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We consider the clock game–a task formulated in the framework of quantum information theory—that can be
used to improve the existing schemes of quantum-enhanced telescopy. The problem of learning when a stellar
photon reaches a telescope is translated into an abstract game, which we call the clock game. A winning strategy
is provided that involves performing a quantum non-demolition measurement that verifies which stellar spatio-
temporal modes are occupied by a photon without disturbing the phase information. We prove tight lower bounds
on the entanglement cost needed to win the clock game, with the amount of necessary entangled bits equaling
the number of time bins being distinguished. This lower bound on the entanglement cost applies to any telescopy
protocol that aims to nondestructively extract the time bin information of an incident photon through local
measurements, and our result implies that the protocol of Khabiboulline et al. [Phys. Rev. Lett. 123, 070504
(2019)] is optimal in terms of entanglement consumption. The full task of the phase extraction is also considered,
and we show that the quantum Fisher information of the stellar phase can be achieved by local measurements
and shared entanglement without the necessity of nonlinear optical operations. The optimal phase measurement
is achieved asymptotically with increasing number of ancilla qubits, whereas a single qubit pair is required if
nonlinear operations are allowed.
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I. INTRODUCTION

Quantum games offer a quantitative framework to isolate
and study different features of quantum mechanics. The most
well-known type of game studied in the literature are nonlocal
games [1–3], which capture the properties of entanglement
that cannot be described by local hidden variable models [4].
Other types of games have been proposed to characterize fea-
tures of statistical comparisons [5], wave-particle duality and
quantum coherence [6–11], quantum steering [12], measure-
ment incompatibility [13–15], and general resource theories
[16,17]. In this paper we invoke the notion of quantum games
to study the problem of nonlocal phase estimation.

A general bipartite quantum game consists of two players
(Alice and Bob) and a referee (see Fig. 1). The referee asks
Alice and Bob some question Qφ , which in general consists of
both quantum and classical parts. Alice and Bob then return
answers, Ansα and Ansβ respectively, that again may have
both quantum and classical parts. While Alice and Bob are
not able to communicate classically when formulating their
answers, they do have access to some shared entanglement
which they can use to coordinate their answers. Each game
has some winning condition in terms of what Alice and Bob
should return for a given question, and their goal is to devise
a strategy that maximizes the probability of winning.

*rczupryn@ur.rochester.edu

In the game we consider, Qφ consists of a phase-encoded
entangled state (|1A0B〉 + eiφ |0A1B〉)/

√
2 that the referee dis-

tributes to Alice and Bob in time bin n ∈ {1, 2, . . . ,N}, while
the vacuum is received from the referee within all other time
bins. They win the game if they reply with classical data
that correctly identifies time bin n along with a bipartite state
that possesses the same relative phase φ. Hence the overall
objective is to nonlocally extract some classical information
about the phase-encoded state (its time bin) without disturbing
its phase information.

One motivation for considering this game comes from
the task of quantum long-baseline telescopy [18]. The
quantum-enhanced version of very-long-baseline interferom-
etry (VLBI) refers to the method of imaging stellar objects
by collecting emitted photons at spatially-separated telescopes
and studying their interference profile [19]. Here the qubit
states |0〉 and |1〉 within the phase-encoded state correspond
to the vacuum and a single photon in a given spatio-temporal
mode. Directly transferring the remotely captured photons to
a single interferometer can be challenging due to noise and
loss, but quantum mechanics offers an alternative solution. As
first proposed by Gottesman et al. [18], the physical transfer of
stellar photons from each telescope to a central station can be
replaced by a network of quantum repeaters that distributes an
entangled state to telescope locations. The original scheme by
Gottesman et al. requires a very large entanglement generation
rate between the two telescopes, but a modified protocol that
uses quantum memories has recently been proposed that is
less demanding in terms of its entanglement cost [20,21]. A
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FIG. 1. A general bipartite quantum game consists of questions
and answers between a referee and two noncommunicating parties.
However, the parties can use shared entanglement (wavy line) to
coordinate their responses.

key property of this new protocol is that it effectively decou-
ples the time bin information of an incoming stellar photon
from its phase information. Our game can thus be seen as
a full abstraction of this idea in which the star is replaced
by a photon-distributing referee, and the primary goal is for
Alice and Bob to collect the time bin data without disrupting
the phase. In principle an optimal strategy for Alice and Bob
in this game could be used as a subroutine in a large phase
estimation protocol.

One advantage of adopting this abstract approach is that
it allows us to evaluate the quality of different phase estima-
tion protocols using game-theoretic measures beyond just the
standard quantifier of Fisher information. That way we can
not only quantify the amount of information one gains in each
quantum measurement but also consider the amount of re-
sources (e.g., entanglement cost) needed for the measurement
scheme. In addition, by formulating the various components
of a phase estimation protocol in terms of a nonlocal game,
we can analyze trade-offs between winning success probabil-
ities and the entangled resources that Alice and Bob use in
the game. A primary objective of this paper is to construct
and analyze new phase estimation protocols that use different
forms of shared entanglement between Alice and Bob. One
of our main results (Theorem 1) places a tight lower bound
on the entanglement needed to nondestructively extract the
time bin information through local measurements. Hence, any
distributed telescopy protocol that involves decoupling the
time bin and phase information, such as those in [20–22], will
require this much entanglement. Since the telescopy protocol
first presented in [20] saturates this lower bound, we have
proved its optimality in terms of entanglement cost.

The structure of this paper is as follows: In Sec. II we
introduce the clock game and propose the winning strategy.
We examine the resources needed to win the game, which
includes the ancilla quantum state that contains a certain de-
gree of entanglement. We study what conditions the ancilla
state must satisfy to win the game with certainty and quan-
tify how the errors introduced to the ancilla state reduce the
winning probability. Sec. IV introduces the phase extraction
protocol that performs an optimal measurement of the stellar
phase without the necessity of nonlinear optical elements. We
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FIG. 2. Schematic representation of the clock game. The referee
delivers to Alice and Bob the phase encoded state |�φ,n〉 encoded
in 2N qubits; each party receive half of them. They also receive an
ancilla quantum state which they are free to specify. Both parties are
allowed to manipulate the locally available quantum states to extract
two pieces of classical information: integers x and y. As a result, the
qubits received from the referee are modified to the state ρAB. Alice
and Bob send (x, y, ρAB) back to the referee.

include an analysis of the resources required to perform that
protocol. In Sec. V we conclude.

II. CLOCK GAME

The clock game is summarized in Fig. 2. Alice, Bob, and
the referee are in different physical locations. The rules of the
game are as follows:

(1) The referee sends a phase-encoded state

|�φ,n〉 = |1, n〉A |0, n〉B + eiφ |0, n〉A |1, n〉B√
2

(1)

to Alice and Bob, where | j, n〉 denotes j excitations in the
nth time bin and no excitations in the other time bins. Note
that |�φ,n〉 can be considered as an element of C3 ⊗ CN ,
a space spanned by vectors {|1, n〉A |0, n〉B , |0, n〉A |1, n〉B ,

|0, n〉A |0, n〉B}Nn=1. The indices A and B indicate the qubits sent
to Alice and Bob, respectively. Only the referee knows both n
and φ. The set of possible time bins {1, 2, . . . ,N} is known to
all parties.

Alternatively, the referee can trick Alice and Bob by not
sending the state (1) at all and send the vacuum within all
the time bins. In that case we will use the index n = 0.
Equation (1) is valid for indices n > 0, and |�φ,0〉 denotes the
vacuum within all possible time bins.

(2) Alice and Bob process the data sent from the referee
along with some ancilla systems. The ancilla systems are
allowed to be entangled states shared by both parties. Alice
and Bob are free to specify which ancilla states they receive,
including qudit states. Any local processing of |�φ,n〉 and the
ancilla states is then allowed.

(3) Alice and Bob reply to the referee with data (x, y, ρAB
x,y ).

The values x, y ∈ {0, . . . ,N} are classical data sent from Alice
and Bob, respectively, and ρAB

x,y is the quantum state received
by the referee after Alice and Bob process |�φ,n〉.

(4) The referee measures ρAB
x,y using the projective mea-

surement {|�φ,n〉 〈�φ,n| ,1 − |�φ,n〉 〈�φ,n|}. Alice and Bob
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win if n = (x + y) mod N + 1 and if the referee gets out-
come |�φ,n〉 in the measurement.

∗ If the referee has not supplied the phase-encoded state,
then Alice and Bob should send classical responses such
that 0 = x + y mod N + 1. In this case, the referee mea-
sures ρAB

x,y with projective measurement {|�φ,0〉 〈�φ,0| ,1 −
|�φ,0〉 〈�φ,0|}.

As in all nonlocal games, Alice and Bob are not allowed
to communicate during this protocol, although they can make
use of shared randomness and entangled ancilla to coordinate
their actions. Formally then, any strategy that Alice and Bob
employ can be characterized by a local operations and shared
entanglement (LOSE) instrument {Lx,y}Nx,y=0 [2]. This is a
collection of completely positive (CP) maps such that each
Lx,y can be expressed as

Lx,y(�
AB) =

∑
λ

p(λ)AAA′
x|λ ⊗ BBB′

y|λ (�AB ⊗ ϕA′B′
), (2)

where ϕA′B′
is some fixed entangled ancilla, and both∑N

x=0 AAA′
x|λ and

∑N
y=0 BBB′

y|λ are trace-preserving for every λ.
For an input state � ∈ D(C3 ⊗ CN ), Alice and Bob obtain the
classical output (x, y) with probability p(x, y) := Tr[Lx,y(�)],
and their post-measurement state is ρx,y := Lx,y(�)/p(x, y).
Both the classical and quantum outputs of the instrument are
forwarded to the referee. If the referee encodes phase φ in
time bin n, the probability that Alice and Bob win using an
instrument {Ln}Nx,y=0 is given by

Pwin(φ, n) = p(x, y) 〈�φ,n| ρx,y |�φ,n〉 δn,x + y mod D

= 〈�φ,n|Lx,y(�δ,n) |�φ,n〉 δn,x + y mod D. (3)

It is assumed that the referee chooses n and φ uniformly from
the sets {0, 1, . . . ,N} and [0, 2π ), respectively. For a given
strategy, the winning probability for Alice and Bob is then

Pwin = 1

N + 1

N∑
n=0

∫ 2π

0
dφPwin(φ, n). (4)

In the following sections, we provide a winning strategy for
the clock game that uses a qudit entangled ancilla state. Note
that any bipartite qudit state is locally equivalent to multiple
qubit states, and so our winning strategy can also be seen as
a multi-qubit protocol. In Secs. II E–II F, we generalize the
protocol to the multi-party scenario.

A. Elements of qudit computation formalism

Before proceeding to the analysis of the game, we need
some elements of qudit computation formalism. We will use

{|0〉 , |1〉 , . . . , |D − 1〉} (5)

as the computational basis describing the states of a D-level
system. The following vectors

| j̃〉 := 1√
D

D−1∑
k=0

exp

(
2π i j̃k

D

)
|k〉 . (6)

form the Fourier basis. In (6) the allowed values of j̃ are
0, 1, . . . ,D − 1, and the inverse relation is

| j〉 = 1√
D

D−1∑
k̃=0

exp

(
−2π i jk̃

D

)
|k̃〉 . (7)

We introduce the qudit Z gate [23]

Ẑ | j〉 = exp

(
2π i j

D

)
| j〉 . (8)

The qubit symmetric Bell state (|00〉 + |11〉)/
√

2 can be gen-
eralized to the qudit case

∣∣�(2)
D,0

〉 = 1√
D

D−1∑
j=0

| j〉1 ⊗ | j〉2 . (9)

Analogously, the generalization of the GHZ state is

∣∣�(K )
D,0

〉 = 1√
D

D−1∑
j=0

| j〉1 ⊗ | j〉2 ⊗ · · · ⊗ | j〉K . (10)

Finally, we introduce the controlled-Zn gate denoted by
CZn, for which a qubit serves as a control and a qudit serves
as a target. The gate acts according to the following rules:

U [CZn] |0〉c ⊗ | j〉t = |0〉c ⊗ | j〉t ,
U [CZn] |1〉c ⊗ | j〉t = |1〉c ⊗ Zn | j〉t , (11)

where by the indices c and t we denote the control qubit and
target qudit respectively. U [CZn] is the unitary operator that
applies the CZn gate.

B. Winning strategy

We allow Alice and Bob to share the qudit ancilla state
(9), where each party receives one qudit. As we prove below,
this allows Alice and Bob to examine at most N = D − 1 time
bins, where D is the number of levels in each qudit.

The time-bin decoding procedure is described in Fig. 3.
Suppose that the referee has supplied the phase-encoded state
|�φ,n〉. This provides the control systems for theCZn gates lo-
cated within the local laboratories. The ancilla qudits serve as
targets. To understand how the referee’s state would affect the
ancilla qudits, we observe the following property describing
the Zn gate and the |�(2)

D,0〉 state

[Zn ⊗ 1]
∣∣�(2)

D,0

〉 = [1 ⊗ Zn]
∣∣�(2)

D,0

〉 ≡ ∣∣�(2)
D,n

〉
, (12)

so it does not matter if the Zn gate acts on the first (Alice’s) or
second (Bob’s) qudit in |�(2)

D,0〉; the resulting state is the same.

The state |�(2)
D,n〉 can be expressed in the Fourier basis as

∣∣�(2)
D,n

〉 = 1√
D

D−1∑
x̃=0

D−1∑
ỹ=0

δ
(D)
x̃+ỹ,n |x̃〉 ⊗ |ỹ〉 , (13)

where we use the following variation of the Kronecker delta
function:

δ
(D)
x̃+ỹ,n =

{
1 if (x̃ + ỹ) mod D = n
0 otherwise. (14)

To win the game, both Alice and Bob perform the U [CZn]
on the locally available quantum states. The ancilla qubits
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FIG. 3. (a) Circuit representation of the operations performed by
Alice and Bob in the clock game. This procedure is later followed by
sending the answer data (x, y, ρAB

x,y ) back to the referee. (b) CZn gate
representation. (c) Symbol for Fourier basis measurement.

are modified only within the time bin occupied by the phase-
encoded referee qubit pair. Within that time bin, the ancilla is
modified according to

UA[CZn] ⊗UB[CZn]
(|� ′

φ,n〉 ⊗ ∣∣�(2)
D,0

〉)
= 1√

2
UA[CZn] UB[CZn] |1〉A |0〉B

∣∣�(2)
D,0

〉

+ eiφ√
2
UA[CZn] UB[CZn] |0〉A |1〉B

∣∣�(2)
D,0

〉
= 1√

2
|1〉A |0〉B [Zn ⊗ 1]

∣∣�(2)
D,0

〉

+ eiφ√
2

|0〉A |1〉B [1 ⊗ Zn]
∣∣�(2)

D,0

〉

= 1√
2

|1〉A |0〉B
∣∣�(2)

D,n

〉 + eiφ√
2

|0〉A |1〉B
∣∣�(2)

D,n

〉
= |� ′

φ,n〉 ⊗ ∣∣�(2)
D,n

〉
, (15)

where by |� ′
φ,n〉 we indicated only a pair of referee qubits that

has the phase encoded in it

|� ′
φ,n〉 = |1〉A |0〉B + eiφ |0〉A |1〉B√

2
. (16)

The indices A and B denote the CZn gates performed by
Alice and Bob, respectively. Starting from the second line in
Eq. (15), we have omitted some tensor product signs. Note
that the resulting state is a separable state of the referee qubits
and ancilla qudits, where the ancilla quantum state |�(2)

D,n〉 has
the time bin n encoded in it. It has the important property〈

�
(2)
D,n

∣∣�(2)
D,m

〉 = δn,m, (17)

where the object on the right is the standard Kronecker delta
function. It ensures that sending the entangled pair by the ref-
eree in different time bins will result in well-distinguishable
ancilla states. That also provides the reason for the choice

N � D − 1; the procedure given above assigns one of the D
states of the ancilla to each time bin. D − 1 of them corre-
spond to different time bins within which the referee can send
the phase-encoded state, and the remaining state is used to
detect the case of the referee sending the vacuum state.

The next step is the decoding of the time bin n. After both
parties perform all of the CZn gates, they perform measure-
ments of the locally available ancilla qudits in the Fourier
basis (6) and obtain the results x and y, which they sent to
the referee. These results obey

n′ = (x + y) mod D. (18)

According to equations (13) and (14), it should return the time
bin within which the referee has provided the entangled pair.
If both parties have not received a state from the referee at
all, then one obtains n′ = 0. Finally, they send the referee’s
qubits back to her, since the procedure has left the referee’s
state |�φ,n〉 unmodified. Therefore, the projective measure-
ment performed by the referee must return the right result.
This completes the task.

C. Errors in the ancilla state

Under ideal conditions, the previous protocol will enable
Alice and Bob to learn the time bin n without disturb-
ing the phase. However, in realistic conditions their success
probability will be bounded away from one. In particular,
interactions with the environment can cause amplitude damp-
ing and dephasing errors. To analyze how this affects the
winning probability, we assume there are no problems with
the referee’s state preparation and focus exclusively on these
types of errors in the ancilla.

1. Amplitude damping

A qudit can experience relaxation between any pair of lev-
els, but the most significant source of these errors is between
each adjacent pair of levels (m,m + 1). This decay process is
governed by the master equation

dρ

dt
=

∑
i

∑
m

Li,mρL†
i,m − 1

2
(L†

i,mLi,mρ + ρL†
i,mLi,m ), (19)

where Li,m = (�(1)
i,m)1/2 |m〉 〈m + 1| are Lindblad operators

acting on qudit i = 1, 2 and �
(1)
i,m is the decay rate between

levels (m,m + 1) of qudit i. We use this master equation to
find the ancilla state after a time interval 
t ,

ρ
(2)
D,0 = 1

D

∑
j,k

| j, j〉 〈k, k|

+ 
t�(1)
1,m

D

∑
m

|m,m + 1〉 〈m,m + 1|

+ 
t�(1)
2,m

D

∑
m

|m + 1,m〉 〈m + 1,m|

− 
t
(
�

(1)
1,m + �

(1)
2,m

)
2D

∑
m,n

(|m + 1,m+1〉 〈n, n|+H.c.).

(20)
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If we apply Zn to either qudit, we obtain the same result,

ρ
(2)
D,0 → ρ

(2)
D,n = [Zn ⊗ 1]ρ (2)

D,0[(Z†)n ⊗ 1]

= [1 ⊗ Zn]ρ (2)
D,0[1 ⊗ (Z†)n]. (21)

We then rewrite this in the Fourier basis (for simplicity, we
only write the diagonal terms),

ρ
(2)
D,n(diag.) = 1

D

∑
p̃,q̃

| p̃q̃〉 〈 p̃q̃|

×
[
δ

(D)
p̃+q̃,n

(
1 − 
t�(1)

D

)
+ 
t�(1)

D2

]
, (22)

where �(1) = ∑
i,m �

(1)
i,m is the total decay rate of the system.

Compared with the ideal result (13), there are extra terms
depending on the decay rate. The win probability is the sum
of the diagonal density matrix elements corresponding to
p̄+ q̄ mod N + 1 = n, which is

Pwin = 1 − 
t�(1)(D − 1)

D2
. (23)

The rest of the time, the game is lost because p̄+ q̄ mod N +
1 �= n, where there is equal probability of returning any in-
correct time bin. If the referee tries to trick Alice and Bob by
sending the vacuum state in every time bin, then the win prob-
ability is reduced by the same amount. Since we linearized
the master equation to obtain this result, it is only accurate
for small time intervals, i.e., 
t�(1) � 1. This is a safe as-
sumption since the decay rate due to spontaneous emission
should be much slower than the time needed to implement the
protocol.

2. Dephasing

We can follow the same steps to find the win probability if
the ancilla state has undergone dephasing. We use the same
master equation, but with Li,m = (�(2)

i,m/2)1/2 |m〉 〈m|, where

�
(2)
i,m is the dephasing rate associated with the mth level of the

ith qudit. Note that there are D Lindblad operators for qudit
dephasing, as opposed to D − 1 for amplitude damping. After
undergoing dephasing for a time 
t , the ancilla is

ρ
(2)
D,0 = 1

D

∑
j,k

| j, j〉 〈k, k|

+ 
t

D

∑
m

�
(2)
1,m + �

(2)
2,m

2

[
|m,m〉 〈m,m|

− 1

2

∑
n

(|m,m〉 〈n, n| + |n, n〉 〈m,m|)
]
. (24)

Once again, we get the same result ρ
(2)
D,n by applying Zn to

either qudit and write the diagonal terms in the Fourier basis,

ρ
(2)
D,n(diag.) = 1

D

∑
p̃,q̃

| p̃q̃〉 〈 p̃q̃|

×
[
δ

(D)
p̃+q̃,n

(
1 − 
t�(2)

2D

)
+ 
t�(2)

2D2

]
, (25)

where �(2) = ∑
i,m �

(2)
i,m is the total dephasing rate. The win

probability in this case is

Pwin = 1 − 
t�(2)(D − 1)

2D2
, (26)

and once again, if the protocol fails then it has equal proba-
bility of returning any of the incorrect time bins. The same is
true if the referee sends the vacuum state in every time bin.
Combining the effects of amplitude damping and dephasing
gives the win probability

Pwin = 1 − 
t (D − 1)

D2

(
�(1) + �(2)

2

)
. (27)

D. Entanglement cost under general local operations
and shared entanglement

The winning strategy for the clock game presented in
Sec. II B involved Alice and Bob simply performing local
unitaries. But in principle they could perform more general
operations if they use local ancilla systems in addition to the
shared entangled ancilla system. In this section we examine
the amount of entanglement needed to win the clock game
using the most general local strategy. Since they are allowed
to have shared entanglement and randomness as a resource,
we must consider the problem within the framework of LOSE
transformations. Ultimately we will find that the local unitary
protocol of Sec. II B is optimal in terms of entanglement
consumption.

We are interested in understanding LOSE transformations
of the form

�AB
φ,n ⊗ ϕA′B′ 
→ �AB

φ,n ⊗
∑
x+y=n
mod N+1

p(x, y)|x, y〉〈x, y|XY, (28)

which holds for all n = 0, . . . ,N and all φ ∈ [0, 2π ). Here
we are letting X and Y denote classical registers held by Alice
and Bob, respectively, which store the classical outputs x and
y of their local operations. The distribution p(x, y) is arbitrary,
but the key constraint is that p(x, y) = 0 whenever x + y �= n
mod N + 1 (which is why the sum appearing above is re-
stricted). The ϕA′B′

is some entangled resource state, and we
would like to understand the amount of entanglement it must
have for such a transformation to be possible.

Recall that every LOSE instrument is a collection of CP
maps {Lx,y}x,y, each of which is a convex combination of
local CP maps, Lx,y = ∑

λ p(λ)AAA′→A
x|λ ⊗ BBB′→B

y|λ , and such
that

∑
x Ax|λ and

∑
y By|λ are both trace preserving for every

λ. This encompasses the most general strategy that Alice
and Bob can employ without communicating with each other.
Since Eq. (28) describes a family of pure-state transforma-
tions, we do not need to consider mixtures generated by the
random variable λ, and so without loss of generality we can
assume that the LOSE instrument is a collection of product
CP maps {Lx,y = Ax ⊗ By}x,y.

Theorem 1. The LOSE transformation in Eq. (28) is pos-
sible only if the entanglement entropy of the resource state
satisfies E(ϕA′B′

) := S(ϕA′
) � log(N + 1), where S denotes

the von Neumann entropy.
The theorem implies that winning the clock game requires

the local ancilla states to have at least D = N + 1 levels.
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Furthermore, if both Alice and Bob have D-level systems
locally available, they must be maximally entangled with each
other to guarantee unit success in the game. While Theorem
1 is phrased in terms of the clock game, we stress that the
clock game is an abstraction for any task in which the time
bin of an incident photon is learned by nondestructive local
measurements. In particular, the lower bound of log(N + 1)
corresponds with entanglement cost in the telescopy protocol
of Ref. [20], thereby proving its optimality.

Remark. While Eq. (28) is specified to hold for all choices
of φ ∈ [0, 2π ), the same conclusion of Theorem 1 holds if we
just allow φ ∈ {0, π}. The proof below is carried out for this
more restricted case.

Proof. Let us begin by taking operator-sum representations
of the local maps,

Ax(·) =
∑
i

Rx,i(·)R†
x,i, By(·) =

∑
j

Sy, j (·)S†
y, j . (29)

To facilitate the pure-state transformations described by
Eq. (28), the Kraus operators must satisfy the condition

Rx,i ⊗ Sy, j |�φ,n〉AB |ϕ〉A′B′ = γx,i,y, j|n,φ |�φ,n〉AB (30)

for all (x, i, y, j) and all (n, φ). The coefficients γx,i,y, j|n,φ
are complex numbers satisfying

∑
x,i,y, j |γx,i,y, j|n,φ |2 = 1 for

all (n, φ). We require that γx,i,y, j|n,φ = 0 whenever x + y �= n
mod N + 1, which corresponds to the condition of Alice and
Bob correctly identifying the time bin n. Since Eq. (30) holds
for every φ ∈ {0, π}, by linearity we have

Rx,i ⊗ Sy, j |0〉A |n〉B |ϕ〉A′B′ = γx,i,y, j|n |0〉A |n〉B ,

Rx,i ⊗ Sy, j |n〉A |0〉B |ϕ〉A′B′ = γx,i,y, j|n |n〉A |0〉B . (31)

Here we are using the short-hand notation |0〉 ≡ |0, n〉 and
|n〉 ≡ |1, n〉. For the bipartite state |0, n〉A |1, n〉B, we write
|0; n〉AB ≡ |0〉A |n〉B. In terms of the CP maps Ax and By, the
previous equations take the form

Ax ⊗ By(|0; n〉〈0; n|AB ⊗ ϕA′B′
) = px,y|n|0; n〉〈0; n|AB, (32a)

Ax ⊗ By(|n; 0〉〈n; 0|AB ⊗ ϕA′B′
) = px,y|n|n; 0〉〈n; 0|AB, (32b)

where px,y|n = ∑
i, j |γx,i,y, j|n|2. In Eqs. (32a) and (32b), let us

take a trace of both sides and sum over y. Since
∑

y By is trace
preserving, we have∑

y

px,y|n = Tr[Ax(|0〉〈0|A ⊗ ϕA′
)]

= Tr[Ax(|n〉〈n|A ⊗ ϕA′
)], (33)

which says that qx := Tr[Ax(|n〉〈n|A ⊗ ϕA′
)] forms a proba-

bility distribution that is independent of n. Consequently, we
can define density matrices for system BB′ given by

σ BB′
y =

N∑
x=0

TrA[Ax(|x + y〉〈x + y|A ⊗ |0〉〈0|B ⊗ ϕA′B′
)]

for y = 0, . . . ,N . Here all addition is done modulo N + 1. But
since px,y|n = 0 if x + y �= n mod N + 1, Eq. (32b) implies
that Tr[By(σy′ )] = δyy′ . Therefore, the σy form a collection of
N + 1 mutually orthogonal states. Hence the von Neumann

entropy S gives the bound [24]

logD � S

(
1

N + 1

N∑
y=0

σy

)
= S(ϕB′

), (34)

since

N∑
y=0

σy =
N∑

x,y=0

TrA[Ax(|y〉〈y|A ⊗ |0〉〈0|B ⊗ ϕA′B′
)]

= TrAA′ [1A ⊗ |0〉〈0|B ⊗ ϕA′B′
] = (N + 1)ϕB′

.

This completes the proof. �

E. Generalization to multiple parties

We will now generalize the clock game so that it can
involve K � 2 parties. The updated rules are as follows:

(1) The referee sends a phase-encoded state within the nth
time bin

|Wφ,n〉 = (|1, n〉1 |0, n〉2 · · · |0, n〉K
+ eiφ2 |0, n〉1 |1, n〉2 · · · |0, n〉K
+ · · ·
+ eiφK |0, n〉1 |0, n〉2 · · · |1, n〉K )

/√
K (35)

to K parties, where | j, n〉k denotes j excitations sent within the
nth time bin to party k, and no excitations sent within the other
time bins. n is the time bin within which the parties received
the excitation. The set of all possible time bins {1, 2, . . . ,N}
is known to all parties. Only the referee knows n and the phase
shifts φi. The referee is allowed to trick the parties by sending
the vacuum state in all time bins instead of the phase-encoded
state. We reserve the index n = 0 for such case and denote
|Wφ,0〉 as the corresponding vacuum state.

(2) The parties process the data sent from the referee along
with some ancilla systems. The ancilla systems are allowed
to be entangled states shared by the parties. The parties are
free to specify the ancilla they want to receive, which allows
for shared entanglement. The processing of available quantum
states must be done locally, which can lead to modification of
the quantum state received from the referee. We will denote to
modified state as ρ ′.

(3) The parties reply to the referee with the information
(x1, x2, . . . , xK , ρ ′), where xi are integers.

(4) The referee measures the ρ ′ state using the projective
measurement {|Wφ,n〉 〈Wφ,n| ,1 − |Wφ,n〉 〈Wφ,n|}. The parties
win the game if

K∑
i=1

xi mod D = n, (36)

and if the referee gets the outcome |Wφ〉 in the measurement.

F. Multiparty winning strategy

The procedure given in this chapter is a generalization of
the game given in Sec. II B.
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BOB

CHARLIE

ALICE

REFEREE

ANCILLA

…

…

…

FIG. 4. Circuit representation of the procedures performed by
K = 3 parties given that they have one entangled qudit state avail-
able. The measurements are performed in Fourier basis. Note that
the procedure generalizes the scheme given in Fig. 3.

We start the analysis by allowing the parties to share K D-
level systems prepared in the generalized GHZ state:

|�(K )
D,0〉 =

D−1∑
j=0

| j〉1 ⊗ | j〉2 ⊗ · · · ⊗ | j〉K , (37)

and requesting that the number of allowed time bins N (time
bins) satisfies N � D − 1. Note that the property (12) general-
izes to the state above: if one performs a Zn gate on any qudit
in the state (37), then the resulting state is∣∣�(K )

D,0

〉 → ∣∣�(K )
D,n

〉 = [Zn ⊗ 1 ⊗ · · · ⊗ 1]
∣∣�(K )

D,0

〉
= [1 ⊗ Zn ⊗ · · · ⊗ 1]

∣∣�(K )
D,0

〉
= [1 ⊗ 1 ⊗ · · · ⊗ Zn]

∣∣�(K )
D,0

〉
, (38)

where |�(K )
n 〉 can be expressed in the Fourier basis

∣∣�(K )
D,n

〉 = 1√
D

D−1∑
j̃1=0

D−1∑
j̃2=0

· · ·
D−1∑
j̃K=0

δ
(D)
j̃1+ j̃2+···+ j̃K ,n

| j̃1〉 | j̃2〉 · · · | j̃K〉 .

(39)

The procedures performed by the parties are summarized
in Fig. 4. When the parties receive the referee qubits, they
perform aCZn gates with referee qubits as controls and ancilla
qudits as targets. If the referee has supplied theW state (35) in
the nth time bin, after the gates the ancilla state will be trans-
formed to |�(K )

n 〉. Next, the parties perform the measurements
of the local ancilla qudits in the Fourier basis and obtain a
set of results j̄1, j̄2, . . . , j̄K , with j̄i being the result obtained
by the ith party. All parties communicate their results to the
referee and send back the quantum state they received from
her. The referee computes

n = j̄1 + j̄2 + · · · + j̄K mod D. (40)

According to (39), this should return the time bin within which
she has provided the W state, satisfying one of the winning
conditions. The projective measurement she performs should
return the right result, since the referee’s quantum state re-
mained unmodified after the local processing.

STAR (REFEREE)

TELESCOPE 2
(BOB)

ANCILLA

TELESCOPE 1
(ALICE)

PATH 
DIFFERENCE

FIG. 5. General scheme of quantum-enhanced long-baseline in-
terferometry. The blue color indicates the path difference, which
gives rise to the relative phase shift.

III. APPLICATION: QUANTUM-ENHANCED TELESCOPY

An interesting application of the games given above is
determining the photon arrival time bin in quantum-enhanced
long-baseline telescopy. Consider a stellar source that supplies
radiation to a pair of telescopes held by Alice (A) and Bob (B),
respectively, as shown in Fig. 5. We assume that the source can
be described by a weak thermal state. For a given time bin i,
the state of incoming radiation has the form [25]

ρi = (1 − ε1)ρ0,i + ε1ρ1,i + O
(
ε2

1

)
, (41)

where

ρ0,i = |0〉〈0|A ⊗ |0〉〈0|B,
ρ1,i = 1

2 (|i〉〈i|A ⊗ |0〉〈0|B + |0〉〈0|A ⊗ |i〉〈i|B

+ ν∗|0〉〈i|A ⊗ |i〉〈0|B + ν|i〉〈0|A ⊗ |0〉〈i|B) (42)

describe the time bins in which the star supplies zero (ρ0,i) and
one photon (ρ1,i) to the telescopes. Note, here we are adopting
the notation from Sec. II D that |0〉 = |0, i〉 and |i〉 = |1, i〉.
The O(ε2

1 ) term in Eq. (41) describes two or more photon
events and is assumed to be negligible. The goal of the proce-
dure is to determine the complex visibility ν. The visibility is
a function of the baseline connecting the telescopes, it can be
used to compute the intensity profile of the examined stellar
source using the van Cittert-Zernike theorem [26,27].

One way to estimate ν it is to physically bring the light
from the two telescopes together. However, this so-called
direct detection method suffers from losses that occur when
we try to transfer the stellar photons from one location to
the other. Another approach is to perform all measurements
locally. However, it was shown in Ref. [25] that this per-
forms significantly worse than the direct detection method.
A clever work-around was proposed by Gottesman et al. that
uses local measurements and quantum teleportation to simu-
late direct detection [18]. Their scheme includes distributing
single photons to the telescope locations (ancilla with shared
entanglement) and interfering them using beam splitters with
the stellar photons. One measures the output ports of the beam
splitters in the photon-number basis, and coincidence counts
provide information about the visibility. A serious drawback
of this scheme is that it requires an extremely high entan-
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glement generation rate. In principle, one wants to perform
measurements on as many stellar photons as possible, and the
teleportation-based protocol requires distributing one entan-
gled ancilla state within each available time bin. With current
technology, this task is not feasible.

A significant improvement can be made to this protocol
if the time bin of the incident photon can first be ascer-
tained before performing the visibility measurements on the
occupied spatio-temporal mode [20]. In more detail, consider
stellar radiation in the weak thermal light regime (ε1 � 1)
that arrives at the telescopes within N time bins. We assume
that, for each time bin, the incoming stellar photon state is
described by (41) and the photonic states within each time bin
are independent of each other. Note that the probability of the
photon arriving to one of the telescopes in time bin i can be
considered as a Bernoulli trial with the success probability of
ε1, and the probability of k photons arriving within N time
bins is described by a Bernoulli distribution

P(k;N ) =
(
N

k

)
kε1 (N − k)ε1 . (43)

The probability that exactly one stellar photon will arrive
within N time bins is

ε ≡ P(1;N ) = Nε1(1 − ε1)N−1. (44)

In the regime where we expect at most one stellar photon to
arrive within N time bins, the state of the incoming radiation
can be described as

ρ = (1 − ε)ρ0 + ε

N

N∑
i=1

ρ1,i

N⊗
j=1

′ρ0, j, (45)

where the primed tensor product indicates that we include
all the terms except j = i. The first term denotes no photons
arriving at the telescopes across all the time bins. The terms in
the second sum describe one photon arriving within time bin
i and no photons arriving within the other time bins, with ρ0,i

and ρ1,i given by (42).
Suppose now that one is able to perform a quantum non-

demolition (QND) measurement that post-selects on one of
the terms within the sum in (45). Such a measurement cor-
responds to determining whether or not the stellar photon
has arrived and, if it has, determining the arrival time bin.
Crucially, this measurement needs to be done without de-
stroying the information about the visibility. If such a QND
measurement were performed, it would greatly simplify the
task of determining the visibility since it would allow one
to work with the state ρ1,i defined in (42) instead of (45),
which is heavily dominated by the vacuum. The protocol of
Gottesman et al. could then be directly performed on ρ1,i.

We observe that the necessary QND measurement can be
achieved by performing the winning strategy in the two-party
clock game described in Sec. II B. In the telescopy setup, the
stellar source plays the role of the referee, and the separated
quantum telescopes play the role of Alice and Bob (Fig. 5).
The task is to determine when the star (referee) has supplied
the photon. Note that even though the state of the stellar
photon within the occupied time bin is not described by a pure
state (1) but by a density matrix ρ1,i, the scheme of the photon
arrival time-bin measurement remains unchanged.

STAR

ANCILLA

TELESCOPE 1

TELESCOPE 2

(1) ANCILLA
MEASUREMENT

(2) TIME-BIN
DECODING

(3) VISIBILITY
MEASUREMENT

FIG. 6. Circuit diagram of quantum-enhanced long-baseline in-
terferometry with the photon arrival time-bin measurement.

This is because the clock game works for any phase shift
within the phase-encoded state. Suppose that the source to be
examined is a set of point sources indexed by q. If the source
q emits a photon, it will have to follow a different path to
reach both telescopes (see Fig. 6); the path difference gives
rise to a relative phase shift φq. Observe that if the stellar
photon was supplied in time bin i by source q, then the state of
spatio-temporal modes reaching the telescopes is described by
the phase-encoded state |�φq,i〉 defined in Eq. (1). However,
we cannot be certain about which source provided the photon.
Let pq denote the probability that it was source q that provided
the photon given that the photon has arrived from the sources.
Then the incoming state given that the stellar photon has
arrived in time bin i is

ρ̃1,i =
∑
q

pq
∣∣�φq,i

〉 〈
�φq,i

∣∣ . (46)

If one defines ν = ∑
q pq exp(−iφq), then the state above

agrees with (42). For extended sources one would replace the
sum over q by an integral.

We observe that the states provided by the referee in the
clock game by a weak stellar source in long-baseline interfer-
ometry become similar if we allow the referee to randomize
the phase. In that case, different phases chosen by the referee
correspond to different stellar point sources emitting the pho-
ton. However, the clock game works for any phase. Therefore,
it can be applied in long-baseline interferometry to determine
the stellar photon arrival time bin.

The only difference in the protocol is that, after the mea-
surements of the local ancilla, the parties communicate the
results to each other and both of them determine the time
bin. Once they know when the stellar photon has arrived,
they perform the visibility measurement on the appropriate
spatio-temporal time bin.

Sections A and B provide us with the requirements that
a time-bin measurement should satisfy. Such measurement
is impossible if one does not distribute sufficient entangle-
ment to the telescope locations and if one does not allow
classical communication between them. As shown in Fig. 6,
the decoding of the time bin is followed by the visibility
measurement on the occupied spatiotemporal time bins. If the
visibility measurement is complicated enough so that it can
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be performed only once across all the time bins, then both
parties need to know the occupied time bin in advance so that
they know when to perform the visibility measurement. The
time-bin decoding requires classical communication between
the parties, and the state of all arriving stellar modes must
be stored until both parties finish the communication between
them and determine the time bin. The necessity of quantum
memory can be avoided if one is able to perform fast visibility
measurement for all time bins. Then, after the time bin is
decoded, both parties select the result corresponding to the
occupied mode and use it for visibility estimation.

The idea of determining the stellar photon arrival time
bin before the visibility measurement was first applied by
Khabiboulline et al. [20]. Their scheme includes encoding
both the state of the stellar photon and the time bin on a set of
auxiliary qubits, and then encoding the time bin on another set
of qubits. After that, the time bin is decoded from the second
set of qubits while leaving the visibility encoded in the first
set.

The strategy introduced in Sec. II B provides a more gen-
eral approach to time-bin measurement because it allows the
ancilla to have an arbitrary number of levels. One can apply
it when the local ancilla states are nD qudits with D levels,
since they can be treated as DnD -level systems. If one has
2n2 ancilla qubits, then one can examine 2n2 − 1 time bins.
However, recently for certain type of quantum systems, the
third level has been explored (e.g., transmon qubits [28]), so
that they can be used as qutrits. Then, with the same amount
of ancilla systems one can explore 3n3 − 1 time bins, where
n3 is the number of qutrits. The winning strategy described in
this manuscript also applies to this case.

The multipartite version of the clock game can be applied
to the setups involving more than two telescopes in distant lo-
cations. Suppose that our setup involves M telescopes. In such
a case, the incoming state from the stellar source can still be
described by equation in the form of (45), but now the vacuum
term pertains to all the telescopes. The ρ1,i term describes an
entangled state of a single photon coherently arriving to the
set of M telescopes; its nonzero matrix elements are

Aα 〈i| ρ1,i |i〉Aα = 1/N,

Aα 〈i| ρ1,i |i〉Aβ = ναβ/N,

ναβ = ν∗
βα, (47)

where Aα and Aβ label telescopes α, β ∈ {1, 2, . . .M}, the
state |i〉Aα describes one photon arriving at telescope Aα and no
photons arriving at the other telescopes, and ναβ is the visibil-
ity associated with the baseline connecting the telescopes Aα

and Aβ . As in the two-telescope case, it can be advantageous
to post-select the time bins within which the stellar photon has
arrived, and the multipartite version of the clock game can be
used to do so. As before, by linearity and the fact that the clock
game holds for all phases φ, the procedure is still valid despite
the fact that we do not work with pure states (35).

The multi-party clock game can be used as a subroutine
in visibility measurements that involve multiple telescopes.
An example is the scheme of Gottesman et al. [18], where
a single photon needs to be distributed to the set of telescopes
in a W state for each time bin one expects the stellar pho-
ton to arrive. As in the two-telescope case, inclusion of the

clock game allows one to determine the time bin prior to
the visibility measurement at a lower entanglement cost than
in the original protocol. For N possible time bins and a set
of M telescopes, the Gottesman et al. protocol requires the
distribution of N W states made out of M qubits. The protocol
supported by the clock game would require one such state for
visibility measurement and one entangled state of M qudits
with N + 1 levels for the time-bin estimation performed prior
to the visibility measurement in the clock game subroutine.

To make this comparison more clear, assume that one uses
five telescopes to examine, say, N = 1023 time bins and one
can use only qubits. The scheme of Gottesman et al. requires
1023 entangled states of five qubits, consuming 5115 qubits.
The scheme supported by the clock game requires one en-
tangled state of five qubits for visibility measurement and a
set of 50 entangled qubits for the clock game. The 50 qubits
are distributed equally between five telescope locations with
each party receiving a set of 10 qubits (note that it forms a
1024-level qudit required for the clock game). Therefore, the
scheme supported by the clock game consumes 55 qubits, sig-
nificantly less than 5115 qubits in the unsupported protocol.
We note that a similar improvement was achieved in Ref. [21],
but the clock game achieves the following advantages: (1) it
allows to use qudits instead of just qubits in time-bin estima-
tion, (2) it isolates the task of time-bin estimation so that it can
be used for other visibility measurement schemes, and (3) it
abstracts the task of time-bin estimation to a task formulated
within the framework of quantum information so that it can be
used in other fields.

IV. PHASE EXTRACTION PROTOCOL

As described in the previous section, once the time bin
of the stellar photon is acquired, the star’s visibility ν with
respect to the two telescopes can be determined using the
original scheme by Gottesman et al. [18]. Apart from the
distribution of entanglement between the two telescopes, the
latter protocol just involves a local phase shifter and beam
splitters, combined with classical post-processing.

In any telescopy protocol, the amount of information gath-
ered about the visibility per stellar photon can be quantified
using the Fisher information. When optimized over all (un-
restricted) quantum measurements, one obtains the quantum
Fisher information [29]. The quantum Crámer-Rao bound
says that the inverse of the Fisher information lower bounds
the variance of any unbiased estimator for the unknown pa-
rameter. However, in this case the visibility ν is a complex
value, consisting of two unknown parameters (its real and
imaginary parts). Hence, in general one is left with a multipa-
rameter estimation problem in which the Crámer-Rao bound
is replaced by matrix inequalities [30].

To simplify the discussion going forward, let us assume
that, after being detected in a known time bin, the stellar
photon is in a pure state of the form

|�s〉 = 1√
2

(|0〉 |1〉 + eiφ |1〉 |0〉). (48)

In this case, the visibility is simply ν = e−iφ and φ is a single
parameter to be estimated. The protocol of Gottesman et al.
attains a Fisher information of 1

2 due to the fact that the
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two-photon interference measurement yields no information
half of the time. Here we describe a protocol in which the
Fisher information can be made arbitrarily close to one using
only linear optical elements and shared entanglement. More
precisely, each telescope needs to only perform unitaries that
locally preserve the photon number. The trade-off, however,
is that more and more entanglement is needed to be shared
between the telescopes to drive the Fisher information closer
and closer to one. While we describe the protocol below in
terms of estimating the single parameter φ, we remark that
the protocol also works in the general case of estimating an
arbitrary complex visibility ν, and it consumes half as many
stellar photons compared to the Gottesman et al. scheme.

Let Alice control the left (L) telescope and Bob control the
right (R) one. Suppose that n ancilla states are distributed to
them, each of the form 1√

2
(|0〉 + eiδ |1〉). We can write the full

ancilla state as

|�a〉 = 1

2n/2

n⊗
i=1

(|01〉 + eiδ |10〉)2i,2i+1

= 1

2n/2

n∑
k=0

eiδk
∑

‖x‖=k

|x〉La ⊗ |x〉Ra
, (49)

where x is an n-bit string with Hamming weight ‖x‖, and x
denotes its bitwise complement. Consider a photon emitted
from a point source that reaches the telescopes in state |�s〉
with φ being an unknown phase. The total (n + 1)-photon
state is given by (up to a normalization factor)

|�s〉 |�a〉 =
n−1∑
k=0

eiδk
(
eiδ

∑
‖x‖=k+1

|0〉Ls |x〉La ⊗ |1〉Rs
|x〉Ra

+eiφ
∑

‖x‖=k

|1〉Ls |x〉La ⊗ |0〉Rs
|x〉Ra

)

+ |0〉Ls |0 · · · 0〉La ⊗ |1〉Rs
|1 · · · 1〉Ra

+ eiδ(n+φ) |1〉La |1 · · · 1〉Ls ⊗ |0〉Ra
|0 · · · 0〉Rs

.

(50)

Notice that each term here has k + 1 particles localized at the
left telescope and n − k particles localized at the right tele-
scope. It will be helpful to relabel the terms in parentheses as

eiδ
( n
k+1)−1∑
j=0

| j, k + 1〉L ⊗ | j, n − k〉R

+ eiφ
(n+1
k+1)−1∑
j=( n

k+1)
| j, k + 1〉L ⊗ | j, n − k〉R , (51)

where j is an index over all the states with k + 1 particles
on Alice’s side (one quanta per mode) and n − k particles on
Bob’s.

In the first stage of the protocol, Alice performs a Fourier
transformation on each block of k + 1 particles for k =
0, . . . , n − 1. Each term in the large parentheses of Eq. (50)

will transform to

eiδ
( n
k+1)−1∑
j=0

| ˜j, k + 1〉L ⊗ | j, n − k〉R

+ eiφ
(n+1
k+1)−1∑
j=( n

k+1)
| ˜j, k + 1〉L ⊗ | j, n − k〉R . (52)

Alice then measures each of her n + 1 subsystems and tells
Bob which ones of them contained a photon. If none of them
contain a photon or all of them do, then they abort (these
correspond to the last two lines in Eq. (50). On the other
hand, if Alice detects k + 1 photons for k = 0, . . . , n − 1,
then Alice tells Bob the particular configuration of clicks,
which is labeled by some integer j′ ∈ {0, 1, . . . , (n + 1

k + 1) − 1}.
Bob’s post-measurement state will be a superposition of the
| j, n − k〉R with relative phases depending on the particular
value of j′. Bob can correct these phases by controlled-phase
gates, and his post-measurement state will be given by

eiδ
( n
k+1)−1∑
j=0

| j, n − k〉R + eiφ
(n+1
k+1)−1∑
j=( n

k+1)
| j, n − k〉R . (53)

This can be expressed in normalized form as

√
n − k

n + 1
|0′〉 +

√
k + 1

n + 1
ei(φ−δ) |1′〉 , (54)

where

|0′〉 = 1√( n
k+1

)
( n
k+1)−1∑
j=0

| j, n − k〉R ,

|1′〉 = 1√(n
k

)
(n+1
k+1)−1∑
j=( n

k+1)
| j, n − k〉R . (55)

The key point is that Bob’s system has now collapsed into a
two-dimensional subspace spanned by two orthogonal states
{|0′〉 , |1′〉}. He then rotates |0′〉 
→ √

1/2(|0′〉 + |1′〉), |1′〉 
→√
1/2(|0′〉 − |1′〉) and then measures. The outcome probabili-

ties are given by

p(0′|k + 1) = 1

2

∣∣∣∣
√
n − k

n + 1
+

√
k + 1

n + 1
ei(φ−δ)

∣∣∣∣
2

= 1

2

(
1 + 2

√
(n − k)(k + 1)

n + 1
cos(φ − δ)

)
,

p(1′|k + 1) = 1

2

∣∣∣∣
√
n − k

n + 1
−

√
k + 1

n + 1
ei(φ−δ)

∣∣∣∣
2

= 1

2

(
1 − 2

√
(n − k)(k + 1)

n + 1
cos(φ − δ)

)
. (56)
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FIG. 7. The average Fisher information per ancilla photon (y
axis) as a function of ancilla photon number (x axis). The phase angle
� is sampled uniformly over the interval [0, 2π ).

We are interested in computing the Fisher information of this
protocol. Note that

1∑
i=0

1

p(i′|k + 1)

[
∂ p(i′|k + 1)

∂φ

]2

= sin2(φ−δ)
(n+1)2

4(n−k)(k+1) − cos2(φ − δ)
.

(57)
Hence the Fisher information is given by

n−1∑
k=0

Pr(k + 1)
sin2(φ − δ)

(n+1)2

4(n−k)(k+1) − cos2(φ − δ)

= 1

2n+1

n−1∑
k=0

(
n + 1

k + 1

)
sin2(φ − δ)

(n+1)2

4(n−k)(k+1) − cos2(φ − δ)
, (58)

where Pr(k + 1) is the probability that k + 1 particles are
detected when measuring on the left telescope. To put a lower
bound on (58), we use a typicality argument. Since the ex-
pected number of particles detected is (n + 1)/2, let us say
that a value k + 1 is ε-typical if |k − (n + 1)/2| < ε(n + 1),
where ε > 0 is arbitrarily small. Then the Fisher information
is no less than∑

ε-typical k + 1

Pr(k + 1)
sin2(φ − δ)

(n+1)2

4(n−k)(k+1) − cos2(φ − δ)

� Pr(ε-typical k + 1)
sin2(φ − δ)

(n+1)2

(n(1−2ε)−1−2ε)2 − cos2(φ − δ)
.

(59)

However, as n → ∞ we have Pr(ε-typical k + 1) → 1 and
(n+1)2

(n(1−2ε)−1−2ε)2 → 1 + O(ε). This implies that the Fisher in-
formation can be made arbitrarily close to 1, which is optimal
for phase measurements. Hence we have established the fol-
lowing result.

Proposition 1. For stellar point sources [i.e., states having
the form of Eq. (48)], the quantum Fisher information for
parameter φ can be attained by using local linear optical
operations and shared entanglement (see Fig. 7).

The protocol presented in this section becomes more prac-
tical if prior to performing it one performs the clock game
procedure. High values of Fisher information are achieved

with high values of entangled pairs (see Fig. 7), e.g., achieving
the Fisher information of 0.85 requires about 30 entangled
pairs. Distributing such number of entangled pairs within each
time bin one expects a stellar photon can become impractical
since most of the time bins are not occupied. A possible
solution is to use the clock game to determine when the stellar
photon has arrived and apply the phase extraction for that
time bin.

V. CONCLUSIONS

In this manuscript, we have considered the clock game
formulated in the framework of quantum information theory,
which can be applied as a subroutine in quantum-enhanced
long-baseline interferometry. The winning strategy provides
a method for quantum nondemolition measurement of the
photon arrival time bin. We have considered the resources
required to win the game in terms of the necessary degree
of entanglement within it, and we have shown our winning
strategy of the clock game achieves the task with the least
possible resources. Notably, we proved that log(N + 1) shared
ebits is needed to discriminate between N time bins with-
out disturbing the relative phase between laboratories, which
matches the upper bound of Ref. [20] and the winning strategy
for the clock game introduced here. Errors introduced to the
ancilla state lead to a decrease in the probability of winning
the game that we have quantified in the case of amplitude
damping and dephasing.

Later, we have examined the task of the phase extraction
within an entangled state with the restriction that the local
operations must be linear, i.e., must conserve the local number
of excitations. Our scheme provides an optimal measurement
of the phase in the sense that it achieves the maximum al-
lowed value of the Fisher information. However, improving
the Fisher information requires increasing the number of an-
cillary qubits.

Our schemes can be used as elements of other quantum-
enhanced telescopy procedures. The winning strategy of the
clock game provides a protocol for learning the stellar pho-
ton’s arrival time bin, but it does not depend on the type of
measurement that is used to extract the information about the
visibility. Therefore, one can use it to verify which spatio-
temporal modes are occupied by stellar photons, and then
perform the preferred method of the visibility measurement.

It should be noted that the implementation of the clock
game in practical setups might require additional research
related to the context within which the clock game scheme is
implemented. For example, implementing the clock game in
long-baseline interferometry requires figuring out the optimal
dimensionality of the qudits.
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APPENDIX A: NECESSITY OF ENTANGLED ANCILLA
IN THE CLOCK GAME

In Sec. II D we have examined the resources needed to win
the pairwise clock game based on the framework of LOSE
transformations. In the Appendixes A–C we consider various
limitations introduced to the ancilla and see how they affect
the possibility of winning the clock game. The ancilla will be
treated as a meter used to measure the phase-encoded state
arrival time bin.

In this section, we examine the possibility of winning the
clock game described in Sec. II in a local way, i.e., we will not
allow an entangled ancilla and exchange of quantum informa-
tion between the parties.

First, we note that Alice and Bob have restricted knowledge
about the state sent by the referee. That lack of knowledge can
be formulated mathematically by representing the state they
receive not by a pure state (1) but by a mixed state

ρr =
∫ φ0+2π

φ0

dφ

N∑
n=0

p(n, φ) |�φ,n〉 〈�φ,n| , (A1)

with |�φ,n〉 defined in (1) and (A7). For n > 1, p(n, φ) is
the probability that Alice and Bob will receive the excitation
within the nth time bin with the encoded phase φ; p(0, φ)
is the probability that the referee does not sent the phase-
encoded state. φ0 is the arbitrary reference angle. Note that
the state |�φ,0〉 is the vacuum state and does not have the
phase encoded in it. To keep (A1) valid, we can assign that
vacuum state to some angle, e.g. φ0, and make p(0, φ) =
p(n = 0)δ(φ − φ0).

Since (A1) represents the knowledge Alice and Bob have
about the received state, p(n, φ) represents their degree of
belief and can depend on the nature of the problem.

The main task in the game is to measure the time bin within
which the referee has sent the excitation. It can be achieved by
coupling ρr to the meter (ancilla), encoding the time bin on it,
and performing a projective measurement on the meter that
should reveal the time bin. Alice and Bob are free to choose
the initial ancilla state. In this section we assume that Alice
and Bob cannot share entanglement, therefore the meter state
must be separable. We take the initial meter state to be a pure,
separable state

χ0 = |0̄〉 〈0̄| , |0̄〉 = |0〉A,m ⊗ |0〉B,m , (A2)

where the A and B indices denote the states received by Alice
and Bob, and m denotes the meter. The initial state of the total
system is

ρ = ρr ⊗ χ0. (A3)

To measure the time bin, Alice and Bob interact the referee
state with the meter by a unitary operator U . They wish that
the interaction has the following form:

ρ ′ = UρU †

=
∫ φ0+2π

φ0

dφ

N∑
n=0

p(n, φ)U [|�φ,n〉 〈�φ,n| ⊗ χ0]U †

=
∫ φ0+2π

φ0

dφ

N∑
n=0

p(n, φ) |�φ,n〉 〈�φ,n| ⊗ χn, (A4)

where {χn} are orthogonal meter states. One can understand
(A4) as the weighted sum of of different possible pure states.
Note that in the second line of (A4) the term in the square
brackets is a pure state |�φ,n〉 ⊗ |0̄〉. Therefore, U acting on
that term should return a pure state as well. We expect that U
should perform the following operation:

U |�φ,n〉 ⊗ |0̄〉 = |�φ,n〉 ⊗ |n̄〉 , (A5)

with 〈n̄|m̄〉 = δn̄m̄, {|n̄〉} are the orthogonal meter states. We
observe that the state on the right is separable. After such
interaction, Alice and Bob would measure the meter in the
{|n̄〉} basis to recover the time bin.

U represents unitary operations performed by Alice and
Bob locally within their laboratories; hence, it must have the
form

U = UA ⊗UB, (A6)

where UA (UB) acts only on Alice’s (Bob’s) states. Consider
the n = 0 case in (A5) corresponding to the referee sending
the vacuum within all the time bins. It is useful to express the
corresponding referee state |�φ,0〉 using the same notation as
in (1):

|�φ,0〉 = |0, k〉A,r |0, k〉B,r , (A7)

with k being an arbitrary integer k ∈ {1, . . . ,N}. To keep track
which quantum states come from the referee, we introduce the
index r. We use (A6) and (A2):

U |�φ,0〉 ⊗ |0̄〉 = UA |0, k〉A,r |0〉A,m ⊗ UB |0, k〉B,r |0〉B,m

= |0, k〉A,r |0〉A,m ⊗ |0, k〉B,r |0〉B,m

= |�φ,0〉 ⊗ |0̄〉 , (A8)

where the final two lines are the right-hand side of Eq. (A5).
The equation above implies

UA |0, k〉A,r |0〉A,m = |0, k〉A,r |0〉A,m ,

UB |0, k〉B,r |0〉B,m = |0, k〉B,r |0〉B,m . (A9)

Now consider the n > 0 case:

U |�φ,n〉 ⊗ |0̄〉

= 1√
2
UA |1, n〉A,r |0〉A,m ⊗ UB |0, n〉B,r |0〉B,m

+ eiφ√
2
UA |0, n〉A,r |0〉A,m ⊗ UB |1, n〉B,r |0〉B,m

= 1√
2
UA |1, n〉A,r |0〉A,m ⊗ |0, n〉B,r |0〉B,m

+ eiφ√
2

|0, n〉A,r |0〉A,m ⊗ UB |1, n〉B,r |0〉B,m , (A10)

where in the final line we used the results from (A9). We ob-
serve that unless UA and UB leave the meter state unchanged,
the final meter state will not remain separable, as was the
case in (A5). However, if UA and UB leave the meter state
unchanged, then the ancilla would lose its purpose as a me-
ter, since it would not have the time bin encoded in it. We
conclude that achieving the desired meter operation (A4), and
therefore winning the clock game, is impossible if we do not
allow for the shared entanglement in the ancilla. The amount
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of shared entanglement needed to win the game was discussed
in Sec. II D. In the next Appendix we demonstrate that we can
consider the entanglement cost based on the properties that the
ancilla must satisfy to serve as a reliable measurement device.

APPENDIX B: NECESSITY OF THE COMMUNICATION
WITH THE REFEREE IN THE CLOCK GAME

The final step of the clock game contains the communica-
tion of classical information: two integers, x and y, based on
which the referee can recover the time bin within which she
has sent the excitation. One can ask whether it is possible for
both parties to recover the time bin locally, i.e., whether both
parties can extract the information about the time bin based
on locally available resources, which are the ancilla and the
referee’s state.

We assume that the meter has to obey the rule (A4) which
implies that (A5) must be satisfied. However, now we will not
assume that |0̄〉 must be a separable state. Let the basis states
for Alice’s and Bob’s ancilla be {|p〉A,m} and for {|q〉B,m}. We
take the initial state of the meter to be

|0̄〉 =
∑
p,q

c(0)
p,q |p〉A,m |q〉B,m . (B1)

After the interaction of the referee’s state and the meter,
the meter should have the time bin encoded in it. We take the
meter’s state with encoded time bin to be

|n̄〉 =
∑
p,q

c(n)
p,q |p〉A,m |q〉B,m . (B2)

We keep the general form of the coefficients c(n)
p,q, which

should be chosen to satisfy 〈n̄|m̄〉 = δn,m. Evaluating (A5) for
n = 0 results in

U |�φ,0〉 ⊗ |0̄〉
= UA ⊗UB |0, k〉A,r |0, k〉Br

∑
p,q

c(0)
p,q |p〉A,m |q〉B,m

=
∑
p,q

c(0)
p,q UA |0, k〉A,r |p〉A,m ⊗UB |0, k〉B,r |q〉B,m

=
∑
p,q

c(0)
p,q |0, k〉A,r |p〉A,m ⊗ |0, k〉B,r |q〉B,m , (B3)

where the final line is the right-hand side of (A5). The equa-
tion above implies the following rule on the local unitaries UA

and UB:

UA |0, k〉A,r |p〉A,m = |0, k〉A,r |p〉A,m ,

UB |0, k〉B,r |q〉B,m = |0, k〉B,r |q〉B,m , (B4)

i.e., the local meter’s state remains unchanged if no excitation
arrived from the referee. Consider now (A5) for n > 0:

U |�φ,n〉 |0̄〉

= 1√
2

∑
p,q

c(0)
pqUA |1, n〉A,r |p〉A,m UB |0, n〉B,r |q〉B,m

+ eiφ√
2

∑
p,q

c(0)
pqUA |0, n〉A,r |p〉A,m UB |1, n〉B,r |q〉B,m

= 1√
2

∑
p,q

c(0)
pqUA |1, n〉A,r |p〉A,m |0, n〉B,r |q〉B,m

+ eiφ√
2

∑
p,q

c(0)
pq |0, n〉A,r |p〉A,m UB |1, n〉B,r |q〉B,m ,

(B5)

where we used (B4). According to Eq. (A5), the referee’s
state remains unchanged after the interaction with the meter.
Therefore, we assume that the local unitaries follow

UA |1, n〉A,r |p〉A,m = |1, n〉A,r U
(n)
A |p〉A,m , (B6)

UB |1, n〉B,r |q〉B,m = |1, n〉B,r U
(n)
B |1〉B,m . (B7)

The unitaries U (n)
A and U (n)

B act only on the local meter state.
We indicate by superscript (n) that they are time-bin depen-
dent. The equation above states that if the excitation arrived
within time bin n, it is encoded on the meter by the unitary
U (n)
A (U (n)

B ). Apply these rules to (B5):

U |�φ,n〉 |0̄〉

= 1√
2

∑
p,q

c(0)
pq |1, n〉A,r U

(n)
A |p〉A,m |0, n〉B,r |q〉B,m

+ eiφ√
2

∑
p,q

c(0)
pq |0, n〉A,r |p〉A,m |1, n〉B,r U

(n)
B |q〉B,m

= 1√
2

|1, n〉A,r |0, n〉B,r

∑
p,q

c(0)
pqU

(n)
A |p〉A,m |q〉B,m

+ eiφ√
2

|0, n〉A,r |1, n〉B,r

∑
p,q

c(0)
pq |p〉A,mU

(n)
B |q〉B,m .

(B8)

According to (A5), (B5) should return a separable state of the
referee’s state and the ancilla. It requires∑

p,q

c(0)
pqU

(n)
A |p〉A,m |q〉B,m =

∑
p,q

c(0)
pq |p〉A,mU

(n)
B |q〉B,m

=
∑
p,q

c(n)
pq |p〉A,m |q〉B,m = |n̄〉 ,

(B9)

where the final line follows from the right hand side of (A5).
Rewrite the first line of (B9):∑
p,q

c(0)
pqU

(n)
A |p〉A,m |q〉B,m = [

U (n)
A ⊗ 1B

] ∑
p,q

c(0)
pq |p〉A,m |q〉B,m

= [
U (n)
A ⊗ 1B

] |0̄〉 = |n̄〉 . (B10)

Similarly, for the second line of (A5) we get∑
p,q

c(0)
pq |p〉A,mU

(n)
B |q〉B,m = [

1A ⊗U (n)
B

] ∑
p,q

c(0)
pq |p〉A,m |q〉B,m

= [
1A ⊗U (n)

B

] |0̄〉 = |n̄〉 . (B11)

Equations (B10) and (B11) imply that one must be able to
transform the ancilla state from |0̄〉 to |n̄〉 just by performing a
local operation either in Alice’s or Bob’s laboratory.
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We are now ready to consider whether or not it is possible
to win the clock game without the communication with the
referee. To achieve it, Alice and Bob must be able to deter-
mine the time bin just based on locally available resources,
without the classical communication between each other or
with the referee. They are also not allowed to establish a quan-
tum channel between them other that the ancilla state. They
perform the measurements on the ancilla (meter) quantum
state, which must have the time bin encoded in it. However,
a stronger condition is needed if one wants to determine the
time bin locally: both local ancilla quantum states must have
the time bin encoded in it.

Let us assume that the locally available ancilla quantum
states have DA (Alice’s meter) and DB (Bob’s meter) orthog-
onal levels. Local time-bin measurement requires that the
local measurements performed on these states must return the
information about the time bin. Therefore, we divide these
levels into groups and assign the corresponding time bins to
them. For Alice, we denote the basis in which she performs
the measurement on the meter in the following way:

{|01〉A,m , |02〉A,m , . . . , |0n0〉A,m ,

|11〉A,m , |12〉A,m , . . . , |1n1〉A,m ,

...

|N1〉A,m , |N2〉A,m , . . . , |NnN 〉A,m}, (B12)

where ni is the number of levels assigned to time bin i. After
the local processing Alice should be able to measure her local
ancilla state in this basis to obtain the time bin: the result
| jk〉A,m corresponds to time bin j. One can define a similar
basis for Bob.

Before the measurement the meter must have n = 0 en-
coded in it not only globally, but also locally. The most general
form of the meter state that satisfies it is

|0̄〉 =
∑
i, j

ci j |0i〉 |0 j〉 . (B13)

It is an entangled state, as required by the results of
Appendix A. From (B10) and (B11) we know that transform-
ing that state to |n̄〉 must be possible only by performing local
operations in only one of the laboratories. If Alice is the one
to perform such operation, then

[
U (n)
A ⊗ 1

] |0̄〉 =
∑
i, j

ci j U
(n)
A |0i〉 |0 j〉

=
∑
i, j

ci j |ni〉 |0 j〉 , (B14)

which encodes the time bin on only one of the local states. A
similar argument can be applied for Bob. We conclude that the
rules (B10) and (B11) prevent one from encoding the time bin
on both locally available ancilla states. Therefore, the desired
meter operation cannot be achieved and one cannot win the
clock game based only on the locally available resources.
Classical communication between the parties, or with the
referee, is required.

APPENDIX C: ENTANGLEMENT AND DIMENSIONALITY
OF THE ANCILLA AS A RESOURCE

In Appendix A we have shown that one cannot win the
clock game without an entangled resource, but we have not
determined the degree of entanglement needed to succeed. We
consider it in this Appendix together with the dimensionality
of the local ancilla systems needed to win the game. First,
we examine the simplest nontrivial case of N = 1 where the
referee can send the phase encoded state in one time bin. It
will help us to establish important concepts needed for more
general case of arbitrary number of time bins.

Let us consider the needed dimensionality of the an-
cilla systems needed to win the clock game for the N =
1 case. Naturally, allowing the local ancilla states to have
only one level is not enough, since then it is impossi-
ble to use it as a meter that verifies the presence of the
phase-encoded state. Therefore, the smallest nontrivial num-
ber of levels to consider is two. In this Appendix, we work
in the meter basis in which Alice and Bob perform the
measurement, with the possible measurement results being
{|0〉A |0〉B , |0〉A |1〉B , |1〉A |0〉B , |1〉A |1〉B}. We omit the index
m denoting the meter, since in this Appendix we work only
with the meter quantum states.

The initial meter state must be an entangled state that must
have time bin 0 encoded in it. Therefore, it must be con-
structed from at least two of the kets from the measurement
basis. We are free to choose these kets, but we must remember
that they cannot allow for local encoding of the time bin.
Therefore, the choice of |0〉A |0〉B and |0〉A |1〉B is not allowed
since it encodes time bin 0 on Alice’s state.

Define the space

S0 = {|0〉A |0〉B , |1〉A |1〉B}, (C1)

which contains the vectors assigned to time bin 0. The remain-
ing vectors are assigned to time bin 1 space,

S1 = {|0〉A |1〉B , |1〉A |0〉B}. (C2)

Note that the assignment of vectors to the time-bin spaces
is based on the parity of the vectors. Other assignment is
also allowed (S0 ↔ S1), which is equivalent to relabeling the
local Alice’s or Bob’s states according to |0〉A(B) ↔ |1〉A(B).
We continue with the choice (C1) and (C2). Note that if the
measurement is performed, both local measurement results
are required to establish the time bin.

The general pure state with time bin 0 encoded in it is

|φ0〉 = c0 |0〉A |0〉B + c1 |1〉A |1〉B . (C3)

According to (B10) and (B11), encoding time bin in it should
be possible only by performing local operations on one of the
local quantum states. The general form of local operations that
achieves it is

UA |0〉A = eiα0 |1〉A , UA |1〉A = eiα1 |0〉A ,

UB |0〉B = eiβ0 |1〉B , UB |1〉B = eiβ1 |0〉B , (C4)

i.e., the local operations behave like the X gates in the mea-
surement basis up to a phase factor. We have omitted the
superscript n in the local unitaries, since for one allowed time
bin there is only one value of n for which the local unitaries
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are not identity operations. Let us encode time bin 1 on the
state (C3) by applying the local operation UA on Alice’s state

[UA ⊗ 1B] |φ0〉 = eiα0c0 |1〉A |0〉B + eiα1c1 |0〉A |1〉B . (C5)

Now encode the same time bin by applying the local operation
UB on Bob’s state

[1A ⊗UB] |φ0〉 = eiβ0c0 |0〉A |1〉B + eiβ1c1 |1〉A |0〉B . (C6)

Both states (C5) and (C6) belong to the space S1, as they
should. The results (B10) and (B11) imply that they must be
equal to each other, which requires

eiα0c0 = eiβ1c1, eiβ0c0 = eiα1c1. (C7)

Taking the absolute value of both sides of any of these equa-
tions results in

|c0| = |c1|, (C8)

implying that (C3) is a maximally entangled state. It estab-
lishes that to examine 1 time bin one needs two-dimensional
local ancilla states in a maximally entangled state, which is the
case in the clock game winning strategy discussed in Sec. II B.

Let us now examine the case of N � 1 allowed time bins
within which the referee can provide the phase encoded state.
As before, we will work in the meter measurement basis. Let
us pick one of the states from that basis, |0〉A |0〉B, and assign
it to the time bin 0 space S0. Note that the choice of state does
not change our argument, e.g., if one picks the |2〉A |7〉B, then
one can just relabel the local states |2〉A → |0〉A, |7〉B → |0〉B.

For N time bins we define N + 1 spaces S0,S1, . . . ,SN ;
each of them assigned to corresponding time bin. The local
operations performed on only one of the meter states should
allow one to take any state from S0, and take it to other desired
space. For example, U (n)

A operation applied on Alice’s state
should take the global meter state from S0 to the Sn space. In
particular, it should apply to the |0〉A |0〉B ∈ S0 state.

Let us assign the states |n〉A |0〉B and |0〉A |n〉B to time bin n
with corresponding space Sn. Note that it does not result in the
loss of generality since one can compensate for other assign-
ment of the vector space by relabeling the local states. For
example, if one assigns the vector |3〉A |0〉B to the S5 space,
then we can relabel |3〉A → |5〉A to come back to the initial
choice (other states might have to be relabeled to compensate
for that change).

Then, similarly to (C4), the local unitaries should affect the
local states according to

U (n)
A |p〉A = eiαp |p+ 1 mod N + 1〉A ,

U (n)
B |p〉B = eiβp |p+ 1 mod N + 1〉B , (C9)

which results in[
U (n)
A ⊗ 1B

] |0〉A |0〉B = eiαp |n〉A |0〉B ∈ Sn,[
1A ⊗U (n)

B

] |0〉A |0〉B = eiβp |0〉A |n〉B ∈ Sn. (C10)

Since the unitaries U (n)
A(B) result in a set of distinguishable

results for different n, the sets {|n〉A |0〉B , n = 0, . . . ,N} and
{|0〉A |n〉B , n = 0, . . . ,N} must both contain N + 1 orthogo-
nal vectors. It is achieved only if the local meter systems have
at least N + 1 distinguishable levels.

Given that we know the dimension of the local meter states,
we are ready to assign them to the time bin spaces. It must be
done in such a way that transforming a state assigned to time
bin 0 (space S0) to time bin n (space Sn) is possible only by
performing local operations with the restriction that the time
bin cannot be assigned locally. It is achieved by the following
assignment:

Sn = {all states |p〉A |q〉B for which p+ q mod N + 1 = n}.
(C11)

Other allowed assignments are equivalent, since they are
achieved by relabeling the local states. The general form of
a pure state belonging to S0 is

|φ(N )
0 〉 =

N∑
p=0

cp |p mod N + 1〉A ⊗ |−p mod N + 1〉B ∈ S0.

(C12)

Let us modify the state (C12) and encode time bin n in it
by applying the local unitary (C9) on Alice’s state:

[
U (n)
A ⊗ 1B

] ∣∣φ(N )
0

〉 =
N∑
p=0

cpe
iαp |p+ n mod N + 1〉A

× |−p mod N + 1〉B ∈ Sn. (C13)

Now encode the same time bin by applying the unitary on
Bob’s state,

[
1A ⊗U (n)

B

] ∣∣φ(N )
0

〉 =
N∑
p=0

cpe
iβp |p mod N + 1〉A

× |−p+ n mod N + 1〉B ∈ Sn. (C14)

According to (C5) and (C6), equations (C13) and (C14)
should result in the same state. It is achieved by making all
the coefficients in front of the same kets equal to each other.
For all allowed values of p one gets

cpe
iαp = cp′eiαp′ , p′ = p+ 1 mod N + 1. (C15)

It implies

|cp| = |cp′ | for p = 0, 1, . . . ,N, (C16)

i.e., the absolute values of all the cp coefficients in the state
(C12) must be equal to each other. Therefore, the initial state
of the meter must be a maximally entangled state.
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