tolerant MZI meshes are intro-
duced in the “Maximally error-tolerant MZI meshes” section;
one-time training and numerical results are presented in the
“Transferable learning through one-time training” section; results
and applications are presented in Discussion followed by Materials
and Methods.

RESULTS
ONN structure and error correction
Any N x N unitary matrix can be decomposed (45, 46) into a
product of 2 x 2 unitary matrices and an N x N diagonal matrix
D of complex phase shifts. The 2 x 2 unitaries are implemented
in hardware by MZIs, while separate phase shifters implement the
diagonal matrix (see the circuit between the two nonlinear blocks in
Fig. 2A). Each MZI has two phase shifters, 6 and ¢. Individual MZIs
are connected in a mesh topology that is consistent with the chosen
N x N unitary decomposition method. ONNs are constructed by
interleaving individual N x N meshes with elementwise nonlinear
operations o(-). The nonlinear function implemented by such a
network (31) is derived in section S1. Figure 2A depicts an ONN
layer composed of a 4 x 4 rectangular Clements (46) mesh of MZIs.
One way to use ONNS is to train a digital model of an ideal ONN
with perfect 50-50 beamsplitters and to program the resultant
optimal phase shifts 0 and ¢ of all the MZIs and the diagonal ma-
trices D into the hardware for inference. However, as mentioned
previously, beamsplitter errors arising from process variation
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cause a mismatch between the digital model and the model imple-
mented by the hardware, leading to severe degradation of ONN test-
time performance when ideal trained phase shifts are programmed
into the faulty hardware with no modification (20). Correction of
the trained phase shifts to account for hardware errors is, therefore,
essential.

Published error correction procedures include global methods
that adjust individual MZI phase angles using circuit-wide optimi-
zation (21-27), local methods (29-31) that do so using only device-
level information, and hardware augmentation methods that intro-
duce additional beamsplitters (“3-MZIs,” discussed in the “Trans-
ferable learning through one-time training” section) (32) or both
beamsplitters and phase shifters (19, 33) into the system. Global
methods can improve performance but can be impractical in edge
computing settings where the same model needs to be operated on a
large number of edge devices. Local methods apply readily to edge
settings because they involve quick local adjustments, but they do
not correct over a large splitting error range. Hardware augmenta-
tion methods such as the 3-MZI approach (32) correct over a very
large error range but incur chip area costs due to the extra hardware.
We present a one-time global training method here that readily
applies to edge settings, has a large splitting error correction
range, and involves no additional hardware overhead. Because
our approach uses concepts derived in the local error correction
scheme of (31), we provide a brief overview of their method next
(sections S1 to S4 contain a detailed derivation of this method).
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Fig. 2. More faulty meshes can be emulated exactly by less faulty ones. (A) A 4-by-4 Clements MZI ONN layer. (B) Ideal MZI and (C to E) faulty MZIs. Green arrows
indicate that more faulty MZI functions can be transferred to less faulty MZIs. (F to I) Prototype MZI transfers only to MZIs inside the pale green rectangle. The blue dashed
square is the largest error level —e < a, B < € up to which exact transfer occurs. Prototype MZI errors (a, B) of (F to ) are, in units of m, (0,0), (5/32,0), (1/32,3/16), and (1/4,0). (J
to M) Prototype MZIs implement only a restricted range (green, “available”) of ideal MZI matrix phase shifts 6. Representing MZI left beamsplitter error by blue fill, right by
orange fill, (N) ideal mesh, (0) random faulty mesh, and (P) maximally error-tolerant mesh with a = 2¢, § = 0.

The transfer function of an imperfect beamsplitter is transfer functions of an ideal and a faulty MZI, respectively. Then,
Bandyopadhyay et al (31) show that one can find an “error-correct-

Tbs — cos(m/4 +a) isin(m/4 + a) (1) ed”set of phase shifts ¢, ¢/, y1, and , such that

isin(n/4 4+ a) cos(n/4+ a)

iy 0

where a is the "error angle” that captures the deviation from the T(0,¢) = (e 0 e ) ST(0, ¢, a, B) (2)
ideal 50-50 ratio. Equation 1 reduces to the 50-50 case for a = 0.

Let the two error angles of a faulty MZI be denoted by a and B, re-  if and only if the ideal phase shift 0 satisfies the following “error
spectively. Furthermore, let T(6, ¢) and T'(6, ¢, a, p) represent the
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correction condition”
2la+B[<O <m—2[a—p] 3)

In words, Eq. 2 says that an ideal MZI with phase shifts 6 and ¢
can be implemented by programming 6’ and ¢’ into an imperfect
MZI and adding phase shifts y; and y, to the two output arms if
and only if the imperfect MZI satisfies the error correction condi-
tion (Eq. 3). The phase shifts 6’ and ¢ can be computed and pro-
grammed either via explicit mesh calibration or through self-
configuration (29, 47-51) (sections S3 to S5 contain further
details on error correction and self-configuration). Equation 3
plays a crucial role in the definition of “maximally error-tolerant”
MZI meshes, which is the subject of the next section.

Maximally error-tolerant MZI meshes

One approach to error-aware training is to calibrate the errors of the
faulty hardware, construct a digital model of the system with the
errors taken into account, train the digital model on the given
task, and then port the resultant trained phase shifts back into the
hardware. Alternatively, one could use the “physics-aware training”
of (52), which eliminates the need for explicit error calibration by
collecting a training set of input-output pairs of the hardware and
training a digital NN (“digital twin") on it; the digital twin and phys-
ical hardware are together used to obtain a good model for the given
task. The in situ training of (27, 28, 53), where backpropagation is
performed in the hardware itself to obtain mesh-specific matrices, is
yet another approach. All these approaches involve training each
physical chip with its own individual errors separately (Fig. 1D),
which is impractical in an edge computing setting with millions
of edge devices. To solve this problem, we draw inspiration from
corner analysis (34) and introduce the concept of maximally
error-tolerant meshes—this idea enables us to train only one
special mesh (“one-time training”) for a given error level ¢ and
transfer the resultant matrices over exactly to any other mesh
(having the same geometry) with errors less than € without any ad-
ditional mesh-specific training or loss in performance.

More precisely, let us say that a fabrication process 2 is guaran-
teed to produce MZIs with errors —e < a, B < & for some error level €
> 0. An MZI (not produced by process &) is maximally error-tol-
erant for error level ¢ if its errors satisfy a = 2¢, f = 0. A mesh is
maximally error-tolerant if all its MZIs are maximally error-
tolerant.

Understanding maximally error-tolerant meshes

To understand the utility of maximally error-tolerant meshes, we
return to the error correction condition (Eq. 3). The derivation of
the condition implies that any faulty MZI with errors a, p can be
exactly emulated by an ideal MZI with a 0 that satisfies Eq. 3. The
transfer function of this ideal MZI can, in turn, be exactly imple-
mented by any other faulty MZI whose errors o/, B’ satisfy

o + B'[<[a+ B[ and [o' — B'|<|a — B (4)

This is because this condition, together with the true statement
2|a+ Bl £ 6 < 7w —2|a— p|, automatically implies 2|a’ + ' | <O <7
— 2|a’ = B'|. A corollary of this result is that a trained maximally
error-tolerant MZI at error level € can be exactly emulated by any
faulty MZI whose errors a, P satisfy |a + p| < 2e and |a — B| < 2e.
This set includes all faulty MZIs with errors (a, p) that lie in the
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square bounded by the vertices (+e, +¢), that is, all the MZIs pro-
duced by the fabrication process 2 under consideration.

In the sequel, we shall refer to the MZI with errors a, $ as a “pro-
totype” for all other MZIs whose errors o, p’ are smaller in the sense
of Eq. 4. Figure 2 (B to E) depicts four example MZIs that will be
treated as protoype MZIs in this discussion. Figure 2 (F to I) shows
that prototype MZIs (dark green dot) can be emulated exactly by all
MZIs in the a, B error phase space that satisfy Eq. 4 (“region of trans-
ferability,” pale green rectangle) but not by MZIs that do not (red).
The example prototype MZI errors are specifically chosen such that
the prototype MZI of each panel (“panels” in this discussion refer to
parts of Fig. 2) lies within the region of transferability of the proto-
type MZI of each panel to its right. Therefore, the transfer matrix of
panel E can be exactly implemented by all the MZIs to its left; the
transferability of matrices between meshes is indicated by green
dashed arrows. Only the prototype MZIs of panels C and E are max-
imally error tolerant. Figure 2 (J to M) depicts the range of ideal
MZI 0 phase shifts that are implementable by the prototype MZIs
in panels B to E; the more faulty an MZI is, the less expressive it is.

The blue dashed squares [with corners (+, +¢)] inside the green
rectangles of Fig. 2 (F to I) mark the largest error level € (“transfer-
ability error level threshold”) up to which the prototype MZI of that
panel is transferable. Panels G and H have blue dashed squares of
the same size. However, the maximally error-tolerant MZI of panel
C explores a wider range of ideal 0 phase shifts (panel K) than MZI
D (phase shifts in panel L). Therefore, it is clear that, for any given
error level &, maximally error-tolerant MZIs apply less restrictions
on the search space 0 than any other prototype MZI.

The discussion above immediately suggests a one-time training
procedure: train a maximally error-tolerant MZI mesh only once at
a high enough error level ¢, and one can then readily transfer the
trained model exactly to any other MZI mesh that has errors
smaller than e. How the maximally error-tolerant meshes are
trained is the subject of the next subsection. Once the training is
done, the transfer of the trained phase shifts from the maximally
error-tolerant mesh to a less faulty one may be performed in two
steps: (i) translate the phase shifts of the more faulty mesh to an
ideal mesh using the “inverse” of the error correction of (31) (see
section S4) and (ii) translate the ideal phase shifts to the less
faulty mesh using “vanilla” error correction (31). Both steps are
guaranteed to work exactly. Alternatively, one could use the self-
configuration of (47, 48) to directly program the matrix of the
more faulty mesh into the less faulty one in a single step. The all-
important role played by the error correction condition (Eq. 3) in
the above discussion implies that maximally error-tolerant meshes
can only be constructed if the underlying mesh geometry permits
implementation of the error correction scheme of (31). This in-
cludes all types of feedforward MZI mesh networks.

Transferable learning through one-time training

One-time training simply consists of training maximally error-tol-
erant meshes for a given error level; the resulting matrices can then
be transferred directly to any other arbitrary mesh at a lower error
level with no additional retraining (hence the term “one-time"). We
present two approaches to transferable learning of maximally error-
tolerant meshes: (i) a direct training approach where maximally
error-tolerant meshes are trained separately for each given error
level and (ii) a “transfer training” approach where the trained raw
phase shifts of a maximally error-tolerant mesh at one error level are
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used as the starting point for training a maximally error-tolerant
mesh at the next higher error level. Regardless of which method is
chosen, the model obtained upon the completion of training can be
freely deployed to any faulty network at a lower error level with no
additional retraining. Our simulations (Fig. 3B) used the neurophox
(30) and meshes (54) packages and were performed on an NVIDIA
Tesla K40 GPU and the Engaging computing cluster at the Massa-
chusetts Institute of Technology (MIT). Results from two-layer
Clements mesh-based ONNs (Fig. 3A) are presented in Fig. 3B
for the Modified National Institute of Standards and Technology
(MNIST) (55) (digit), FashionMNIST (56) (clothing), and
KMNIST (57) (Japanese character) classification tasks. The raw
images of all datasets are low-pass—filtered (Fig. 3A); the 256 and
400 slowest spatial frequencies (labeled “inputsize” in Fig. 3B) are
retained to enable detection of input size dependence of one-time
training. Because the Fourier transform operation can be cast as a
unitary operation on the one-dimensional unrolled image, the low-
pass preprocessing can be done entirely optically on-chip through
another MZI mesh.

Figure 3B depicts three baselines: (i) the uncorrected case (red),
where error-free meshes were trained and the resultant phase shifts
were directly programmed, with no error correction, into faulty
meshes; (ii) the corrected case (green), where the ideal trained
phase shifts were first error-corrected according to (31) and then
fed into faulty meshes; and (iii) the 3-MZI case (orange). 3-MZIs

are standard MZIs with an additional beamsplitter (32). The ideal
trained matrices are fed into faulty 3-MZI meshes via self-configu-
ration (47). The bold lines in Fig. 3B are the medians over indepen-
dent runs, while the paler sheath around the bold line represents the
interquartile range (IQR). These baselines are compared against two
varieties of transferable learning: one-time direct training and one-
time transfer training.

Transferable learning—Direct training of maximally error-
tolerant meshes

In this approach, the phase shifts of maximally error-tolerant
meshes are trained from randomly initialized starting points 6
and ¢ for each error percentage point between 0 and 35% error
level; the results are plotted in Fig. 3B in blue. In both the MNIST
and FashionMNIST tasks, maximally error-tolerant mesh training
matches or exceeds the performance of error correction (green) and
the 3-MZI mesh (orange) up to 35% error level for both mesh sizes
considered. There is a curious improvement in the performance that
direct training achieves compared to the 3-MZI mesh on the Fash-
ionMNIST task that one could try to attribute to a regularization
caused by the fact that faulty meshes implement fewer unitaries
than ideal meshes. That this is not a general phenomenon is imme-
diately borne out by the substantially poorer test accuracy of direct
training on KMNIST although it is still within 1% of the 3-MZI per-
formance up to 10% error level.

A
z
* b5 nQn
— e
2
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transform p
B —— Uncorrected @ —— Error-corrected 3-MzI —— Transfer training =—— Direct training
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Fig. 3. Network structure and results. (A) Input images are low-pass—filtered and passed into a two-layer mesh-based ONN (size 4 illustrated for convenience). (B)
Performance (median, 25th and 75th percentiles) of one-time training on the MNIST, FashionMNIST, and KMNIST datasets, for input sizes of 256 and 400. Insets show
example images only; the accuracies are computed over the full test set. Five maximally error-tolerant models were trained for each error level from 0 to 35% (step of 1%);
the test accuracies are plotted in blue (one-time direct training). The test accuracies obtained from direct transfer of ideal model weights to random faulty standard MZI
networks are plotted in red, results of transfer after error correction are in green, and results of error-corrected transfer to faulty 3-MZI networks are in yellow. Results of
repeatedly transferring lower error level network phase shifts to a higher error level network and retraining for two epochs each time are in purple (one-time transfer

training).
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Transferable learning—Transfer training of maximally error-
tolerant meshes

In this approach, instead of training a maximally error-tolerant
mesh for p% error level from randomly initialized phase shifts as
in direct training, we use the raw, uncorrected phase shifts of a
trained maximally error-tolerant mesh at (p — 1)% error level as
the starting point. Because model training does not begin from a
random starting point, fewer epochs are needed to get to a good
set of phase shifts at each higher error level. The model obtained
upon completion of transfer training (say, upon reaching p = 35)
can then be freely deployed onto arbitrarily faulty hardware at a
lower error level with no additional retraining. The accuracy
curves for transfer training are plotted in purple in Fig. 3B. More
information about curve smoothing is provided in Materials
and Methods.

The results indicate that transfer training is nearly as good as
direct training and the 3-MZI mesh on both the MNIST and Fash-
ionMNIST tasks for both input sizes. On the other hand, the results
for KMNIST, which is known to be a difficult dataset (57), are worse
than even the error-corrected green curve. Transfer training was
rerun for KMNIST with an increased number of epochs of training
for every increase in error level; the substantially improved perfor-
mance, which now matches direct training, is depicted in pink
in Fig. 4A.

Unbalanced MZI losses

While the beamsplitter splitting errors considered so far preserve
the unitarity of the mesh, unbalanced losses in the MZI arms can
render the mesh transfer function nonunitary. We worked with
KMNIST with input size of 256 to demonstrate that unbalanced
losses have negligible influence on the test performance of ONNs.

Figure 4B reports the evolution of test accuracies as random un-
balanced MZI losses are progressively introduced into (i) a trained
network composed of perfect 50-50 beamsplitters (green), (ii) a
trained maximally error-tolerant network at 10% beamsplitter
error level (blue), and (iii) a trained network with random beams-
plitter errors at 10% error level (red). Because the networks in all
three cases were not retrained to adapt to the introduced loss, the
results in Fig. 4B demonstrate that models trained on lossless
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meshes are robust in the presence of unbalanced losses in the
actual hardware. The typical loss values for the phase shifters,
beamsplitters, and component sizes were taken from (31, 47, 58);
further details are provided in the "Unbalanced MZI loss
data” section.

DISCUSSION

ONNS are a leading analog accelerator platform for large-scale
machine learning. However, their performance degrades markedly
in the presence of static MZI beamsplitter errors (20). Existing error
correction procedures are either impractical in large-scale edge set-
tings, applicable over small beamsplitter error ranges, or involve ad-
ditional hardware overhead. Here, we presented a one-time error-
aware training technique for MZI-based ONNs that tackles all these
problems. The method matches ideal-hardware performance even
in the presence of large static hardware phase errors up to five
times larger than present-day fabrication tolerance. Moreover, it
is transferable and one time, that is, the training is performed
only once and the resultant matrices can be programmed directly
into any number of arbitrary highly faulty photonic NNs in an
edge setting with no additional retraining. Furthermore, the
method uses only standard MZIs and does not require additional
hardware.

Our key contribution was the introduction of a principled com-
bination of two important ideas: error correction and engineering
corner analysis. More specifically, we introduced the concept of a
“maximally error-tolerant network,” one in which every MZI has
errors a = 2¢, B = 0 for some ¢ > 0, and showed that matrices ob-
tained by training such a network yield excellent test performance
over a very large range of e. Furthermore, the trained matrices can
be exactly ported, using self-configuration or error correction, onto
other MZI networks (with the same underlying geometry) whose
splitting error angles a, P all lie in the range [—¢, €] with no addi-
tional training and no loss of performance associated with the
transfer.

We presented two variants of transferable learning: (i) “direct
training” of a maximally error-tolerant network from a randomly

® Ideal
B 10% max error-tolerant MZI mesh
& 10% random error MZI mesh
89.30
89.25
(1]
89.20
| 4 I
89.15
89.10 ?
89.05 0.00 0.02 0.04 0.06 0.08 0.10 0.12

Mean MZI loss in dB

Fig. 4. Improved transfer training and robustness to unbalanced losses. (A) Using five epochs (pink) of training for every unit increase in error level allows transfer
training to match direct training for KMNIST, input size of 256. (B) The addition of unbalanced MZI losses to trained ideal networks (green) or maximally error-tolerant
networks at 10% error level (blue) or networks with random beamsplitter errors at 10% error level (red) leads to no degradation in test accuracy. For each type of mesh, and
at each loss level, 10 lossy meshes were generated, and the medians and 25th and 75th percentiles of the test accuracies are plotted. Results are for KMNIST, input size

of 256.
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initialized starting point 6, ¢ for a given error level, and (ii) transfer
training where one repeatedly transfers raw trained phase shifts of
maximally error-tolerant networks at lower error levels to maximal-
ly error-tolerant networks at a slightly higher error level followed by
a small amount of retraining. Numerical experimentation indicated
that our method approached or achieved the large error tolerance of
3-MZI (32) networks on several benchmark tasks without incurring
the additional hardware overhead of 3-MZIs. We also demonstrated
that the typical unbalanced losses of interferometer chips have a
negligible effect on the performance of our models, even at a high
beamsplitter error level. While our study was based on feedforward
MZI ONNS, the procedure can be applied to any MZI-based pho-
tonic circuit whose underlying geometry permits implementation
of the error correction scheme of (31). More generally, we believe
that the transferable learning method is applicable to any physical
hardware, even nonoptical, that supports some type of error correc-
tion along with a kind of corner analysis that permits exact param-
eter transfer from a more faulty setup to a less faulty one.

MATERIALS AND METHODS

Hyperparameters and preprocessing

Each of the three datasets contains 70,000 monochrome images of
size 28 x 28: 60,000 training images and 10,000 test images. Because
it was previously observed that the higher spatial frequencies of
MNIST images do not contain much information (30), the
images were low-pass filtered by Fourier transforming them and se-
lecting only a smaller square of Fourier components of side s cen-
tered at the origin. Incidentally, we observed that single-layer
classifiers trained on the low-pass filtered Fourier components
yielded higher test accuracy than those trained on the raw
input images.

To probe the effectiveness of one-time training at different mesh
sizes, we ran simulations for both s = 16 and s = 20, which corre-
spond to 256 and 400 total input features (labeled inputsize in
Fig. 3B), respectively. Our NNs were two-layered, each layer was a
Clements unitary mesh, and the electro-optic nonlinearity of (59)
was used between layers (Fig. 3A). The first 10 outputs of the
output layer were treated as the label predictors. The standard
cross-entropy loss and the Adam optimizer were used.

A closer inspection of Eq. 3 reveals a natural upper limit on the
error levels that our method can tackle. A maximally error-tolerant
MZI emulates ideal MZIs whose phase shift 0 lies in the range 4e <0
< 1 — 4e. The lower and upper limits of this range coincide at e = /8
and the expressivity of a maximally error-tolerant MZI collapses to a
single value of 0. For £ > 11/8, there does not exist a single maximally
error-tolerant MZI that transfers to all MZIs at that error level.
Therefore, maximally error-tolerant MZIs are a meaningful
concept only up to error level € = /8 (35.36%); all our results are
plotted up to that error level only.

Baseline data

The performance of our transferable learning approach is compared
against baseline data generated from the simulated transfer of the
parameters of trained standard error-free mesh models onto
faulty meshes with random beamsplitter error angles. While
typical fabricated MZI-based circuits have random but spatially cor-
related beamsplitter error angles with a particular correlation dis-
tance, we use uncorrelated error angles in our simulations. This is

Vadlamani et al., Sci. Adv. 9, eadh3436 (2023) 12 July 2023

because it was previously shown in (48) that spatial inter-MZI error
angle correlations do not contribute to the deviation of the mesh
from the target matrix if the target matrix is drawn from the Haar
distribution.

To generate the data for the three baselines (uncorrected, cor-
rected, and 3-MZI), five ideal error-free meshes with independent
Haar-random initial phase-shift conditions were trained for 50
epochs each. Next, for each ideal model and error level & (which cor-
responds to 100 S‘"g—zs) in percent, the quantity plotted on the x axis of
Fig. 3B), five faulty meshes were generated with MZI error angles
chosen independently and uniformly randomly from the range
[—&, €]. The step size in the error level was 1%. The ideal matrices
were then transferred to these faulty meshes, by the process indicat-
ed for each baseline in the “Transferable learning through one-time
training” section, and the test accuracies were recorded. This yields
five values at each error level for each ideal model. Because there are
five ideal trained meshes, we have 25 test accuracies for each error
level from 1 to 35%. The medians of these numbers are plotted as
bold lines in Fig. 3B, while the IQR is represented as a paler sheath
of the same color around the central bold line.

Maximally error-tolerant meshes—Direct training data

In this approach, the phase shifts of maximally error-tolerant
meshes are trained from randomly initialized starting points 6, ¢
for each error level. For each percentage point between 0 and 35%
error level, five maximally error-tolerant meshes were trained inde-
pendently for 50 epochs, and the median and IQR of these five
values are plotted in Fig. 3B in blue.

Maximally error-tolerant meshes—Transfer training data

In this approach, a maximally error-tolerant mesh at p% error level
is trained using the raw, uncorrected phase shifts of a trained max-
imally error-tolerant mesh at (p — 1)% error level as the starting
point. Because model training does not begin from a random start-
ing point, fewer epochs are needed to get to a good set of phase shifts
at the higher error level. In our implementation, we started out once
again with the five ideal trained models that were previously used
for the error correction and 3-MZI results. The uncorrected ideal
model phase shifts are programmed into a maximally error-tolerant
mesh at an error level of 1%, and this mesh is trained for two epochs.
The resultant phase shifts are then fed directly into a maximally
error-tolerant mesh at an error level of 2%, and two more epochs
of training are performed. This training rate of two epochs for
every percent increase in error level is maintained up to 35%
error level, whereupon two more epochs of training are performed
on a final mesh with 35.36% error level.

This procedure is performed with each of the five ideal trained
models used as a starting point, yielding five models at each error
level. The test accuracies of these models tend to be nonmonotonic,
jagged functions of the error level, similar to the jagged blue curves
of the direct trained models in Fig. 3B. The fact that the higher error
level meshes can be emulated exactly by lower error level meshes
suggests that one can make jagged accuracy curves monotonic by
assigning to each error level the performance of the best model at
the same or higher error level. This “curve smoothing” is computa-
tionally prohibitive for direct training because 37 x 50 = 1850
epochs are required to generate trained models for all error levels
from 0 to 35.36%. Because it is likely that direct training will be
applied to only a few error levels in a real-world setting, Fig. 3B
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does not depict smoothed-out direct training results. On the other
hand, because generating transfer trained models for the same error
level range requires only 50 + 36 x 2 = 122 epochs, we smooth out
the accuracy curves for transfer training and plot the median and
IQR in purple in Fig. 3B.

For the improved five-epoch—per—step transfer training rerun on
KMNIST, the number of epochs required (50 + 36 x 5 = 230) is still
smaller than the cost of direct training for all error levels
(1850 epochs).

Unbalanced MZI loss data

Figure 4B, which illustrates the effect of unbalanced MZI losses on
network test accuracy, was generated using the component size and
loss values reported in (31, 53, 58). Wilmart et al. (58) report an
average Silicon-On-Insulator (SOI) waveguide loss of 2.1 + 0.25
dB/cm when a “typical” fabrication recipe is used, and an average
loss of 0.1 + 0.04 dB/cm when a “state-of-the-art” recipe with an
added H, thermal annealing step is used. While Bandyopadhyay
et al. (31) mentions that the beamsplitters and titanium nitride—
based thermal phase shifters are typically 100 and 400 pm long, re-
spectively, the experimental demo of (53) uses 200-um phase shift-
ers. Figure 4B presents results for meshes with 200-pm-long
thermal phase shifters, 100-pm-long beamsplitters, and mean wave-
guide losses of 0, 0.525, 1.05, 1.575, and 2.1 dB/cm [i.e., 0, 25, 50, 75,
and 100% of the mean 2.1 dB/cm loss observed in (58); the loss var-
iance for each case was obtained by similarly scaling the reported
variance in (58)]. Per-MZI loss is assumed to follow a Gaussian dis-
tribution with the mean loss (on the x axis of Fig. 4B) and the per-
MZI loss variance (not shown) being calculated from the loss values
and the component lengths. Ten random lossy networks with no
beamsplitter errors were generated at each mean loss level (with
the loss of each MZI being sampled independently from the Gauss-
ian), and the raw phase shifts of the two-layer lossless perfect MZI
networks (with 50-50 beamsplitters) that were trained in earlier sec-
tions were programmed directly into the lossy networks; the resul-
tant test accuracies are reported in green in Fig. 4B. The results of
programming the raw phase shifts of trained lossless 10% maximally
error-tolerant MZI networks into lossy 10% maximally error-toler-
ant MZI networks are shown in blue, while the results of self-con-
figuration of the matrices of trained lossless 10% maximally error-
tolerant MZI networks into lossy 10% randomly faulty MZI net-
works are shown in red.
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