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The power transmission infrastructure is vulnerable to extreme weather events, particularly
hurricanes and tropical storms. A recent example is the damage caused by HurricaneMaria
(H-Maria) in the archipelago of Puerto Rico in September 2017, where major failures in the
transmission infrastructure led to a total blackout. Numerous studies have been conducted to
examine strategies to strengthen the transmission system, including burying the power lines
underground or increasing the frequency of tree trimming.However, few studies focus on the
direct hardening of the transmission towers to accomplish an increase in resiliency. This
machine learning-based study fills this need by analyzing three direct hardening scenarios
and determining the effectiveness of these changes in the context of H-Maria. Amethodology
for estimating transmission tower damage is presented here as well as an analysis of impact
of replacing structures with a high failure rate with more resilient ones. We found the steel
self-support-pole to be the best replacement option for the towers with high failure rate.
Furthermore, the third hardening scenario, where all wooden poleswere replaced, exhibited
a maximum reduction in damaged towers in a single line of 66% while lowering the mean
number of damaged towers per line by 10%. [DOI: 10.1115/1.4063012]
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1 Introduction

The power infrastructure in coastal areas is regularly exposed to
hazardous wind and precipitation events, and in particular power
transmission system is often catastrophically affected by these
weather events. A recent example, Hurricane Maria (H-Maria),
damaged more than 55% of Puerto Rico’s (PR) transmission towers
[1], leaving the island with nearly all of its 2400 miles of
transmission and 30,000 miles of distribution lines nonfunctional
[2]. Following an event of such massive destruction, the recon-
struction of the grid is a major focus. Consequently, studies that
guide the reconstruction process and provide guidance for increas-
ing the resiliency of the transmission lines are of particular
importance. A number of studies have investigated weather-
related damage to the distribution and transmission systems,
focusing on the ranking of strategies, and prioritization of
techniques for system enhancements. Salman et al. [3] developed
fragility curves for the utility poles in the distribution system. These
curves were then coupled with a synthetic network model to
compare the effectiveness of three different hardening measures,
considering cost and critical parts of the distribution system. Other
studies created fragility models of pole-wire systems to more
accurately account for the damage in the lines [4–6]. These fragility

models were then used to investigate the benefits of burying the
distribution lines [7]. Yuan et al. [4] showed how the pole-wire
models are used to investigate multiple hardening prioritization
options in a distribution line. Ryan et al. [8] used event-basedMonte
Carlo simulations to study the effect of changing the maintenance
strategy for the distribution poles on the infrastructure performance.
Furthermore, Hughes et al. [9] demonstrated that replacing aging
poles in the distribution lines can decrease wind-induced power
outages. Likewise, in other studies, when sufficient data is available,
data-driven approaches were demonstrated to correctly estimate the
failure of poles in the distribution lines [10–12]. Data-driven
methods are also used to investigate how new approaches affect
performance under extreme weather events. In particular, the effect
of increasing tree trimming frequency and burying the overhead
distribution lines on the power outage frequency and duration [13].
Due to the large expense, most transmission line transitions from
overhead to underground or relocation are not feasible. On the other
hand, the targeted replacement of towers is a more common and
cost-effective strategy to increase system resilience. In such a
replacement process it is important to know how the newly installed
infrastructure will compare with the previous in an extreme weather
event. This machine learning-based study addresses this gap by
building a model that is capable of predicting hurricane-induced
damage to the transmission lines. This model is further used to
estimate the damage caused by H-Maria in three different power
infrastructure hardening scenarios, where some of the weak
structures supporting the lines are replaced by stronger ones.
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Finally, a comprehensive comparison of all results is conducted to
evaluate the effectiveness of the power infrastructure changes and
the extent to which each approach can enhance resiliency.
Additionally, it is worth noting that recent studies [7] focusing on
resilience enhancement can benefit from further improvements by
incorporating the hardening options proposed in this paper.

2 Methodology

A data-driven model of transmission structure failure rates is
developed using detailed information on transmission structure
specifications, damage of the structures, and environmental
variables from a numerical weather prediction model.

2.1 Explanatory Variables. The weather variables (i.e., wind
speed variables and cumulative rainfall) in this investigation were
simulated using a single-layer urban canopy version of the weather
research and forecasting (WRF v 3.8.1) model [14], a numerical
weather prediction system created by the National Center for
Atmospheric Research. The simulation consists of three nested
domains, with resolutions of 25 km, 5 km, and 1 km. The third
domain, which has a spatial resolution of 1 km, covers the entire
island of Puerto Rico (336 points by 156 points). The model
comprises 50 vertical levels, with 35 of them being less than 2
kilometers in height. The simulations took place between Sept. 19
and 22, 2017. Pokhrel et al. [15] provide more detailed information
on the WRF design and results of H-Maria.
Based on previous studies [16,17], we selected a combination of

weather and geographical variables that contributed to the damage
to the transmission infrastructure as our explanatory variables.
First, the maximum wind speed during Hurricane Maria was

calculated using WRF simulated data from Sept. 19–22. Then, the
total duration of high wind speed was calculated by counting the
hours of the simulated day with wind speeds higher than 20, 30, and
40 miles per hour (MPH). Moreover, the cumulative rainfall was
calculated by adding the one-hour simulated precipitation through-
out the storm.
Other important explanatory environmental variables include the

land cover type and the land surface elevation. The land cover
dataset, with a resolution of 30m� 30m and 12 different land
classifications, was retrieved from the National Land Cover
database [18]. The land surface elevation was obtained from the
United States Geological Survey [19], with a horizontal resolution
of 100m. Table 1 shows a description of all the used variables,
including the units, resolution, and rangewithinwhich each variable
is varying.
For this study, PREPA provided damage reports on the trans-

mission lines. The reports included the specific location, material,
and tower type of most of the towers in the transmission lines of PR.
To characterize each power tower, the dataset included two

additional categorical explanatory variables. The first is the tower’s
construction type. This variable assigned each tower to a separate
category based on its shape and size. The single-pole tower is the
most prevalent form of structure in the lines. The material of the
tower is the second factor from the reports to consider. According to
the reports, wood emerged as the predominant material for towers

along the 115 kV lines, while steel was the prevailing choice for
towers along the 230 kV lines. Figure 1 shows the number of
structures for each type and material based on the PREPA damage
report, for a total of 4647 structures in the dataset.
To build the dataset, the value of each explanatory variable at the

position of each power tower was determined using nearest-
neighbor interpolation, creating a dataset with the precise value of
each explanatory variable in the location of all the towers.

2.2 Response Variable. For the response variable, utility
reports were also used. The damage reports provided by PREPA
also included information on the type of damage that each of the
power towers had sustained, allowing us to identify structures that
can withstand wind damage and those that cannot. To incorporate
the damage into the dataset, a structure will be categorized as
damaged in the model if it requires any repairs after the hurricane.
Given the nature of the failure data, the two classes in the response

variable (i.e., damaged, and nondamaged) are heavily unbalanced,
with the nondamage category being dominant. This unbalanced
pattern is a common problem in natural hazards risk analysis, known
as zero-inflation [20]. Two techniques were used to deal with the-
zero inflation. First, we randomly reduced the number of samples for
the dominant class, balancing the number of samples for the two
categories. This technique is also known as under-sampling.
Second, we randomly duplicated samples from the minority class
to balance both categories. This is known as over-sampling. In
Table 2, the number of samples utilized for training in the
unbalanced dataset is presented, along with the two employed
techniques for reducing zero-inflation.

Table 1 Explanatory variables

Explanatory variable Source Resolution Units Range

Maximum wind speed WRF 1 km MPH 25–150
Duration of wind speed greater than 20 MPH WRF 1 km hours 0–40
Duration of wind speed greater than 30 MPH WRF 1 km hours 0–40
Duration of wind speed greater than 40 MPH WRF 1 km hours 0–25
Cumulative rainfall WRF 1 km inches 0–25
Elevation United States Geological Survey (USGS) 100 m Feet 0–1200
Land cover USGS National Land Cover Database 30 m Categorical Categorical
Type of the tower Puerto Rico Power Authority (PREPA) Per tower Categorical Categorical
Material of the tower PREPA Per tower Categorical Categorical

Fig. 1 Inventory of power towers in the transmission lines

Table 2 Training dataset size for each sampling method

Model Training dataset size

Unbalanced 3716
Under-sampled 1478
Over-sampled 5954
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2.3 Machine Learning Model. The random forest regression
model (RF) [21] was used as a tool to estimate the damage in the
power towers given the previouslymentioned explanatory variables.
To create predictions, RF uses a nonparametric, supervised learning
approach that averages the outcomes of an ensemble of decision
trees. For training, RF uses the bagging technique, which involves
randomly resampling the original dataset with replacement [22]. A
limited collection of explanatory variables is chosen at random from
the complete set, to do a binary partition of the tree nodes, where
each child node is classified as purer than its parent node. This
process is used to maximize purity by finding the optimal split
candidate [23]. The Gini index is the most used indicator of
impurity, so the criteria for dividing the regression tree is based on
selecting the input variable with the lowest Gini index [24]

IG tX xið Þð Þ ¼ 1�
Xm

j

f tX xið Þ, j
� �2 (1)

Here, f tX xið Þ, j
� �

is the percentage of samples with value xi
belonging to leave j as node t [25]. In order to perform regression,
RF constructs K T xð Þ trees and averages the outcomes [22]. As these
trees grow, they become the RF regression predictor represented by
the following equation:

f̂ Krf xð Þ ¼ 1

K

XK

k¼1

T xð Þ (2)

Using a random hyperparameter grid search with 300 RF model
replicates and a five-fold cross-validation we discovered the best
hyperparameters for the RF to be 200 trees, a maximum depth of the
tree to be 10, a minimum of five data points placed in a node before
the node is split, amaximumof six features considered for splitting a
node and default for the remaining.
The interpolated explanatory variables listed in Table 1were used

along with the damage in each tower to construct the dataset.
Moreover, using a random split 70% of the data was chosen to be
used as the training dataset. The remaining 30%was not included in
the training and was utilized to test the model.

2.4 Hardening Scenarios. The state of the transmission
system following H-Maria clearly demonstrated the necessity for
efforts to minimize high-wind-induced line damage on the island.
Using the utility’s damage report after H-Maria, we were able to
aggregate the percentage of power towers damaged along each

transmission line, with most lines experiencing a percentage of more
than 17%, and some as high as 66%, Fig. 2. Additionally, some of the
most prevalent types of power towers in Puerto Rico transmission lines
are shown in Fig. 3. To increase the resilience of a transmission line to
hurricanes, we first must identify the weak factors in the power towers.
Taking the damaged towers from the report and aggregating by

material, we found that the power towers made from wood were
most likely to be damaged, Fig. 4. To quantify the weakest types of
towers, we determined the percentage of power towers that were
damaged for each type. Accordingly, the type of tower with the
highest failure percent was the two-pole structure, followed by the
three-pole structure and the single-pole, Fig. 5.

Based on these findings we selected three hardening scenarios to
study. The first one consists of replacing the wooden two-poles with
a stronger structure. In the second one, the wooden two-poles and
three-poles were replaced. Finally, in the third one, the wooden two-
pole, three-pole, and single-poles were all replaced.
To determine which type was the best replacement, a section of a

115 kV line, located on the north-east side of the island was used to
analyze different replacement alternatives in the first hardening
scenario. As options, we considered the structures and material with
the lowest failure frequency on the 115 kV lines: Steel self-support
pole; steel single-pole; steel tubular tower; wood self-support pole.
Thus, four versions of the transmission line were created, by
replacing the wooden two-pole structures with each of the replace-
ment options. Furthermore, we estimated the failure percentages for
these distinct versions of the line. The results, ranking, and selection
of the ideal option are discussed in the Results section.
After finding an optimal replacement option for the hardening

scenarios, we proceeded to expand the study to all the 115 kV
transmission lines on the island. The utility damage report included
data for most of the transmission lines on the island with the
exception of six lines. In order to conduct the island-wide analysis,
we created and included a set of synthetic data for these lines. As a
reference, we used the U.S. Electric Power Transmission [26] Lines
publicly available shapefile, with the approximate location of the
lines. Then, following the lines in the shapefile, we constructed
points to represent the power towers. The distance (line-span)
between the new towers was determined by calculating the median
of the distances between towers. These distances were computed
based on the information extracted from the damage reports
provided by the utility. Furthermore, to maintain a similar balance
between the types and materials of structures as observed in the real
data, the material and type assignments were randomized with the
same percentage of inclusion as found in the actual dataset.

Fig. 2 Percentage of damaged power towers per transmission line
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3 Results

To testwhichwas themost appropriate sampling technique for the
model, we trained and tested the RF with both the over-sampled and
under-sampled dataset. In order to evaluate the performance of the
various sampling techniques, we utilized the bootstrap method with
100 model replicates. Precision, recall, and F1 score were initially
employed as evaluation metrics for each sampling technique.
However, considering the imbalanced nature of the dataset, we
further incorporated precision gain, recall gain, and F1 Gain as
additional evaluation metrics. These gain metrics are particularly
suitable for comparingmodel predictions in skewed datasets, as they
undergo transformations that consider the class balance within the
dataset [27].
Figure 6 shows a comparison of the performance of both zero-

inflation sampling methods with the unbalanced model. The
unbalanced model had a high precision with a low recall. This
indicates that the model is predicting a high number of false
negatives, mostly predicting the dominant class (nondamaged). On
the other hand, the under-sampled model showed a low precision
with a high recall. This implies a high number of false positives
predictions. Moreover, the over-sampled model demonstrated a
favorable equilibrium between precision and recall, achieving the
highest F1 score and F1 gain score among all the models. Based on
this study, over-sampling was determined to be the optimal
sampling method for the model, showcasing a commendable
balance between precision and recall, and attaining an F1 score
and F1 gain score of 0.6 and 0.83, respectively.
As discussed in the methodology section, four replacement

alternatives were considered in the study. Table 3 illustrates the
proportion of undamaged towers in the transmission line segment
for each of the four replacement options that were examined. The
steel self-support pole was selected as the best replacement option,
followed by the steel single-pole. Replacing the wood two-pole
structures with these two options reduced the towers damaged in the

Fig. 3 Type of towers: (a) three-pole structure, (b) self-support tower, (c) two-pole structure,
and (d) self-support pole

Fig. 4 Damage inventory, grouped by a material of the structure

Fig. 5 Damage inventory, grouped by type of structure
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section of the line by 40% and 35%, respectively. On the other hand,
using the wood self-support pole as a replacement caused an
increase in the towers damaged in the section of 5%.
Moreover, the analysis was scaled for all the 115 kV lines in PR

using synthetic data for themissing lines.Accordingly, the identified
weak structures in each of the three hardening scenarios were
replaced by steel self-support poles. Finally, the over-sampled RF
model was used to estimate the failure of the power towers in these
three hardening scenarios.
The results of the analysis are shown in Fig. 7 and Table 4. The

three hardening scenarios show a significant decrease in the
damaged structures from the current infrastructure. In addition,
the second and the third hardening scenarios have fewer damaged

structures across the lines, with a mean reduction in the damaged
structures per line of 9% and 10%, respectively. The difference
between the mean improvement of the second and third scenarios is
not significant. However, the maximum decrease in damaged
structures for a single line improves by 6% in the third hardening
scenario, as seen in line 29 in Fig. 7. As a result, the third scenario
was chosen as the best configuration of the infrastructure, with
decreases in the damaged towers ranging from 1% to 66% for the
115 kV lines.

Fig. 6 Evaluation metrics: (a) F1, precision, and recall and (b) F1 gain, precision gain, and recall gain

Table 3 Hardening study results for 115 kV line section

Type of hardening Undamaged structures

Steel self-support pole 66%
Steel single pole 61%
Tubular 43%
Without replacing 26%
Wood self-support pole 21%

Fig. 7 Island-wide hardening study, each number in the x-axis represents a 115kV transmission line

Table 4 Hardening scenarios summary

Percentage of Damage Towers per Line

Hardening Scenarios Mean Maximum Improvement

Current Infrastructure 22% NA
Scenario #1 15% 60%
Scenario #2 13% 60%
Scenario #3 12% 66%

Scenario #1 consists of replacing the wooden two-poles. In scenario #2, the
wooden two-poles and three-poles were replaced. In scenario #3, the wooden
two-pole, three-pole, and single-poles were all replaced.
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4 Conclusions

In this study,we developed a data-driven failure estimationmodel
and a methodology to investigate how the changes in the
transmission infrastructure impact the overall resiliency of a
transmission line. Puerto Rico was employed as a case study, with
damage data from its utility during Hurricane Maria (2017) being
used to establish and develop the failuremodel, aswell as rebuild the
transmission network topology. Moreover, three different trans-
mission lines hardening scenarios were proposed and explored. The
first involves replacing the wooden two-poles with a more durable
structure. Thewooden two-poles and three-poles were substituted in
the second. Finally, the wooden two-pole, three-pole, and single-
pole poleswere replaced in the third one. Furthermore, four different
structures were investigated as replacement options for the harden-
ing scenarios. The ranking of these options was done by quantifying
the percentage of damaged structures after replacing each
alternative in the first hardening scenario. Looking at the percentage
of damaged structures on the north-east 115 kV line section, we
concluded that the steel self-support pole was the ideal replacement
option, reducing the damaged structures in the section of the line by
40%.
Subsequently, the hardening analysis was scaled to all the lines on

the Island. Based on the findings, we conclude that all three
hardening scenarios are viable option to increase the resiliency of the
lines. However, the third hardening scenario decreased the mean
damaged structures per line by 10% and had amaximum decrease in
damaged structures in a single line of 66%.
Future extensions of this work may focus on the hardening

possibilities for the 230 kV transmission lines in PR. Additionally,
other regions of study can be included in the analysis as data become
available from the power utilities.
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Appendix A: Error Metrics

The following error metrics were used in this study:

� Precision

precision ¼ true positive

true positiveþ false positive
(A1)

� Recall

recall ¼ true positive

true positiveþ false negative
(A2)

� F1 score

F1 ¼ 2 � precision � recall
precisionþ recall

(A3)

The precision is describing how accurate the predicted positive
values were, by comparing the total predicted positive values with
the true positives. This metric is used in models where the cost of
high positives is high. The recall evaluates how many of the true
positives were correctly predicted by comparing the total actual
positives with the true positives. Thismetric is used to penalize false
negatives. Finally, the F1 score is a metric that is used when a
balance between precision and recall is wanted but the tested model
has an uneven class distribution (unbalanced dataset).
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