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• Vulnerability to shortage varies across regions and sectors within a river basin.
• Water shortage would increase significantly in the future without adaptation.
• Reservoirs can mitigate the consequences of earlier water supplies and later demands.
• Water demand management strategies are effective in mitigating the vulnerability.
• Additional storage capacity is only beneficial under certain conditions.
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Interest in securing reliablewater supplies has increased due to climate change and rapid population growth. This chal-
lenge is significant in growing areas with limited water supplies. To meet water demands, water managers are consid-
ering new storage infrastructure to increase the reliability of water supplies while also identifying opportunities to
reduce water use per person. Although these strategies change water consumption patterns, their success at reducing
shortages across space and time for different climate change scenarios remains unclear. In this paper, population- and
climate-dependent future water supply and demand models are developed and integrated into a water allocation
model calibrated for the South Platte River Basin of Colorado. Eight future climate scenarios are simulated using
four statistically downscaled models from the Coupled Model Inter-Comparison Project Phase 5 (CMIP5) with two
Representative Concentration Pathways (RCP). Lastly, findings from the water allocation model simulations are gen-
eralized beyond the study area using a novel approach by introducing dimensionless indices to characterize water
shortage and basin conditions. Results reveal a threshold ratio of total storage capacity to mean water supply with a
value of 0.64 above which additional storage has no effect on total water shortages. This threshold communicates
the limitation of building storage infrastructure as a strategy to adapt to decreasing average water supplies for basins
considering increasing storage capacity. However, basins with low current capacity are likely to fall below the thresh-
old and could invest in reservoirs to mitigate future shortages.
1. Introduction

Over half of the global population face water shortages for at least one
month every year (Mekonnen and Hoekstra, 2016; Muratoglu et al.,
2022). Climate change and population growth continue to place pressure
on scarce water resources (Cook et al., 2014; Dai, 2013; Flörke et al.,
2018; Martinsen et al., 2019; Richter et al., 2013), increasing the complex-
ity of water resourcesmanagement (Momblanch et al., 2019). In the United
States, water supplies are expected to face more extreme hydrologic events
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(Brown et al., 2019; Foti et al., 2014a; Leng et al., 2016; Naz et al., 2016)
which can lead to more severe and protracted droughts (Wehner et al.,
2017). Adaptation to increasing water scarcity can be achieved through a
variety of demand- or supply-side strategies.

Demand-side strategies involve reducing total water use, which may
include employing water-efficient appliances and irrigation systems,
applying deficit irrigation, reducing irrigated landscapes, and improving
industrial water-use efficiency (Chinnasamy et al., 2021; Dieter et al.,
2017; Hering et al., 2013; Ma et al., 2015; Nouri et al., 2019; Paterson
et al., 2015; Sharvelle et al., 2017). Despite demand reduction efforts,
Brown et al. (2019) project that continued population growth coupled
with changing water supplies will cause water shortages to increase across
the US.
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Regarding supply management, Brown et al. (2019)find that additional
storage infrastructure has limited impacts on reducing water scarcity. How-
ever, increasing water availability through storage infrastructure invest-
ment continues to receive attention (Foti et al., 2012; Kim et al., 2019), in
part because of the significant interest in maintaining agricultural produc-
tion (Qin et al., 2020; Rosegrant and Ringler, 2000; P. Thornton et al.,
2018). For example, the recently passed “Infrastructure Investment and
Jobs Act” (HR 3684) in the US contains more than $1 billion for the con-
struction of water storage and conveyance projects (Gleick et al., 2021).
To ensure the efficacy of projects financed with scarce public funds, it is
important to identify the conditions in which additional water storage
can decrease the prevalence of water shortages.

Some recent studies havemodeled climate effects onwater supplies and
demands across the US without explicitly testing adaptation strategies
(Blanc et al., 2014; Foti et al., 2012, 2014b, 2014a; Roy et al., 2012;
Strzepek et al., 2010). Brown et al. (2019) simulate the effectiveness of
four alternative adaptation strategies in reducing expected water shortages
across the US at the HUC-4 level, however return flows were not consid-
ered. Among adaptation strategies for water supply management, reser-
voirs are often found to bolster climate change resiliency by increasing
water availability (Hallegatte, 2009; Iglesias and Garrote, 2015) and, in
turn, economic activity (Biemans et al., 2011). Water availability is the
location- and time-specific water available to be diverted from a stream.
In that context, reservoirs increase the water availability, not the water
supply. Contrasting these findings, Brown et al. (2019) conclude that addi-
tional reservoirs have minimal effect on decreasing future water shortages.
However, reservoirs may be more effective at reducing shortages at finer
spatial and temporal resolutions (Brown et al., 2019). In general, reservoirs
have no effect if water is the limiting factor (Brown et al., 2019; Foti et al.,
2012; Kim et al., 2019).

In this paper, a model of water supply and demand in the South Platte
River Basin (SPRB) of Colorado is developed to examine if additional stor-
age infrastructure reduces the vulnerability towater shortage -the probabil-
ity of water demands exceeding water supplies- through the end of the 21st
century. The model contains detailed information on water supplies,
demands, and allocation rules at a half-monthly timestep. The Variable
Infiltration Capacity (VIC) model is used to measure and project water sup-
ply, the Integrated Urban Water Model (IUWM) model to simulate urban
water demand, and the DayCent model to estimate agricultural water
requirements, all of which depend on downscaledmodels of climate change
projections. Water supplies are aggregated at the HUC-8 level, and 75 users
represent both agricultural and urban water demands at different points
along the stream system. A water allocation model is built and calibrated
using the Water Evaluation and Planning (WEAP) system (Yates et al.,
2005) for the historical period 1985–2014, and an uncertainty analysis is
conducted to estimate the results' errors. Required water diversions,
consumptive use, and water shortages are then simulated for four future
climate models with two Representative Concentration Pathways (RCP)
through the end of the 21st century, and the effects of storage capacity
and demand reduction on water shortage are examined through 150
model-scenario combinations. Two dimensionless indices are identified
that characterize the system: the ratios of storage capacity and average
water demand to average water supply. The indices reflect the conditions
the drive the most effective policy decisions for a given basin. The indices
convey whether policymakers should prioritize demand reduction strate-
gies or additional storage based on the current state of their basin.

The present paper contributes to the relevant literature in several
aspects. First, the model captures the climate's role in influencing water
supply and demand at a fine spatial (HUC-8) and temporal (half-monthly)
scale. Thefiner scale allows for the examination of shortages fromboth pro-
longed drought and short periods of high demand and low supply. Second,
information is also disaggregated to the sector-level1 to examine howwater
1 The sectors include municipal and agricultural water users, which have high and low pri-
ority levels in our water allocationmodel. Therefore, impacts are also examined by water right
priority.
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scarcity impacts agricultural and municipal users located at different points
along the South Platte River. Third, return flows are explicitly incorporated
into the model. This innovation is particularly important in the SPRB
because total water diversions are 200 % of the average water supply
(CWCB, 2015), implying that return flows are critical for meeting current
and future water demands. Lastly, the presented generalized basins classifi-
cation from their supply, storage, and demand conditions is an innovation
in this study through the identified threshold.

2. Methods

2.1. Study area and model overview

Colorado provides a relevant case study for manywestern US states due
to its quickly increasing population and climate-change-driven changes to
water supplies and demands. Coloradowas one of the fastest-growing states
during the last decade, with a 14.8 % increase totaling 5.7 million people
(United States Census Bureau, 2020). This population growth is estimated
to continue in the future with an estimated total population of 10 million
by 2050 (CWCB, 2019b). Climatemodels predict changes in annual stream-
flow by 2050 of between−5 % and 8 % (Lukas et al., 2014) and tempera-
tures have increased since the beginning of the 20th century (Lukas et al.,
2014; NOAA, 2021). Since 1980, the statewide average temperature has in-
creased by 1.1 °C (Lukas et al., 2014), a trend that is expected to accelerate
with increases of 1.4 to 3.6 °C by 2050.

The SPRB, within Colorado, is a snow-dependent basin located in a
semi-arid region with highly variable hydrology and The SPRB is one of
the fastest-growing areas in the US, with dense agriculture and urban
communities. The long-term mean annual water supply from native and
transferred sources is 2.34 billion cubic meters (BCM) (CWCB, 2015). Sur-
face water diversions totaled 4.93 BCM/y, with 2.59 BCM/y coming from
return flows. The State Water Plan (CWCB, 2015) expects the gap between
water demand and supply to range from 0.44 to 0.58 BCM/y by 2050
(CWCB, 2015), and it is estimated that the SPRBwill face an 8.5% decrease
in stream discharge for every 1 °C increase in temperature in the worst-case
climate scenario (Aliyari et al., 2021). Overall, examining strategies that
decrease water shortages can produce significant benefits for the study
area in this research as well as provide general insights into vulnerable
basins throughout the western US.

Irrigated agricultural land is primarily located downstream of urban
areas, and return flows from cities are often used to meet agricultural
water demands (Fig. 1a). Following Dozier et al. (2017), the SPRB in our
simulation, is divided into five regions: North, North Central, Central,
SouthMetro, and East, which creates a spatially heterogeneous distribution
of water demands (Fig. 1a). Each region represents one or more counties
and has 15 stylized users. Twelve agricultural (Ag) users represent six staple
crops using flood or sprinkler irrigation systems, and three urban users rep-
resent demands for (1) residential indoor, (2) commercial, industrial, and
institutional indoor (CII), and (3) total (residential plus CII) outdoor
water use. Fourteen nodes represent the model's water supply at the subba-
sins' (HUC 8 level) headwaters (Fig. 1a). Additionally, six main hydraulic
structures are connected to the subbasins, representing the water trans-
ferred to the SPRB from other watersheds. In each subbasin, existing reser-
voirs are aggregated into one representative reservoir.

The modeling framework contains three main components (Fig. 2).
First, land use and population data are summarized at the annual level,
and climate data are summarized at the daily level. These data are then
used as inputs for the second component of the framework, the water sup-
ply and demandmodels,which provide output at the half-monthly timestep
for the model regions and subbasins described above. Lastly, water is
allocated to users at each timestep using the WEAP model (Yates et al.,
2005), hereinafter referred to asWEAP-SP.WEAP uses linear programming
to solve the optimization function ofmaximizingwater demand satisfaction
subject to mass balances, allocation priority, water availability, and other
constraints. The model runs at each timestep sequentially without
foresight.



Fig. 1. a) South Platte River Basin (SPRB) extent, cities and irrigated fields in SPRB, the fivemodeled regions, and the HUC-8 subbasins. b) The study boundary with Koppen
climate classification and the selected climate location in each region.
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In total, WEAP-SP has 20 supply nodes, 60 Ag demand nodes, 15 urban
demand nodes, ten reservoir nodes, one outflow requirement node, natural
river links, diversion links from rivers to demand nodes, and return flow
links from demands nodes to streams (Fig. S1). WEAP-SP runs from 1981
to 2099, with the first four years to initiate the model, followed by 30
years for calibration from 1985 to 2014, defined as the historical period.
Future water allocations from 2015 to 2099 are then simulated using
eight climate scenarios. Two 30-year periods—the near-future period
from 2025 to 2054 and the far-future period from 2070 to 2099—are com-
pared with the historical results. Lastly, the relative effectiveness of several
adaptation strategies, described in Section 4, at reducing expected shortage
is examined. The following sections provide additional detail on each of the
model components and the uncertainty analysis for results.
Fig. 2. The integrated modeling framework.
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2.2. Climate data

Climate data is essential for this study and used in all three of the water
supply and demand models (Fig. 2). According to Koppen Climate Classifi-
cation (Chen and Chen, 2013), the SPRB is primarily a cold semi-arid
climate (BSK), humid continental climate (Dfa& Dfb), or Subarctic climate
(Dfc) (Fig. 1b), depending on seasonal temperature, precipitation patterns,
and vegetation types (Chen and Chen, 2013). To capture the heterogeneity
in climate classifications, one location near the centroid of each region is
selected to represent the climate in the water demand models' simulations
(Fig. 1b).

Historical climate data from 1980 to 2015 is obtained from Naz et al.
(2016), which is calculated using a combination of three datasets: the
Parameter-elevation Regressions on Independent Slopes Model (PRISM)
dataset (Daly et al., 2008), Daymet dataset (P. E. Thornton et al., 1997),
and the North American Regional Reanalysis (NARR) dataset (Mesinger
et al., 2006). Daily precipitation and minimum and maximum temperature
estimates from Daymet are biased corrected at a monthly time scale using
PRISM, and wind speed is obtained from NARR.

Several global climate models (GCM) predict the future climate at
different scales. However, GCM estimates are inappropriate for high-
resolution studies as they generally have a coarse grid resolution (roughly
150 to 200 km grids) (Heidari et al., 2020; Naz et al., 2016). Hence, climate
projected data from Abatzoglou and Brown (2012), that use Multivariate
Adaptive Constructed Analogs (MACA) to downscale GCMs from coarse
to high spatial resolution were used in this study. The MACA daily dataset
has 20 climate models downscaled for the entire conterminous United
States (CONUS) from 1950 to 2099 at approximately a 4 km grid under
4.5 and 8.5 Representative Concentration Pathways (RCP) scenarios from
the Coupled Model Inter-Comparison Project Phase 5 (CMIP5). Joyce and
Coulson (2020) selected five of the available climate models to represent
five ranges of predicted future climate in CONUS: hottest (HadGEM2-
ES365), driest (IPSL-CM5A-MR), wettest (CNRM-CM5), warmest (MRI-

Image of Fig. 1
Image of Fig. 2


2 Net irrigation requirement met, plant factor, the minimum threshold temperature for
which irrigation is applied, irrigation efficiency, and indoor demand power function parame-
ters.
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CGCM3), and a model representing the middle predictions. For this study,
the four extreme models -HOT, DRY, WET, and WARM- under RCPs 4.5
and 8.5 are used for future projections, resulting in a total of eight climate
scenarios from 2015 to 2099 (Refer to supplementary materials section 3
for more details).

2.3. Water supply

In the SPRB, total water supply is the water yield produced within the
basin plus the water transferred from adjacent basins via hydraulic struc-
tures. The within-basin water yield, comprised of surface runoff and
baseflow,was simulated byHeidari et al. (2020) using the Variable Infiltra-
tion Capacity (VIC) model (Liang et al., 1994). VIC is a semi-distributed
macroscale scale model used to solve full water and energy balances and
simulate land-atmosphere fluxes and flow routing (Heidari et al., 2020;
Warziniack et al., 2022). Building on work by Oubeidillah et al. (2014)
and Naz et al. (2016) to set, calibrate, and evaluate the VIC model at a
grid size of 4 km for CONUS, Heidari et al. (2020) ran the model using
the five selected climate models by Joyce and Coulson (2020) and summa-
rized the results at the subbasin level, as described in the previous section.

Although several studies have been published using Heidari et al.
(2020) results (Heidari et al., 2021a; Heidari et al., 2021b; Warziniack
et al., 2022), none of them checked the bias between the water yield
simulations using historical and modeled climate data. To address this,
Kolmogorov-Smirnov (KS) test was performed to compare the statistical
performance of the water yield in SPRB generated from the eight climate
scenarios and the historical climate during 1985 to 2014. In seven of the
eight scenarios, excluding the DRY-8.5 scenario, KS results suggest that
their simulated annual water yield follows the same distribution of the
water yield generated using the historical climate data. This finding sup-
ports the use of water yield generated from these seven scenarios without
bias correction; additional analyses are available in section 14 of the supple-
mentary materials. In this paper, the DRY-8.5 scenario is nevertheless
included to represent an extreme drought scenario. This simulated water
yield is referred to as the native water supply.

The transferred water from nearby basins, referred to as out-of-basin
water supply, represents approximately 20 % of the mean annual total
water supply in the SPRB. The HydroBase database, maintained by the
Colorado Division of Water Resources (CWCB, 2019a), provides daily
streamflow from out-of-basin water sources downstream of the hydraulic
structures. Six major structures are identified to represent the out-of-basin
supply, which account for almost 98 % of the historical transferred water.
Future out-of-basin supplies at each hydraulic structure are forecasted
using the ‘forecast’ package in R (Hyndman and Khandakar, 2008), which
performs an Auto-Regressive Integrated Moving Average (ARIMA) model
with automatic parameter estimation and an external regressor. The
ARIMA model predicts the future half-monthly out-of-basin supply extend-
ing from the historical out-of-basin supply time series. The native water
supply from VIC is used as the external regressor.

2.4. Water demand

2.4.1. Land use, population, and urban water demand
Climate, land use, population, and housing are themain components for

estimating urban water demand. Land use data is acquired from the Multi-
Resolution Land Characteristics (MRLC) consortium National Land Cover
Database (NLCD) raster images and then processed for years 2001, 2006,
2011, and 2016 using ArcGIS to calculate the urban area in each region.
In the NLCD, urban areas are represented by open space areas and low-,
medium-, and high-intensity developed areas. MRLC also provides the
1992 NLCD, but with a different format, so the desired four urban catego-
ries for 1992 are estimated using the conversion factors suggested by Fry
et al. (2009). Annual land uses are then linearly interpolated between
observed years for each region.

In the SPRB, urban land use and population are projected to increase.
The Integrated Climate and Land Use Scenarios (ICLUS) tool developed
4

by the Environmental Protection Agency (EPA) provides land use changes
and population projections on a decadal basis from 2020 to 2100 for differ-
ent scenarios (EPA, 2017). The “SSP5 RCP85 HadGEM2-ES” scenario is
selected from the ICLUS V2.1.1 (EPA, 2020) database, because its 2050
projected population lies in the range of possible population projections
of the Colorado Water Plan (CWCB, 2019b). Also, land use in this scenario
represents the highest developed urban area. The ICLUS land use data is
reclassified to the NLCD land use categories through estimating conversion
parameters by matching the 2010 ICLUS with the 2011 NLCD datasets.

Historical annual population is obtained from the Colorado Department of
Local Affairs (DOLA, 2020) and future population from ICLUS (EPA, 2020).
ICLUS provides the decadal population projections at the county or multi-
county level, so model regions 3 and 4 in this study are combined in the
ICLUS dataset. To rectify this, a linear regression model is used to estimate
the population in region 3 as a function of the population in region 4 using
their annual historical records, achieving a fit of 0.96 R-squared. The same
linear model is then used to split the future population of the two regions.
The Colorado Department of Local Affairs also provides the number of house-
holds, which is required in the water demandmodel, so another linear regres-
sion model is used to estimate the number of households as a function of
population (0.99 R-squared). It is then used to predict the future number of
households from the projected population (Eq. 1), refer to supplementary
section 2 for details about all the regression models used in this study.

Number of Households ¼ 0:4026 � Population ð1Þ

Using the variety of data described above, the Integrated Urban Water
Model (IUWM), a municipal water use forecasting tool, is used to simulate
urban water demand in each region (Sharvelle et al., 2017). IUWM uses a
daily mass balance approach to estimate the water demand in three catego-
ries: residential indoor, CII, and outdoor residential (Sharvelle et al., 2017).
IUWM inputs include daily precipitation, daily temperature, urban land use
in the NLCD format, population, the number of households, and other
model parameters.2 IUWM also can simulate the use of alternative water
sources (i.e., wastewater, greywater, and stormwater) and water conserva-
tion for indoor and outdoor demands.

Five IUWM models are built to simulate the urban water demand in
each of the five regions using the relevant climate data. IUWM requires
many calibration parameters. Neale et al. (2020) and Sharvelle et al.
(2017) calibrated models for the cities of Denver and Fort Collins, both
located in the SPRB, and their reported calibration parameters are applied
to the relevant regions in the present study. Historical and future annual
urban water demands are presented in Fig. 3, where climate is the only
input that varies across the future scenarios.

2.4.2. Agricultural consumptive use (net water irrigation requirement)
This study simulates water demands for irrigated landswith access to sur-

face water. Two trends are observed in the agricultural sector in the SPRB:
declining total irrigated lands and the steady transition from flood to
sprinkler irrigation. Six irrigated crops account for 99 % of irrigated land in
the SPRB: corn, alfalfa, grass pasture, wheat & small grains, sugar beets,
and dry beans (CWCB, 2019a). In 1976, irrigated lands were 3400 km2

with 5 % as sprinkler irrigation (CWCB, 2019a). In 2015, irrigated lands
decreased to 2589 km2 with 43 % as sprinkler irrigation (CWCB, 2019a).
For this analysis, the irrigated crop area, crop mix, and irrigation technolo-
gies for future simulations arefixed at 2015 levels. Hence, only climate drives
the variability in Ag water demands over time.

Net irrigation requirements for each crop in each region are estimated
using the DayCent model (Parton et al., 1998). DayCent is a daily timestep
version of the CENTURYmodel, which is used widely in agroecosystem stud-
ies to simulate terrestrial croplands, grasslands, forest lands, and savannas
(Del Grosso et al., 2000). Inputs for DayCent include daily temperature,



Fig. 3. Annual estimated required water diversion, simulated ag consumptive uses, simulated urban water demands, and simulated total water supply. The lighter lines are
the historical values, and the darker lines are themeans of the future baseline scenarios. The areas around themeans present themaximum andminimum values of the future
baseline scenarios; this range is not shown for the water supply (blue curve) because it covers the entire plot area. Refer to Fig. S10 for the inflow range.

A.A. Gharib et al. Science of the Total Environment 871 (2023) 161964
daily precipitation, soil classification, land use, cultivation schedules, plant-
ing, and nutrient amendments. The model simulates several of ecosystem
parameters including soil carbon, water balance, plant productivity, methane
emissions, nitrous oxide, and nitrogen dynamics (Del Grosso et al., 2006;
Dozier et al., 2017; Ogle et al., 2010; Robertson et al., 2018; Stehfest et al.,
2007; Zhang et al., 2020). The output used in this study is the irrigation
depth, defined as the depth of water required to produce 100 % crop yield.

The calibrated DayCent model used in this study is provided by Zhang
et al. (2020), with 293 calibrated sites distributed across the SPRB. The
model is run for the calibrated sites for the six crops using the historical
and future climates of each region. The mean irrigation depth is then calcu-
lated for each crop in each region and multiplied by the irrigated area of
each crop to obtain Ag consumptive use (Fig. 3) over time. Additionally,
section 4 in the supplementary materials show the comparison of the simu-
lated results from VIC, IUWM, and DayCent compared to their monitored
values for the study area.

2.5. Water allocation model parameterization and calibration

This section presents the integration of the water supplies and demands
into WEAP-SP and describes the parameterization and calibration of the
WEAP-SP. WEAP-SP is manually calibrated from 1985 to 2014 by trial-
and-error sequential model runs. Calibration parameters include delivery
efficiency, irrigation application efficiency, percent of consumption uses
in the urban indoor and CII users, percent of consumptive losses from return
flow, and reservoir parameters. Three model outputs are used as main
calibration targets: (1) annual water diversions, (2) monthly storage, and
(3) annual outflow from the basin. The calibration process starts with
comparing the calibration targets' results with their observed values from
HydroBase (CWCB, 2019a). WEAP-SP is re-tuned and re-estimated until it
imitates the SPRB current conditions.

2.5.1. Required water diversion and model efficiencies
The required water diversion is the total water necessary to be diverted

from a stream to fulfill a water demand. Hence, required water diversions
needed to achieve the water demands from DayCent and IUWM are
estimated considering delivery and irrigation application efficiencies
(Fig. 3). Application efficiency is already a component of IUWM and is set
at 71 % for the outdoor demand, while the indoor and CII consumption
ratios are estimated at 20 %. During the calibration process, delivery
5

efficiencies are set at 80% for Ag users and 75% for urban users. The appli-
cation efficiency for sprinkler irrigation is assumed to be 25 percentage
points greater than the flood application efficiency, and flood irrigation
efficiency is chosen independently for each year to predict the historical
required diversions during the calibration process. A linear regression
model of the annual flood application efficiency as a function of the annual
Ag consumptive uses per unit area is estimated with an R-Squared value of
0.98. Annual flood and sprinkler application efficiency are then projected
for each future scenario. Lower and upper limits for the calculated flood ap-
plication efficiency are estimated at 35%and 65%, so sprinkler application
efficiency ranges from 60 % to 90 %.

Fig. 3 summarizes the annual urban water demand from IUWM, the Ag
consumptive use from DayCent, and the estimated required diversion from
the calibration process for the historical period and the eight climate
scenarios. Urban water demand has an increasing trend over the total sim-
ulation time, largely driven by population growth. There are minor annual
fluctuations reflecting the effects of different climate scenarios on outdoor
demands. Ag consumptive use has a slightly declining trend during the his-
torical period reflecting the reduction in irrigated lands and the transition
from flood to sprinkler irrigation during the historical period. In the future,
the annual mean of Ag consumptive use across the scenarios remains rela-
tively stable as total irrigated land and irrigation technology are fixed
after 2015. In general, population growth drives the upward trend in
required diversions, while climate effects are represented by the shaded
area around each curve (Fig. 3).

In WEAP-SP, as application or delivery efficiencies decrease, more
water must be diverted from a stream to satisfy a given demand. The differ-
ence between diverted and consumed water is the return flow, a portion of
which is lost from the systemwhile the rest re-renters the streams. All water
in WEAP-SP is accounted for through consumptive demands, losses from
return flow to streams, reservoir evaporation (discussed in the following
section), and outflow from the basin. From the calibration process, the
percent of water lost from the return flow is estimated at 10 % and 13 %
for Ag flood and sprinkler irrigation, 35 % for urban outdoor users, and
15 % for indoor and CII users. The parameter uncertainty is further
discussed in Section 2.7.

2.5.2. Representing reservoirs
The SPRB has several reservoirs that store water from high flow season

to high demand season and fromwet to drought years. Total storage in each

Image of Fig. 3
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subbasin is aggregated to a single reservoir located downstream of the
headwater. This representative reservoir is allowed to store all the water
supplies connected to this subbasin. Total storage is estimated using
recorded monthly reservoir levels from 1975 to 2018 in HydroBase
(CWCB, 2019a), which are aggregated to the subbasin level. At the Basin
level, the maximum total quantity of stored water was 1.97 BCM, observed
in May 1985 (Fig. 4). The sum of the stated maximum storage of each indi-
vidual subbasin yields 2.25 BCM, implying that the full storage capacity
was not reached. In reality, it is difficult to for all reservoirs to reach maxi-
mum capacity at the exact time due to physical limitations and operational
difficulties. Therefore, each subbasin's maximum storage capacity is modi-
fied to match the maximum observed storage. Empirical cumulative distri-
bution functions (ECDF) of the monthly stored water in each subbasin are
calculated, and the maximum storage capacity for each subbasin is speci-
fied at the non-exceedance probability of 0.97, aggregating to 1.97 BCM
storage capacity for the entire study area.

The dead storage (i.e., stored water below the outlet level of the
reservoir) is estimated at 28 % during the calibration process, leaving the
active storage at 1.42 BCM. As a secondary calibration target, the simulated
mean annual evaporation from 1993 to 2013 is compared to the simulated
evaporation of the South Platte Decision Support System (SPDSS) (CWCB,
2017). The models have similar evaporation volumes, with values of
0.18 BCM/y and 0.22 BCM/y forWEAP-SP and SPDSS reports, respectively.

2.5.3. Simulating outflow from the SPRB
The South Platte River Compact between Colorado and Nebraska (State

of Colorado and State of Nebraska, 1923) regulates the minimum flow of
the South Platte River at Julesburg in Colorado, near the states' border.
From April 1st to October 15th, the flow is not to drop below 3.4 m3/s on
any given day which accounts for at least 0.06 BCM. For the remainder of
the year, the volume of water released to Nebraska should be at least
0.04 BCM with a daily minimum not to drop below 0.28 m3/s. Although
the compact requires only 0.1 BCM/y to be released to Nebraska, the
water released is 0.49 BCM on average (CWCB, 2015). According to data
from HydroBase (CWCB, 2019a), Julesburg station's annual flow from
1925 to 2017 has a mean, median, and standard deviation of 0.49, 0.36,
and 0.48 BCM/y.

The difference between the actual and compact outflow results from
several components, including the released water from a reservoir when
it is full, the un-stored water when water supplies are expected to be very
high, or the return flow of the most downstream users. To combine the
compact regulations with the natural flow process, an exponential regres-
sion model is estimated to predict the half-monthly outflow discharge as
Fig. 4. The three calibration targets of the WEAP-SP calibration process, (a) monthly s
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a function of the previous ten months' aggregated native water supply vol-
ume and the following six months' aggregated native water supply volume
(Eq. S1). Thismodel has an R-Squared value of 0.94. The exponentialmodel
predicts the outflow for each future scenario using the VIC native water
supply independently from WEAP-SP (Fig. 4). Then, lower and upper
bounds of the estimated outflow, 3.4 and 56.6 m3/s, are used to satisfy
the minimum flow requirements and imitate the historical annual outflow
to preserve the same environmental conditions.

2.5.4. Water allocation rules
For the baseline scenario, priority numbers are estimated for each

demand node using data on actual water rights to best approximate the
current makeup of the SPRB. To emulate how water is administered
under a prior appropriation doctrine, WEAP allocates water to the nodes
with high priority before those with lower priority. Once water is allocated
to a particular node, return flows and remaining natural flows are available
to downstream nodes. Reservoirs have the lowest priorities, preceded by
the outflow from the SPRB with the second-lowest priority.

To estimate priorities for the remaining nodes, priority numbers are
aggregated for relevant water rights using data from HydroBase (CWCB,
2019a). The priority number communicates a ranking within the hierarchy
of all water rights in Colorado, which is determined by a right's appropria-
tion and court adjudication date. For urban demand nodes, all water rights
within a region with relevant uses (e.g., domestic, commercial, or munici-
pal) are identified, and a mean priority number, weighted by each right's
decreed flow rate, is calculated. A similar process is used for agricultural
nodes, however after isolating agricultural water rights within a region, a
weighted-mean priority must first be calculated for all associated irrigation
ditches. Priorities are then generated for each agricultural node using the
mean priority across irrigation ditches weighted by the area of each crop
with flood and sprinkler irrigation. Every demand node has a fixed priority
number during the entire simulation time and across simulations.

In the SPRB, most urban communities are upstream of the agricultural
communities in all regions. In WEAP-SP, the three urban users exist
upstream of the 12 Ag users in each region, where each user has access to
the return flow from the upstream users. In each region, the urban users
are arranged such that indoor users are upstream, followed by the CII and
outdoor users. The outdoor priority number is estimated from HydroBase
data, while the priorities for CII and indoor are increased as they are
upstream of the outdoor user. Regarding the Ag users, they are located in
each region according to their priority numbers; the highest priority crop
is located upstream, followed by the lower crops, maximizing the availabil-
ity of return flows.
torage, (b) annual diversions and the simulated shortage, and (c) annual outflow.

Image of Fig. 4
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2.5.5. Water allocation calibration evaluation
The main calibration target is the annual water diversions, which is the

most important variable in the water allocation process (Fig. 4b). The
modeled values have <0.5 % Bias, with 0.82 Nash Sutcliffe Efficiency
(NSE) and 0.91 Kling-Gupta Efficiency (KGE), which indicates very good
model performance (Knoben et al., 2019; Moriasi et al., 2015). Monthly
storage (Fig. 4a), the secondary calibration target, also performs well with
<4 % Bias and 0.53 KGE. Annual outflow from the model is also evaluated
(Fig. 4c), which is overestimated in the model compared to the monitored
values (blue line) and the outflow generated from the regression model
(dotted line). Higher outflow values likely occur because the demand
models estimate net irrigation requirements. In practice, farmers may not
know these requirements with certainty. It would therefore be rational
for risk-averse farmers to hedge against downside risk by applying water
more intensely (Finger, 2013). This behavior could lead to slightly more
losses and slightly lower outflows. Despite the difference in predicted
outflows, the WEAP-SP successfully imitates the historical water allocation
in the SPRB (Fig. 4) and can be meaningfully used in simulations of future
scenarios.

2.6. Uncertainty analysis

Three primary levels of uncertainty exist in each modeling system:
input, structural or model, and parameter (Cibin et al., 2014; Herrera
et al., 2022; Renard et al., 2010; Song et al., 2015). In this analysis, input
uncertainty is handled by using eight climate scenarios in the four models
used in this framework. Additionally, the effectiveness of alternative strat-
egies and the index-based approach analyses in Sections 3.2 and 3.4 repre-
sents uncertainty in the model inputs of water supply, storage capacity, and
required diversions as previously described. The structure or model uncer-
tainty occurs because of model simplifications. It could be addressed by
using more than one model to simulate the same outputs, which is out of
the scope of this manuscript. Additionally, only calibrated models are
used in this study.

Parameter uncertainty (Arabi et al., 2007) is then fully addressed by
performing Sobol uncertainty analysis for WEAP-SP. Sobol is a variance-
based method that uses Monte Carlo methods to perform global sensitivity
analysis. Eight parameters are selected to represent the majority of WEAP
parameters. The most significant parameters are determined using the
SALib python package (Herman and Usher, 2017; Iwanaga et al., 2022)
through 2304 runs in WEAP-SP for the historical period, where each run
represents a parameter set. Then, a multiobjective optimization for maxi-
mizing the three calibration targets KGE is performed to determine the
non-dominated parameter sets through Pareto front analysis (Bastidas
et al., 1999). The non-dominated sets represent the sets where no other
sets are better than them in all dimensions of the maximization problem
(Khanmohammadi et al., 2021). Finally, these non-dominated sets are
simulated for the future conditions of the DRY4.5 scenario to estimate the
confidence interval of the results.

2.7. Scenarios, strategies, and metrics calculation

In this paper, a ‘scenario' refers to all simulated baseline results associ-
ated with one of eight climate scenarios. A ‘strategy’ defines a percentage
increase to the current storage capacity or decrease in the future baseline
required diversions, and an ‘alternative starting condition’ generalizes the
strategies by considering any applied change to the storage capacity or
the future baseline required diversions. According to water availability
and priority, a simulated diversion is equal to or less than the required
diversion. ‘Shortage’ is defined as the deficit between the required and
simulated water diversions.

Section 3.1 presents the model outputs for the baseline scenarios with-
out any changes to the storage capacity or the required diversions. For
the baseline scenarios, the gap between the water supply and aggregate
consumptive use (if all water requirements were met), annual shortages
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by model regions and users, and 30-year annual and half-monthly results
summaries are all reported.

In Section 3.2, three adaptation strategies of 10% and 20% demand re-
duction across all users and 25 % increase to the current storage are imple-
mented to test their impact on shortages. The demand reduction strategies
represent a range of possible futuremanagement actions as described in the
Colorado Water Plan (CWCB, 2015), such as enhancing water use technol-
ogies or reducing irrigated lands. Differences between demand reduction
strategies are beyond the scope of this study but warrant attention in future
research. Regarding reservoir infrastructure, a 25 % increase in storage ca-
pacity, corresponding to 0.49 BCM, represents an arbitrary but achievable
goal in the SPRB. The 30-year half-monthly mean shortage is the metric
used to compare strategies for future baseline scenarios.

Section 3.3 shows the uncertainty analysis results, and Section 3.4
presents a more generalized analysis of the impact of alternative starting
conditions on shortages. Three scenarios and 48 alternative starting condi-
tions of storage and required diversions are examined to generalize results.
The DRY-8.5, DRY-4.5, and WET-4.5 represent the worst-case, middle, and
optimistic scenarios, respectively (Table S3). Then for these scenarios, stor-
age capacity is varied from 40 % to 160 % of the current storage by 20 %
increments and required diversions from 40 % to 130 % of the future base-
line demands by 15 % increments, resulting in 147 total simulations. The
metrics used in this analysis are dimensionless to facilitate the generaliza-
tion of results to other basins, as discussed in detail in the Results and
discussions section.

3. Results and discussions

3.1. Baseline scenarios

3.1.1. Consumptive uses and the water balance gap
The 10-year running annual mean aggregate consumptive use and

water supply across the baseline scenarios are compared to examine how
climate change and population growth affect the overall water balance in
the SPRB (Fig. S11). The aggregate consumptive use is the total of consump-
tive demands, losses from return flow, and mean historical reservoir evap-
oration. The 10-year annual mean provides an overview of the water
balance by reducing the effects of extreme single wet or drought years. In
SPRB, the consumptive uses plus the mean outflow are expected to contin-
ually exceed themeanwater supply, on average, after the 2040swithout ef-
fective adaptation strategies. This gap confirms that population growth
substantially impacts potential water shortages more than climate change,
as indicated in Fig. 3. This simulated shortage is consistent with the results
of previous studies (Brown et al., 2019; Foti et al., 2012; Heidari et al.,
2021a; Jaeger et al., 2017; Warziniack and Brown, 2019; Yigzaw and
Hossain, 2016) that water shortage is predicted to increase in the areas
projected to increased water demands and more variable water supplies.

3.1.2. Annual spatial shortages
WEAP-SP also provides the spatial distribution of expected shortages to

help decision-makers prepare specific management plans for the study re-
gion. Shortages depend on the spatial location of each user, the priority of
allocation, and overall water availability. Given the distribution of water
rights, shortages are nearly shared equally between Ag and urban sectors.
The annual aggregate urban shortages increase with time as population
grows, while Ag shortages are more climate-dependent as irrigated areas
are constant across the future simulations. The largest urban shortages
occur in the Central region, followed by the North and the South Metro re-
gions,wheremost urban required diversions exist. Ag shortages alsomainly
occur in North, East, and North Central regions where most Ag required
diversions exist. Supplementary section 7 provides the annual required
diversions and shortages by aggregate users, model regions, and basin total.

3.1.3. 30-Year mean results
In addition to the spatial distribution, WEAP-SP provides results at a

half-monthly timestep to better understand the effect of climate change
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on water allocation within a year. Fig. 5 provides the 30-year half-monthly
average water supply, storage, outflow, reservoir evaporation, required
diversion, and shortage for historical, near-future, and far-future baseline
periods. Warming climate trends beget an earlier stream discharge
hydrograph with lower future-period means across the scenarios (Fig. 5a).
The 30-year annual mean water supply is mostly greater than historical
under the WET and WARM scenarios, and it is lower than historical for
the HOT and DRY scenarios (Table S3). The simulated outflow from SPRB
highly depends on the existing water supply with a wide range across the
scenarios. Although the near- and far-future outflow means are close to
the historical mean (Fig. 5c), some scenarios (e.g., DRY-8.5) have low out-
flow (Table S3), meaning that in addition to water shortage, environmental
problems from low stream flows could be likely.

Historically, reservoirs in the SPRB store water from the high-flow
season to the high-demand season (Fig. 5b). This pattern remains the
same in both future periods, allowing for the mitigation of the conse-
quences of earlier water supplies but with lower storage means due to the
changes in water supplies and required diversions (Fig. 5b). Less stored
water means that the mean evaporation from reservoirs will be lower in
the future than in the historical period (Fig. 5d).

Required diversion patterns have a lower peak and thicker tails in both
future periods (Fig. 5e) due to less irrigated land compared to the historical
mean (Fig. 5i) and increased urban requirements (Fig. 5j). Fig. 5i also shows
the mean historical Ag required diversion assuming the same crops of the
year 2015 as simulated in the future simulations. Despite the within-
season required diversion change, the required annual mean diversions in
the near-future are very close to the historical mean (Table S3). However,
the far-future required annual mean diversions are much higher than the
historical mean (Table S3). Additionally, the near- and far-future shortages
have much higher and earlier peaks with a wide range across the climate
scenarios (Fig. 5f). The shortage distribution between Ag and urban is
shown in Fig. 5h and j. The anticipated summer and early fall shortages
indicate that urban outdoor conservation strategies are likely to be effective
mitigation strategies (Fig. 5h). Ag shortages increased and shifted earlier
following the shift in water supply (Fig. 5j).

Table S3 provides the 30-year mean shortage ratio, a ratio between the
annual shortage divided by the annual required diversions. These values
indicate that the shortage ratio: (1) is 2.2 % during the historical period,
(2) ranges between 0.5 % and 9.9 % in the WARM and WET scenarios
that are considered the optimistic scenarios, (3) ranges between 10.7 %
Fig. 5. 30-year half-monthly water supply, storage, required diversions, and shortage m
areas represent the maximum and minimum values at each timestep.
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and 13.5 % in HOT-4.5 and DRY-4.5, (4) and ranges from 13.9 % to
41.3 % in the HOT-8.5 and DRY-8.5 scenarios (Table S3).

3.2. Effectiveness of alternative adaptation strategies for reducing shortages

Adaptation for future resilience is the desired goal for decision-makers.
This section presents the results of three adaptation strategies and the sen-
sitivity of shortages to them. For comparison purposes, Fig. 6a shows the
baseline 30-year half-monthly shortage mean for the historical, and near-
and far-future periods. The first tested strategy of 25 % additional storage
shows modest or negligible effects on decreasing shortages in both future
periods (Fig. 6b). However, demand reduction strategies directly diminish
the shortages (Fig. 6c and d).

Overall, demand management strategies outperform storage infrastruc-
ture investment strategies because increasing demands affect the water
balance more than changing the timing of water yields (Fig. 6). Thus, a
10 % demand reduction strategy lets the near-future mean shortage almost
match the historical mean except from June to August (Fig. 6b). Addition-
ally, a 20 % demand reduction strategy lets the near-future mean shortage
be less than the historical mean and the far-futuremean shortage be close to
the historical mean except from May to August (Fig. 6d). However, 25 %
additional storage has limited effects on decreasing the shortage (Fig. 6b).
Moreover, the performances of adaptation strategies do not vary across
the climate scenarios (Fig. S16).

3.3. Uncertainty analysis

The two most significant WEAP-SP parameters from the Sobol analysis
are the return flow losses and the flood irrigation consumption factor, indi-
cating that they must be precisely estimated. The urban delivery efficiency
and the residential indoor consumptive use come next in importance, while
the others have limited impacts on the model performance. The calibration
targets goodness of fitness for the total Sobol runs are calculated, and sets
are reduced to the sets with NSE and KGE>0.1 and Bias <40%. The Pareto
front analysis for the reduced sets yields 108 non-dominated parameter sets
through maximizing KGE values. The manual calibration results, as
presented earlier, exist within the 95 % confidence interval of the Pareto
front sets (refer to supplementary materials section 10 for more details).

The DRY-4.5 is simulated with the 108 sets, and the annual shortage
ratio, calculated as the annual shortage divided by the annual required
eans. The solid lines represent the mean across the eight climate scenarios, and the

Image of Fig. 5


Fig. 6. 30-year half-monthly shortagemeans of future baseline scenarios and the three alternative adaptation strategies with the historicalmean. The solid lines represent the
mean across the eight climate scenarios, and the areas represent the maximum and minimum values at each timestep across the scenarios. The results for each climate
scenario is presented in Fig. S16.
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diversions, exists within the 95 % confidence interval of the Pareto front
sets. Finally, the coefficients of variation of the annual shortage ratio for
the near future and far future are 0.07 and 0.1, respectively, indicating
the low error range for the 108 model results and the feasibility of general-
ization.
3.4. Generalizing results: an index-based approach

To generalize the results from the present case study, a range of required
diversions and storage capacities across three climate scenarios are
explored to determine thresholds when adaptation strategies will perform
well. Results can inform the likelihood of shortages and how changes in
demand and storage capacity may affect shortages in other basins with
different initial conditions. Three indices are identified that drive the
water allocation process: (X1) the 30-year annual required diversion mean
normalized by the 30-year annualwater supplymean (WS), (X2) the storage
capacity normalized by WS, and (X3) the 30-year annual return flow mean
normalized by WS. The four components in these three indices can be
measured for any water basin and describe >99 % of the variance of the
30-year annual shortage ratio mean (Y); refer to supplementary materials
section 11 formore details. X3 has a significant role in meeting the required
Fig. 7. Shortage (Y) at different starting conditions -the dots- of required diversion (X1) a
future baseline conditions for each scenario.
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diversions, which describes water use efficiency and ranges from 0.75 to
1.2 in the future baseline scenarios (Fig. S21).

Fig. 7 shows the relationship between X1, X2, and Y during the near and
far future shortage for the WET-4.5, DRY-4.5, and DRY-8.5 scenarios.
Looking at the horizontal axis, demand reductions always diminish short-
age regardless of storage and inflow conditions. Also, all subplots in Fig. 7
share the same trend of contour lines being almost vertical when the values
of X2 exceed a threshold of approximately 0.64, above which changes in
storage capacity do not affect shortage. However, the contours display cur-
vature below this threshold, reflecting non-linear relationships between Y
and X1 and highlighting the sensitivity of shortages to storage in this condi-
tion. Y decreases as X2 increases until it reaches 0.64 (corresponding to 0.46
considering only active storage), as X2 becomes insignificant -refer to sup-
plementary materials section 13 of statistical evidence of this threshold
existence-. However, if X2 exceeds 1.2, Y increases as X2 increases because
of more evaporation from a larger storage area, because dead storage vol-
ume and surface area increase when storage volume increases, leading to
more evaporation losses. The current storage conditions in the SPRB are
at or above the identified threshold in the dry scenarios, explainingwhy ad-
ditional storage has negligible effects on shortages as discussed in Fig. 6b.

Fig. 8a shows the predicted Y at the mean of X1 with a 95 % confidence
interval (Arel-Bundock, 2022) using the regression model shown in eq. 2
nd storage (X2); each subplot represents one 30-year period; the cross represents the

Image of Fig. 7
Image of Fig. 6


Fig. 8. a) Conditional Adjusted Predictions of Y. b) Marginal effect of X2 on Y. Both are for the groups above and below the threshold with 95 % confidence intervals (Arel-
Bundock, 2022).
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(R-squared = 0.94). For the group with D = 0 (X2 < 0.64), Y decreases as
X2 increases, while it is almost horizontal for the other group with a
narrower confidence interval (Fig. 8a). Additionally, the marginal effect
of X2 on Y is almost zero for the D = 1 group (X2 ≥ 0.64), highlighting
that increasing X2 has a negligible effect on Y (Fig. 8b). This result implies,
perhaps counterintuitively, that additional storage has more significant
benefits as water inflows increase relative to current capacities (Lower X2).

Yc;t;i ¼ α þ β1 � X1 c;t;i þ β2 � X2 c;t;i þ β3 � Dþ β4 � X2 c;t;i � D ð2Þ

where c, t, and i represent the climate scenario, simulation period (near or
far future), and starting conditions, respectively.

From this generalization approach, basins above the 0.64 storage
threshold would need to focus on demand reduction strategies to reduce
shortages. In this case, investments in storage may not help reduce overall
basin shortages. It is important to note, however, that additional storage
may impact the shortages of specific users even if total shortages are not
affected. While this distributional impact does not appear to occur in the
current setup of WEAP-SP, it may be an important consideration for other
basins considering expansion of storage capacity. This may be especially
true if additional storage is accompanied by other strategies, such as
purchasing the water rights of downstream users and storing the water.

4. Conclusions

In this study, a water allocation model (WEAP-SP) was developed and
calibrated for the SPRB driven by population growth and climate change
through 2100 with a half-monthly timestep. The main goals are to predict
the spatial and temporal future water shortage, test the effectiveness of de-
mand reduction and additional storage strategies on reducing shortages,
and identify generalized conditions under which each strategy may be
beneficial to similar basins. Results indicated that although the reservoirs
in SPRB reduce the consequences of the temporal shift of the water supply
timing, a continuous shortage nevertheless exists after the 2040s.

In SPRB, the two tested strategies showed very different effects onwater
shortage mitigation. In all eight simulated climate scenarios, additional
storage showed insignificant effects on reducing water shortages.
Conversely, a 20 % demand reduction strategy diminished the near- and
far-future shortage mean across all eight climate scenarios to be close to
the historical half-monthly shortage mean.

To generalize the effect of the two strategies to other basins, 147 scenar-
ios were simulated at different starting conditions of required diversions
and storage capacity. A threshold of the ratio between the storage capacity
and the 30-year annual mean water supply of 0.64 was identified, above
10
which additional storage does not affect water shortages. This suggests
that areas expected to experience increased water inflows (or those with
low current storage capacity) are most likely to benefit from additional
water storage infrastructure. In contrast, demand reduction strategies al-
ways reduce expected shortages.

Although illustrating the impact of storage investment and demand re-
ductions on water shortages is necessary to inform policy decisions, it is in-
sufficient to recommend pursuing a specific strategy. Policymakers should
consider the costs of candidate strategies comparedwith their effectiveness
in reducing water shortage and the associated environmental impacts.
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