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Animation Analytics in an Interactive Textbook for 
Material and Energy Balances 

 
 
Abstract 
 
Interactive textbooks generate big data through student reading participation, including 
animations, question sets, and auto-graded homework. Animations are multi-step, dynamic 
visuals with text captions. By dividing new content into smaller chunks of information, student 
engagement is expected to be high, which aligns with tenets of cognitive load theory. 
Specifically, students’ clicks are recorded and measure usage, completion, and view time per 
step and for entire animations. Animation usage data from an interactive textbook for a chemical 
engineering course in Material and Energy Balances accounts for 60,000 animation views across 
140+ unique animations. Data collected across five cohorts between 2016 and 2020 used various 
metrics to capture animation usage including watch and re-watch rates as well as the length of 
animation views. Variations in view rate and time were examined across content, parsed by book 
chapter, and five animation characterizations (Concept, Derivation, Figures and Plots, Physical 
World, and Spreadsheets). Important findings include: 1) Animation views were at or above 
100% for all chapters and cohorts, 2) Median view time varies from 22 s (2-step) to 59 s (6-step) 
- a reasonable attention span for students and cognitive load, 3) Median view time for animations 
characterized as Derivation was the longest (40 s) compared to Physical World animations, 
which resulted in the shortest time (20 s).  
 
Introduction and Background 
 
Internet access makes viewing information on virtually any topic available to billions of people 
across the globe. Advancements in affordable screens and devices enabled high quality images, 
animations, and high-definition video on topics from entertainment to household repair 
demonstrations. Specifically in higher education, these technological advancements are changing 
the traditional 20th century textbook and lecture courses into active student instruction [1]. 
Undergraduate students entering engineering programs in the 21st century may also be exposed 
to interactive instruction and are inclined to prefer digital technology for instruction [2]. These 
students categorized as the “Net Generation”, “Millennial students”, or “digital natives” have an 
inclination for learning through visual means [2, 3]. Educational animations provide one such 
platform to explain, present, and scaffold learning as “chunks” of new material to learn [4, 5]. 
 
Animations have been recognized as a promising tool to bring visual and textual information 
together to present instructional material [6]. On one hand, computer-generated animations used 
for online gaming, films, cartoons, and broadcast media have emerged primarily for 
entertainment. On the other hand, educational animation create projections of phenomena for 
learning [7]. While some early research in animation instruction failed to provide positive 
evidence for their use [8, 9], further research applying cognitive load theory to educational 
animations resulted in positive learning gains with educational animations [6, 10-16]. 
 
Interactive textbooks enable students to see and use animations as a form of active learning [17-
19]. Animations provide a self-regulated learning environment where the students manipulate 
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and control the animation progression. Research has shown that control of content presentation 
improves student learning and retention to match cognitive load, specifically germane cognitive 
load, and improves student learning and retention [1, 4, 8, 10, 14, 18, 20-22]. An animation is a 
sequence of visual steps that introduce and move images, figures, and text to explain or convey a 
concept. Educational animations are designed to provide information in a multi-sensory format 
[8, 10, 14, 23]. Multi-step animations divide content into small chunks of information that 
engage the student and require attentiveness. Animation re-watch may be initiated at any time, 
which may be analogous to online videos that are re-viewed thousands or millions of times [8]. 
Overall, animations provide a promising pedagogical tool that will be examined using cognitive 
load as the primary educational framework.  
 
Features of Educational Animations 
 
Static images in the form of tables, figures, and graphs presented in engineering textbooks rely 
on text that supports explanations and derivations of the technical content. Flipping pages 
between the text and these images can be distractive for the learning process because the 
information is dispersed. While the information may be presented in the text along with the 
associated images, the information is not guided and may require significant cognitive load to 
connect visuals with concepts conveyed in text. 
 
Educational animations research on learning and instruction applies the cognitive load theory 
framework to design animations for learning by reducing the cognitive load on working memory. 
Multimodal learning, or multimedia learning, is defined as learning through the use of pictures 
and words that construct mental representations for learning [12]. Principles of reflection, 
feedback, and pacing apply the cognitive load theory of multimodal learning environments for 
educational animation design [17, 24]. Text (words) and visual (pictures) appearing together 
create instructional media for integrating, organizing, and retrieving long term memory [17]. 
 
Research in cognitive load theory presents three categories of cognitive load on the working 
memory [24]. Intrinsic cognitive load is defined by learning task complexity and interactivity; 
Extraneous cognitive load involves the tasks that cause unnecessary interaction of the senses and 
may inhibit learning; Germain cognitive load is the remaining working memory available for 
learning. Thus, for educational purposes, animations must consider modality that use senses and 
processing abilities of the memory to support learning. Multimodal principles are applied to 
animations design in an interactive textbook explored here.  
 
The Material and Energy Balance (MEB) zyBook interactive textbook contains animations that 
were designed for educational purposes [18, 25]. MEB animations apply cognitive load theory 
with small chunks of material to build new ideas, concepts, or equations. Multiple student-
initiated steps using clicks advance through the animation sequence. User interactivity and the 
ability of the digital tool to capture user device activity generates big data [4]. Specifically, the 
data generated from an interactive textbook identifies student participation through “learning by 
doing”. Analysis of big data generated from animation usage in an engineering interactive 
textbook provides a method of understanding learning by doing methods.  
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Few research papers investigate animation duration and its relationship with usage. Thus, the 
research questions will quantify animation views and view time as a function of cohort, content, 
and animation type. This paper expands upon the work in progress contribution in 2021 [26]. 
One goal for studying student usage and engagement is the opportunity to design better digital 
tools for students in the future. 
 
Research questions 
 
By examining 5 cohorts of interactive textbook data including 60,000 animation views, five 
research questions will be addressed.  

1) Does animation watch rate vary by course content?  
2) How does animation view time vary by cohort?  
3) How does animation view time vary by step count?  
4) How does animation view time vary by animation view attempt?  
5) If animations are characterized by type, does animation view time vary by animation 
type?  

 
Materials and Methods 
 
The research is based on data from 2016 through 2020 cohorts gathered from the interactive 
textbook used for a Material and Energy Balance (MEB) chemical engineering course. Student 
participation data are generated by clicks while progressing through different assignments, 
including reading participation, animation views, and challenge activities (a form of auto-graded 
homework). The animations are spread across almost every section and chapter (Table 1), and 
over 130 animations were available for the last three cohorts. In general, the duration of an 
animation is between 20 and 60 s depending on the number of steps. 
 
Table 1. Animation count in Material and Energy Balances zyBook by chapter and cohort. 
Chapter Chapter title 2016 2017 2018 2019 2020 

1 Quantities, units, calculations 9 9 9 9 9 
2 Material balances 19 19 19 19 19 
3 Reacting systems 11 13 13 13 13 
4 Solids, liquids, and gases 9 10 11 11 14 
5 Multiphase systems 8 13 13 13 15 
6 Energy balances 8 8 15 15 15 
7 Reaction and energy balances 5 5 7 7 7 
8 Transient systems 3 3 4 4 4 
9 Spreadsheets 0 0 41 41 47 

 Total animations= 72 80 132 132 143 
 
The MEB course was taught at a public university, and the size of the five cohorts varied from 
93 to 104 students. Students were primarily in their first year of college majoring in chemical 
engineering or environmental engineering with approximately 60% male and 40% female [4]. 
Reading participation includes clicks for animation views, the focus here, as well as learning 
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questions. Reading participation has been discussed previously with median reading participation 
over 90% [25, 27, 28]. Auto-graded online homework in the zyBook is outside the scope of this 
paper [4, 25].  
 
While the course applies active learning in different ways, the focus here is on analytics related 
to animation usage. Specific to animations, each click was uniquely recorded. Thus, each step of 
an animation is watched, and the length of time watching is the difference between time stamps. 
One animation titled Finding bubble and dew points on a P-xy diagram (see Appendix) is an 
example of an animation frequently re-watched by students and includes a screenshot of the 
sequence of steps. Over 60,000 completed animation views are analyzed (Table 2). Two 
limitations are noted. First, the analysis does not investigate partial views – many animations 
have 4 to 6 steps and re-watching some steps may occur. Secondly, animation views do not 
account the length of time watching an animation or how long students may reflect after 
individual steps. 
 
Table 2. Animation views in Material and Energy Balances zyBook by chapter and cohort. View 
rounded to nearest 100 views for easier readability. 
Chapter Chapter title 2016 2017 2018 2019 2020 Sum 

1 Quantities, units, 
calculations 1700 900 1000 1000 1000 5600 

2 Material balances 2500 1800 2000 2100 2000 10400 
3 Reacting systems 1300 1500 1400 1500 1500 7200 

4 Solids, liquids, 
and gases 1000 1000 1200 1200 1500 5900 

5 Multiphase 
systems 1000 1300 1400 1500 1500 6700 

6 Energy balances 800 800 1600 1700 1600 6500 

7 Reaction and 
energy balances 500 500 700 700 700 3100 

8 Transient systems 300 300 400 400 400 1800 
9 Spreadsheets 0 0 4200 4200 4600 13000 

 Total animation 
views= 9100 8100 13900 14300 14800 60200 

 
Evaluating the time spent by students to complete watching or re-watching animations from 
2017 through 2020 cohorts was compiled and used for answering the research questions. 2016 
was removed from watch time analysis because a 2X speed feature was added in 2017. Thus, 
watch times in 2016 were different than the other four cohorts. Maximum view time limitation 
for analysis is 180 s for all animations. This time limit was applied to remove cases where a 
student may be interrupted by another task during an animation and then resume the animation at 
a later time. Also, the time that a student spends viewing an animation on the last step after the 
actions complete is unknown. 
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An example 4-step animation sequence shows all the steps with the text and figure progress 
(Appendix A-1). Other examples are shown as completed animations of different animation 
types (Appendix A-2). In brief, an animation starts as a static image with a “Start” button. Once 
started, the animation performs the actions of Step 1, usually the final static image is removed in 
Step 1 and parts of the content reappear. An arrow to the right of the step numbers appears when 
each step is complete. Clicking the arrow continues the animation and builds on the previous 
steps to completion. The final step completes construction of the initial static image, and a 
completed view is recorded. A subsequent watching is called re-watch and may be initiated at 
any time, and student can re-watch animations as often as they like during the semester. 
 
Animation usage data analysis was done using spreadsheet functions, pivot tables, or statistical 
analysis using Python. Python and several Python libraries were used for analysis of the 
timestamp data. The Pandas library was used to calculate step times as the difference between 
the logged events for each student on each animation [29]. View time was calculated as the sum 
of a student’s step times from the “start clicked” event to the “animation completely watched” 
event. The animation view time will be analyzed by aggregate (all cohorts), year, chapter, and 
total steps in an animation.  
 
Metric Definitions 
 
Definitions of key terms include: 
 
Animation Views (Usage): Animation view accounts for the animation view data and does not 
consider the time spent watching or re-watching the animations. Completed animation views are 
logged when a student has completed all the animation steps. Animation views when reported as 
a percentage account for student withdrawal, so View (%) = Completed views (#)/students 
currently enrolled (#)´ 100. 
 
Animation View Time: Animation view time accounts for the time students spend watching, 
reflecting upon, or re-watching each animation step and animations as a whole. Each step has a 
minimum duration for actions to occur. After actions cease, students may reflect or immediately 
click to initiate the next step. First animation view time quantifies the first completed view for 
each student. 
 
Animation Characterization: Defines distinct animation content. The characterization 
descriptions (Table 3) were defined by two of the authors. This limitation is noted and assigning 
characteristics by other subject matter experts is a plan for future work. 
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Table 3. Animation characterizations and abbreviations.  
Abbreviation Description of Animation Characterization Content 

C Conceptual: present conceptual thought or ideas dynamically. 
D Derivation: present equations or calculations based on first principles 

in a constructive sequence 
FP Figures/Plots: construct information previously presented as a static 

table or chart 
PW Physical World: animate how a system or process works 
SS Spreadsheet: demonstrate cell formatting, keystrokes, functions, and 

formulas common across spreadsheet applications and platforms 
 
Results and Discussion 
 
Interactive textbook usage data from five cohorts includes 60,000 animation views and will be 
used to answer the five research questions pertaining to animation watch rate and view time 
across several cohorts. 
  
RQ1. Does animation watch rate vary by course content? 
 
Animation views across the five cohorts were aggregated as the variations were not significant.  
Aggregated animation views by chapter were generally over 100% (Figure 1). Average 
animation views were 110% across five cohorts. Thus, about 10% of animation views were 
students re-watching the course content. While Chapters 1 to 8 were covered in order, Chapter 9 
covering spreadsheets is dispersed throughout the semester. While views declined across the 
semester from 130% (Chapter 1) to 107% (Chapter 6) to 100% (Chapter 8), the engagement was 
still much higher than static textbooks. Static textbook reading rates are normally reported 
between 20% and 50% [28, 30]. Chapter 8 covers transient systems, which was only assessed 
with a single quiz and not covered on the final exam. Thus, a lower animation usage of 100% for 
Chapter 8 aligns with the emphasis within the course. 
 

 
Figure 1. Animation views by chapter of the Material and Energy Balances zyBook. Average and 
standard deviation aggregated across five cohorts. 
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Animation re-watch views by chapter (Figure 1) are generally 0% to 15%. However, re-watch of 
28% in Chapter 1 and 19% Chapter 3 were observed. Early semester reading and homework 
assignments are generally not heavy, so students may have more time and interest in re-watching 
the material due to the new format and novelty of the zyBook. Re-watching animations in 
Chapter 3 is likely related to the content, i.e., reacting systems. While reacting system material 
balances are introduced in Chapter 3, reacting systems with energy balances are added later in 
the semester with Chapter 7. Thus, details related to yield, selectivity, conversion, etc. are needed 
for solving reacting systems at two distinct points in the semester. Chapter 9’s content related to 
spreadsheets was introduced in 2018 and re-watch views range between 1 and 4%; many 
students are digital natives who have used spreadsheets for years before entering the university. 
Other analytics related to auto-graded problems on the topic of spreadsheets was recently 
published elsewhere [31]. 
 
Two limitations are noted. First, the analysis does not investigate partial views – many 
animations have 4 to 6 steps and re-watching some steps is likely. Secondly, animation views do 
not account the length of time watching an animation or how long students may reflect after 
individual steps. Animation view time is further investigated by the next four research questions.  
 
RQ2. How does animation view time vary by cohort?  
 
First animation view times changed little from cohort to cohort (Figure 2). The 1st quartile 
represented the fastest quarter of the cohort took ~20 s to watch an animation, while the 3rd 
quartile or the slowest quarter of animation watchers took between 45 and 47 s. The median was 
~30 s for all cohorts when aggregating all of the animations across the entire book. The view 
time between cohorts shows statistical similarity using ANOVA analysis. Here, the aggregated 
MEB animation view times by cohort provide a benchmark for animation duration. Animation 
speed is not addressed in this contribution and may be an area for further research. The literature 
identifies slow animation speeds having negative student feedback and wastes time [32]. Overall, 
the length of animation viewing is similar to observations of instructional videos, which ranged 
from 5 s to 12 min [33-35]. 
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Figure 2. First animation view time for all animations as a function of cohort. 
 
RQ3. How does animation view time vary by step count?  
 
Animations have various step counts (Table 4); steps are generally based on the number of 
chunks that an expert author believes a learner needs to build new knowledge and alignment with 
cognitive load theory. Step counts of 2, 3, and 4 animation steps are the most common 
accounting for 83% of the animations. While the author creating the animations believes that 
each step is appropriate, animation view time may provide a learning analytic to quantify 
readers’ attention span. For example, if too many actions occur in one step, do learners re-watch 
immediately before moving on could be a future research question?  
 
Table 4. Number of animations by step count for 2020 cohort. 

Steps Animations 

2 37 
3 37 
4 42 
5 16 
6 7 
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Figure 3. First animation view time for all animations as a function of animation step count. 
 
The median view time increased with the number of steps: 2 step (17 s); 3-step (27 s); 4-step (37 
s); 5-step (46 s); 6-step (58 s) (Figure 3). View time quantified only first completed view. Thus, a 
linear trend of the median view time with a slope of 10 s/step was measured across the 
animations in aggregate. Taking one minute or less to completely watch an animation generally 
aligns with trends in web analytics, i.e., shorter videos normally have more completed views. In 
addition, the linear trend through the 3rd and 1st quartiles are 13 s/step and 7 s/step, respectively, 
indicating a divergence in student reflection time on longer animations. The larger slope for the 
3rd quartile view time indicates that some students reflect more on higher step count animations, 
which may be worth further investigation related to chunking and cognitive load. 
 
RQ4. How does animation view time vary by animation view attempt?  
 
Animation view time decreases with each subsequent completed view (Figure 4). The median 
animation view time declines from 29 to 18 to 8 s between first, second, and third views. The 1st 
quartile view time decreased from 20 s for the first view to 3 s for both second and third views. 
Therefore, a fraction of the students re-watch the entire animation in the minimum possible time 
and do not reflect on any specific step. The 3rd quartile view time declines a small amount 
between the first and second views (45 to 40 s) and a much larger decrease of 20 s between the 
second and third views. Thus, some students may be earnestly re-watching most of the steps 
during a second view but focusing on fewer concepts during a third view.  
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Figure 4. Animation view time for all animations as a function of attempt. 
 
One limitation of view time analytics is that reflection time beyond the minimum time for each 
step to complete is not quantified. Also, examining view times for the entire animation does not 
identify specific steps that students spend the most time reflecting upon. Finally, the amount of 
time that a student reflects after the final step is completed is unknown and only recorded when 
the next learning activity is initiated. 
 
RQ5. If animations are characterized by type, does animation view time vary by animation 
type?  
 
Distinguishing animations by type instead of content provides another perspective on the view 
analytics. Five characterizations show a distribution of animation type in the MEB zyBook 
(Table 5). Noting that not all animations were available for all cohorts (Table 1), Figures and 
Plots is the most common characterization. All five categories accounted for at least 16 different 
animations.  
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Table 5. Number of animations for the 2020 cohort by characterization. 

Characterization Animations 

C - Conceptual  28 
D - Derivation 27 
FP - Figures & Plots 28 
PW - Physical World 30 
SS - Spread Sheet 30 
 

 
Figure 5. First animation view time for all animations as a function of animation 
characterization. 
 
First animation view times by characterization (Figure 5) shows that Derivations (D) animations 
have a median watch time of 41 s, which is twice as long as the shortest median view time for 
Physical World (PW) animations (20 s). Concept (C), Figures and Plots (FP), and Spreadsheet 
(SS) animations have median view time around 30 s. The shorter view times for the Physical 
World animations may be related to the learners being comfortable with explanation of 
equipment and physical process. The 3rd quartile for Derivation animations is 60 s, which is 
twice the median view time for all animations. The 1st quartile view time of 29 s for Derivation 
animations matches the median of the other animations, which is an interesting finding that may 
be related to the number of animations steps as well as characterization. Thus, further work into 
animation characterization should normalize view time by the number of animation steps.  
 
Conclusions 
 
Animation watch rate in an interactive textbook for a material and energy balances course 
revealed high student usage. Reading assignments introduce new information to students, and 
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interactive textbooks allow reading assignments with animations to be an active and graded 
activity. Educational animations apply cognitive load theory that divide engineering concepts 
into chunks that can help learners. Using an interactive textbook containing over 140 animations 
across five cohorts generated over 60,000 animation views. Animation views of 100% or higher 
were observed across content, animation type, and cohort. This high engagement is a positive 
finding since textbook reading in higher education is significantly lower and has declined over 
many years [30]. Additional animation views do not help a students’ grade, so a re-watch rate of 
10% indicated student self-motivation and interest in learning. Since animations considered 
cognitive load theory when authoring, these interactive tools appear to provide a viable 
educational tool for presenting engineering topics. 
 
Median view time across four cohorts and all animations was 30 s, which is a reasonable time for 
the average human’s attention span. Animation re-watch may be more likely when students 
know that watching an animation will take one minute or less in most cases. The median first 
animation view time by chapter ranges from 22 to 42 s, which shows that content is not a 
significant factor in increasing view times. Median view time increased linearly with step count 
increasing 10 s per step. Median animation view time declined from 29 s (1st view) to 18 s (2nd 
view) to 8 s (3rd view). Since repetition is a best practice of learning, even shorter view times 
may be beneficial for learning. Finally, view time by characterization showed that Derivation 
animations has the longest median time of 41 s, which is twice as long as view time for Physical 
World animations at 20 s; Figures and Plots, Conceptual, and Spreadsheet animations’ watch 
times were in between these values.  
 
While some limitations of this work were noted, such as not measuring time-on-task. The median 
animation view times between 20 and 60 s seemed reasonable to retain student attention, 
however, a thorough evaluation of the duration and attention span could be an area of further 
study. Cognitive load design was considered by partitioning animations into logical chunks of 
information, but no assessment has been conducted about chunking to promote germane 
cognitive load. 
 
Overall, examining learning analytics related to animations merits further investigations to 
overcome limitations of the results presented here. Normalizing animation views and view time 
by step count may provide new insights across content and animation characterization, which 
should be the subject of future research.  
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Appendix 
 
Screenshots of animations statically capture a sequence of steps for an animation characterized 
as FP (Figure A-1) as well as one screenshot from an animation representing the other four 
characterizations (C, D, PW, SS) (Figure A-2). The step counts can be determined from the 
number of captions in Figure A-2.  
 

 
Figure A-1. Animation titled Finding Bubble and Dew Points on a P-xy Diagram. The animation 
includes four sequential steps and is characterized as Figures & Plots (FP).  
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Figure A-2. Four animations representing characterizations; Conceptual C (top left), Spreadsheet 
SS (top right), Physical World PW (bottom left), and Derivations D (bottom right).  
 


