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Abstract

In this paper, we consider numerical approximations of the binary surfactant phase-field model on complex surfaces.
onsisting of two nonlinearly coupled Cahn–Hilliard type equations, the system is solved by a fully discrete numerical scheme
ith the properties of linearity, decoupling, unconditional energy stability, and second-order time accuracy. The IGA approach
ased on Loop subdivision is used for the spatial discretizations, where the basis functions consist of the quartic box-splines
orresponding to the hierarchic subdivided surface control meshes. The time discretization is based on the so-called explicit-IEQ
ethod, which enables one to solve a few decoupled elliptic constant-coefficient equations at each time step. We then provide a

etailed proof of unconditional energy stability along with implementation details, and successfully demonstrate the advantages
f this hybrid strategy by implementing various numerical experiments on complex surfaces.
2023 Elsevier B.V. All rights reserved.

eywords: Loop subdivision; IGA-EIEQ; Decoupled; Unconditional energy stability; Binary fluid-surfactant

1. Introduction

Surfactants refer to organic compounds that are added to a multiphase solution (e.g., an oil–water mixture) to alter
r reduce the surface tension of the solution. Therefore, when considering how to numerically simulate surfactants,
he natural idea is to consider a three-phase coupled model that can describe not only the two-phase fluid interface
ynamics, but also the surfactant concentration. The phase-field approach, due to its flexibility in the energetic
odeling, is one of the best options for describing such scenarios. More precisely, in the framework of the phase-
eld method, the motion of the binary fluid can be described by one phase-field variable, and then another phase-field
ariable is set to represent the surfactant concentration. Then by adding some of corresponding energy potentials
f the latter to the total free energy of the former, using the variation approach in some metric space, the so-called
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phase-field surfactant model can be derived. Surfactant models obtained using this type modeling approaches can
be traced back to the seminal work of Laradji et al. about three decades ago, see [1,2], as well as some extended
modeling/numerical work in [3–7], in which the main idea is also based on the above framework although some
various energy functionals may be employed. Formally, the commonality of these phase-field surfactant models
is a high degree of coupling (e.g., coupling between phase-field variables and/or between the fluid velocity and
phase-field variables) and nonlinearity, making it rather challenging to develop efficient numerical methods for
them. Moreover, we recall that some special phase separation dynamics of the multiphase flow may occur on static
or dynamic surfaces, see [8–10], thus, the numerical study of the behavior of interfacial changes of the phase-field
model on complex surfaces also has considerable significance and practical applications. Therefore, the binary
surfactant model, as one of the important applications of the phase-field model, is also very necessary to design an
effective fully-discrete numerical scheme to study its dynamical behaviors on the curved surfaces, which will be
considered in this article.

It is well known that the design of a fully discretized scheme of a PDE system requires different discretization
ethods in two different directions, the space and the time, at the same time. Considering the spatial discretization
ethods on the curved surfaces, we recall that there are many successful numerical methods, such as the Spectral
ethod [11,12], the finite difference method [13], and the finite element method (FEM) [14], etc. The first two
ethods have made considerable progress in recent years, however, most of the problems they deal with are

till limited to simple domains, such as rectangular, circular, or spherical regions. Compared with them, the FEM
an more effectively deal with various irregular surfaces that appear in the practical engineering, see [15–17] for
heoretical/numerical studies of the phase transition-related models on surfaces. However, a subsequent disadvantage
f discretizing surfaces using the FEM involves the approximation of surface differential geometry operators, which
ay cause additional errors caused by the numerical approximation schemes. Taking the Laplacian operator on
surface as an example, the derivative of the surface itself needs to be integrated, while the traditional finite

lement method requires the manual intervention, which is costly, time-consuming and labor-intensive, and the
efining process is difficult, especially for complex geometric surfaces. Compared with these methods for dealing
ith surface PDEs, the so-called subdivision-based isogeometric analysis (IGA) method [18,19] has considerable

dvantages and is adopted in this paper.
The framework of IGA [20–25] was proposed to develop a seamless integration between FEM and computer-

ided design (CAD). It have the higher numerical accuracy than FEM, and can also easily implement p-refinement,
h-refinement and even k-refinement through the knot insertion and/or order elevation techniques. As a result,
the accuracy of the numerical simulations can be improved without destroying the original geometry, thereby
eliminating the interactive communication with the CAD system. Surface subdivision can construct smooth surfaces
from arbitrary topological meshes by designing a set of simple and efficient refinement schemes [26–28]. It is
not only compatible with NURBS, but also has the refinement capability of B-spline technology. Subdivision
technology not only conveniently handles complicated geometric forms but also maintains original characteristics
near boundaries through straightforward extensions, such as concave/convex angles and sharp/smooth creases. Both
Loop subdivision [29–32] and Catmull–Clark subdivision [33–35] have been utilized in IGA. Local refinement
and convergence rate [36,37] were investigated in Catmull–Clark subdivision-based IGA as well. In short, the
subdivision-based IGA method can be viewed as the natural choice for higher-order FEM in engineering practice,
cf. [31,32,38,39].

After we employ the efficient subdivision-based IGA method for the spatial discretization, we further consider
what time-advance method to use to discretize the binary surfactant phase-field model in the time direction. The
challenge of the time advancement for this particular model involves how to deal with the nonlinear and coupled
terms, so that not only the energy dissipation laws of the PDE system can be extended to the discrete level, but
also the high-order time accuracy and the computational efficiency can be as convenient and practical as possible.
In a rather extensive numerical study of different versions of the surfactant phase-field model, we notice that there
have been many successful attempts at the time discretization, for instance, the nonlinear convex-splitting approach
applied in [40], the nonlinear implicit approach given in [41], the IEQ (Invariant Energy Quadratization) approach
(or its various version the so-called Scalar Auxiliary Variable approach) developed in [42–46], etc. However, these
known methods are either fully discrete methods based on regular regions or only semi-discrete methods in time.
Note that the aim of this article is to construct an efficiently fully discretized scheme for the surfactant phase-field

model on a curved surface that is both easy to implement and has the high temporal accuracy. Hence, in addition to

2



Q. Pan, C. Chen, T. Rabczuk et al. Computer Methods in Applied Mechanics and Engineering 406 (2023) 115905

r
t
o
c
t
b
a
b
o
h
e
c

f
s
t
a
n
c

2

d

s

T

o
G

using the subdivision-based IGA method described above for the spatial discretization, for the time discretization
we adopt the IEQ method because it can automatically generate an unconditionally stable linear algorithm. We
expect the combination of these two approaches will give us a satisfactory fully discrete numerical scheme on the
complex curved surface.

However, the IEQ method still has some shortcomings, especially in the practical implementation. It generally
equires solving a linear system with variable coefficients at each time step, see [47–50]. It is a well-known fact
hat solving a variable coefficient system not only requires more complex steps, such as finding an iterative solver
r constructing some preconditioner, but also requires more computational time than a linear system with only
onstant coefficients. Therefore, to solve this defect existing inside the original IEQ method, this paper modifies
he IEQ method into a slightly newer version, the so-called explicit IEQ (referred to as EIEQ) method, in which
y introducing a nonlocal variable and designing for a special but trivial ODE for it, the decoupling structure is
chieved, see also [51] for its application in a different crystal growth model on the regular geometric domain. The
enefit brought about by the new EIEQ method is that the scheme involved ultimately only requires the solution
f some linear constant-coefficient equations with the fully decoupled structure at each time step, and is therefore
ighly efficient in practice. We not only rigorously demonstrate the property of our scheme to have the unconditional
nergy stability but also present the flexibility and the robustness of the proposed scheme by implementing several
omplex surface-based examples.

We organize the rest of this paper in the following way. In Section 2, we give a brief preliminary notation
or surfaces. In Section 3, the binary surfactant phase-field model on the surface is presented. In Section 4, the
ubdivision-based IGA method is introduced and a fully discrete scheme based on its combination with the EIEQ
ime advancing strategy is developed. We further provide a rigorous proof of the unconditional energy stability,
nd the implementation method to achieve the full decoupling of all variables. In Section 5, we present various
umerical examples to illustrate the efficiency and the accuracy of the proposed method. Section 6 gives some
oncluding remarks.

. Preliminary: Surface differential geometry

We first briefly introduce a mathematical framework of the surface which includes the parameterization and some
ifferential geometric operators.

We denote S = {x(u1, u2) ∈ R3
: (u1, u2) ∈ D ⊂ R2

} as a sufficiently smooth and orientable surface, which
is parameterized as follows. We let gαβ = ⟨xuα , xuβ ⟩ and bαβ = ⟨n, xuαuβ ⟩ be the coefficients of the first and the
econd fundamental forms of S with

xuα =
∂x
∂uα

, xuαuβ =
∂2x

∂uα∂uβ
, α, β = 1, 2,

n = (xu1 × xu2 )/∥xu1 × xu2∥,

where ⟨·, ·⟩, ∥ · ∥ and · × · stand for the usual inner product, Euclidean norm and cross product in R3 respectively.
Then we introduce some notations as

[gαβ] = [gαβ]−1, g = det[gαβ], [bαβ] = [bαβ]−1, b = det[bαβ].

he matrix form of the Weingarten map is denoted as

S = [bαβ][gαβ] =
1
g

[
b11g22 − b12g12 b12g11 − b11g12
b12g22 − b22g12 b22g11 − b12g12

]
,

which is a self-adjoint linear map on the tangent space TxS := span{xu1 , xu2}. Then the eigenvalues k1 and k2

f S are the principal curvatures of S, whose arithmetic average and product are the mean curvature H and the
aussian curvature K , namely,

H =
k1 + k2

2
=

tr(S)
2

=
b11g22 − 2b12g12 + b22g11

2g
, K = k1k2 = det(S) =

b11b22 − b2
12

g
,

respectively. The mean curvature normal is referred to H = Hn.

3
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Some differential geometric operators of surface need to be introduced as follows.
Tangential gradient operator. Denote C1(S) be a function space composing of C1 smooth functions of S.

onsidering f ∈ C1(S), the tangential gradient operator ∇s acting on f is defined as

∇s f = [xu1 , xu2 ][gαβ][ fu1 , fu2 ]T
∈ R3. (2.1)

For a vector-valued function f = [ f1, . . . , fk]T
∈ C1(S)k , the gradient ∇s acting on f is defined as

∇sf = [∇s f1, . . . ,∇s fk] ∈ R3×k .

Divergence operator. Let v ∈ [C1(S)]3 be a smooth vector field on S. Then the divergence operator divs acting
on v is defined as

divs(v) =
1

√
g

[
∂

∂u1 ,
∂

∂u2

] [√
g[gαβ][xu1 , xu2 ]T v

]
. (2.2)

Laplace–Beltrami operator. Let f ∈ C2(S). Then the Laplace–Beltrami operator (LBO) ∆s acting on f is
defined as

∆s f = divs(∇s f ). (2.3)

With the definitions of ∆s and divs , we derive

∆s f =
1
g

(g22 f11 + g11 f22 − 2g12 f12), (2.4)

where fαβ = fuαuβ − (∇s f )Txuαuβ , α, β = 1, 2. The second-order differential operator ∆s relates to the mean
curvature vector, i.e., ∆sx = 2H. Two inner products on surface need to be introduced as

(u, v) =

∫
s

uv dx, and (∇su, ∇sv) =

∫
s
∇su · ∇sv dx.

Sobolev space H k(S). Assuming that S is a sufficiently smooth surface, for a given constant k and a function
f ∈ C∞(S), we denote ∇

k f the kth order covariant derivative of f , with the convention ∇
0 f = f . Let

Ck(S) =

{
f ∈ C∞(S) :

∫
s
|∇

j f |
2
dx ≤ ∞ for j = 0, . . . , k

}
. (2.5)

t is obvious that Ck(S) = C∞(S) ⊂ Ck(S) ⊂ H k(S), where the Sobolev space H k(S) on the surface S is denoted
s Definition 2.1.

efinition 2.1. Let S be a compact surface with at least kth order smoothness. Sobolev space H k(S) is the
ompletion of Ck(S) in the sense of norm

∥ f ∥Hk (S) :=

( k∑
j=0

∫
s
|∇

j f |
2
dx
) 1

2
. (2.6)

3. Binary surfactant model on the surface

The framework of the binary surfactant model is to use two phase-field variables (φ(x, t) and ρ(x, t)) to simulate
he dynamics of the microphase separation in the microemulsion system. The total energy functional E(φ, ρ)

(cf. [1,2,4–7]) of this system is expressed as follows,

E(φ, ρ) = E1(φ) + E2(φ, ρ), (3.1)

n which, the phase-field variable φ(x, t) is the labeling function to mark the two fluid components as

φ(x, t) =

{
− 1 fluid component I,
1 fluid component II,

(3.2)

and the other phase-field variable ρ(x, t) is used to denote the local concentration of the surfactant. To remove the
discontinuity, a thin smooth transition layer of width O(ϵ) is assumed to connect the two distinct values of φ. In
4
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such a framework, the interface of the binary mixture can be represented by the zero level set Γt = {x : φ(x, t) = 0}

utomatically.
We introduce each of the two terms in (3.1) as follows. E1(φ) is the commonly-used energy potential in the

hase-field model for the binary fluid mixture. It reads as

E1(φ) =

∫
S

(
ϵ

2
|∇sφ|

2
+

1
ϵ

F(φ))dx, (3.3)

where F(φ) =
1
4 (φ2

− 1)2 is the Ginzburg–Landau double-well potential. The first term in (3.3) represents the
hydrophilic (mixing) type potential, and the second term in (3.3) is the hydrophobic (de-mixing) type potential.
The equilibrium configuration of the diffusive interface is the consequence of the competition between these two
types of potentials.

E2(φ, ρ) represents the interaction between the surfactant and the binary fluid interface. It reads as

E2(φ, ρ) =

∫
S

(
α

2
W (φ, ρ) + βG(ρ))dx, (3.4)

which is the penalty term that enables the concentration of the surfactant to accumulate near the interface with a
relatively high value. In the first term of (3.4), W (φ, ρ) = (ρ −|∇sφ|)2 which is a local nonlinear coupling entropy
erm between φ and ρ, and α is a positive parameter. In the second term of (3.4), G(ρ) = ρ ln ρ + (1 −ρ) ln(1 −ρ)
hich is the logarithmic Flory–Huggins type energy potential, and β is a positive parameter. G(ρ) restricts the value
f ρ to be inside the domain of (0, 1), and ρ will reach its upper bound if the interface is fully saturated with the
urfactant.

Based on the free energy functional (3.1), the Cahn–Hilliard type surfactant phase-field system can be derived
sing the variational gradient flow approach in the H−1 space, that reads as

φt = M1∆sµ, (3.5)

µ =
δE
δφ

= −ϵ∆sφ +
1
ϵ

f (φ) + αWφ(φ, ρ), (3.6)

ρt = M2∆sω, (3.7)

ω =
δE
δρ

= βG ′(ρ) + αWρ(φ, ρ), (3.8)

here⎧⎪⎪⎪⎨⎪⎪⎪⎩
f (φ) = F ′(φ) = φ(φ2

− 1),

Wφ(φ, ρ) =
δW (φ, ρ)

δφ
= ∇s ·

(
(ρ − |∇sφ|)

∇sφ

|∇sφ|

)
,

Wρ(φ, ρ) =
δW (φ, ρ)

δρ
= ρ − |∇sφ|,

(3.9)

and M1, M2 are the mobility parameters. In this article we only treat closed surface domains, and remove all
boundary conditions.

By taking the L2 inner products of (3.5) with µ, of (3.6) with −φt , of (3.7) with ω, and of (3.8) with −ρt , we
obtain the energy dissipation law as follows,

d
dt

E(φ, ρ) = −M1∥∇sµ∥
2
− M2∥∇sω∥

2
≤ 0. (3.10)

4. IGA-EIEQ scheme on the surface

In this section, we first design a second-order discrete scheme using the EIEQ method for the time marching.
Second, we introduce the recently developed IGA approach based on the Loop subdivision [31,32] for the spatial
discretization. The Subdivision-based IGA strategy provides an elegant opportunity to integrate the geometric
modeling with the concurrent finite element analysis for complex and flexible surface topology structures. Finally,
we prove that the discrete scheme is unconditional energy stable, and present the corresponding decoupling
implementation approach to obtain high computational efficiency.

Before constructing the numerical scheme, the logarithmic Flory–Huggins potential G(ρ) should be normalized
rom its original domain (0, 1) to (−∞, ∞). If we do not do this, numerically we must strictly ensure that the value
5
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of the calculated solution is within the domain of (0, 1), otherwise, the calculation will easily overflow. Therefore
it is the common practice to modify the logarithmic potential to an extended form defined on (−∞, ∞), which can
be realized by using the following C2 continuous, convex, and piecewisely defined function G(ρ). That is, for any

> 0, the term G(ρ) is replaced as

G(ρ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρ ln ρ +

(1 − ρ)2

2ε
+ (1 − ρ) ln ε −

ε

2
, if ρ ≥ 1 − ε,

ρ ln ρ + (1 − ρ) ln(1 − ρ), if ε ≤ ρ ≤ 1 − ε,

(1 − ρ) ln(1 − ρ) +
ρ2

2ε
+ ρ ln ε −

ε

2
, if ρ ≤ ε.

(4.1)

We can see that G(ρ) → G(ρ) when ε → 0. The error bound between the normalized term and the original term
is controlled by ε up to a constant scaling for the surfactant phase-field system. In this paper, we simply use G(ρ)
to replace G(ρ), see also [44–46,52–54].

4.1. EIEQ method for time marching

The goal of the time marching strategy is to develop a linear, easy-to-implement, unconditionally energy stable
scheme for the system (3.5)–(3.8). The basic framework of the EIEQ method includes two steps, where the first
step is to transform or “quadratize” the nonlinear functional by applying a local auxiliary variable, and the second
step is to design a local variable and its associated ODE so that the decoupling type calculation can be obtained. In
these ways, a linear and second-order time-accurate scheme with the property of the unconditional energy stability
is designed. It also has an extra advantage, that is, one only needs to solve a few independent, constant-coefficient,
elliptic equations at each time step, thus achieving very efficient computation. The details read as follows.

First, we define an auxiliary variable U (local type) as

U (φ, ρ) =
√

N (φ, ρ) + B, (4.2)

with

N (φ, ρ) =
1
ϵ

F(φ) + βG(ρ) +
α

2
W (φ, ρ) −

η1

2
φ2

−
η2

2
ρ2, (4.3)

where η1, η2 > 0 and B > 0 are three predetermined constants. Note that N (φ, ρ) is always bounded from below,
since the two negative quadratic terms related to η1 and η2 can be always bounded by F(φ) and G(ρ). That is, we
an always find a constant B to make the term N (φ, ρ) + B always positive.

Using the new variable U , we rewrite the system (3.5)–(3.8) into the following equivalent form:

φt = M1∆sµ, (4.4)
µ = −ϵ∆sφ + η1φ + HU, (4.5)
ρt = M2∆sω, (4.6)
ω = η2ρ + RU, (4.7)

Ut =
1
2

Hφt +
1
2

Rρt , (4.8)

where⎧⎪⎪⎪⎨⎪⎪⎪⎩
H (φ, ρ) = 2

δU (φ, ρ)
δφ

=

1
ϵ

f (φ) − η1φ + αWφ(φ, ρ)
√

N (φ, ρ) + B
,

R(φ, ρ) = 2
δU (φ, ρ)

δρ
=

βG ′(ρ) − η2ρ + αWρ(φ, ρ)
√

N (φ, ρ) + B
.

(4.9)

Second, we introduce another nonlocal variable Q(t) and an ODE system related to it that reads as{
Qt = (HU, φt ) − (Hφt , U ) + (RU, ρt ) − (Rρt , U ),
Q|t=0 = 1.

(4.10)

bviously Q = 0 and Q| = 1 implies Q(t) ≡ 1.
t t=0

6
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Finally, by combining the two new variables U and Q, we rewrite the system (4.4)–(4.8) into the following
quivalent form:

φt = M1∆sµ, (4.11)
µ = −ϵ∆sφ + η1φ + Q HU, (4.12)
ρt = M2∆sω, (4.13)
ω = η2ρ + Q RU, (4.14)

Ut =
1
2

Q Hφt +
1
2

Q Rρt , (4.15)

Qt = (HU, φt ) − (Hφt , U ) + (RU, ρt ) − (Rρt , U ), (4.16)

with the initial conditions that read as⎧⎨⎩ φ|t=0 = φ0, ρ|t=0 = ρ0, U |t=0 =
√

N (φ0, ρ0) + B, Q|t=0 = 1,

µ|t=0 = −ϵ∆sφ0 +
1
ϵ

f (φ0) + αWφ(φ0, ρ0), ω|t=0 = βG ′(ρ0) + αWρ(φ0, ρ0).
(4.17)

emark 4.1. Note that the above two obtained systems after the transformation are equivalent, that is, the system
fter each step of the transformation is equivalent to the previous system. For example, if we integrate (4.8) over
ime, and apply the initial conditions given in (4.17), (4.2) will be recovered, and the system (4.4)–(4.8) changes
ack to the original system (3.5)–(3.8). Moreover, the equivalence between the new system (4.11)–(4.16) and the
ystem (4.4)–(4.8) is obvious as well, that is because Q ≡ 1.

The new transformed system (4.11)–(4.16) also retains the law of the energy dissipation, which is described as
he following Theorem 4.1.

heorem 4.1. The transformed equivalent system (4.11)–(4.16) holds the law of the energy dissipation as
d
dt

Ẽ(φ, ρ, Q, U ) = −M1∥∇sµ∥
2
− M2∥∇sω∥

2
≤ 0, (4.18)

here

Ẽ(φ, ρ, Q, U ) =

∫
S

(ϵ

2
|∇sφ|

2
+

η1

2
|φ|

2
+

η2

2
|ρ|

2
+ |U |

2
− B

)
dx +

1
2
|Q|

2
−

1
2
. (4.19)

Proof. By taking the L2 inner product of (4.11) with −µ, we get

− (φt , µ) = M1∥∇sµ∥
2. (4.20)

y taking the L2 inner product of (4.12) with φt in L2 space, and using the integration by parts, we obtain

(µ, φt ) = ϵ(∇sφ, ∇sφt ) + η1(φ, φt ) + Q(HU, φt ). (4.21)

y taking the L2 inner product of (4.13) with −ω, we obtain

− (ρt , ω) = M2∥∇sω∥
2. (4.22)

y taking the L2 inner product of (4.14) with ρt in L2 space, we get

(ω, ρt ) = η2(ρ, ρt ) + Q(RU, ρt ). (4.23)

y taking the L2 inner product of (4.15) with 2U , we obtain

2(Ut , U ) =
d
dt

∥U∥
2

= Q(Hφt , U ) + Q(Rρt , U ). (4.24)

By multiplying (4.16) with Q, we obtain

d
dt

(
1
2
|Q|

2
)

= Q(HU, φt ) − Q(Hφt , U ) + Q(RU, ρt ) − Q(Rρt , U ). (4.25)

fter taking the combination of (4.20)–(4.25), we obtain the law of the energy dissipation (4.18). □
7
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Fig. 4.1. (a) Point refinement rule with the weight α = 1 − nβ, where β =
1
n

[
5
8 −

( 3
8 +

1
4 cos 2π

n

)2]
and n is the valence of the control

vertex; and (b) Edge refinement rule.

Remark 4.2. We emphasize that the energy law (4.18) for the transformed system is exactly the same as the energy
law (3.10) for the original system in the time continuous case. In the following contents, we will develop the fully
discrete scheme for the new transformed system (4.11)–(4.16) according to the new energy dissipation law (4.18).

4.2. Subdivision-based IGA method

Subdivision-based IGA method can precisely represent the surface piecewisely by the limited form of the
subdivision mesh with the elegant isogeometric concept. Moreover, it has the flexibility of treating complex surface
models with any topology structure and the exactly expressible property for geometries which can be remained
unchanged under the parameterization. The refinement of the subdivision process is equivalent to the h-refinement of

URBS. Different from traditional spline descriptions, subdivision representations do not need complex cross-patch
ontinuity constraints and can model free-form surfaces with the structure of arbitrary topologies.

It is well known that the Loop subdivision is a simple and explicit algorithm. From the beginning of an initial
oarse mesh which is called as the control mesh, the resulting smooth free-form surface can be exactly represented
n a fixed and standard formation of bézier pieces of high order. We can create a refiner mesh of level l + 1 from

level l by the subdivision scheme through

pl+1
= Slpl , (4.26)

where P l and P l+1 denote the control points of the meshes of level l and l + 1, and Sl is the sparse matrix
representing the global subdivision operation. The entries of Sl are defined by the subdivision schemes and the
topology of the mesh. The Loop subdivision schemes are divided into the rules of the old point recomputation
and the edge point generation. The new position of the old control point with n valence is updated by the sum
of the old position with the weight α = 1 − nβ and all 1-ring surrounding control points with the weight
β =

1
n

[
5
8 −

( 3
8 +

1
4 cos 2π

n

)2
]

(see Fig. 4.1(a)). A new point on an edge is generated as the average of the four
adjacent points, where the averaging masks are given in Fig. 4.1(b). Repeated refinement leads to the hierarchical
and increasingly refined surface models which finally generate the limit surface with C1 smoothness.

Denote an initial control mesh Ω0
h , and we can obtain the hierarchic control meshes by use of the Loop subdivision

algorithm, named as Ω k
h , k = 0, . . . ,∞. A limit surface S can be achieved by an infinite subdivision procedure

as k → ∞. The patches of the hierarchic Loop subdivision surfaces are glued together parametrically and agree
with its limit surface except around the immediate neighborhood at the extraordinary points of the control mesh;
in such a neighborhood they join with the tangent continuity and interpolate the limit position of the extraordinary
points of the control mesh. An explicit form of the limit position of each control point is stated as the following

Lemma 4.1.

8
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Fig. 4.2. (a): Computation of a regular Loop subdivision patch. The shaded patch is the computable Loop subdivision patch with its
surrounding 12 control points, and (b): Computation of an irregular Loop subdivision patch. The control vertex denoted as “1” is an
extraordinary control point. Subdividing this patch once can generate three computable sub-patches and one uncomputable sub-patch. This
uncomputable patch can be repeatedly subdivided to generate more computable sub-patches.

Lemma 4.1. Let xk
0 be a control point of valence n on the mesh Ω k

h , and xk
j , j = 1, . . . , n, be its 1-ring neighbor

ontrol points. All these points converge to a single position

x̂0 = (1 − nl)xk
0 + l

n∑
j=1

xk
j , l =

1
n + 3/(8β)

, (4.27)

as the subdivision step k → ∞ (see [27] for the proof).

The hierarchic patches of the Loop subdivision surface are glued together C2 almost everywhere and are at
east tangent continuous near the extraordinary point of the control mesh, where the transitions between patches
re almost all parametric. Any points lying within a regular patch may be computed directly by use of the box
pline basis functions without any more subdivision, i.e., the regular patch is the polynomial of order 4 (quartic
ox-spline)

S(u, v) =

12∑
i=1

Bi (u, v)xk
i , (4.28)

where we use (u, v, 1 − u − v) as the barycentric coordinates of the parametric patch, xk
i are the corresponding

2-ring surrounding neighbor control points of the control mesh (See Fig. 4.2(a)), and Bi are the quartic box-splines.
or the case that the valence of at least one control point for the patch is not six, there has no explicitly computable
ormula for this triangular loop surface patch with an irregular topology structure. Fortunately, we can still use the
uartic box-spline form (4.28) to calculate the resulting subdivision surface patch through a fast algorithm proposed
y Stam [55]. The core idea is to subdivide repeatedly this patch until the position you need to calculate is included
n a quartic box-spline patch (See Fig. 4.2(b) and (c)).

The subdivision shape functions are the quartic box-splines, which possess the property of C1 continuity (and H 2

ntegrability). Therefore they can be naturally used to represent the solution of high-order PDE systems governing
he dynamical behaviors of complex geometries with any topological structure. The subdivision model provides the
ather elegant property of representing both the geometry and the physics of the complex geometry through the
ame mathematical description. Back to the difficulty of obtaining the reliable and the accurate evaluation of the
oop limit surface during the process of the finite element integration, it is feasible to compute the Loop basis

unctions and their derivatives at arbitrary parameter positions on the triangular patch. For the case of the regular
atch which means the valence of all control points of the triangular patch is six, the basis functions are the quartic
ox-splines. For the case of the irregular patch which means the valence of at least one point of the triangular patch
s not six, the patch consists of an infinite sequence of ever-smaller nested sub-patches resulting from the Loop
ubdivision, most of which are underlying quartic box-spline patches, therefore we can calculate the value at any

oint in the region except at its extraordinary control points.

9
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The Loop basis functions have the 2-ring of triangles surrounding the given control points as its natural support
et. The evaluation of the limit surface can be performed at some fixed parameter points (Gauss points) within
very limit patch. In the context of the finite element simulations, we only need to ensure that the quadratures
re computed to arrive at the necessary precision. Therefore, we only need to perform very limited subdivision
teps to make all of the hierarchical limit patches become computable quartic box-splines patches. To reduce the
omputation cost, we develop a simplified and generalized approach for adaptive discretization subdivision, whose
asic idea is to replace the refinement of mesh patches with the refinement of basis functions (see [32]).

The standard way of solving the governing equations is to discretize the variables by representing them as
he linear combinations of the finite element basis functions with compact supports. We demonstrate the unity of
mploying the Loop subdivision basis functions to represent the surface geometry and perform the finite element
imulation of the phase-field movement on the surface. Loop subdivision patches can exactly represent geometries
n the same way which is consistent with the concept of the isogeometric strategy. We denote the set of basis
unctions φ1, . . . , φn for the finite element function space H 2(Sh) where the control mesh Sh has n control points
1, . . . , xn . As described above, our basis functions result from the limit process based on the Loop subdivision
pproach. The solution surface S is exactly represented as the limit form through the Loop subdivision scheme,

S(x(u, v)) = S(x(u, v), y(u, v), z(u, v)) =

n∑
j=1

φ j (u, v)x j . (4.29)

This kind of basis functions also have the superior properties of the classical finite elements. First, they are
onnegative everywhere and positive around their corresponding control point because the weight coefficients of
he subdivision schemes are positive. Second, because the limit value at each control point x j is a linear summation
f itself and its one-ring neighboring control points, the support of each basis function has two-ring neighborhoods.
inally, the weight coefficients of all subdivision schemes are summed to one, therefore we have

∑m
j=0 φ j = 1.

.3. Fully discrete scheme

In this subsection, we design the fully discrete scheme for solving the transformed system (4.11)–(4.16). In what
ollows, denote the time step size as δt > 0 and tn

= nδt for 0 ≤ n ≤ N = [T/δt]. Take the test functions
h, ϑh, ξh, ζh and ςh ∈ H 2(Sh), which is our IGA finite element space induced by the limit form of Loop
ubdivision as described in Section 4.2.

Suppose φn
h , µn

h, ρn
h , ωn

h, U n
h , Qn and φn−1

h , µn−1
h , ρn−1

h , ωn−1
h , U n−1

h , Qn−1 for n ≥ 1 are known, we
ompute φn+1

h , µn+1
h , ρn+1

h , ωn+1
h , U n+1

h , Qn+1 by the following second-order backward difference formula:(
3φn+1

h − 4φn
h + φn−1

h

2δt
, θh

)
= −M1(∇sµ

n+1
h , ∇sθh), (4.30)(

µn+1
h , ϑh

)
= ϵ(∇sφ

n+1
h , ∇sϑh) + η1(φn+1

h , ϑh) + Qn+1(H∗

h U ∗

h , ϑh), (4.31)(
3ρn+1

h − 4ρn
h + ρn−1

h

2δt
, ξh

)
= −M2(∇sω

n+1
h , ∇sξh), (4.32)(

ωn+1
h , ζh

)
= η2(ρn+1

h , ζh) + Qn+1(R∗

hU ∗

h , ζh), (4.33)(
3U n+1

h − 4U n
h + U n−1

h

2δt
, ςh

)
=

1
2

Qn+1 (H∗

h φ∗

ht , ςh
)
+

1
2

Qn+1 (R∗

hρ
∗

ht , ςh
)
, (4.34)

3Qn+1
− 4Qn

+ Qn−1

2δt
= (H∗

h U ∗

h ,
3φn+1

h − 4φn
h + φn−1

h

2δt
) − (H∗

h φ∗

ht , U n+1
h ) (4.35)

+(R∗

hU ∗

h ,
3ρn+1

h − 4ρn
h + ρn−1

h

2δt
) − (R∗

hρ
∗

ht , U n+1
h ),

where⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ∗

h = 2φn
h − φn−1

h , ρ∗

h = 2ρn
h − ρn−1

h , U ∗

h = 2U n
h − U n−1

h ,

H∗

h = H (φ∗

h , ρ∗

h ), R∗

h = R(φ∗

h , ρ∗

h ),

φ∗
=

5φn
h − 8φn−1

h + 3φn−2
h , ρ∗

=
5ρn

h − 8ρn−1
h + 3ρn−2

h .

(4.36)
ht 2δt ht 2δt
10
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In the above design, the discretization approach we adopted is very simple where the linear part is treated
mplicitly, and the nonlinear part including the nonlocal variable Q uses the combination of explicit and implicit

methods, that is, in addition to the implicit processing of Q, all others are processed explicitly. The above scheme
seems to be a coupling type, however, we can apply the nonlinear property of the variable Q to construct the
following decoupling approach, shown in Section 4.3.1.

4.3.1. Decoupled type implementation
In this section, we introduce a nonlocal splitting method to obtain the decoupling implementation process for

the scheme (4.30)–(4.35).
Step 1: we use Qn+1 to split φn+1

h , µn+1
h , ρn+1

h , ωn+1
h and U n+1

h into the linear combination forms that read as⎧⎪⎪⎪⎨⎪⎪⎪⎩
φn+1

h = φn+1
1h + Qn+1φn+1

2h , µn+1
h = µn+1

1h + Qn+1µn+1
2h ,

ρn+1
h = ρn+1

1h + Qn+1ρn+1
2h , ωn+1

h = ωn+1
1h + Qn+1ωn+1

2h ,

U n+1
h = U n+1

1h + Qn+1U n+1
2h .

(4.37)

By applying the linear form given in (4.37), we can split the scheme (4.30)–(4.34) as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
3φn+1

1h − 4φn
h + φn−1

h

2δt
, θh

)
= −M1(∇sµ

n+1
1h , ∇sθh),(

µn+1
1h , ϑh

)
= ϵ(∇sφ

n+1
1h , ∇sϑh) + η1(φn+1

1h , ϑh),(
3ρn+1

1h − 4ρn
h + ρn−1

h

2δt
, ξh

)
= −M2(∇sω

n+1
1h , ∇sξh),(

ωn+1
1h , ζh

)
= η2(ρn+1

1h , ζh),

(4.38)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
3φn+1

2h

2δt
, θh

)
= −M1(∇sµ

n+1
2h , ∇sθh),(

µn+1
2h , ϑh

)
= ϵ(∇sφ

n+1
2h , ∇sϑh) + η1(φn+1

2h , ϑh) + (H∗

h U ∗

h , ϑh),(
3ρn+1

2h

2δt
, ξh

)
= −M2(∇sω

n+1
2h , ∇sξh),(

ωn+1
2h , ζh

)
= η2(ρn+1

2h , ζh) + (R∗

hU ∗

h , ζh),

(4.39)

(
3U n+1

1h

2δt
, ςh

)
=

(
4U n

h − U n−1
h

2δt
, ςh

)
, (4.40)(

3U n+1
2h

2δt
, ςh

)
=

1
2

(
H∗

h φ∗

ht , ςh
)
+

1
2

(
R∗

hρ
∗

ht , ςh
)
. (4.41)

he system (4.38) and (4.39) is easy to be solved because there are linear elliptic with constant coefficients. (4.40)
nd (4.41) are also very easy to be solved.

Step 2: By applying the values φn+1
h , ρn+1

h and U n+1
h obtained from (4.38)–(4.41), we update Qn+1 in (4.35)

hrough(
3

2δt
− γ2

)
Qn+1

=
1

2δt
(4Qn

− Qn−1) + γ1, (4.42)

where γ1 and γ2 are given as⎧⎪⎪⎨⎪⎪⎩
γ1 = (H∗

h U ∗

h ,
3φn+1

1h − 4φn
h + φn−1

h

2δt
) − (H∗

h φ∗

ht , U n+1
1h ) + (R∗

hU ∗

h ,
3ρn+1

1h − 4ρn
h + ρn−1

h

2δt
) − (R∗

hρ
∗

ht , U n+1
1h ),

γ2 = (H∗U ∗,
3φn+1

2h ) − (H∗φ∗ , U n+1) + (R∗U ∗,
3ρn+1

2h ) − (R∗ρ∗ , U n+1).

(4.43)
h h 2δt h ht 2h h h 2δt h ht 2h

11
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We need prove the solvability of (4.42) by showing 3
2δt − γ2 ̸= 0. First, by taking θh = µn+1

2h , ϑh =
3

2δt φ
n+1
2h and

ξh = wn+1
2h , ζh =

3
2δt ρ

n+1
2h in (4.39), we get

M1
∇sµ

n+1
2h

2
+

3ϵ

2δt

∇sφ
n+1
2h

2
+

3η1

2δt

φn+1
2h

2
+ M2

∇sw
n+1
2h

2
+

3η2

2δt

ρn+1
2h

2

= −(H∗

h U ∗

h ,
3φn+1

2h

2δt
) − (R∗

hU ∗

h ,
3ρn+1

2h

2δt
).

(4.44)

hen we set ςh = 2U n+1
2h in (4.41) to achieve3U n+1

2h

δt


2

= (H∗

h φ∗

ht , U n+1
2h ) + (R∗

hρ
∗

ht , U n+1
2h ). (4.45)

hus, we deduce −γ2 ≥ 0 by combining (4.44) and (4.45), which implies (4.42) is always solvable.
It can be seen that the computation of the above scheme is completely decoupled, and the nonlinear term does not

ntroduce any unnecessary iterations since one just needs to solve some elliptic equations with constant coefficients
t each time step.

.3.2. Energy stability
We show the unconditional energy stability of the discrete scheme (4.30)–(4.35) in the following Theorem 4.2.

heorem 4.2. The second-order discrete scheme (4.30)–(4.35) is unconditionally energy stable, i.e., satisfies the
ollowing discrete energy dissipation law:

Ẽn+1
− Ẽn

δt
≤ −M1∥∇sµ

n+1
h ∥

2
− M2∥∇sω

n+1
h ∥

2, (4.46)

here, for an integer k ≥ 0, the discrete energy Ẽk is defined as

Ẽk
=

ϵ

4
(∥∇sφ

k
h∥

2
+ ∥2∇sφ

k
h − ∇sφ

k−1
h ∥

2) +
η1

4
(∥φk

h∥
2
+ ∥2φk

h − φk−1
h ∥

2)

+
η2

4
(∥ρk

h∥
2
+ ∥2ρk

h − ρk−1
h ∥

2) +
1
2

(∥U k
h ∥

2
+ ∥2U k

h − U k−1
h ∥

2)

+
1
4

(|Qk
|
2
+ |2Qk

− Qk−1
|
2
) −

1
2
.

(4.47)

Proof. By taking θh = −µn+1
h in (4.30), we get

− (
3φn+1

h − 4φn
h + φn−1

h

2δt
, µn+1

h ) = M1∥∇sµ
n+1
h ∥

2. (4.48)

By taking ϑh =
3φn+1

h −4φn
h +φn−1

h
2δt in (4.31) and then performing the integration by parts, we derive(

µn+1
h ,

3φn+1
h − 4φn

h + φn−1
h

2δt

)
=

ϵ

4δt
(∥∇sφ

n+1
h ∥

2
− ∥∇sφ

n
h ∥

2
+ ∥2∇sφ

n+1
h − ∇sφ

n
h ∥

2

− ∥2∇sφ
n
h − ∇sφ

n−1
h ∥

2
+ ∥∇sφ

n+1
h − 2∇sφ

n
h + ∇sφ

n−1
h ∥

2)

+
η1

4δt
(∥φn+1

h ∥
2
− ∥φn

h ∥
2
+ ∥2φn+1

h − φn
h ∥

2

− ∥2φn
h − φn−1

h ∥
2
+ ∥φn+1

h − 2φn
h + φn−1

h ∥
2)

+ Qn+1(H∗

h U ∗

h ,
3φn+1

h − 4φn
h + φn−1

h

2δt
),

(4.49)

where the following identity is used

2(3a − 4b + c, a) = a2
− b2

+ (2a − b)2
− (2b − c)2

+ (a − 2b + c)2. (4.50)

y taking ξh = −ωn+1
h in (4.32), we get

− (
3ρn+1

h − 4ρn
h + ρn−1

h , ωn+1) = M2∥∇sω
n+1

∥
2. (4.51)
2δt h h

12
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By taking ζh =
3ρn+1

h −4ρn
h +ρn−1

h
2δt in (4.33) and using the identity (4.50), we achieve

(ωn+1
h ,

3ρn+1
h − 4ρn

h + ρn−1
h

2δt
) =

η2

4δt
(∥ρn+1

h ∥
2
− ∥ρn

h ∥
2
+ ∥2ρn+1

h − ρn
h ∥

2

− ∥2ρn
h − ρn−1

h ∥
2
+ ∥ρn+1

h − 2ρn
h + ρn−1

h ∥
2)

+ Qn+1(R∗

hU ∗

h ,
3ρn+1

h − 4ρn
h + ρn−1

h

2δt
).

(4.52)

By taking ςh = 2U n+1
h in (4.34) and using (4.50), we have

1
2δt

(∥U n+1
h ∥

2
− ∥U n

h ∥
2
+ ∥2U n+1

h − U n
h ∥

2
− ∥2U n

h − U n−1
h ∥

2

+ ∥U n+1
h − 2U n

h + U n−1
h ∥

2) = Qn+1(H∗

h φ∗

ht , U n+1
h ) + Qn+1(R∗

hρ
∗

ht , U n+1
h ).

(4.53)

By multiplying (4.35) with Qn+1 and using (4.50), we obtain

1
4δt

(|Qn+1
|
2
− |Qn

|
2
+ |2Qn+1

− Qn
|
2
− |2Qn

− Qn−1
|
2
+ |Qn+1

− 2Qn
+ Qn−1

|
2
)

= (H∗

h U ∗

h ,
3φn+1

h − 4φn
h + φn−1

h

2δt
) − (H∗

h φ∗

ht , U n+1
h )

+ (R∗

hU ∗

h ,
3ρn+1

h − 4ρn
h + ρn−1

h

2δt
) − (R∗

hρ
∗

ht , U n+1
h ).

(4.54)

y combining (4.48)–(4.54), we get
ϵ

4δt
(∥∇sφ

n+1
h ∥

2
− ∥∇sφ

n
h ∥

2
+ ∥2∇sφ

n+1
h − ∇sφ

n
h ∥

2
− ∥2∇sφ

n
h − ∇sφ

n−1
h ∥

2

+∥∇sφ
n+1
h − 2∇sφ

n
h + ∇sφ

n−1
h ∥

2)
+

η1

4δt
(∥φn+1

h ∥
2
− ∥φn

h ∥
2
+ ∥2φn+1

h − φn
h ∥

2
− ∥2φn

h − φn−1
h ∥

2
+ ∥φn+1

h − 2φn
h + φn−1

h ∥
2)

+
η2

4δt
(∥ρn+1

h ∥
2
− ∥ρn

h ∥
2
+ ∥2ρn+1

h − ρn
h ∥

2
− ∥2ρn

h − ρn−1
h ∥

2
+ ∥ρn+1

h − 2ρn
h + ρn−1
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h ∥

2
− M2∥∇sω

n+1
h ∥

2.

(4.55)

inally, we obtain the desired result (4.46) after dropping some positive terms of (4.55). □

. Numerical examples

In this section, we carry out some numerical simulations to validate the accuracy, the efficiency, and the energy
tability of the proposed scheme. The surface of the performed numerical experiments is generated by the limit
rocess of the proposed Loop subdivision. Similar to the classical finite element method, the Gaussian integral is
alculated for each patch of the triangular discretization of the limit surface. The linear system of the fully discretized
cheme for the equation is highly sparse, and we need a robust iterative method to solve them. In this paper, we
se the GMRES solver, and we set the tolerance small enough to obtain the proper convergence of the proposed
cheme.

.1. Convergence test

We first verify the convergence rate of the developed numerical scheme. The computational domain is set to be
spherical surface with radius 1, i.e.,√

x2 + y2 + z2 = 1}. (5.1)
S = {(x, y, z) :

13
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Fig. 5.1. Convergence rate of the surfactant system on the sphere. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

e set the model parameters as{
M1 = M2 = 2.5e − 3, ε = 1e − 4, ϵ = 1.2e − 2,

β = 1e − 1, η1 = 4, η2 = 4, B = 1e5,
(5.2)

nd the initial condition as{
φ0 = 0.1 cos(2x) + 0.2 cos(y),
ρ0 = 0.4 sin(2x) + 0.3 cos(y).

(5.3)

To obtain the convergence rate, a series of uniform meshes Shi from coarse to refined are performed, where the
values of the vertex valence are in [4, 6], and hi is the mesh size. Since the subdivision-based IGA method is also
econd-order accurate for the spatial grid size (cf. [31]), we set the time step size δti = Chi for the i th level surface

mesh Shi , where C is a given constant between 0 and 1. Since the exact solutions are not known, we choose the
olutions obtained with a very fine mesh size computed as the benchmark solutions, which are treated approximately
s the exact solutions to get the numerical errors. The L2 errors of the two variables φ and ρ are plotted in Fig. 5.1

whent = 2.56 × 10−1, where the total numbers of patches/points for these surface models are 512/258, 2048/1026,
8192/4098, 32768/16386, and the corresponding mesh sizes hi = 0.2543, 0.1169, 0.0622, 0.0326, respectively.
n Fig. 5.1, we set the model parameter α = 2.5e − 3 and 4e − 3. We observe that the scheme is second-order
ccurate for space.

.2. Spinodal decomposition

In this section, we carry out the phase separation (spinodal decomposition) simulations for the surfactant model
n three different surface models. We set the initial conditions as{

φ0 = φ̄0 + 0.001rand(x, y, z),
ρ0 = 0.2 + 0.001rand(x, y, z),

(5.4)

here the term rand(x, y, z) is the random number in [−1, 1] which has zero mean, and φ̄0 will be adjusted.
The first surface domain is set as a closed sphere with a unit radius, which is defined as

S1 = {(x, y, z) : x2
+ y2

+ z2
= 1} (5.5)

ith 131 072 Loop limit subdivision patches by use of 65 538 control points. The span of the vertex valence is 4
o 6. We carry out two simulations with different initial values of φ̄ = 0.0 and φ̄ = 0.3, respectively. The model
0 0

14
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Fig. 5.2. Snapshots of the phase-field variables φ and ρ on the spherical surface S1 for the example of the initial value φ̄0 = 0, where (a)
s φ and (b) is ρ, respectively. For each panel, snapshots are taken at t = 0.5, 1.5, 4, 16, 55 from left to right.

Fig. 5.3. Snapshots of the phase-field variables φ and ρ on the spherical surface S1 for the example of the initial value φ̄0 = 0.3, where
(a) is φ and (b) is ρ, respectively. For each panel, snapshots are taken at t = 0.5, 1.5, 4, 16, 55 from left to right.

arameters are{
M1 = M2 = 2.5e − 3, ε = 1e − 4, ϵ = 1.2e − 2,

α = 2.5e − 3, β = 1e − 1, η1 = 4, η2 = 4, B = 1e5,
(5.6)

nd δt = 1 × 10−3. In Fig. 5.2, we show the snapshots of the coarsening dynamics with φ̄0 = 0.0 that implies the
olume of the two fluid components is the same. Initially, the two fluid components are uniformly mixed, and over
ime, the two phases begin to separate, eventually forming two distinctly separated regions. From the evolution of ρ

ver time, we can observe that the higher concentration of the surfactant is located at the interface of the two fluids.
imilarly, the dynamic evolution process of φ and ρ for φ̄ = 0.3 is presented in Fig. 5.3. Since the volume of the
0

15
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Fig. 5.4. Time evolution of the total free energy on the spherical surface S1 given in (5.5) with (a) φ̄0 = 0.0 and (b) φ̄0 = 0.3.

wo fluid components is significantly different, it can be seen that the fluid with the smaller volume will aggregate
nto smaller droplets and eventually combine into larger droplets. For the above two simulations, we plot the time
volution of the free energy in Fig. 5.4, and we can see that the energy in both cases decays monotonically with
ime.

The second numerical example is a ring within the domain

S2 = {(x, y, z) : x ∈ [−0.54, 0.65], y ∈ [−0.61, 0.61], z ∈ [−0.25, 0.25]}. (5.7)

he surface S2 is discretized by 102 400 Loop limit subdivision patches with 51 200 control points, and the span
f the vertex valence is 4 to 8. The parameters are given as{

M1 = M2 = 3 × 10−3, ε = 1 × 10−4, ϵ = 1 × 10−2,

α = 3 × 10−3, β = 1.5 × 10−1, η1 = 4, η2 = 4, B = 9 × 103.
(5.8)

We use the time step size δt = 5 × 10−4 to perform the simulations. The snapshots of the dynamical behaviors
ith the two values of the initial conditions φ̄0 = 0.0 and φ̄0 = 0.3 are shown in Figs. 5.5 and 5.6 respectively. We

an get their final equilibrium state at around t = 65. For the evolution of the values φ and ρ, we observe similar
henomena to the first sphere example S1.

We perform the third simulation for a complex bunny surface model within the domain

S3 = {(x, y, z) : x ∈ [−9.12, 6.27], y ∈ [−3.38, 18.72], z ∈ [−6.49, 6.08]}, (5.9)

hich is discretized with 144 046 Loop limit subdivision patches by use of 72 047 control points, and the span of
he vertex valence is [3,10]. We choose the time step size δt = 5 × 10−3 and the parameters are set as{

M1 = M2 = 3 × 10−3, ε = 1 × 10−4, ϵ = 1 × 10−2,

α = 3 × 10−3, β = 1.5 × 10−1, η1 = 4, η2 = 4, B = 1 × 104.
(5.10)

napshots of the profile for the phase-field variable φ and the concentration variable ρ under the two values of the
nitial conditions φ̄0 = 0.0 and φ̄0 = 0.3 are shown in Figs. 5.7 and 5.8 respectively, where the final equilibrium is

chieved at around t = 75.
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Fig. 5.5. Snapshots of the phase-field variables φ and ρ on the ring surface S2 for the example of the initial value φ̄0 = 0, where (a) is φ

nd (b) is ρ, respectively. For each panel, snapshots are taken at t = 0.5, 1.5, 4, 16, 65 from left to right.

Fig. 5.6. Snapshots of the phase-field variables φ and ρ on the ring surface S2 for the example of the initial value φ̄0 = 0.3, where (a) is
and (b) is ρ, respectively. For each panel, snapshots are taken at t = 0.5, 1.5, 4, 16, 65 from left to right.

. Conclusions

In this paper, we construct a fully discrete strategy for the binary fluid-surfactant system on complex surfaces.
he spatial discretization adopts the recently developed subdivision-based IGA method, where the advantages of

he subdivision-based IGA method include the flexibility for complex surfaces with arbitrary topology structure and
xactly expressible property for geometries which can be remained unchanged throughout the h-refinement process.
he new EIEQ method for time discretization enables us to obtain a fully decoupled and energy stable linear scheme.
he novel stability technique possesses the high efficiency through transforming the original nonlinear system into
17
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(

Fig. 5.7. Snapshots of the phase-field variables φ and ρ on the bunny surface S3 for the example of the initial value φ̄0 = 0.0. Subfigure
a) to (f) corresponds to the computation time at t = 0.5, 2, 4, 18, 45, 75 respectively, where the upper row is φ and the down row is ρ.

only some elliptic equations with constant-coefficient to be solved at each time step. We also prove the unconditional
energy stability and carry out various numerical examples to demonstrate the energy stability and the accuracy of
the developed numerical scheme. Moreover, it is remarkable that the developed spatiotemporal hybrid algorithm can
be extended to various gradient flow problems with multiple variables and/or complex nonlinearities on complex
surfaces.
18
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(

Fig. 5.8. Snapshots of the phase-field variables φ and ρ on the bunny surface S3 for the example of the initial value φ̄0 = 0.3. Subfigure
a) to (f) corresponds to the computation time at t = 0.5, 2, 4, 18, 45, 75 respectively, where the upper row is φ and the down row is ρ.
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