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In this paper, we construct an IGA-EIEQ coupling scheme to solve the phase-field model of homopoly-
mer blends on complex subdivision surfaces, in which the total free energy contains a gradient
entropy with a concentration-dependent de-Gennes type coefficient and a non-linear logarithmic
Flory-Huggins type potential. Based on the EIEQ method, we develop a fully-discrete numerical
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a robust and elegant description of the models with arbitrary topology. Subdivision basis functions
serve to define the geometry of the models and represent the numerical solutions. Subdivision-based
IGA approach provides us with a good candidate for solving the phase-field model on complex surfaces.
We successfully demonstrate the unity of employing subdivision basis functions to describe the
geometry and simulate the dynamical behaviors of the phase-field models on surfaces with arbitrary
topology. This coupling strategy combining the subdivision-based IGA method and the EIEQ method
could be extended to a lot of gradient flow models with complex nonlinearities on complex surfaces.
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1. Introduction the stochastic term or the cook-noise [7]. The background of the
model dates back decades to the classical modeling work in [4,6,
8,9], and has been widely used to simulate the phase transition
processes of a blend of two polymer species, or polymer micro-
sphere composite (MMC) hydrogels [ 10]. The governing equation
of the model of homopolymer blends is derived from the energy
variation of the total free energy in H~! Sobolev space, whose
total free energy includes a logarithmic Flory-Huggins type po-
tential and a gradient entropy with a concentration-dependent
de-Gennes type coefficient [6].

There are many successful numerical algorithms for solving
partial differential equations (PDEs) on surfaces, where we can
refer to the finite difference method in [11], the Spectral method

It is well known that the Cahn-Hilliard model [1,2] is one
of the classical equations of the phase-field models, which was
introduced by Cahn and Hilliard in [3]. They are used to describe
the coarsening phenomena in a solid and some complicated phase
separation. Nowadays, the Cahn-Hilliard equations have been
widely applied in many complicated moving interface problems
in the area of materials science and fluid dynamics through
a phase-field approach. The total free energy of the classical
Cahn-Hilliard system consists of the Ginzburg-Landau double
well potential and the gradient entropy with the constant co-

efficient. In this work, we consider numerical approximations
of the phase-field model for homopolymer blends [4-7], which
could also be called the Stochastic-Cahn-Hilliard equation, or the
Cahn-Hilliard-Cook model, since it can be regarded as the Cahn-
Hilliard system attached with an external thermal noise named as
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in [12,13], and the finite element method (FEM) in [14], etc. The
first two approaches have made significant progress in recent
years, however, most of the interest domains are still confined
to simple domains, such as circular, rectangular, and spherical
regions. Compared with them, the FEM can more effectively deal
with a large number of irregular surfaces in the practical engi-
neering, see [15-17] for theoretical/numerical studies of phase
transition-related models on surfaces. However, it is remarkable
that the FEM involves the approximation of surface differen-
tial geometric operators, which may introduce additional errors
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caused by numerical approximation schemes. Taking the Lapla-
cian operator on a surface as an example, the derivative of the
surface itself needs to be integrated. Traditional FEM requires
the manual intervention in mesh generation from CAD models,
which is costly, time-consuming and labor-intensive, and the
refining process is troublesome, especially for the surfaces with
complex geometries. Instead of using these methods for solving
surface PDE models, this paper adopts the recently developed
isogeometric analysis (IGA) framework, see [18,19].

The concept of IGA was proposed to develop a seamless inte-
gration between FEM and computer-aided design (CAD), which
adopts the non-uniform Rational B-Splines (NURBS) [20-22] or
T-splines [23,24] as the same shape functions to describe the so-
lution region and conduct the numerical simulation of PDEs. The
framework of IGA is proposed to develop the seamless integration
between FEM and  computer-aided design  (CAD)
[25-29]. It has higher numerical accuracy than the FEM, where
we can easily implement the p-refinement, h-refinement, and
even k-refinement by the technique of the order elevation and
the knot insertion. It can remove the interactive communica-
tion with the CAD system, then improve the accuracy of the
numerical simulation without destroying the original geometric
properties. A hybrid phase-field approach in the framework of
IGA was developed in [30], which was used to model the crack
propagation of functionally graded materials with porosity effects
and significantly reduced the computational cost of the phase-
field model. In this work, we adopt the efficient subdivision-based
IGA approach for solving the phase-field model for homopoly-
mer blends on surfaces. Subdivision is a good candidate in the
application of IGA, which has the capability of the refineability of
B-spline techniques. Surface subdivision adopts a set of simple
and efficient refinement schemes [31-33] to construct smooth
surfaces based on arbitrary topological meshes, which can not
only conveniently handle complicated geometric forms but also
maintain original characteristics near boundaries with angles and
creases through straightforward extensions. Both Loop subdivi-
sion [34-37] and Catmull-Clark subdivision [38-40] has been
developed in IGA. Local refinement and convergence rate [41] was
investigated in Catmull-Clark subdivision-based IGA. The opti-
mal convergence rates of hybrid nonuniform subdivision (HNUS)
surfaces in IGA was achieved in [42]. Through these research
work, we can see that the subdivision-based IGA approach can be
viewed as the natural choice for higher-order FEM in engineering
practice, see [36,37,43,44] as well.

As for the classical Cahn-Hilliard system, there exist three
prevalent numerical techniques of treating the nonlinear term
while keeping the energy stability property. The first method is
the convex splitting scheme [45], in which we treat the concave
term by the explicit form, and treat the convex term of the poten-
tial functional by the implicit form. Although the convex splitting
method owns the property of energy stability, it introduces non-
linear forms in a lot of cases, so the program implementation
is complex and leads to high computational expenditure. The
second alternative is the stabilization scheme [46-48], in which
we still treat the nonlinear term of the potential functional im-
plicitly, in addition, we consider designing some linear stabilizing
terms. We can easily realize these linear schemes, however, one
of its shortcomings is that the second-order form only maintains
the conditional energy stability [47], that is, the time step size
is limited by the thickness of the interface, and the amplitude
is small. We want to highlight the third technique called the
Invariant Energy Quadratization (IEQ) method [49], where we can
treat all nonlinear terms semi-explicitly. The key point of the IEQ
method is to change the PDEs resulting from the energy func-
tion into an equivalent form including some new variables, then
we can treat the nonlinear terms semi-explicitly. Moreover, its
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first-order and second-order discrete schemes own unconditional
energy stability. However, the IEQ method still has some disad-
vantages, especially in practical implementation. It will result in
a linear system with variable coefficients at each time step, see
[49-52], therefore to solve a system with variable coefficients,
we not only need more complicated computational steps, such as
requiring a suitable and robust iterative solver or designing some
preconditioner, but also spend more computational time than a
linear system with only constant coefficients.

This paper focuses on developing an efficient fully-discrete
numerical scheme to solve the phase-field model of homopoly-
mer blends on complex surfaces. In our previous work [53],
we introduced a novel framework called IGA-EIEQ time-space-
coupling scheme to solve the classical Allen-Cahn and Cahn-
Hilliard phase-field models on complex surfaces. However, the
phase-field model of homopolymer blends studied in this article
is considerably more complex and exhibits distinct nonlinear
complexities compared to the classical Cahn-Hilliard equation.
In particular, the model under investigation incorporates a log-
arithmic type bulk potential and a gradient entropy with a non-
constant coefficient. Consequently, new auxiliary variables need
to be constructed to suitably handle the transformed equiva-
lent free energy functional. It is remarkable that this specific
model has been numerically studied using the IEQ approach
in our previous work [49]. However, the [EQ method proposed
in [49] requires solving a linear system with variable coeffi-
cients, which can be computationally inefficient. In contrast, the
temporal marching algorithm proposed in this paper only neces-
sitates solving constant-coefficient elliptic equations, resulting in
improved computational efficiency. Moreover, the IEQ approach
given in [49] solely focused on the time marching algorithm,
whereas our approach provides a fully discrete method that is
applicable to complex surfaces. To the best of our knowledge, this
paper presents the first algorithm for this particular model on a
complex surface.

We adopt the more advanced version of the IEQ method, the
so-called explicit IEQ (EIEQ) method, in which by introducing a
nonlocal variable and designing a special but trivial ODE for it,
the decoupling structure is achieved, see [54] for its application
in a different crystal growth model on the regular geometric
domain. The superiority of the EIEQ method is reflected that the
scheme involved ultimately only requires the solution of some
linear constant-coefficient equations with the fully decoupled
structure at each time step, and is therefore highly efficient in
practice. Subdivision-based IGA approach provides us with a good
candidate for solving the phase-field model on complex surfaces.
We successfully demonstrate the unity of employing subdivi-
sion basis functions to represent the geometry and simulate the
dynamical behaviors of the phase-field. This framework fully
reflects the advantage of our hybrid IGA-EIEQ strategy to treat
complex surface phase-field models. Various numerical experi-
ments are carried out to demonstrate the energy stability and the
accuracy of the developed method.

The rest of this paper is organized as follows. In Section 2 we
briefly describe some basic knowledge of surfaces. In Section 3,
the phase-field model for homopolymer blends on the surface is
presented. In Section 4, we describe the coupling scheme of the
subdivision-based IGA method with the EIEQ method, then pro-
vide a second-order fully-discrete scheme as well as proof of the
unconditional energy stability, and their decoupling implementa-
tion. In Section 5, we implement several numerical examples by
using our coupling scheme. In Section 6, we give the concluding
remarks.
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2. Preliminaries
Assume S = {x(u',u?) € R® : (u,u?) € 2 C R?} be a

sufficiently smooth and orientable surface, where (u!, u?) is its
parameterization. Denote g,p = (X,, X,5) With

ax 9%x
Xy = PwE Xyayp = IR a,B=1,2, (2.1)
and the surface normal
n— X1 X X2 ’ (2'2)
IX,1 X X,2]|
where (-,-), - x - and || - || stand for the usual inner product,

cross product and Euclidean norm in R? respectively. We further
denote [g*#] = [gaﬂ]*1 and g = det[g.g], then we introduce the
following geometric differential operators of interest.

2.0.1. Tangential gradient operator

Suppose that f € C'(S), where C'(S) stands for a function
space consisting of C! smooth functions on &, then the tangential
gradient operator V; acting on f is defined as

Vof = X1, X2 [g°°1[f,1. f2]" € R3.

For a vector-valued function f = [f,...
gradient V; acting on f is defined as

(2.3)
ST e CY(S), the

Vo = [Vfi. ..., Vil € R*

2.0.2. Divergence operator
Let v € [C'(S)]® be a smooth vector field on surface S. Then
the divergence operator div, acting on v is defined as

divg(v) = ][ L ][JE[g“"][xuuxuz]TV]- (2.4)

T Loul au?
f

2.0.3. Laplace-Beltrami operator
Let f € C%(S). Then the Laplace-Beltrami operator (LBO) A,
acting on f is defined as

Af = divy(Vif). (2.5)

2.0.4. Sobolev space on surface

Assume that S is a sufficiently smooth surface. For a given
constant k and a function f € C*(S), denote V¥f the kth order
covariant derivative of function f, with the convention V°f = f.
Let
C(S) = [f € C™(S) /|vff|2dx <ooforj=0,..., k} )

S

Let S be a compact surface with at least kth order smoothness
Sobolev space H¥(S), which is the completion of C(S) in the sense
of norm

k
i 2
s = | 3 f 1vif Fax
=0 7%

There hold the following two inner products on the surface S, for
£, p € H(S), that

1/2

(2.6)

(5. p) = / Epdx, and (Vi, Vip) = / Vi - Vop dx.

S
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3. Phase-field model of homopolymer blends on the surface

The phase-field model of homopolymer blends describes a
homopolymer blend with the symmetric property, which is com-
posed of molecules of component I and II. We use ¢, to denote
the average volume fraction of component I of the mixture, then
the system state of the mixture is represented by ¢(x,t) for
every point X € S at the time t. The change of ¢(x,t) with
the time related to the local current J;(x) of component I can
be represented by the following phenomenological mesoscopic
dynamic equation [4-6]:

¢t = -V '.’I(X)~

Note that the transport of (3.1) follows the difference of the
chemical potential. If there exists a linear relation between the
gradient of the local chemical potential p(x,t) and the local
current Ji(X, t) [55], the flux J; is driven by

]I(xa t) = _)‘VSIO(X9 t)v

where )\ denotes the Onsager mobility coefficient. p(x, t) is de-
noted as the functional derivative of a coarse-grained free energy
functional E(¢), which reads as

(3.1)

(3.2)

_ SE(¢)
pX, t) = W’ (3.3)
with
1)0[2 2
o) = | (Ek(mmm + F(¢)) dx, (3.4
S
where « is the Kuhn segment length (cf. [6]), and
1

I = — 3.5
)= oo (3.5)

is the gradient energy coefficient of the de-Gennes type. The term
F(¢) is called the bulk free energy of the mixture, and has the
following form of the phase-field model of homopolymer blends

1
F¢)= 5, (@In¢ +(1—¢)In(1 = ¢)) + xé(1 - ). (3.6)

where the coefficient N is the degree of the polymerization of
the chains, the coefficient v is the volume of one repeat unit
(monomer), and the coefficient x is the Flory-Huggins type in-
teraction parameter (cf. [6]).

Denote M = A &2 % and B = xvN, we can
numerically solve the phase-field model of homopolymer blends
according to the following scaled equation form

¢ = MAsu, (3.7)
= ;lj, = 287V, ($)Vep) + KDV +f(9).  (38)
where

K(g) = %,

F(g) = plng + (1 — §)In(1 — §) + B — 9, (39)

f9) = F(6) = In(2)+ (1 - 20),

For simplicity, we only consider closed surface domains in this
paper so that we ignore all complex boundary conditions.

By taking the L? inner products of (3.7) with —u, of (3.8) with
¢, and performing the integration by parts, we get

— (¢, 1) = M| Vspa]?, (3.10)
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and

(1, @) = 26°(K(D)Vsp, V) + 2 (K (D) V5o, de) + (F(8), 1)
= 2(k(9), 3| Vs I?) + £2(I V59|, ack(9)) + (F(9), 1)

_d y, 4
= 5 EKP). IV ) + - (F(¢). 1).
(3.11)

Then taking the sum of the above equations, we obtain the energy
dissipation law

d

5@ = —M||Veu|* <0, (3.12)

where

E($) = / (KB VspP + F(9)) dx. (3.13)
S

We aim at constructing a fully-discrete scheme to solve the
phase-field model of homopolymer blends (3.7)-(3.8) on the sur-
face that accords with the discrete form of the continuous energy
law (3.12). The main challenge we face is how to discretize the
nonlinear terms resulting from the energy functionals, i.e., the
Flory-Huggins type potential term f(¢) and the gradient entropy
term k(¢) with the de-Gennes type coefficient.

4. IGA-EIEQ scheme on the surface

The constructed numerical algorithm must ensure that the
free energy is within an open domain (0, 1). As for the bulk free
energy F(¢) and the gradient entropy k(¢) in the free energy func-
tional (3.4), we use C? continuous convex piecewise functions
to regularize them from (0, 1) to (—oo, co). About the bulk free
energy F(¢), for any o > 0, we rewrite it as [56]

F(¢) = F(¢) + Blp — ¢°), (4.1)
with
F()
_ 2
¢>ln¢+(1 ¢) +(1—¢)lna—g, if >1-o,
20 2
={ ¢lned+(1—¢)In(1—¢), ifo<¢p<l-o,
2
(1—¢)1n(]—¢)+£+¢lna—g, if ¢ <o.
20 2

(4.2)
For the other gradient entropy k(¢), we change it as

k(o)

1 1-20 .
O‘(l_U)+(1_U)20_2(¢_(1—0’)), if ¢ >1—o0,
N m’ ifaf(l)f]_o.’
1 20 — 1 .
0(1_0) (1_0)202(¢_0)! if ¢Sg

(4.3)

In the following section, we introduce our numerical algorithm
which combines the EIEQ approach and recently developed
subdivision-based IGA method to construct a second-order dis-
crete scheme with unconditional energy stability.

4.1. EIEQ time advancing strategy
An ideal time discretization method requires the properties

of the linearity and unconditional energy stability. For the trans-
formed system (3.7)-(3.8), the key step of the EIEQ methodology
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is to design two new variables, one of which can “quadratize” the
nonlinear terms, and the other of which can be used to achieve
the decoupling calculation. After that, our decoupled scheme
is linear, second-order time-accurate and unconditional energy
stable. Our final task is to solve several elliptic equations with
constant-coefficient. Next, we describe the detailed idea.

The effect of the first new variable U is to quadratize the
energy potential, which defined as

U(¢) = \/Sz(k(cb) — O)IVs¢|* + F() — gcbz +B. (4.4)

It is easy to see that we need predefine two positive constants n
and B, where the function of constant B is to ensure the term in
the square root always positive since the negative quadratic term
related to n can be always bounded from below. With the help of
the new variable U, we can change the model (3.7)-(3.8) into the
following equivalent formulation:

¢ = MAsu, (4.5)
w=—2Ce?Asp + n¢p + HU, (4.6)

1
U = §H¢r, (4.7)
where the emerging variable H is

d

H=2—U

o (9)

_ —28°V - ((K(§) — V@) + 2K (@) Vs ” + () — o
JEKD) — OV P + F(p) — 192 + B

(4.8)

The other of the nonlocal variable Q(t) is used to achieve the
decoupling calculation, where we relate this variable to an ODE
system as

{ Q(t) = (HU, ¢¢) — (H¢, U),

Qli=o = 1.

Q(t)is equal to 1 since Q; =0 and Q=g = 1.
After that, with these two newly constructed variables U and

Q(t) with the dependent ODE (4.9), the phase-field model of
homopolymer blends (3.7)-(3.8) is reformulated as:

(4.9)

¢ = MAsp, (4.10)

w=—2Ce?Asp + np + QHU, (4.11)
1

Ut = 5QH¢[, (4.12)

Q: = (HU, ¢) — (Ho, U), (4.13)

with the initial condition

li=0 = ¢o,
Ile=o = —2&%V; - (k(¢ho)Vsho) + €2k (¢h0)| Vsho|* + f (o),

Ulizo = \/e2(K(#0) — OIVisdol? + F(g) — 303 +B.

(4.14)

Remark 4.1. The two newly obtained systems (4.5)-(4.7) and
(4.10)-(4.13) through the transforming method using some new
constructed variables are equivalent to the initial system (3.7)-
(3.8) because we can recover the previous system from the latter
system through several integral operation over time. For example,
(4.4) can be recovered if we integrate the Eqgs. (4.7) over time with
the given initial conditions (4.14). In addition, it is easy to see
the equivalence between the new system (4.10)-(4.13) and the
system (4.5)-(4.7) because Q = 1.
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Theorem 4.1. The transformed equivalent system (4.10)-(4.13)
guarantees the law of the energy dissipation
d -~

EE&P, Q.U) = —M||Vsu|* <0, (4.15)

where the energy functional
E _ 2 2, N2 2 T 2 1
E(¢,Q,U)= Ce”|Vso|” + - |p1° + U — B) dx+ -|Q|" — =.
s 2 2 2
(4.16)
Proof. By taking the L? inner product of (4.10) with —u, of (4.11)

with ¢, of (4.12) with 2U, of (4.13) with Q, and perform the
integration by parts, we get

—(¢e, u) = M(Vsu, Vi), (4.17)
(14, @) = 2Ce*(Vsp, Vi) + n(¢, ¢¢) + Q(HU, ¢y), (4.18)
d /1

i@ <5|Q|2> = Q(HU, ¢:) — Q(Hgy, U). (4.20)

After taking the sum of (4.17)-(4.20), we obtain the law of the
energy dissipation (4.15).

The energy law (4.15) of the transformed system (4.10)-(4.13)
is exactly the same as the energy law (3.12) for the original
system (3.7)-(3.8) in the time continuous case. On the basis of
the current energy dissipation law (4.15), we describe the spa-
tiotemporal fully-discrete scheme for the corresponding system
(4.10)-(4.13).

4.2. Subdivision-based IGA method

Subdivision is a popular technique, which is widely applied
to represent smooth models in the area of engineering design.
It provides us with an efficient and compact description of the
model interest with certain smoothness. Subdivision approach
has the flexibility and the freedom of treating complex surface
models with any topology structure, moreover it the exactly
expressible properties for geometries which can be guaranteed
no change along with the parameterization process. Actually,
the refinement process of the subdivision approach is equivalent
to the h-refinement of NURBS. Different from traditional spline
approaches, subdivision representation has no requirement of the
complex continuity constraints cross patches.

Starting from an initial coarse mesh, or called control mesh,
we can obtain a smooth surface by the Loop subdivision scheme

X =S %, (4.21)

where we denote S]Jf_1 as the global subdivision operation from

level j — 1 to level j. The entries of the sparse matrix SJJ._l are
dependent of the topology of the mesh and its corresponding
subdivision weight coefficients. We can update the new place
of the control point by the old point with weight « = 1 —

nB and all 1-ring surrounding control points with weight § =

2 .
212 — (3 + ; cos 2) |, where n is the valence of the control

point (see Fig. 4.1 (a)). Then we can achieve a new point at
each edge by averaging the four adjacent points (see Fig. 4.1
(b)). Repeated refinement leads to hierarchical and increasingly
refined models, which finally generate the limit surface with C!
smoothness.

Assume that we denote the initial control mesh as 27, and the
subsequent series of the control meshes as .(2,{,‘ k=0,...,00,
through repeated Loop subdivision. A limit surface S can be
achieved through an infinite subdivision procedure as k — oo.
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(b)
Fig. 4.1. (a) Vertex refinement rule, « = 1 — nB, where g =
1 [% — (3 + cos 27”)2] and n is the valence of the control vertex. (b) Edge

refinement rule.

Every control point x’(‘) of valence n on the mesh Qr’f and its 1-ring
adjacent points xj’.‘,j =1,2,...,n, will converge to a clear loca-
tion under the condition of the parameter 8 € (—3/8n, 13/8n),
which is stated as the following Lemma 4.1.

Lemma 4.1. Let x§ be a control point of valence n on the mesh $2f,
and )(]’f,j =1,...,n, be its 1-ring adjacent control points. All these
points converge to a single position

1

7+ 3/88) 3/(88)" (4.22)

n
Ro=(1—nhxg+1Y xf, I=
j=1

as the subdivision step k — oo (see [32] for the proof).

We can use the subdivision shape functions to represent the
solution of high-order PDEs governing the dynamical behaviors of
complex geometry with any topological structures, which are C'
continuity or H? integrability. The subdivision model represents
complicated interest domain and simulates its physical property
through the same set of formulas. We can get a reliable and
exact computation in the processing of the finite element integra-
tion through the computation of Loop basis functions and their
derivatives at arbitrary parameter positions for every triangular
patch.

For a regular patch which means the valence of all control
points of the triangular patch is six, we can exactly describe it
by a quartic box-spline as

12
x(u,v) = > Biu, v)xf, (4.23)
i=1

where (u,v,1 — u — v) is the barycentric coordinates of the
parametric patch, xi-‘ are the corresponding 2-ring surrounding
neighbor control points of the control mesh (see Fig. 4.2(a)),
and B; are the quartic box-splines (see their analytic expression
in [57]). Then we can determine any points lying within the reg-
ular patch directly using the set of the box spline basis functions.
For an irregular patch which means the valence of at least one
control point for this patch is not six, there has no explicitly
computable formula for it. However, the quartic box-spline form
(4.23) is still used to calculate the resulting limit surface patch
through a fast algorithm proposed by Stam [57]. The core idea is
to subdivide repeatedly this patch until the position you need to
calculate is included in a quartic box-spline patch (see Fig. 4.2(b)).

The finite element integration is performed at several Gauss
points within every parametric patch, where the Loop basis func-
tions have the 2-ring of triangles support. In order to make
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Fig. 4.2. (a): A regular computable Loop subdivision patch. The shaded patch is the computable Loop subdivision patch with its surrounding 12 control points. (b)
and (c): An irregular Loop subdivision patch. The extraordinary control point marked as a hollow ring. Subdividing this patch once can generate three computable
sub-patches marked as 1, 2 and 3, and one uncomputable sub-patch marked as 4. This uncomputable patch can be repeatedly subdivided to generate more computable

sub-patches.

sure that the quadrature computation arrives at the necessary
precision, very limited subdivision steps should be performed to
make all of the hierarchical limit patches become computable
quartic box-splines patches. To reduce the computation expendi-
ture, we develop a simplified approach of adaptive discretization
subdivision, where the basic idea is to replace the refinement of
mesh patches with the refinement of basis functions (see [37]).

The general process of solving the governing equations is to
transform the variables into linear combinations of finite element
basis functions with compact support. We demonstrate the unity
of employing Loop subdivision basis functions to represent the
surface geometry and perform the finite element simulation of
the phase-field movement on the surface. Assume the set of basis
functions to be ¢, ..., ¢, in the finite element function space
H2(sp), where the control mesh S, of the limit form of Loop
subdivision has n control points X1, ..., X;,.

Loop basis functions make up a partition of unity, and have
the same superior properties as classical finite elements. Firstly,
they are nonnegative everywhere and positive around their cor-
responding control points because the weight coefficients of the
subdivision schemes are positive. Secondly, the limit position of
each control point X; is a linear summation of itself and its one-
ring neighboring control points so that the support of each basis
function has two-ring neighborhoods. Finally, the weight coeffi-
cients of all subdivision schemes are summed to one, therefore
we have ) " ¢ = 1.

4.3. Fully-discrete scheme

In this subsection, we describe its second-order spatiotem-
poral fully-discrete scheme, the unconditional energy stability,
and the decoupling implement process. In the following context,
the time step size is denoted as §t > 0 where t" = ndt and
0 < n < N = [T/5t]. We take the test functions 6y, ¥, and ¢, in
the finite element space H%(S;) deduced by the limit form of the
Loop subdivision as described in Section 4.2.

We already know ¢, u?, UP and ¢!, up= ', Ul !, for n >
1, then we need achieve ¢/*!, uf*!, U™ using the following
second-order scheme based on the backward difference formula:

3 n+1 — 40" n—1
( O T AP ) = M, Vi), (4.24)

268t

(i, 0n) = 2Ce2(Vspy ™, Vson)+n(dpt', 9)+Q" (Hy Uy, on),
(4.25)

3uptt —4up + U
) == Hops ) s 426
( ot o) =5Q"" (Hide: ) (4.26)
3Q" —4Q" QM L L 38T — A0+
= (Hh Uh s )
28t 25t
— (Hydne, U™, (4.27)
where the known terms ¢;, Uy, H; and ¢}, are
O =200 — oy . Uy =20 — Uy,
{ * P 1 . i (4.28)
Hh = H(¢h )7 ¢ht = h h25t b

Its corresponding unconditional energy stability is described as
the following Theorem 4.2.

Theorem 4.2. The second-order scheme (4.24)-(4.27) is uncon-
ditionally energy stable, i.e., satisfies the following discrete energy
dissipation law:

En+1 _ En

< _MIV n+1 2’
St = Il sy Il

(4.29)

where, for an integer k > 0, the discrete-form energy E* is defined
as

Bk — c82(|7|7v5¢>,’§||2 + 12Vsopf — Vst '1%)
+ 5(|I¢,’§||2 + 11285 — o112

_ 1 2 L
HUURI + 1208 = UF ') + 501047 + 120 = 1)
(4.30)

Proof. Firstly we take 6, = —u,’}“

integration by parts, we get

3 n+1 —4 n+ n—1
—( D AR ) = Mg,

in (4.24) and perform the

4.31
26t ( )

. 31 _gpn 4 =1
By taking ¥, = %

identity of

in (4.25), using the following

2(3a—4b+-c, a) = a®>—b*+(2a—b ) —(2b—c > +(a—2b+c)?, (4.32)
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and performing the integration by parts, we derive

n+1 e —dgl+gi!
Ky s 25t

C 2
2(St(nw"“n Vs> + 12Vspp ! — Vigp ||
- ||2V or = Vi 1P + Vst — 2Vipl + Vg %)
+ T&(”"’M 1> = llgpll* + 1207+ — @it
—l2¢8 — &y "I1? + [FHas — 20 + )
sy 3n T —dop+en
+ Qn—H(Hh Uh’ h 2§[h h )
(4.33)
By taking ¢, = 2U;"" in (4.26) and using (4.32), we get
1 _
ﬁ(nuh"*‘n2 — ORI + 120, = URI> = 120 — Uy~ ')
+HIUP =208 + UL 2) = QT (H by U,
(4.34)

By multiplying (4.27) with Q"*! and using (4.32), we obtain

—4Q" +Q" ™!

3¢n+1 74¢n+¢n—1 1
— Qn+1(Hl>1kU'>lk, h 26th h ) Qn+1(Hh¢ht’ Un+ )

By taking the sum of (4.31), (4.33), (4.34) and (4.35), and using
(4.32) for the left hand of (4.35), we have

i n+1
4&(3(1 (4.35)

28t(||vs¢>”+1 II? ||vs¢,,|| + [12Vspp T = Vigh|1?

—[12Vsep — Vg |17
+||v ort! =2Vl + Vi 12
+4—(||¢>"*1 1> = N> + 112657 — hll® — 11265 — ¢ 'I1?
+lgpt = 2¢8 + op 1)
+%(||U““||2 — lURIP + 11205 = U 11> = l20g — Ui )2
HIU ! =205 + UHP)

45t(|Qn+]| — Q"2 + 2™ — Q" —12Q" — Q"'
+HQ™ - 20" +Q" ")

1
= —M|Vswy™|I%,

which implies the energy stability (4.29) is true after we ignore
its some positive terms.

4.3.1. Decoupled calculation

We introduce a nonlocal splitting method to obtain the decou-
pling calculation for (4.24)-(4.27).

Step 1: We split ¢+, ™" and U™ into the linear combina-
tion forms as

¢n+1 ¢n+1 + Qn+1¢121;—1’ HZ_H — qu}-:—l + Qn+1ugh+l, U;IH—l
= Ui+ QMU (4.36)
we solve ¢}, uit and U, i = 1,2, as follows.
Using (4.36), we replace ¢;*", Z“ and U™ of the system

(4.24)-(4.26), and decompose the obtained equations into the
following four systems:

3¢1’I+1 4¢n +¢n—l
( 2&“ b Oh) = —M(Vsui, Vi),

(5, o) = 2Ce(Vspi T, Vion) + n(gf !, o),

(4.37)
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3¢n+1
(S5t ,0h) = —M(Vsu5t, Vibh),
(5t On)=2CeX (Vs !, Vo) + n(dh ", On) + (HiUfE, 9n),
(4.38)
3ul! aup —up!
Jon) = (——=—"—. &), 439
( 25t &n) =( T, h) (4.39)
3Un+1 1 ok
(—— 28t 2y En) = (Hh¢hp§h)- (4.40)

The system (4.37) and (4.38) is easy to be solved because there
are linear elliptic with constant coefficients. (4.39) and (4.40) are
also very easy to be solved.

Step 2: By using the obtained values of ¢!}, ¢, and UJ}™",
Uy by solving (4.37)-(4.40), we update Q"+ in (4.27) through

3 n+1 1 -

- — =_—(4Q" — Q™! , 441
(2& V)Q 252 — QT )+ (4.41)
where y; and y, are given as

k% 3¢n+1_4¢n+¢n—1 % 4% +1
v = (HpUy, ——5—"—) — (H; o}, Uiy s (4.42)

—(H*U* 3‘75’2]!1“) (H Un+l)
Ve = MUy, =5 n Phe» ,

and Hy, Uy and ¢y, are given in (4.28).
Finally, we need prove the solvability of Q in (4.41) through

showmg the coefficient 53; — y, # 0. By taking 6 = 5, ' and

= m(p”“ (4.38), we get
3C
% |+ X g 2L g
B . ¢n+1

then choosing ¢, = 2U£‘,fr1 in (4.40), we obtain

BUQAH * g% n+1
5t = (Hyop, Uy, ). (4.44)
We can get —y, > 0 by taking the sum of (4.43) and (4.44). Thus

(4.41) is always solvable.

We implement the decoupled calculation for the discrete
scheme. As we can see that we do not introduce any additional
solution steps for the nonlinear terms. The indispensable compu-
tation is that several elliptic equations with constant coefficients
are solved at each time step.

5. Numerical examples

In this section, some practical simulations are carried out
to validate the efficiency, accuracy, and energy stability of this
coupling discrete scheme. The solution surface regions for the
numerical experiments result from the limit process of the Loop
subdivision. Similar to the classical FEM, the Gaussian integral
calculation is carried out on each patch of the triangular dis-
cretization for the limit surface. The linear system of the fully
discretization scheme for the equation is highly sparse, we need a
robust iterative method to solve them. In this paper, we adopt the
GMRES solver, where we set the number of iterative steps long
enough to obtain the proper convergence of the scheme.

5.1. Convergence test

We first test the convergence rate of this coupling scheme
using a closed sphere with the unit radius, i.e.,

S={xy,2): Vx> +y> +22 =1} (5.1)
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Fig. 5.1. Convergence rate of the phase-field model of homopolymer blends on the unit sphere.
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Fig. 5.2. Phase-field model of homopolymer blends for the sphere (5.5) with ¢, = 0.3: Time evolution of the free functional for three different time step sizes
St = 2e—3, 1le—3 and 5e—4, which are plotted in (a), (b) and (c) respectively. The energy curves decay for the three different time step sizes, which shows our

coupling scheme is unconditionally stable.

The parameters of the system are given as
M =1, =25, ¢e=1e—-2,

(5.2)
o =1le—4, C=5e—1, n=4, B=9e3,
and the initial condition is set as
¢o = sin(2x) cos(3y) + 0.2. (5.3)

To obtain the convergence rate, a series of the uniform meshes
Sy, from coarse to refined are performed, where the values of the
vertex valence are in [4, 6], and h; is the mesh size. Since the
subdivision-based IGA method is second-order accurate (cf. [36]),
we set the time step sizes §t; Ch; for the ith level sur-
face mesh Sy, where C is a given constant between 0 and 1.
Because we do not know its exact solution, we choose the so-
lution achieved with a very fine mesh size as the benchmark
solution, which is used approximately as the exact solution for
verifying the numerical errors. We plot the L? numerical er-
ror of the scheme in Fig. 5.1 when t 2.56e—1, where the
total number of patches/vertices for these surface models are
512/258, 2048/1026, 8192/4098, 32768/16386, and the corre-
sponding mesh sizes h; = 0.2543, 0.1169, 0.0622, 0.0326, re-
spectively. We observe that the scheme is second-order accurate
for space.

5.2. Spinodal decomposition on surfaces

We study the process of the phase separation by observing a
homogeneous binary mixture. It is quenched into the unstable
part of its miscibility gap, where the spinodal decomposition hap-
pens, then manifests in the spontaneous growth of the concen-
tration fluctuations that leads the system from the homogeneous
to the two-phase state. The domains of the binary components
are formed and there appears the interface between them shortly
after the phase separation starts. In this section, we represent the
phase separation (spinodal decomposition) simulation on three
different surface models under three different initial conditions
(cf. [4,6,58-61]).

The initial condition read as

¢o = ¢o + 0.001rand(x, y, z), (5.4)

and the rand(x, y, z) is the random number in [—1, 1] with the
Zero mean.

The first surface domain is set as a closed sphere with the unit
radius

S1={xy.2): ¥ +y +2> =1}, (5.5)
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Fig. 5.3. Snapshots of the spinodal decomposition on the sphere (5.5) are taken at t = 1.5, 2.5, 5, 10, 15, 25, 30, 40, where the phase variable ¢ is
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Fig. 5.6. Free energy curves on the sphere with unit radius defined as (5.5) under different initial values. (a) is ¢o = 0.5, (b) is o = 0.4 and (c) is ¢o = 0.3.
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Fig. 5.7. Snapshots of the spinodal decomposition on the torus (5.7) are taken at t = 3, 5, 10, 20, 30, 40, 50, 80, where the phase variable ¢ is chosen with the initial

value ¢y = 0.5, and the time step 5t = 6e—4.
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Fig. 5.8. Snapshots of the spinodal decomposition on the torus (5.7) are taken at t = 3, 5, 10, 20, 30, 45, 60, 100, where the phase variable ¢ is chosen with the

initial value ¢y = 0.4, and the time step 5t = 6e—4.

which is discretized with 131072 Loop limit subdivision patches
by use of 65538 control vertices, and the span of the vertex
valence is 4 to 6. The parameters are given as follows:

M =1, =25, ¢=1le-2, 0 = le—4,
C =4e—1, n=4, B=09e3.

(5.6)

10

2e—3, 1le-3
and 5e—4 to perform the simulation until t = 5 with the initial

We choose three different time step sizes §t =
condition ¢y = 0.3 in (5.4). All of the energy curves in Fig. 5.2
show the decay about all time step sizes, which confirm the
coupling scheme is unconditionally stable for any time step size.
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Fig. 5.10. Snapshots of the spinodal decomposition on the head (5.9) are taken at t = 2, 6, 8, 20, 40, 60, 100, 120, where the phase variable ¢ is chosen with the

initial value ¢y = 0.5, and the time step size §t = 4e—4.

Considering the surface model (5.5), we use Jt le—3 as
the time step size to perform the simulations with the values
of the initial condition ¢ 0.5, ¢o = 0.4 and ¢y 0.3
respectively, and the parameters are also chosen as (5.6). We
show the snapshots of the coarsening dynamics with ¢g = 0.5
in Fig. 5.3, where the concentrated polymer segments mean the
larger values of ¢ represented by red, and the macromolecular
microspheres (MMs) mean the smaller values of ¢ represented
by blue. When the initial value ¢ = 0.5 meaning that both the
polymer segment and the MMs have the same volume fraction,
we can observe the phenomenon of partial entanglement and
isolation of the chain. After the time t = 60, a final equilibrium
solution was obtained in which the polymer segments formed
bands. When the initial value ¢q is changed to 0.4 that means the
volume fraction of the MMs is larger than the polymer segment in

11

Fig. 5.4. The polymer chains cannot be intertwined because they
are too short, then they are grafted on the surface of MMS. The
final steady-state solution shows that the polymer segments are
clustered in some circular shapes located in the domain. When
the volume fraction ¢y = 0.3 in Fig. 5.5, its dynamical behaviors
are very similar to the case of ¢y = 0.4. The evolution curves of
the free energy functional for the three initial values ¢ = 0.5,
¢o = 0.4 and ¢y = 0.3 are shown in Fig. 5.6 respectively. The
energy curves show the energy decays with the time that confirm
our algorithm is unconditionally stable.

We perform the second simulation for a torus surface model
within the domain

Sy ={(x,y,2): x € [-4.98,4.98], y € [-4.98, 4.98],
z €[-1.29,1.29]},
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Fig. 5.11. Snapshots of the spinodal decomposition on the head (5.9) are taken at t = 2, 6, 10, 20, 60, 80, 110, 140, where the phase variable ¢ is chosen with the

initial value ¢o = 0.4, and the time step size 8t = 4e—4.
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Fig. 5.12. Snapshots of the spinodal decomposition on the head (5.9) are taken at t = 7, 14, 20, 40, 60, 80, 100, 160, where the phase variable ¢ is chosen with the

initial value ¢ = 0.3, and the time step size §t = 4e—4.

which is discretized with 51200 Loop limit subdivision patches by
use of 25600 control vertices, and the span of the vertex valence

is [4, 8]. We choose the time step size §t = 6e—4, and the
parameters are set as
M =1, B =25, ¢ =6e-2, 0 = le—4,

(5.8)

C =4.5e—-1, n=4, B=9e3.

Snapshots of the profile for the phase-field variable ¢ under the
t_hree values of the initial conditions ¢y = 0.5, ¢9 = 0.4 and
¢o = 0.3 are shown in Fig. 5.7, Fig. 5.8 and Fig. 5.9 respectively.

12

We perform the third simulation for a complex head surface
model within the domain

S3={(x,y,z):x € [—3.46,3.46], y € [—4.97, 4.97],

z € [—4.96, 4.96]}, (5.9)

which is discretized with 268686 Loop limit subdivision patches
by use of 134345 control vertices, and the span of the vertex
valence is [4, 12]. We choose the time step size §t = 4e—4 and
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the parameters are set as
M =1, B=25, e =2e-2, ¢ = le—4,
C =56e—1, n=4, B=le4.

Snapshots of the profile for the phase-field variable ¢ under the
three values of the initial conditions ¢ = 0.5, ¢o = 0.4 and ¢y =
0.3 are shown in Fig. 5.10, Fig. 5.11 and Fig. 5.12 respectively.

(5.10)

6. Conclusions

In this work, we construct an IGA and EIEQ coupling scheme to
numerically solve the phase-field model of homopolymer blends
on complicated surfaces with arbitrary topology. The geometry
of models is described with the subdivision surface approach,
which has the superior capability of the refineability of B-spline
techniques and the flexibility of arbitrary topology. We exploit
the hierarchical structure of the subdivision-based IGA algorithm
to represent the geometry of surfaces and simulate the dynami-
cal mechanics of the particular highly nonlinear phase-field ho-
mopolymer model on the complex surface. We further present
the EIEQ method in time discretization. The novel stability tech-
nique possesses high efficiency by transforming the original non-
linear system into a simple system of some elliptic equations
with constant coefficients which are easy to be solved. In theory,
we prove the unconditional energy stability of the second-order
scheme based on the EIEQ method. Finally, by simulating several
examples, we show the energy stability and the accuracy of this
coupled numerical scheme. This framework of the EIEQ method
coupled with the subdivision-based IGA method provides us to
challenge the practical dynamical simulations on a broad range
of the phase-field models on the surface.
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