2111.09382v3 [eess.SY] 20 Jun 2022

arxiv

Combining Trajectory Data with Analytical Lyapunov Functions for
Improved Region of Attraction Estimation
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Abstract— The increasing uptake of inverter based resources
(IBRs) has resulted in many new challenges for power system
operators around the world. The high level of complexity of IBR
generators makes accurate classical model-based stability anal-
ysis a difficult task. This paper proposes a novel methodology
for solving the problem of estimating the Region of Attraction
(ROA) of a nonlinear system by combining classical model
based methods with modern data driven methods. Our method
yields certifiable inner approximations of the ROA, typical to
that of model based methods, but also harnesses trajectory
data to yield an improved accurate ROA estimation. The
method is carried out by using analytical Lyapunov functions,
such as energy functions, in combination with data that is
used to fit a converse Lyapunov function. Our methodology is
independent of the function fitting method used. In this work,
for implementation purposes, we use Bernstein polynomials to
function fit. Several numerical examples of ROA estimation are
provided, including the Single Machine Infinite Bus (SMIB)
system, a three machine system and the Van-der-Pol system.

I. INTRODUCTION

Stability analysis is of uttermost importance for the se-
cure planning and operation of modern power systems. Of
particular interest is the Transient Angular Stability of a
system, defined as the ability of the system to maintain
rotor angle synchronism following a disturbance and its
subsequent angle excursion [1]. Given a Stable Equilibrium
Point (SEP), the Region of Attraction (ROA), defined as the
set of initial conditions for which the system tends to the
SEP, provides a metric of the strength of angular stability of
the system. Moreover, knowledge of the ROA can be used
to provide protection parameters and limits of operation that
maintain the stability and safety of the system.

For general nonlinear systems, which is the case for
generators connected to the grid, there does not exist an
analytical expression for the ROA. In the absence of an
analytical expression, there is a need for methods that can
compute approximations of the ROA. Classically, methods
that approximate the ROA in power systems rely on precise
system models of generators and line admittances [2], [3].
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However, the increasing penetration of IBRs has resulted in
more complex machine models and more dynamic operating
points. For such complex systems it has become increas-
ingly intractable to use classical model-based methods to
accurately approximate the ROA [4]. Fortunately, the advent
of Wide Area Measurement Systems (WAMS), gathering
high-frequency synchrophasor data has provided new sets of
system data with minimal model dependency. Some works
have already explored the use of synchrophasors for ROA
estimation in the literature.

In [5], data driven ROA estimation is realized through
the application of energy function analysis, using PMU
measurements that monitor tie-lines of dynamic power flows.
Authors from [6] propose an alternative method that uses
Global Phase Portraits (GPPs) that contain the singularity
points at infinity, providing bounds on the basins of attrac-
tion of attractor sets. In a similar vein to the data-driven
methods proposed in this paper, authors from [7]-[9] use
measurement data from stable trajectories to approximate
converse Maximal Lyapunov Functions (LFs) and hence
construct ROA estimations. Although these methodologies
bring new capabilities for high dimensional stability analysis,
these methods do not guarantee an inner approximation of the
ROA, unlike more classical model-based methods. Notable
model based methods include [10] where the stability analy-
sis of power systems is analyzed by constructing LFs using
Sum-of-Squares (SOS) programming. Since power systems
have nonlinear trigonometric terms, non-automated algebraic
reconfiguration is required to use SOS. Alternatively, the
works of [4], [6] make analytical approaches that improve
upon classical energy function based methods.

Unfortunately, it is often intractable to compute accurate
ROA estimations of power systems using model based meth-
ods. On the other hand, although data based methods can
provide accurate ROA estimations, they do not yield LFs and
hence cannot certify inner ROA approximations. The goal of
this work is to bridge the gap between the model and data
based methods to yield accurate inner ROA approximations.

The main contribution of this paper, presented in Thm. 3,
shows how the existence of two functions, V; and V5,
provides a certifiable inner approximation of the ROA of a
given ODE. Specifically, if V5 is a LF and V; (not necessarily
a LF) is decreasing along the solution map inside a “donut’-
shaped region, {x € D : 71 < Vi(x) < 72}, we show that
it is possible to construct an improved ROA estimation, as
compared with the ROA approximation yielded by the LF,
V5, alone. For implementation, we find such a V; by function
fitting a converse LF using trajectory data.
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II. NOTATION
We denote the n > 0 neighborhood of a set S C R" as
B, (S) == {y € R" : infyes ||z — y|[2 < n}, where || - ||2
is the euclidean norm. In the case S = {z} then B,(z)
becomes a ball of radius 7 > 0 centered at z € R"™. We
denote the set of all interior points of S C R™ by S°. Let
C(9, ©) be the set of continuous functions with domain  C
R"™ and image ©® C R™. For o € N we denote the partial
derivative D := H?:1% where by convention if o =
[0,..,0] " we denote Daf(a;) := f(z) for any function f. We
denote the set of +’th continuously differentiable functions by
Ci(,0) = {feC(Q,0): D*f € C(2,0) forall a €
N" such that Z?:l aj <i}.ForV € C*(R™,R) we denote
VV = (g—;/l, s %)T. We denote the space of d-degree
polynomials p : Q@ — © by P4(Q2,0).
III. STABILITY OF ODES
Consider a dynamical system, represented by a nonlinear
ordinary differential equation (ODE) of the form

(t) = f(z(t), =z(0)=xz9€R", te0,00) (1)

where f : R™ — R" is the vector field and z¢g € R™ is
the initial condition. WLOG throughout this paper we will
assume f(0) = 0 so the origin is an equilibrium point; a
linear coordinate transformation can always be used to shift
any equilibrium point to the origin.

For simplicity in the following we assume Eq. (1) is
well defined. That is there exists a unique solution map
¢r € CY(R™ xRT,R™) that satisfies 22L0 — (4, (z,1)),
¢f(x,0) =z and ¢f(dr(x,t),s) = ¢f(z,t + s). Sufficient
conditions for the existence and uniqueness of a solution
map, based on the smoothness properties of the vector
field, can be found in standard textbooks such as [11].
Given an ODE (1), we next introduce notions of asymptotic
and exponential stability that are important in showing the
existence of the converse LF given later in Eq (3).
Definition 1. The equilibrium point x = 0 of ODE (1) is,

o stable if, for each € > 0, there exists 6 > 0 such that

[|6f(x,t)||2 < € for all x € Bs(0) and t > 0.

o asymptotically stable if it is stable and there exists § > 0
such that limy_, ||¢5(x,t)||2 = 0 for all x € Bs(0).
o exponentially stable if there exists A\, > 0 such that

| (x,t)||2 < pe™||x||2 for all x € B5(0) and t > 0.

For a given asymptotically stable ODE (1) the main aim
of this paper is to estimate the Region of Attraction (ROA):

ROA; = {w € R": lim [|os(z, )]l =0}. ()

There is no universal method for analytically solving
nonlinear ODEs. Thus, over the years, arguably the most
commonly used method to estimate ROA; is Lyapunov’s
second method that indirectly estimates ROA[ using Lya-
punov Functions (LFs); functions that are globally non-
negative that decrease along the solution map. The following
theorem shows how the sublevel set of a LF can approximate
ROA. In order to present the main Lyapunov theorem used
in this paper we recall the definition of an invariant set.

Definition 2. A set S C R" is an invariant set of ODE (1)
if for all x € S we have ¢(x,t) € S for all t > 0.

Theorem 1 (LaSalle’s Invariance Principle [11]). Consider
an ODE (1) defined by some vector field f € C*(R™,R").
Suppose there exits V € C*(D,R) and a compact invariant
set S C D such that

VV(z)" f(x) <0 forall z €8S.

Let E:={x € S:VV(z)" f(z) = 0}. Then for all z € S
and € > 0 there exists T > 0 such that ¢¢(x,t) € B.(E).
Furthermore, if 0 € D, V(0) = 0, V(z) > 0 for all
x € D/{0} and ¢;(x,t) € E for all t > 0 iff x = 0 then
the ODE is asymptotically stable.
Moreover, if v > 0 is such that {r € S : V(z) <~} C S
then {x € S :V(z) <~} C ROA;y.

Theorem 1 shows that for a given ODE, if we can find a
LF, then we can construct an inner-approximate of the ROA
of the ODE. However, this theorem does not show that there
must necessarily exists a LF for a given ODE or that the
ROA of the ODE can be exactly characterized by an LF.

It has been shown in [12] that for any locally exponentially
stable ODE (1), there exists a bounded and continuous LF
of the form,

L—exp (AJy™ 107 (@, 8)|137dt ) if = € ROA
Vf‘,ﬁ(x):—{ exp (NS llog (. )3 dr) if ;

1 otherwise,

3)

where A > 0 and $ € N. Moreover, for sufficiently large A
and §, this converse LF, V/\’i 8> is Lipschitz continuous and
hence differentiable almost everywhere (by Rademacher’s
theorem). The smoothness properties of this particular con-
verse LF makes it highly suitable for function fitting. Fur-
thermore, {z € R" : V' 5(z) < 1} = ROAy.

IV. FITTING BERNSTEIN POLYNOMIALS TO CONVERSE
LYAPUNOV FUNCTIONS

Given an ODE (1), in this section we show that by using an
ODE solver to generate trajectory data, Eq. (3) can be used
to construct input-output data of a converse LF. By fitting a
function to this data we can approximate this converse LF
in the hope of constructing an ROA estimation.

Specifically, we fit polynomial functions to the generated
input/output data of the converse LF. Although there are
many ways to fit polynomials to data (each having their
relative advantages and disadvantages), in this paper, we have
chosen a method based on Bernstein approximations. As we
will next see, Bernstein’s method for fitting polynomials to
data is an optimization free approach that is guaranteed to
converge uniformly.

A. Bernstein Approximation of Smooth Functions

We now provide a brief description of how Bernstein
polynomials can approximate smooth functions. For a more
in-depth overview of the field we refer to [13]. Now, recalling
from Section II that we defined P4(R"™,R) as the set of d-
degree polynomials we next define the Bernstein operator.



Definition 3. We denote the degree d € N Bernstein operator
by By : C(R",R) — Pyq(R™,R) and for V € C(R",R) we
define BgV € Py(R",R) by

Z ZVkl/d

kn=0 k1=0

()

BaV (x o kn/d) 4)

Given a function V€ C(R"™,R), we can calculate the
polynomial B,V using Eq. (4) with only knowledge of the
values of V' at uniformly gridded points in [0, 1]™. Thus, in
order to calculate B4V it is not necessary to have an analytic
expression of V. We next recall that B4V — V uniformly as
d — co. Moreover, although the Bernstein approximation in
Eq. (4) only involves the value of the 0’th differential order
of V, if V is differentiable, then it follows that the derivative
of B4V will also converge to the derivative of V. This is a
particularly useful when it comes to approximating converse
LFs because we would also like our approximation to be a LF
itself. Thus to make our approximation, P, have the property
that it decreases along solution trajectories, P(x) < 0, we
ensure the derivative of P also approximates the derivative
of the converse LE, V(z) < 0.

Theorem 2 (Multivariate uniform approximation by Bern-
stein polynomials, see Theorem 4 in [13]). Given o =
(a1, ..., ) C N suppose DV € C(R™,R) then it follows

|D*BV (z) — D*V(z)| =0. (5

lim sup
d— o0 :66[0 1]71

Theorem 2 shows that Eq. (4) can be used to approximate
functions over [0,1]"™. Note, using the same methodology,
we may also approximate a function, V, over some set
[a,b]™ where a < b. In order to do this we first apply a
linear coordinate change mapping [a, b]" to [0, 1]™, defining

V(z) ==V (ml*‘“ Fn— “") .We then apply Eq. (4) to

s P
approximate V(z) over [0,1]", yielding B4V such that
g o0 SUP,e (o 10 [D*BaV () — DV (2)| = 0 (by Theo-
rem 2). Finally, we again change the coordinates, mapping
[0,1]™ back to [a, b]", defining J(z) := BaV ((by — a1)z1 +

a1y ooy (bn — an) Ty + ay). It then follows that
lim sup |D%J(x)— DV(x)] 6)
d—o0 z€la,b]™
xr1 —al Tp — Qn ‘7
=lim sup |[D%J s e —D*V(x
dHOOmG[Oll)] (bl — a1 bn — an) ( )
= lim sup |D®BgV(x)— DV (z)|=0.

d— o0 zel0,1]

B. Generating Data from Converse Lyapunov Functions

Converse LFs can be approximated by polynomials using
Eq. (4). However, in order to apply Eq. (4) we must know
the value of the converse LF at uniformly gridded points
in [a, b]™ (note approximation over [a, b]™ rather than [0, 1]™
can be achieved through linear coordinate transformations,
see Eq. (6)).

Given a set of initial conditions, {z;}1<i<n C [a,b]™,
and a terminal trajectory time 7" > 0, it is possible to
generate trajectory data D; ; := ||¢f(xs, (j—1)At)||2, where
At > 0 is some small time-step and 1 < j < TA‘T.
This can be achieved using any ODE solver, for instance,
Matlab’s ODE45. Of course, in order to use an ODE solver
this does require complete knowledge of the vector field, f.
In the case where the model of the system is unknown it
may still be possible to generate the required trajectory data
from experimental data. Through the semi-group property of
solution maps, ¢7(¢s(x,t),s) = ¢y(x,t+ s), knowledge of
just a single trajectory can generate a vast number of data
points. Moreover, interpolation can be used in places where
there are gaps in our data knowledge.

Now, given A > 0, 8 € N trajectory data, D € RNVX(E+1)
for sufficiently large K € N, we can approximate the value
of the corresponding converse LF given in Eq. (3) in the
following way

V(i) =1 — e MW, (7)
K+1

Z DAL

V. IMPROVING ROA ESTIMATION WITH APPROXIMATED
CONVERSE LYAPUNOV FUNCTIONS

KAt
where W (x;) %/ 164 (i, 1) [57dt ~
0

Given an ODE defined by some vector field f, we have
shown that through applications of Eqgs. (4) and (7) that it is
possible to numerically & construct a Bernstein polynomial
approximation, BdV; 5 forsomed € N, A\ > 0and 3 € N, of
the converse LF, V' 5, given in Eq. (3). Moreover, assuming
that DO‘V)\ is continuous, where o € N, Theorem 2 can be
used to show that limg_,oc DBV 5 DaV/\*) 5 uniformly
in [a, b]" (note approximation over [a, b]™ rather than [0, 1]"
can be achieved through linear coordinate transformations,
see Eq. (6)).

Ideally, for sufficiently large d € N, A > 0 and 8 € N,
our approximation, B4V 5. will also be a LF over some set
containing the origin; that is BaVy5(0) = 0, BaVy 5(x) >
0 for all x € Q/{0}, and VBdVM;( z) " f(z) < 0 for all
x € Q/{0}. Then Theorem 1 can be used to show that the
sublevel set of B4V 5 yields an inner approximation of the
ROA of the given ODE.

Unfortunately, despite the fact B4Vy 4 tends to VY 5 as
d — oo and V/\*ﬁ is a LF, BdV/\*)B is not necessarily a LF.
To see this we first note that, for a given xo € [a,b]" if
VVy 5(x0) " f(z0) < —a, where a > 0, it follows by The-
orem 2 that there exists D € N such that [|[VBgVy 5(w0) —
VV3 s(@o)ll2 < gpieey; for all d > D. Thus, using the
Cauchy Swarz inequality we have that for all d > D

VB4Vy 5(w0) " f (o) ®)
=VB4Vy 5 (xO)—?(xO)_W)tﬁ (iﬂo)Tf(ffo)‘f'W;,ﬁ (o) f (zo)
< [IVBaV3. s o) = WV, o o) o |f @o) ]2 —a < —5 < 0.

Eq. (8) shows that for sufficiently large d, whenever V' 3
is strictly decreasing along the solution map we also have



that B4Vy 5 is strictly decreasing along the solution map.
However, at the origin VY ; is not strictly decreasing along
the solution map, that is VV;)B(O)Tf(O) = 0. Because of
this fact and the fact BdV/\*) 3 is continuous, in general for
some finite d € N our approximation will be such that that
VBaVy 5 (z)T f(z) > 0 for all z in some small neighborhood
of the origin. Thus in general, for finite d € N, it follows
that we will have B4V 4(x)" f(z) < 0 for all z in some
“donut shaped” region, {y € R" : v < ByVy 5(y) < 72}
for some y; < 72, as opposed to a sublevel set {y € R™ :
BsV*(y) < v2}. By a similar argument, in general, we do
not expect BqVy 5(0) = 0 for any fixed d € N and thus in
general BqVy 5 is not a LE.

Although, BdV/\*) 3 is not a LF, and therefore cannot certify
the origin is asymptotically stable, we will next show, in
Prop. 1, that functions strictly decreasing along the solution
map inside some “donut shaped” region can still be used to
certify that the solution map must enter some ball of radius
n > 0 around the origin, B;,(0).

Proposition 1. Consider an ODE (1) defined by some vector
field f € CY(R™,R") and compact set D C R™. Suppose
V e CYD,R), v1 < v2 and n,e,a > 0 are such that

« B-({ye D:V(y) <m}) C By(0).

« {yeD:V(y) <y} cD°

e Forallx € D/{y € D:V(y) <~1} we have that

VV(z) f(z) < —a < 0. )

Then it follows that for any x € {y € D : V(y) <
Y2}/ By(0) there exists T > 0 such that

¢5(x,T) € By(0). 1o
Proof. Let S := {y € D : V(y) < 72} and V(z) :=
p(V(x)) where p is an infinitely smooth function defined
by,

e f > ,

o) = exp ((71.*1)2) orx >y
0 otherwise.

Now, it is clear that Viz)=0forallz € {ycD:V(y) <

71} and hence VV(z)" f(x) = 0 forall z € {y € D :

V(y) <~1}. On the other hand, for z € S/D we have that

o Ty 2p(V (@) VV (@) T f(x)
VW) @) = T <O

Therefore, VV ()" f(x) < 0 for all 2 € S. Moreover, since
S C D° and V(¢s(x,t)) is strictly decreasing on 9D it
follows that S is an invariant set. We are now in a position
to apply Thm. 1 for V.

Let E:={y € D:VV(x)' f(x) = 0}. Clearly from the
definition of p it follows that E = {y € D : V(x) < 71}
and hence B.(E) C B,(0).

Now, for z € S and 0 < ¢ by Thm. 1 there exists 7' > 0
such that ¢;(z, T) € Bs(E) C B.(E) C B,(0). B O

In Prop. 1 we have proposed conditions, based on some
function we denote here as Vi, that certify that the solution
map of a given ODE must enter some ball, B,(0). Recall

that V; can be found by approximating a converse LF by
Bernstein polynomials.

We next show that if there exists a LF, V5, that certifies

that B,,(0) is an asymptotically stable set, then V; and V5 can
be used together to provide an improved inner approximation
of the ROA of the given ODE.
Theorem 3. Consider an ODE (1) defined by some vector
field f € CY(R™,R"™) and compact set D C R™. Suppose
there exists V1,Va € C1(D,R), v1 < 72 and 1,¢,a > 0 are
such that

« B-({ye D:V(y) <m}) C By(0).

« {yeD:V(y) <r}cD°

e Forallx € D/{y € D :V(y) <~1} we have that

VV(z)" f(z) < —a < 0. (11)

Moreover, suppose O € D and for some 3 > 0 V satisfies
e V2(0) =0 and Va(z) > 0 for all x € D/{0}.
o« V()" f(x )<0f0rall:10€D
e ¢p(z,t)e{z € D:VVa(z) f(z)=0}fort >0 iff x=0.
« By(0) C{y e D: Valy) < s} C D°.
Then {y € D : Vi(y) < 72} U{y € D : Va(y) < 3}
ROAy.

N

Proof. By Theorem 1 it follows that {y € D : Va(y) <
’)/3} - ROAf.

If x € {y € D: Vi(y) <2} then by Prop. 1 there exists
T > 0 such that

zi=op(a,T) € Bn(O) C{yeD:Va(y) < s}

Since { < v3} € ROA; it follows that
limy 00 |?f¢ r(z,1t) ||2 = 0. Therefore, usmg the semi-group

properties of solution maps we have that
Jim 165 (e, 1)]|> = lim || (67 (2, T),t — T)]la
= lim [|é (=t = T)[l> = lim [|é5(z,8)]]2 =0,

implying + € ROAj. Because the same argument can be
used for any z € {y € D : Vi(y) < 72} it follows that
{y € D:Vi(y) <2} C ROA;.

Since {y € D : Va(y) < 73} € ROA; and {y € D :
Vi(y) < 72} € ROAy it follows {y € D : Vi(y) < 1} U
{ye D :Va(y) <3} CROA;. R O

12)

Practical Implementation of Theorem 3
Thm. 3 shows how two functions, V; and V5, can be used to
produce an inner approximation of the ROA of a given ODE.
The function, V5, is a classical LF (positive semidefinite and
decreasing along trajectories) but provides a poor estimation
of the ROA, {y € D : Va(y) < 3} € ROA;. On the other
hand, V; need not be a classical LF as there is no requirement
that V5(0) = 0 or VVa(x) " f(x) < 0 near the origin, making
the computational search for a candidate V; amenable to
data based methods. Whereas, the computational search for
a candidate V5 is redistricted to model based methods (energy
functions or Sum-of-Squares programming).

In this paper we compute a candidate V; by fitting a
Bernstein polynomial to a converse LF (Section IV). We
compute candidate a V5 using several methods including:




o Linearizing the system and then computing a quadratic
LF by solving the resulting Linear Matrix Inequalities
(LMIs) (see Subsection VI-A).

o Using energy functions (see Subsection VI-B).

o Using Sum-of-Square (SOS) programming (see Subsec-
tion VI-D).

Now, for a given ODE defined by a vector field f and
candidate functions, V; and V5, we next outline how to
compute 1, v1,7Y2,7v3 € R from Thm. 3 to estimate ROAy.
Step 1: Compute the largest ROA estimation yielded by the
LF V5 using Thm. 1. This amounts to finding {x € D :
Va(z) <75} € ROAs where

~; €argsup{v} such that {r € D: V5(z) <~} C Sy,, (13)
vER

and Sy, = {z € D
VVa(z)" f(x) < 0}.
Step 2: Find the largest ball that is certified to be contained
inside the ROA. That is, solve

Va(z) > 0}n{z € D

n* € argsup{n} such that B, (0) C {zx €D : Va(z)<~v3}
n>0
(14)

Step 3: Find largest sublevel set of Vi contained in B, (0).
That is, solve

75 € argsup{~} such that {x € D : Vi (z) <~} C B,(0).
>0
(15)

Step 4: Find the largest “donut shaped” set such that V] is
decreasing. That is, solve

~5 € argsup{y} such that (16)
vER

fxeD: v <Vi(x) <A} C{reD: VVi(z)" f(z)<0}.

Opts. (13), (14) (15) and (16) are all set containment prob-
lems that can be solved using Putinar’s Positivstellensatz
to formulate auxiliary Sum-of-Squares optimization prob-
lems (possibly using algebriac constraints to enforce non-
polynomial terms such as in [10]). Alternatively, for two
and three dimensional systems we can solve these Opts
graphically by preforming bisection on 7,v1,7v2,73 € R,
plotting and verifying the set containment’s hold. In the same
way we can attempt to approximately solve these Opts for
higher dimensional systems by plotting slices of the state
space and graphically certifying the set containments.
VI. NUMERICAL EXAMPLES

We next present several numerical examples demonstrating
how Thm. 3 can be used to yield accurate ROA approx-
imations of nonlinear ODEs. For each numerical example
we compute V; and V,, from Thm. 3, by respectively
fitting Bernstein polynomials to the converse LF given in
Eq. (3) (using Egs. (4), (6) and (7)) and either using an
energy function or an analytical LF (found previously in the
literature).

To demonstrate the accuracy of our approximations of the
ROA we will carry out extensive Monte Carlo simulations
of the solution map to estimate the stable and unstable

regions in each figure. Although this Monte Carlo method
can estimate the ROA well it does not account for simulation
error or provide a LF and hence cannot provide a certified
ROA inner approximation.

A. Estimating the ROA of the Van der Pol system

Consider the reverse time Van der Pol oscillator defined
by the vector field:

P A B

The following quadratic LF was found in [11]: Vi pp(z) =

1.5 —-0.5
T _
x' Px, where P = _05 1

We now fit the converse LF, V;’ 3 (given in Eq. (3)), for
A =3 and 8 = 1 by a degree 75 Bernstein polynomial
over the set D = [—2,2] x [—2.7,2.7]. In Fig. 1a we have
plotted our estimation of the ROA achieved using this fitted
Bernstein polynomial as Vi and Vypp as V5 in Thm. 3.
The black and blue curves correspond to the boundaries of
{zr € D : Vi(z) < 0.74} and {z € D : Va(x) < 2.25}
respectively.

B. Estimating the ROA of the Single Machine Infinite Bus
(SMIB) system

The SMIB system can be modeled by an ODE (1) with
the following vector field:

€2
Tomin @)= (1 2 1) (P, BEE sin(w) +6.,) — Day) |

where H = 0.0106s%/rad, X., = 0.28pu, P,, = lpu,
Ep = lpu, E' = 1.21pu, D = 0.03. It is shown in [14]
that the energy of the SMIB system can be expressed as the
following function

E'E
VE(:C)::_ mT1+ X B
eq

(coS(ep)—cos(w14+0ep) ) +H 3.

By graphically solving Opt. (13) for Vo = Vg and f =
fsmrp, we find 4§ = 5.722. The boundary of {x € R" :
Ve(x) <~3} is given as the blue curve in Fig. 1b

We find a candidate V; function of Thm. 3 by fitting a
degree 60 Bernstein polynomial to the converse LF, VY 4
(given in Eq. (3)), for A = 10 and 8 = 1 over the set
D = [-0.75m, 7] x [—30, 30].

We have plotted the boundary of {y € D : V1(y) < 0.68}
as the black curve in Fig. 1b. These sublevel sets are such that
Thm. 3 shows {y € D : Vi(y) <0.68}U{y € D: Va(y) <
5.722} C ROAfg, 5. Providing an inner approximation
of ROAy,,,,,- Moreover, we have plotted the boundary of
the set {y € D : VVi(y)" fsmrp(y) < 0} as the dotted
black line. Showing VV;(y) " fsarrs(y) may not be negative
around a neighborhood of the origin as expected from Sec. V.

Using both V; and V; we have improved the inner approx-
imation of ROAy,,,,, as compared to the approximation of
yielded by the energy function, V5, alone.



unstable region [ unstable region
ROA

)

(a) The Van der Pol system (b) The SMIB system

(c) A two machine system (d) IEEE three machine system

Fig. 1: Our estimations of the ROA of several systems, given by the union of the region contained inside the black (V1) and blue (V2) curves. The dotted
line corresponds to the boundary of the 0-sublevel set of the derivative of V7 along the solution map.

C. Estimating the ROA of a two-machine versus infinite bus
system

Consider the following four dimensional power system
model found in [10], [15] that represents a two-machine
versus infinite bus system which can be modeled by an
ODE (1) with the following vector field:

frarp(@) = [f1(2), fo(@), fa(x), fa(@)] ",

where f1(z) = x2, fo(z) = 33.5849 — 1.8868 cos(z1 —
x3) — 5.283cos(x1) — 16.9811sin(z; — z3) —
59.6226 sin(x1) — 1.8868z2, f3(x) = z4 and
fa(x) = 11.3924sin(x; — x3) — 1.2658 cos(x1 — x3) —
3.2278 cos(z3) — 1.2658x4 — 99.3671sin(xs) + 48.481.
The point zs5gp := [0.468,0,0.463,0]T € R* is a stable
equilibrium point of Eq. (18). Using a change of variables
T =x — rggp we map the equilibrium point to the origin.

We now fit the converse LF, V)t 3 (given in Eq. (3)), for
A = 1and 8 = 1 by a degree 20 Bernstein polynomial
over the set [—2,2] x [-3,3] x [-2,2] x [-3,3]. Fig. 1c
shows a slice of the state space when zo = x4 = 0 depicting
the sublevel set of this Bernstein polynomial along with the
ROA estimation found in [10]. By using Thm. 3 we are able
to certify an improved ROA estimation (the union of the
sublevel sets in Fig. 1c).

(18)

D. Estimating the ROA of a three-machine system
Consider the following four dimensional power system
model found in [16] (Page 144) that represents a three-
machine system with machine number 3 as swing bus
(reference of the system) and can be modeled by an ODE (1)
with the following vector field:
fams(z) 19)
T2
—sin(x1) — 0.5sin(zy — 23) — 0.422
T4
—0.5sin(zs) — 0.5sin(xs — 1) — 0.524 + 0.05

The point zsgp := [0.02001,0,0.06003,0]" € R* is a
stable equilibrium point of Eq. (19). Using a change of
variables © = z — xggp we map the equilibrium point
to the origin. The ROA of this system has previously been
estimated using energy functions in [16]. A more accurate
ROA estimation was found in [10] using Sum-of-Squares to
find a LF. We now use the LF found in [10] as V5 in Thm. 3
and compute a V; by fitting a degree 20 Bernstein polynomial
to the converse LF, VA*) 5 (givenin Eq. (3)), for A=1land g =
1 over the set [—4, 4] x [—0.75,0.75] x [—4, 4] x [-0.75, 0.75].

Fig. 1d shows a slice of the state space when z2 = 24 =0
and depicts the best ROA estimation found in [10] along with
a sublevel set of the resulting fitted Bernstein polynomial.
Thm. 3 can be used to certify the union of these sublevel sets
are inside the ROA, providing an improved ROA estimation.

VII. CONCLUSION

This work proposes a novel methodology for ROA esti-
mation using an approximated converse Lyapunov function,
derived from trajectory data, together with an analytical
Lyapunov function. The method yields a certifiable inner
ROA estimation. Numerical examples demonstrate that the
proposed method is able to expand ROA approximations
found using analytical Lyapunov functions derived elsewhere
in the literature. This method is not limited to the converse
Lyapunov function fitting technique implemented, Bernstein
polynomial approximations. Function fitting techniques that
are better suited for high dimensional problems will be
explored in future work.
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