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Animation Analytics in an Interactive Textbook for
Material and Energy Balances

Abstract

Interactive textbooks generate big data through student reading participation, including
animations, question sets, and auto-graded homework. Animations are multi-step, dynamic
visuals with text captions. By dividing new content into smaller chunks of information, student
engagement is expected to be high, which aligns with tenets of cognitive load theory.
Specifically, students’ clicks are recorded and measure usage, completion, and view time per
step and for entire animations. Animation usage data from an interactive textbook for a chemical
engineering course in Material and Energy Balances accounts for 60,000 animation views across
140+ unique animations. Data collected across five cohorts between 2016 and 2020 used various
metrics to capture animation usage including watch and re-watch rates as well as the length of
animation views. Variations in view rate and time were examined across content, parsed by book
chapter, and five animation characterizations (Concept, Derivation, Figures and Plots, Physical
World, and Spreadsheets). Important findings include: 1) Animation views were at or above
100% for all chapters and cohorts, 2) Median view time varies from 22 s (2-step) to 59 s (6-step)
- a reasonable attention span for students and cognitive load, 3) Median view time for animations
characterized as Derivation was the longest (40 s) compared to Physical World animations,
which resulted in the shortest time (20 s).

Introduction and Background

Internet access makes viewing information on virtually any topic available to billions of people
across the globe. Advancements in affordable screens and devices enabled high quality images,
animations, and high-definition video on topics from entertainment to household repair
demonstrations. Specifically in higher education, these technological advancements are changing
the traditional 20th century textbook and lecture courses into active student instruction [1].
Undergraduate students entering engineering programs in the 21st century may also be exposed
to interactive instruction and are inclined to prefer digital technology for instruction [2]. These
students categorized as the “Net Generation”, “Millennial students”, or “digital natives” have an
inclination for learning through visual means [2, 3]. Educational animations provide one such
platform to explain, present, and scaffold learning as “chunks” of new material to learn [4, 5].

Animations have been recognized as a promising tool to bring visual and textual information
together to present instructional material [6]. On one hand, computer-generated animations used
for online gaming, films, cartoons, and broadcast media have emerged primarily for
entertainment. On the other hand, educational animation create projections of phenomena for
learning [7]. While some early research in animation instruction failed to provide positive
evidence for their use [8, 9], further research applying cognitive load theory to educational
animations resulted in positive learning gains with educational animations [6, 10-16].

Interactive textbooks enable students to see and use animations as a form of active learning [17-
19]. Animations provide a self-regulated learning environment where the students manipulate



and control the animation progression. Research has shown that control of content presentation
improves student learning and retention to match cognitive load, specifically germane cognitive
load, and improves student learning and retention [1, 4, 8, 10, 14, 18, 20-22]. An animation is a
sequence of visual steps that introduce and move images, figures, and text to explain or convey a
concept. Educational animations are designed to provide information in a multi-sensory format
[8, 10, 14, 23]. Multi-step animations divide content into small chunks of information that
engage the student and require attentiveness. Animation re-watch may be initiated at any time,
which may be analogous to online videos that are re-viewed thousands or millions of times [8].
Overall, animations provide a promising pedagogical tool that will be examined using cognitive
load as the primary educational framework.

Features of Educational Animations

Static images in the form of tables, figures, and graphs presented in engineering textbooks rely
on text that supports explanations and derivations of the technical content. Flipping pages
between the text and these images can be distractive for the learning process because the
information is dispersed. While the information may be presented in the text along with the
associated images, the information is not guided and may require significant cognitive load to
connect visuals with concepts conveyed in text.

Educational animations research on learning and instruction applies the cognitive load theory
framework to design animations for learning by reducing the cognitive load on working memory.
Multimodal learning, or multimedia learning, is defined as learning through the use of pictures
and words that construct mental representations for learning [12]. Principles of reflection,
feedback, and pacing apply the cognitive load theory of multimodal learning environments for
educational animation design [17, 24]. Text (words) and visual (pictures) appearing together
create instructional media for integrating, organizing, and retrieving long term memory [17].

Research in cognitive load theory presents three categories of cognitive load on the working
memory [24]. Intrinsic cognitive load is defined by learning task complexity and interactivity;
Extraneous cognitive load involves the tasks that cause unnecessary interaction of the senses and
may inhibit learning; Germain cognitive load is the remaining working memory available for
learning. Thus, for educational purposes, animations must consider modality that use senses and
processing abilities of the memory to support learning. Multimodal principles are applied to
animations design in an interactive textbook explored here.

The Material and Energy Balance (MEB) zyBook interactive textbook contains animations that
were designed for educational purposes [18, 25]. MEB animations apply cognitive load theory
with small chunks of material to build new ideas, concepts, or equations. Multiple student-
initiated steps using clicks advance through the animation sequence. User interactivity and the
ability of the digital tool to capture user device activity generates big data [4]. Specifically, the
data generated from an interactive textbook identifies student participation through “learning by
doing”. Analysis of big data generated from animation usage in an engineering interactive
textbook provides a method of understanding learning by doing methods.



Few research papers investigate animation duration and its relationship with usage. Thus, the
research questions will quantify animation views and view time as a function of cohort, content,
and animation type. This paper expands upon the work in progress contribution in 2021 [26].
One goal for studying student usage and engagement is the opportunity to design better digital
tools for students in the future.

Research questions

By examining 5 cohorts of interactive textbook data including 60,000 animation views, five
research questions will be addressed.

1) Does animation watch rate vary by course content?

2) How does animation view time vary by cohort?

3) How does animation view time vary by step count?

4) How does animation view time vary by animation view attempt?

5) If animations are characterized by type, does animation view time vary by animation

type?
Materials and Methods

The research is based on data from 2016 through 2020 cohorts gathered from the interactive
textbook used for a Material and Energy Balance (MEB) chemical engineering course. Student
participation data are generated by clicks while progressing through different assignments,
including reading participation, animation views, and challenge activities (a form of auto-graded
homework). The animations are spread across almost every section and chapter (Table 1), and
over 130 animations were available for the last three cohorts. In general, the duration of an
animation is between 20 and 60 s depending on the number of steps.

Table 1. Animation count in Material and Energy Balances zyBook by chapter and cohort.

Chapter | Chapter title 2016 | 2017 | 2018 | 2019 | 2020
1 Quantities, units, calculations 9 9 9 9 9
2 Material balances 19 19 19 19 19
3 Reacting systems 11 13 13 13 13
4 Solids, liquids, and gases 9 10 11 11 14
5 Multiphase systems 8 13 13 13 15
6 Energy balances 8 8 15 15 15
7 Reaction and energy balances 5 7 7 7
8 Transient systems 3 3 4 4
9 Spreadsheets 0 0 41 41 47

Total animations=| 72 80 132 132 143

The MEB course was taught at a public university, and the size of the five cohorts varied from
93 to 104 students. Students were primarily in their first year of college majoring in chemical
engineering or environmental engineering with approximately 60% male and 40% female [4].
Reading participation includes clicks for animation views, the focus here, as well as learning



questions. Reading participation has been discussed previously with median reading participation
over 90% [25, 27, 28]. Auto-graded online homework in the zyBook is outside the scope of this
paper [4, 25].

While the course applies active learning in different ways, the focus here is on analytics related
to animation usage. Specific to animations, each click was uniquely recorded. Thus, each step of
an animation is watched, and the length of time watching is the difference between time stamps.
One animation titled Finding bubble and dew points on a P-xy diagram (see Appendix) is an
example of an animation frequently re-watched by students and includes a screenshot of the
sequence of steps. Over 60,000 completed animation views are analyzed (Table 2). Two
limitations are noted. First, the analysis does not investigate partial views — many animations
have 4 to 6 steps and re-watching some steps may occur. Secondly, animation views do not
account the length of time watching an animation or how long students may reflect after
individual steps.

Table 2. Animation views in Material and Energy Balances zyBook by chapter and cohort. View
rounded to nearest 100 views for easier readability.

Chapter | Chapter title 2016 | 2017 2018 2019 2020 Sum

1 Quantities, units, | 1264 | 900 | 1000 | 1000 | 1000 | 5600
calculations

2 Material balances | 2500 | 1800 2000 2100 2000 10400

3 Reacting systems 1300 | 1500 1400 1500 1500 7200

4 Solids, liquids, 1000 | 1000 | 1200 | 1200 | 1500 | 5900
and gases

5 Multiphase 1000 | 1300 | 1400 | 1500 | 1500 | 6700
systems

6 Energy balances 800 800 1600 1700 1600 6500

7 Reaction and 500 | 500 | 700 | 700 | 700 | 3100
energy balances

8 Transient systems | 300 300 400 400 400 1800

9 Spreadsheets 0 0 4200 4200 4600 13000

Total a"'::&‘:‘: 9100 | 8100 | 13900 | 14300 | 14800 | 60200

Evaluating the time spent by students to complete watching or re-watching animations from
2017 through 2020 cohorts was compiled and used for answering the research questions. 2016
was removed from watch time analysis because a 2X speed feature was added in 2017. Thus,
watch times in 2016 were different than the other four cohorts. Maximum view time limitation
for analysis is 180 s for all animations. This time limit was applied to remove cases where a
student may be interrupted by another task during an animation and then resume the animation at
a later time. Also, the time that a student spends viewing an animation on the last step after the
actions complete is unknown.



An example 4-step animation sequence shows all the steps with the text and figure progress
(Appendix A-1). Other examples are shown as completed animations of different animation
types (Appendix A-2). In brief, an animation starts as a static image with a “Start” button. Once
started, the animation performs the actions of Step 1, usually the final static image is removed in
Step 1 and parts of the content reappear. An arrow to the right of the step numbers appears when
each step is complete. Clicking the arrow continues the animation and builds on the previous
steps to completion. The final step completes construction of the initial static image, and a
completed view is recorded. A subsequent watching is called re-watch and may be initiated at
any time, and student can re-watch animations as often as they like during the semester.

Animation usage data analysis was done using spreadsheet functions, pivot tables, or statistical
analysis using Python. Python and several Python libraries were used for analysis of the
timestamp data. The Pandas library was used to calculate step times as the difference between
the logged events for each student on each animation [29]. View time was calculated as the sum
of a student’s step times from the “start clicked” event to the “animation completely watched”
event. The animation view time will be analyzed by aggregate (all cohorts), year, chapter, and
total steps in an animation.

Metric Definitions
Definitions of key terms include:

Animation Views (Usage): Animation view accounts for the animation view data and does not
consider the time spent watching or re-watching the animations. Completed animation views are
logged when a student has completed all the animation steps. Animation views when reported as
a percentage account for student withdrawal, so View (%) = Completed views (#)/students
currently enrolled (#)x 100.

Animation View Time: Animation view time accounts for the time students spend watching,
reflecting upon, or re-watching each animation step and animations as a whole. Each step has a
minimum duration for actions to occur. After actions cease, students may reflect or immediately
click to initiate the next step. First animation view time quantifies the first completed view for
each student.

Animation Characterization: Defines distinct animation content. The characterization
descriptions (Table 3) were defined by two of the authors. This limitation is noted and assigning
characteristics by other subject matter experts is a plan for future work.



Table 3. Animation characterizations and abbreviations.

Abbreviation | Description of Animation Characterization Content
C Conceptual: present conceptual thought or ideas dynamically.
D Derivation: present equations or calculations based on first principles
in a constructive sequence
FP Figures/Plots: construct information previously presented as a static
table or chart
PW Physical World: animate how a system or process works
SS Spreadsheet: demonstrate cell formatting, keystrokes, functions, and
formulas common across spreadsheet applications and platforms

Results and Discussion

Interactive textbook usage data from five cohorts includes 60,000 animation views and will be
used to answer the five research questions pertaining to animation watch rate and view time
across several cohorts.

RQ1. Does animation watch rate vary by course content?

Animation views across the five cohorts were aggregated as the variations were not significant.
Aggregated animation views by chapter were generally over 100% (Figure 1). Average
animation views were 110% across five cohorts. Thus, about 10% of animation views were
students re-watching the course content. While Chapters 1 to 8 were covered in order, Chapter 9
covering spreadsheets is dispersed throughout the semester. While views declined across the
semester from 130% (Chapter 1) to 107% (Chapter 6) to 100% (Chapter 8), the engagement was
still much higher than static textbooks. Static textbook reading rates are normally reported
between 20% and 50% [28, 30]. Chapter 8 covers transient systems, which was only assessed
with a single quiz and not covered on the final exam. Thus, a lower animation usage of 100% for
Chapter 8 aligns with the emphasis within the course.

-~ 150

1 2 3 4 5 6 7 8 9

Chapter in Material and Energy Balances zyBook

-
o
o

Animation Views (%
[$)]
o

Figure 1. Animation views by chapter of the Material and Energy Balances zyBook. Average and
standard deviation aggregated across five cohorts.



Animation re-watch views by chapter (Figure 1) are generally 0% to 15%. However, re-watch of
28% in Chapter 1 and 19% Chapter 3 were observed. Early semester reading and homework
assignments are generally not heavy, so students may have more time and interest in re-watching
the material due to the new format and novelty of the zyBook. Re-watching animations in
Chapter 3 is likely related to the content, i.e., reacting systems. While reacting system material
balances are introduced in Chapter 3, reacting systems with energy balances are added later in
the semester with Chapter 7. Thus, details related to yield, selectivity, conversion, etc. are needed
for solving reacting systems at two distinct points in the semester. Chapter 9’s content related to
spreadsheets was introduced in 2018 and re-watch views range between 1 and 4%; many
students are digital natives who have used spreadsheets for years before entering the university.
Other analytics related to auto-graded problems on the topic of spreadsheets was recently
published elsewhere [31].

Two limitations are noted. First, the analysis does not investigate partial views — many
animations have 4 to 6 steps and re-watching some steps is likely. Secondly, animation views do
not account the length of time watching an animation or how long students may reflect after
individual steps. Animation view time is further investigated by the next four research questions.

RQ2. How does animation view time vary by cohort?

First animation view times changed little from cohort to cohort (Figure 2). The 1st quartile
represented the fastest quarter of the cohort took ~20 s to watch an animation, while the 3rd
quartile or the slowest quarter of animation watchers took between 45 and 47 s. The median was
~30 s for all cohorts when aggregating all of the animations across the entire book. The view
time between cohorts shows statistical similarity using ANOVA analysis. Here, the aggregated
MEB animation view times by cohort provide a benchmark for animation duration. Animation
speed is not addressed in this contribution and may be an area for further research. The literature
identifies slow animation speeds having negative student feedback and wastes time [32]. Overall,
the length of animation viewing is similar to observations of instructional videos, which ranged
from 5 s to 12 min [33-35].
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Figure 2. First animation view time for all animations as a function of cohort.
RQ3. How does animation view time vary by step count?

Animations have various step counts (Table 4); steps are generally based on the number of
chunks that an expert author believes a learner needs to build new knowledge and alignment with
cognitive load theory. Step counts of 2, 3, and 4 animation steps are the most common
accounting for 83% of the animations. While the author creating the animations believes that
each step is appropriate, animation view time may provide a learning analytic to quantify
readers’ attention span. For example, if too many actions occur in one step, do learners re-watch
immediately before moving on could be a future research question?

Table 4. Number of animations by step count for 2020 cohort.

Steps | Animations

37
37
42
16
7
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Figure 3. First animation view time for all animations as a function of animation step count.

The median view time increased with the number of steps: 2 step (17 s); 3-step (27 s); 4-step (37
s); S-step (46 s); 6-step (58 s) (Figure 3). View time quantified only first completed view. Thus, a
linear trend of the median view time with a slope of 10 s/step was measured across the
animations in aggregate. Taking one minute or less to completely watch an animation generally
aligns with trends in web analytics, i.e., shorter videos normally have more completed views. In
addition, the linear trend through the 3" and 1% quartiles are 13 s/step and 7 s/step, respectively,
indicating a divergence in student reflection time on longer animations. The larger slope for the
3 quartile view time indicates that some students reflect more on higher step count animations,
which may be worth further investigation related to chunking and cognitive load.

RQ4. How does animation view time vary by animation view attempt?

Animation view time decreases with each subsequent completed view (Figure 4). The median
animation view time declines from 29 to 18 to 8 s between first, second, and third views. The 1%
quartile view time decreased from 20 s for the first view to 3 s for both second and third views.
Therefore, a fraction of the students re-watch the entire animation in the minimum possible time
and do not reflect on any specific step. The 3™ quartile view time declines a small amount
between the first and second views (45 to 40 s) and a much larger decrease of 20 s between the
second and third views. Thus, some students may be earnestly re-watching most of the steps
during a second view but focusing on fewer concepts during a third view.
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Figure 4. Animation view time for all animations as a function of attempt.

One limitation of view time analytics is that reflection time beyond the minimum time for each
step to complete is not quantified. Also, examining view times for the entire animation does not
identify specific steps that students spend the most time reflecting upon. Finally, the amount of
time that a student reflects after the final step is completed is unknown and only recorded when
the next learning activity is initiated.

RQS5. If animations are characterized by type, does animation view time vary by animation
type?

Distinguishing animations by type instead of content provides another perspective on the view
analytics. Five characterizations show a distribution of animation type in the MEB zyBook
(Table 5). Noting that not all animations were available for all cohorts (Table 1), Figures and
Plots is the most common characterization. All five categories accounted for at least 16 different
animations.
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Table 5. Number of animations for the 2020 cohort by characterization.

Characterization Animations
C - Conceptual 28
D - Derivation 27
FP - Figures & Plots 28
PW - Physical World 30
SS - Spread Sheet 30
140
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Figure 5. First animation view time for all animations as a function of animation
characterization.

First animation view times by characterization (Figure 5) shows that Derivations (D) animations
have a median watch time of 41 s, which is twice as long as the shortest median view time for
Physical World (PW) animations (20 s). Concept (C), Figures and Plots (FP), and Spreadsheet
(SS) animations have median view time around 30 s. The shorter view times for the Physical
World animations may be related to the learners being comfortable with explanation of
equipment and physical process. The 3rd quartile for Derivation animations is 60 s, which is
twice the median view time for all animations. The 1 quartile view time of 29 s for Derivation
animations matches the median of the other animations, which is an interesting finding that may
be related to the number of animations steps as well as characterization. Thus, further work into
animation characterization should normalize view time by the number of animation steps.

Conclusions

Animation watch rate in an interactive textbook for a material and energy balances course
revealed high student usage. Reading assignments introduce new information to students, and
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interactive textbooks allow reading assignments with animations to be an active and graded
activity. Educational animations apply cognitive load theory that divide engineering concepts
into chunks that can help learners. Using an interactive textbook containing over 140 animations
across five cohorts generated over 60,000 animation views. Animation views of 100% or higher
were observed across content, animation type, and cohort. This high engagement is a positive
finding since textbook reading in higher education is significantly lower and has declined over
many years [30]. Additional animation views do not help a students’ grade, so a re-watch rate of
10% indicated student self-motivation and interest in learning. Since animations considered
cognitive load theory when authoring, these interactive tools appear to provide a viable
educational tool for presenting engineering topics.

Median view time across four cohorts and all animations was 30 s, which is a reasonable time for
the average human’s attention span. Animation re-watch may be more likely when students
know that watching an animation will take one minute or less in most cases. The median first
animation view time by chapter ranges from 22 to 42 s, which shows that content is not a
significant factor in increasing view times. Median view time increased linearly with step count
increasing 10 s per step. Median animation view time declined from 29 s (1% view) to 18 s (2™
view) to 8 s (3™ view). Since repetition is a best practice of learning, even shorter view times
may be beneficial for learning. Finally, view time by characterization showed that Derivation
animations has the longest median time of 41 s, which is twice as long as view time for Physical
World animations at 20 s; Figures and Plots, Conceptual, and Spreadsheet animations’ watch
times were in between these values.

While some limitations of this work were noted, such as not measuring time-on-task. The median
animation view times between 20 and 60 s seemed reasonable to retain student attention,
however, a thorough evaluation of the duration and attention span could be an area of further
study. Cognitive load design was considered by partitioning animations into logical chunks of
information, but no assessment has been conducted about chunking to promote germane
cognitive load.

Overall, examining learning analytics related to animations merits further investigations to
overcome limitations of the results presented here. Normalizing animation views and view time
by step count may provide new insights across content and animation characterization, which
should be the subject of future research.
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Appendix

Screenshots of animations statically capture a sequence of steps for an animation characterized
as FP (Figure A-1) as well as one screenshot from an animation representing the other four
characterizations (C, D, PW, SS) (Figure A-2). The step counts can be determined from the
number of captions in Figure A-2.
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Figure A-1. Animation titled Finding Bubble and Dew Points on a P-xy Diagram. The animation
includes four sequential steps and is characterized as Figures & Plots (FP).
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Figure A-2. Four animations representing characterizations; Conceptual C (top left), Spreadsheet
SS (top right), Physical World PW (bottom left), and Derivations D (bottom right).
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