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a b s t r a c t

In this paper, we construct an IGA-EIEQ coupling scheme to solve the phase-field model of homopoly-

mer blends on complex subdivision surfaces, in which the total free energy contains a gradient

entropy with a concentration-dependent de-Gennes type coefficient and a non-linear logarithmic

Flory–Huggins type potential. Based on the EIEQ method, we develop a fully-discrete numerical

scheme with the superior properties of linearity, unconditional energy stability, and second-order

time accuracy. All we need to do with this fourth-order system is to solve some constant-coefficient

elliptic equations by applying a new nonlocal splitting techniqueWe then provide detailed proof of the

unconditional energy stability and the practical implementation process. Subdivision approaches show

a robust and elegant description of the models with arbitrary topology. Subdivision basis functions

serve to define the geometry of the models and represent the numerical solutions. Subdivision-based

IGA approach provides us with a good candidate for solving the phase-field model on complex surfaces.

We successfully demonstrate the unity of employing subdivision basis functions to describe the

geometry and simulate the dynamical behaviors of the phase-field models on surfaces with arbitrary

topology. This coupling strategy combining the subdivision-based IGA method and the EIEQ method

could be extended to a lot of gradient flow models with complex nonlinearities on complex surfaces.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the Cahn–Hilliard model [1,2] is one

of the classical equations of the phase-field models, which was

introduced by Cahn and Hilliard in [3]. They are used to describe

the coarsening phenomena in a solid and some complicated phase

separation. Nowadays, the Cahn–Hilliard equations have been

widely applied in many complicated moving interface problems

in the area of materials science and fluid dynamics through

a phase-field approach. The total free energy of the classical

Cahn–Hilliard system consists of the Ginzburg–Landau double

well potential and the gradient entropy with the constant co-

efficient. In this work, we consider numerical approximations

of the phase-field model for homopolymer blends [4–7], which

could also be called the Stochastic-Cahn–Hilliard equation, or the

Cahn–Hilliard–Cook model, since it can be regarded as the Cahn–

Hilliard system attached with an external thermal noise named as
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the stochastic term or the cook-noise [7]. The background of the
model dates back decades to the classical modeling work in [4,6,
8,9], and has been widely used to simulate the phase transition
processes of a blend of two polymer species, or polymer micro-
sphere composite (MMC) hydrogels [10]. The governing equation
of the model of homopolymer blends is derived from the energy
variation of the total free energy in H−1 Sobolev space, whose
total free energy includes a logarithmic Flory–Huggins type po-
tential and a gradient entropy with a concentration-dependent
de-Gennes type coefficient [6].

There are many successful numerical algorithms for solving
partial differential equations (PDEs) on surfaces, where we can
refer to the finite difference method in [11], the Spectral method
in [12,13], and the finite element method (FEM) in [14], etc. The
first two approaches have made significant progress in recent
years, however, most of the interest domains are still confined
to simple domains, such as circular, rectangular, and spherical
regions. Compared with them, the FEM can more effectively deal
with a large number of irregular surfaces in the practical engi-
neering, see [15–17] for theoretical/numerical studies of phase
transition-related models on surfaces. However, it is remarkable
that the FEM involves the approximation of surface differen-
tial geometric operators, which may introduce additional errors
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caused by numerical approximation schemes. Taking the Lapla-

cian operator on a surface as an example, the derivative of the

surface itself needs to be integrated. Traditional FEM requires

the manual intervention in mesh generation from CAD models,

which is costly, time-consuming and labor-intensive, and the

refining process is troublesome, especially for the surfaces with

complex geometries. Instead of using these methods for solving

surface PDE models, this paper adopts the recently developed

isogeometric analysis (IGA) framework, see [18,19].

The concept of IGA was proposed to develop a seamless inte-

gration between FEM and computer-aided design (CAD), which

adopts the non-uniform Rational B-Splines (NURBS) [20–22] or

T-splines [23,24] as the same shape functions to describe the so-

lution region and conduct the numerical simulation of PDEs. The

framework of IGA is proposed to develop the seamless integration

between FEM and computer-aided design (CAD)

[25–29]. It has higher numerical accuracy than the FEM, where

we can easily implement the p-refinement, h-refinement, and

even k-refinement by the technique of the order elevation and

the knot insertion. It can remove the interactive communica-

tion with the CAD system, then improve the accuracy of the

numerical simulation without destroying the original geometric

properties. A hybrid phase-field approach in the framework of

IGA was developed in [30], which was used to model the crack

propagation of functionally graded materials with porosity effects

and significantly reduced the computational cost of the phase-

field model. In this work, we adopt the efficient subdivision-based

IGA approach for solving the phase-field model for homopoly-

mer blends on surfaces. Subdivision is a good candidate in the

application of IGA, which has the capability of the refineability of

B-spline techniques. Surface subdivision adopts a set of simple

and efficient refinement schemes [31–33] to construct smooth

surfaces based on arbitrary topological meshes, which can not

only conveniently handle complicated geometric forms but also

maintain original characteristics near boundaries with angles and

creases through straightforward extensions. Both Loop subdivi-

sion [34–37] and Catmull–Clark subdivision [38–40] has been

developed in IGA. Local refinement and convergence rate [41] was

investigated in Catmull–Clark subdivision-based IGA. The opti-

mal convergence rates of hybrid nonuniform subdivision (HNUS)

surfaces in IGA was achieved in [42]. Through these research

work, we can see that the subdivision-based IGA approach can be

viewed as the natural choice for higher-order FEM in engineering

practice, see [36,37,43,44] as well.

As for the classical Cahn–Hilliard system, there exist three

prevalent numerical techniques of treating the nonlinear term

while keeping the energy stability property. The first method is

the convex splitting scheme [45], in which we treat the concave

term by the explicit form, and treat the convex term of the poten-

tial functional by the implicit form. Although the convex splitting

method owns the property of energy stability, it introduces non-

linear forms in a lot of cases, so the program implementation

is complex and leads to high computational expenditure. The

second alternative is the stabilization scheme [46–48], in which

we still treat the nonlinear term of the potential functional im-

plicitly, in addition, we consider designing some linear stabilizing

terms. We can easily realize these linear schemes, however, one

of its shortcomings is that the second-order form only maintains

the conditional energy stability [47], that is, the time step size

is limited by the thickness of the interface, and the amplitude

is small. We want to highlight the third technique called the

Invariant Energy Quadratization (IEQ) method [49], where we can

treat all nonlinear terms semi-explicitly. The key point of the IEQ

method is to change the PDEs resulting from the energy func-

tion into an equivalent form including some new variables, then

we can treat the nonlinear terms semi-explicitly. Moreover, its

first-order and second-order discrete schemes own unconditional

energy stability. However, the IEQ method still has some disad-

vantages, especially in practical implementation. It will result in

a linear system with variable coefficients at each time step, see

[49–52], therefore to solve a system with variable coefficients,

we not only need more complicated computational steps, such as

requiring a suitable and robust iterative solver or designing some

preconditioner, but also spend more computational time than a

linear system with only constant coefficients.

This paper focuses on developing an efficient fully-discrete

numerical scheme to solve the phase-field model of homopoly-

mer blends on complex surfaces. In our previous work [53],

we introduced a novel framework called IGA-EIEQ time-space-

coupling scheme to solve the classical Allen–Cahn and Cahn–

Hilliard phase-field models on complex surfaces. However, the

phase-field model of homopolymer blends studied in this article

is considerably more complex and exhibits distinct nonlinear

complexities compared to the classical Cahn–Hilliard equation.

In particular, the model under investigation incorporates a log-

arithmic type bulk potential and a gradient entropy with a non-

constant coefficient. Consequently, new auxiliary variables need

to be constructed to suitably handle the transformed equiva-

lent free energy functional. It is remarkable that this specific

model has been numerically studied using the IEQ approach

in our previous work [49]. However, the IEQ method proposed

in [49] requires solving a linear system with variable coeffi-

cients, which can be computationally inefficient. In contrast, the

temporal marching algorithm proposed in this paper only neces-

sitates solving constant-coefficient elliptic equations, resulting in

improved computational efficiency. Moreover, the IEQ approach

given in [49] solely focused on the time marching algorithm,

whereas our approach provides a fully discrete method that is

applicable to complex surfaces. To the best of our knowledge, this

paper presents the first algorithm for this particular model on a

complex surface.

We adopt the more advanced version of the IEQ method, the

so-called explicit IEQ (EIEQ) method, in which by introducing a

nonlocal variable and designing a special but trivial ODE for it,

the decoupling structure is achieved, see [54] for its application

in a different crystal growth model on the regular geometric

domain. The superiority of the EIEQ method is reflected that the

scheme involved ultimately only requires the solution of some

linear constant-coefficient equations with the fully decoupled

structure at each time step, and is therefore highly efficient in

practice. Subdivision-based IGA approach provides us with a good

candidate for solving the phase-field model on complex surfaces.

We successfully demonstrate the unity of employing subdivi-

sion basis functions to represent the geometry and simulate the

dynamical behaviors of the phase-field. This framework fully

reflects the advantage of our hybrid IGA-EIEQ strategy to treat

complex surface phase-field models. Various numerical experi-

ments are carried out to demonstrate the energy stability and the

accuracy of the developed method.

The rest of this paper is organized as follows. In Section 2 we

briefly describe some basic knowledge of surfaces. In Section 3,

the phase-field model for homopolymer blends on the surface is

presented. In Section 4, we describe the coupling scheme of the

subdivision-based IGA method with the EIEQ method, then pro-

vide a second-order fully-discrete scheme as well as proof of the

unconditional energy stability, and their decoupling implementa-

tion. In Section 5, we implement several numerical examples by

using our coupling scheme. In Section 6, we give the concluding

remarks.
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2. Preliminaries

Assume S := {x(u1, u2) ∈ R
3 : (u1, u2) ∈ D ⊂ R

2} be a

sufficiently smooth and orientable surface, where (u1, u2) is its

parameterization. Denote gαβ = ⟨xuα , xuβ ⟩ with

xuα = ∂x

∂uα
, xuαuβ = ∂2x

∂uα∂uβ
, α, β = 1, 2, (2.1)

and the surface normal

n = xu1 × xu2

∥xu1 × xu2∥
, (2.2)

where ⟨·, ·⟩, · × · and ∥ · ∥ stand for the usual inner product,

cross product and Euclidean norm in R
3 respectively. We further

denote [gαβ ] = [gαβ ]−1 and g = det[gαβ ], then we introduce the

following geometric differential operators of interest.

2.0.1. Tangential gradient operator

Suppose that f ∈ C1(S), where C1(S) stands for a function

space consisting of C1 smooth functions on S , then the tangential

gradient operator ∇s acting on f is defined as

∇sf = [xu1 , xu2 ][gαβ ][fu1 , fu2 ]T ∈ R
3. (2.3)

For a vector-valued function f = [f1, . . . , fk]T ∈ C1(S)k, the

gradient ∇s acting on f is defined as

∇sf = [∇sf1, . . . ,∇sfk] ∈ R
3×k.

2.0.2. Divergence operator

Let v ∈ [C1(S)]3 be a smooth vector field on surface S . Then

the divergence operator divs acting on v is defined as

divs(v) = 1
√
g

[

∂

∂u1
,

∂

∂u2

]

[√
g[gαβ ][xu1 , xu2 ]Tv

]

. (2.4)

2.0.3. Laplace–Beltrami operator

Let f ∈ C2(S). Then the Laplace–Beltrami operator (LBO) ∆s

acting on f is defined as

∆sf = divs(∇sf ). (2.5)

2.0.4. Sobolev space on surface

Assume that S is a sufficiently smooth surface. For a given

constant k and a function f ∈ C∞(S), denote ∇kf the kth order

covariant derivative of function f , with the convention ∇0f = f .

Let

Ck(S) =
{

f ∈ C∞(S) :
∫

s

|∇ jf |2dx ≤ ∞ for j = 0, . . . , k

}

.

Let S be a compact surface with at least kth order smoothness

Sobolev space Hk(S), which is the completion of Ck(S) in the sense

of norm

∥f ∥Hk(S) :=

⎛

⎝

k
∑

j=0

∫

s

|∇ jf |2dx

⎞

⎠

1/2

. (2.6)

There hold the following two inner products on the surface S , for

ξ, ρ ∈ H1(S), that

(ξ, ρ) =
∫

s

ξρ dx, and (∇sξ, ∇sρ) =
∫

s

∇sξ · ∇sρ dx.

3. Phase-field model of homopolymer blends on the surface

The phase-field model of homopolymer blends describes a

homopolymer blend with the symmetric property, which is com-

posed of molecules of component I and II. We use φ0 to denote

the average volume fraction of component I of the mixture, then

the system state of the mixture is represented by φ(x, t) for

every point x ∈ S at the time t . The change of φ(x, t) with

the time related to the local current JI (x) of component I can

be represented by the following phenomenological mesoscopic

dynamic equation [4–6]:

φt = −∇s · JI (x). (3.1)

Note that the transport of (3.1) follows the difference of the

chemical potential. If there exists a linear relation between the

gradient of the local chemical potential ρ(x, t) and the local

current JI (x, t) [55], the flux JI is driven by

JI (x, t) = −λ∇sρ(x, t), (3.2)

where λ denotes the Onsager mobility coefficient. ρ(x, t) is de-

noted as the functional derivative of a coarse-grained free energy

functional E(φ), which reads as

ρ(x, t) = δE(φ)

δφ
, (3.3)

with

E(φ) =
∫

S

(

να2

36
k(φ)|∇sφ|2 + F (φ)

)

dx, (3.4)

where α is the Kuhn segment length (cf. [6]), and

k(φ) = 1

φ(1 − φ)
(3.5)

is the gradient energy coefficient of the de-Gennes type. The term

F (φ) is called the bulk free energy of the mixture, and has the

following form of the phase-field model of homopolymer blends

F (φ) = 1

Nν
(φ lnφ + (1 − φ) ln(1 − φ)) + χφ(1 − φ), (3.6)

where the coefficient N is the degree of the polymerization of

the chains, the coefficient ν is the volume of one repeat unit

(monomer), and the coefficient χ is the Flory–Huggins type in-

teraction parameter (cf. [6]).

Denote M = Λ
νN

, ε2 = ν2α2N
36

and β = χνN , we can

numerically solve the phase-field model of homopolymer blends

according to the following scaled equation form

φt = M∆sµ, (3.7)

µ = δE

δφ
= −2ε2∇s · (k(φ)∇sφ) + ε2k′(φ)|∇sφ|2 + f (φ), (3.8)

where
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

k′(φ) = (2φ − 1)

φ2(1 − φ)2
,

F (φ) = φ lnφ + (1 − φ) ln(1 − φ) + β(φ − φ2),

f (φ) = F ′(φ) = ln(
φ

1 − φ
) + β(1 − 2φ).

(3.9)

For simplicity, we only consider closed surface domains in this

paper so that we ignore all complex boundary conditions.

By taking the L2 inner products of (3.7) with −µ, of (3.8) with

φt , and performing the integration by parts, we get

− (φt , µ) = M∥∇sµ∥2, (3.10)

3
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and

(µ, φt ) = 2ε2(k(φ)∇sφ, ∇sφt ) + ε2(k′(φ)|∇sφ|2, φt ) + (f (φ), φt )

= ε2(k(φ), ∂t |∇sφ|2) + ε2(|∇sφ|2, ∂tk(φ)) + (f (φ), φt )

= d

dt
(ε2k(φ), |∇sφ|2) + d

dt
(F (φ), 1).

(3.11)

Then taking the sum of the above equations, we obtain the energy

dissipation law

d

dt
E(φ) = −M∥∇sµ∥2 ≤ 0, (3.12)

where

E(φ) =
∫

S

(

ε2k(φ)|∇sφ|2 + F (φ)
)

dx. (3.13)

We aim at constructing a fully-discrete scheme to solve the

phase-field model of homopolymer blends (3.7)–(3.8) on the sur-

face that accords with the discrete form of the continuous energy

law (3.12). The main challenge we face is how to discretize the

nonlinear terms resulting from the energy functionals, i.e., the

Flory–Huggins type potential term f (φ) and the gradient entropy

term k(φ) with the de-Gennes type coefficient.

4. IGA-EIEQ scheme on the surface

The constructed numerical algorithm must ensure that the

free energy is within an open domain (0, 1). As for the bulk free

energy F (φ) and the gradient entropy k(φ) in the free energy func-

tional (3.4), we use C2 continuous convex piecewise functions

to regularize them from (0, 1) to (−∞, ∞). About the bulk free

energy F (φ), for any σ > 0, we rewrite it as [56]

F (φ) = F(φ) + β(φ − φ2), (4.1)

with

F(φ)

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

φ lnφ + (1 − φ)2

2σ
+ (1 − φ) ln σ − σ

2
, if φ ≥ 1 − σ ,

φ lnφ + (1 − φ) ln(1 − φ), if σ ≤ φ ≤ 1 − σ ,

(1 − φ) ln(1 − φ) + φ2

2σ
+ φ ln σ − σ

2
, if φ ≤ σ .

(4.2)

For the other gradient entropy k(φ), we change it as

k(φ)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

σ (1 − σ )
+ 1 − 2σ

(1 − σ )2σ 2
(φ − (1 − σ )), if φ ≥ 1 − σ ,

1

φ(1 − φ)
, if σ ≤ φ ≤ 1 − σ ,

1

σ (1 − σ )
+ 2σ − 1

(1 − σ )2σ 2
(φ − σ ), if φ ≤ σ .

(4.3)

In the following section, we introduce our numerical algorithm

which combines the EIEQ approach and recently developed

subdivision-based IGA method to construct a second-order dis-

crete scheme with unconditional energy stability.

4.1. EIEQ time advancing strategy

An ideal time discretization method requires the properties

of the linearity and unconditional energy stability. For the trans-

formed system (3.7)–(3.8), the key step of the EIEQ methodology

is to design two new variables, one of which can ‘‘quadratize’’ the

nonlinear terms, and the other of which can be used to achieve

the decoupling calculation. After that, our decoupled scheme

is linear, second-order time-accurate and unconditional energy

stable. Our final task is to solve several elliptic equations with

constant-coefficient. Next, we describe the detailed idea.

The effect of the first new variable U is to quadratize the

energy potential, which defined as

U(φ) =
√

ε2(k(φ) − C)|∇sφ|2 + F (φ) − η

2
φ2 + B. (4.4)

It is easy to see that we need predefine two positive constants η

and B, where the function of constant B is to ensure the term in

the square root always positive since the negative quadratic term

related to η can be always bounded from below. With the help of

the new variable U , we can change the model (3.7)–(3.8) into the

following equivalent formulation:

φt = M∆sµ, (4.5)

µ = −2Cε2∆sφ + ηφ + HU, (4.6)

Ut = 1

2
Hφt , (4.7)

where the emerging variable H is

H = 2
d

dφ
U(φ)

= −2ε2∇ · ((k(φ) − C)∇sφ) + ε2k′(φ)|∇sφ|2 + f (φ) − ηφ
√

ε2(k(φ) − C)|∇sφ|2 + F (φ) − η

2
φ2 + B

.

(4.8)

The other of the nonlocal variable Q (t) is used to achieve the

decoupling calculation, where we relate this variable to an ODE

system as
{

Q (t) = (HU, φt ) − (Hφt ,U),

Q |t=0 = 1.
(4.9)

Q (t) is equal to 1 since Qt = 0 and Q |t=0 = 1.

After that, with these two newly constructed variables U and

Q (t) with the dependent ODE (4.9), the phase-field model of

homopolymer blends (3.7)–(3.8) is reformulated as:

φt = M∆sµ, (4.10)

µ = −2Cε2∆sφ + ηφ + QHU, (4.11)

Ut = 1

2
QHφt , (4.12)

Qt = (HU, φt ) − (Hφt ,U), (4.13)

with the initial condition

⎧

⎪

⎨

⎪

⎩

φ|t=0 = φ0,

µ|t=0 = −2ε2∇s · (k(φ0)∇sφ0) + ε2k′(φ0)|∇sφ0|2 + f (φ0),

U |t=0 =
√

ε2(k(φ0) − C)|∇sφ0|2 + F (φ0) − η

2
φ2
0 + B.

(4.14)

Remark 4.1. The two newly obtained systems (4.5)–(4.7) and

(4.10)–(4.13) through the transforming method using some new

constructed variables are equivalent to the initial system (3.7)–

(3.8) because we can recover the previous system from the latter

system through several integral operation over time. For example,

(4.4) can be recovered if we integrate the Eqs. (4.7) over time with

the given initial conditions (4.14). In addition, it is easy to see

the equivalence between the new system (4.10)–(4.13) and the

system (4.5)–(4.7) because Q ≡ 1.

4
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Theorem 4.1. The transformed equivalent system (4.10)–(4.13)

guarantees the law of the energy dissipation

d

dt
Ẽ(φ,Q ,U) = −M∥∇sµ∥2 ≤ 0, (4.15)

where the energy functional

Ẽ(φ,Q ,U) =
∫

S

(

Cε2|∇Sφ|2 + η

2
|φ|2 + U2 − B

)

dx+ 1

2
|Q |2 − 1

2
.

(4.16)

Proof. By taking the L2 inner product of (4.10) with −µ, of (4.11)

with φt , of (4.12) with 2U , of (4.13) with Q , and perform the

integration by parts, we get

−(φt , µ) = M(∇sµ, ∇sµ), (4.17)

(µ, φt ) = 2Cε2(∇sφ, ∇sφt ) + η(φ, φt ) + Q (HU, φt ), (4.18)

2(Ut ,U) = Q (Hφt ,U), (4.19)

d

dt

(

1

2
|Q |2

)

= Q (HU, φt ) − Q (Hφt ,U). (4.20)

After taking the sum of (4.17)–(4.20), we obtain the law of the

energy dissipation (4.15).

The energy law (4.15) of the transformed system (4.10)–(4.13)

is exactly the same as the energy law (3.12) for the original

system (3.7)–(3.8) in the time continuous case. On the basis of

the current energy dissipation law (4.15), we describe the spa-

tiotemporal fully-discrete scheme for the corresponding system

(4.10)–(4.13).

4.2. Subdivision-based IGA method

Subdivision is a popular technique, which is widely applied

to represent smooth models in the area of engineering design.

It provides us with an efficient and compact description of the

model interest with certain smoothness. Subdivision approach

has the flexibility and the freedom of treating complex surface

models with any topology structure, moreover it the exactly

expressible properties for geometries which can be guaranteed

no change along with the parameterization process. Actually,

the refinement process of the subdivision approach is equivalent

to the h-refinement of NURBS. Different from traditional spline

approaches, subdivision representation has no requirement of the

complex continuity constraints cross patches.

Starting from an initial coarse mesh, or called control mesh,

we can obtain a smooth surface by the Loop subdivision scheme

xj = S
j

j−1x
j−1, (4.21)

where we denote S
j

j−1 as the global subdivision operation from

level j − 1 to level j. The entries of the sparse matrix S
j

j−1 are

dependent of the topology of the mesh and its corresponding

subdivision weight coefficients. We can update the new place

of the control point by the old point with weight α = 1 −
nβ and all 1-ring surrounding control points with weight β =
1
n

[

5
8

−
(

3
8

+ 1
4
cos 2π

n

)2
]

, where n is the valence of the control

point (see Fig. 4.1 (a)). Then we can achieve a new point at

each edge by averaging the four adjacent points (see Fig. 4.1

(b)). Repeated refinement leads to hierarchical and increasingly

refined models, which finally generate the limit surface with C1

smoothness.

Assume that we denote the initial control mesh as Ω0
h , and the

subsequent series of the control meshes as Ωk
h , k = 0, . . . ,∞,

through repeated Loop subdivision. A limit surface S can be

achieved through an infinite subdivision procedure as k → ∞.

Fig. 4.1. (a) Vertex refinement rule, α = 1 − nβ , where β =
1
n

[

5
8

−
(

3
8

+ 1
4
cos 2π

n

)2
]

, and n is the valence of the control vertex. (b) Edge

refinement rule.

Every control point xk0 of valence n on the mesh Ωk
h and its 1-ring

adjacent points xkj , j = 1, 2, . . . , n, will converge to a clear loca-

tion under the condition of the parameter β ∈ (−3/8n, 13/8n),

which is stated as the following Lemma 4.1.

Lemma 4.1. Let xk0 be a control point of valence n on the mesh Ωk
h ,

and xkj , j = 1, . . . , n, be its 1-ring adjacent control points. All these

points converge to a single position

x̂0 = (1 − nl)xk0 + l

n
∑

j=1

xkj , l = 1

n + 3/(8β)
, (4.22)

as the subdivision step k → ∞ (see [32] for the proof).

We can use the subdivision shape functions to represent the

solution of high-order PDEs governing the dynamical behaviors of

complex geometry with any topological structures, which are C1

continuity or H2 integrability. The subdivision model represents

complicated interest domain and simulates its physical property

through the same set of formulas. We can get a reliable and

exact computation in the processing of the finite element integra-

tion through the computation of Loop basis functions and their

derivatives at arbitrary parameter positions for every triangular

patch.

For a regular patch which means the valence of all control

points of the triangular patch is six, we can exactly describe it

by a quartic box-spline as

x(u, v) =
12
∑

i=1

Bi(u, v)x
k
i , (4.23)

where (u, v, 1 − u − v) is the barycentric coordinates of the

parametric patch, xki are the corresponding 2-ring surrounding

neighbor control points of the control mesh (see Fig. 4.2(a)),

and Bi are the quartic box-splines (see their analytic expression

in [57]). Then we can determine any points lying within the reg-

ular patch directly using the set of the box spline basis functions.

For an irregular patch which means the valence of at least one

control point for this patch is not six, there has no explicitly

computable formula for it. However, the quartic box-spline form

(4.23) is still used to calculate the resulting limit surface patch

through a fast algorithm proposed by Stam [57]. The core idea is

to subdivide repeatedly this patch until the position you need to

calculate is included in a quartic box-spline patch (see Fig. 4.2(b)).

The finite element integration is performed at several Gauss

points within every parametric patch, where the Loop basis func-

tions have the 2-ring of triangles support. In order to make

5
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Fig. 4.2. (a): A regular computable Loop subdivision patch. The shaded patch is the computable Loop subdivision patch with its surrounding 12 control points. (b)

and (c): An irregular Loop subdivision patch. The extraordinary control point marked as a hollow ring. Subdividing this patch once can generate three computable

sub-patches marked as 1, 2 and 3, and one uncomputable sub-patch marked as 4. This uncomputable patch can be repeatedly subdivided to generate more computable

sub-patches.

sure that the quadrature computation arrives at the necessary

precision, very limited subdivision steps should be performed to

make all of the hierarchical limit patches become computable

quartic box-splines patches. To reduce the computation expendi-

ture, we develop a simplified approach of adaptive discretization

subdivision, where the basic idea is to replace the refinement of

mesh patches with the refinement of basis functions (see [37]).

The general process of solving the governing equations is to

transform the variables into linear combinations of finite element

basis functions with compact support. We demonstrate the unity

of employing Loop subdivision basis functions to represent the

surface geometry and perform the finite element simulation of

the phase-field movement on the surface. Assume the set of basis

functions to be φ1, . . . , φn in the finite element function space

H2(Sh), where the control mesh Sh of the limit form of Loop

subdivision has n control points x1, . . . , xn.

Loop basis functions make up a partition of unity, and have

the same superior properties as classical finite elements. Firstly,

they are nonnegative everywhere and positive around their cor-

responding control points because the weight coefficients of the

subdivision schemes are positive. Secondly, the limit position of

each control point xj is a linear summation of itself and its one-

ring neighboring control points so that the support of each basis

function has two-ring neighborhoods. Finally, the weight coeffi-

cients of all subdivision schemes are summed to one, therefore

we have
∑m

j=0 φj = 1.

4.3. Fully-discrete scheme

In this subsection, we describe its second-order spatiotem-

poral fully-discrete scheme, the unconditional energy stability,

and the decoupling implement process. In the following context,

the time step size is denoted as δt > 0 where tn = nδt and

0 ≤ n ≤ N = [T/δt]. We take the test functions θh, ϑh and ζh in

the finite element space H2(Sh) deduced by the limit form of the

Loop subdivision as described in Section 4.2.

We already know φn
h , µn

h, Un
h and φn−1

h , µn−1
h ,Un−1

h , for n ≥
1, then we need achieve φn+1

h , µn+1
h ,Un+1

h using the following

second-order scheme based on the backward difference formula:

(

3φn+1
h − 4φn

h + φn−1
h

2δt
, θh

)

= −M(∇sµ
n+1
h , ∇sθh), (4.24)

(µn+1
h , ϑh) = 2Cε2(∇sφ

n+1
h , ∇sϑh)+η(φn+1

h , ϑh)+Q n+1(H∗
hU

∗
h , ϑh),

(4.25)

(

3Un+1
h − 4Un

h + Un−1
h

2δt
, ζh

)

= 1

2
Q n+1

(

H∗
hφ

∗
ht , ζh

)

, (4.26)

3Q n+1 − 4Q n + Q n−1

2δt
= (H∗

hU
∗
h ,

3φn+1
h − 4φn

h + φn−1
h

2δt
)

− (H∗
hφ

∗
ht ,U

n+1
h ), (4.27)

where the known terms φ∗
h , U

∗
h , H

∗
h and φ∗

ht are

{

φ∗
h = 2φn

h − φn−1
h , U∗

h = 2Un
h − Un−1

h ,

H∗
h = H(φ∗

h ), φ∗
ht = 5φn

h
−8φn−1

h
+3φn−2

h

2δt
.

(4.28)

Its corresponding unconditional energy stability is described as

the following Theorem 4.2.

Theorem 4.2. The second-order scheme (4.24)–(4.27) is uncon-

ditionally energy stable, i.e., satisfies the following discrete energy

dissipation law:

Ẽn+1 − Ẽn

δt
≤ −M∥∇sµ

n+1
h ∥2, (4.29)

where, for an integer k ≥ 0, the discrete-form energy Ẽk is defined

as

Ẽk = Cε2(∥∇sφ
k
h∥2 + ∥2∇sφ

k
h − ∇sφ

k−1
h ∥2)

+ η

2
(∥φk

h∥2 + ∥2φk
h − φk−1

h ∥2)

+(∥Uk
h∥2 + ∥2Uk

h − Uk−1
h ∥2) + 1

2
(|Q k|2 + |2Q k − Q k−1|2).

(4.30)

Proof. Firstly we take θh = −µn+1
h in (4.24) and perform the

integration by parts, we get

−
(

3φn+1
h − 4φn

h + φn−1
h

2δt
, µn+1

h

)

= M∥∇sµ
n+1
h ∥2. (4.31)

By taking ϑh = 3φn+1
h

−4φn
h
+φn−1

h

2δt
in (4.25), using the following

identity of

2(3a−4b+c, a) = a2−b2+(2a−b)2−(2b−c)2+(a−2b+c)2, (4.32)

6
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and performing the integration by parts, we derive

(

µn+1
h ,

3φn+1
h

−4φn
h
+φn−1

h

2δt

)

= Cε2

2δt
(∥∇sφ

n+1
h ∥2 − ∥∇sφ

n
h∥2 + ∥2∇sφ

n+1
h − ∇sφ

n
h∥2

− ∥2∇sφ
n
h − ∇sφ

n−1
h ∥2 + ∥∇sφ

n+1
h − 2∇sφ

n
h + ∇sφ

n−1
h ∥2)

+ η

4δt
(∥φn+1

h ∥2 − ∥φn
h∥2 + ∥2φn+1

h − φn
h∥2

−∥2φn
h − φn−1

h ∥2 + ∥φn+1
h − 2φn

h + φn−1
h ∥2)

+Q n+1(H∗
hU

∗
h ,

3φn+1
h

−4φn
h
+φn−1

h

2δt
).

(4.33)

By taking ζh = 2Un+1
h in (4.26) and using (4.32), we get

1

2δt
(∥Un+1

h ∥2 − ∥Un
h∥2 + ∥2Un+1

h − Un
h∥2 − ∥2Un

h − Un−1
h ∥2

+∥Un+1
h − 2Un

h + Un−1
h ∥2) = Q n+1(H∗

hφ
∗
ht ,U

n+1
h ).

(4.34)

By multiplying (4.27) with Q n+1 and using (4.32), we obtain

1

4δt
(3Q n+1 − 4Q n + Q n−1)Q n+1

= Q n+1(H∗
hU

∗
h ,

3φn+1
h

−4φn
h
+φn−1

h

2δt
) − Q n+1(H∗

hφ
∗
ht ,U

n+1
h ).

(4.35)

By taking the sum of (4.31), (4.33), (4.34) and (4.35), and using

(4.32) for the left hand of (4.35), we have

Cε2

2δt
(∥∇sφ

n+1
h ∥2 − ∥∇sφ

n
h∥2 + ∥2∇sφ

n+1
h − ∇sφ

n
h∥2

−∥2∇sφ
n
h − ∇sφ

n−1
h ∥2

+∥∇sφ
n+1
h − 2∇sφ

n
h + ∇sφ

n−1
h ∥2)

+ η

4δt
(∥φn+1

h ∥2 − ∥φn
h∥2 + ∥2φn+1

h − φn
h∥2 − ∥2φn

h − φn−1
h ∥2

+∥φn+1
h − 2φn

h + φn−1
h ∥2)

+ 1

2δt
(∥Un+1

h ∥2 − ∥Un
h∥2 + ∥2Un+1

h − Un
h∥2 − ∥2Un

h − Un−1
h ∥2

+∥Un+1
h − 2Un

h + Un−1
h ∥2)

+ 1

4δt
(|Q n+1|2 − |Q n|2 + |2Q n+1 − Q n|2 − |2Q n − Q n−1|2

+|Q n+1 − 2Q n + Q n−1|2)
= −M∥∇Swn+1

h ∥2,

which implies the energy stability (4.29) is true after we ignore

its some positive terms.

4.3.1. Decoupled calculation

We introduce a nonlocal splitting method to obtain the decou-

pling calculation for (4.24)–(4.27).

Step 1: We split φn+1
h , µn+1

h and Un+1
h into the linear combina-

tion forms as

φn+1
h = φn+1

1h + Q n+1φn+1
2h , µn+1

h = µn+1
1h + Q n+1µn+1

2h , Un+1
h

= Un+1
1h + Q n+1Un+1

2h, (4.36)

we solve φn+1
ih , µn+1

h and Un+1
ih , i = 1, 2, as follows.

Using (4.36), we replace φn+1
h , µn+1

h and Un+1
h of the system

(4.24)–(4.26), and decompose the obtained equations into the

following four systems:
⎧

⎨

⎩

(
3φn+1

1h − 4φn
h + φn−1

h

2δt
, θh) = −M(∇sµ

n+1
1h , ∇sθh),

(µn+1
1h , ϑh) = 2Cε2(∇sφ

n+1
1h , ∇sϑh) + η(φn+1

1h , ϑh),

(4.37)

⎧

⎨

⎩

(
3φn+1

2h

2δt
, θh) = −M(∇sµ

n+1
2h , ∇sθh),

(µn+1
2h , ϑh)=2Cε2(∇sφ

n+1
2h , ∇sϑh) + η(φn+1

2h , ϑh) + (H∗
hU

∗
h , ϑh),

(4.38)

(
3Un+1

1h

2δt
, ζh) = (

4Un
h − Un−1

h

2δt
, ζh), (4.39)

(
3Un+1

2h

2δt
, ζh) = 1

2
(H∗

hφ
∗
ht , ζh). (4.40)

The system (4.37) and (4.38) is easy to be solved because there
are linear elliptic with constant coefficients. (4.39) and (4.40) are
also very easy to be solved.

Step 2: By using the obtained values of φn+1
1h , φn+1

2h , and Un+1
1h ,

Un+1
2h by solving (4.37)–(4.40), we update Q n+1 in (4.27) through
(

3

2δt
− γ2

)

Q n+1 = 1

2δt
(4Q n − Q n−1) + γ1, (4.41)

where γ1 and γ2 are given as
⎧

⎨

⎩

γ1 = (H∗
hU

∗
h ,

3φn+1
1h

−4φn
h
+φn−1

h

2δt
) − (H∗

hφ
∗
ht ,U

n+1
1h ),

γ2 = (H∗
hU

∗
h ,

3φn+1
2h

2δt
) − (H∗

hφ
∗
ht ,U

n+1
2h ),

(4.42)

and H∗
h ,U

∗
h and φ∗

ht are given in (4.28).
Finally, we need prove the solvability of Q in (4.41) through

showing the coefficient 3
2δt

− γ2 ̸= 0. By taking θh = µn+1
2h and

ϑh = 3
2δt

φn+1
2h in (4.38), we get

M


∇sµ
n+1
2h





2 + 3Cε2

δt



∇sφ
n+1
2h





2 + 3η

2δt



φn+1
2h





2

= −(H∗
hU

∗
h ,

3φn+1
2h

2δt
), (4.43)

then choosing ζh = 2Un+1
2h in (4.40), we obtain











3Un+1
2h

δt











2

= (H∗
hφ

∗
h ,U

n+1
2h ). (4.44)

We can get −γ2 ≥ 0 by taking the sum of (4.43) and (4.44). Thus
(4.41) is always solvable.

We implement the decoupled calculation for the discrete
scheme. As we can see that we do not introduce any additional
solution steps for the nonlinear terms. The indispensable compu-
tation is that several elliptic equations with constant coefficients
are solved at each time step.

5. Numerical examples

In this section, some practical simulations are carried out
to validate the efficiency, accuracy, and energy stability of this
coupling discrete scheme. The solution surface regions for the
numerical experiments result from the limit process of the Loop
subdivision. Similar to the classical FEM, the Gaussian integral
calculation is carried out on each patch of the triangular dis-
cretization for the limit surface. The linear system of the fully
discretization scheme for the equation is highly sparse, we need a
robust iterative method to solve them. In this paper, we adopt the
GMRES solver, where we set the number of iterative steps long
enough to obtain the proper convergence of the scheme.

5.1. Convergence test

We first test the convergence rate of this coupling scheme
using a closed sphere with the unit radius, i.e.,

S = {(x, y, z) :
√

x2 + y2 + z2 = 1}. (5.1)

7



Q. Pan, C. Chen, T. Rabczuk et al. Computer-Aided Design 164 (2023) 103589

Fig. 5.1. Convergence rate of the phase-field model of homopolymer blends on the unit sphere.

Fig. 5.2. Phase-field model of homopolymer blends for the sphere (5.5) with φ̄0 = 0.3: Time evolution of the free functional for three different time step sizes

δt = 2e−3, 1e−3 and 5e−4, which are plotted in (a), (b) and (c) respectively. The energy curves decay for the three different time step sizes, which shows our

coupling scheme is unconditionally stable.

The parameters of the system are given as

M = 1, β = 2.5, ε = 1e − 2,

σ = 1e − 4, C = 5e − 1, η = 4, B = 9e3,
(5.2)

and the initial condition is set as

φ0 = sin(2x) cos(3y) + 0.2. (5.3)

To obtain the convergence rate, a series of the uniform meshes
Shi from coarse to refined are performed, where the values of the
vertex valence are in [4, 6], and hi is the mesh size. Since the
subdivision-based IGA method is second-order accurate (cf. [36]),
we set the time step sizes δti = Chi for the ith level sur-
face mesh Shi , where C is a given constant between 0 and 1.
Because we do not know its exact solution, we choose the so-
lution achieved with a very fine mesh size as the benchmark
solution, which is used approximately as the exact solution for
verifying the numerical errors. We plot the L2 numerical er-
ror of the scheme in Fig. 5.1 when t = 2.56e−1, where the
total number of patches/vertices for these surface models are
512/258, 2048/1026, 8192/4098, 32768/16386, and the corre-
sponding mesh sizes hi = 0.2543, 0.1169, 0.0622, 0.0326, re-
spectively. We observe that the scheme is second-order accurate
for space.

5.2. Spinodal decomposition on surfaces

We study the process of the phase separation by observing a

homogeneous binary mixture. It is quenched into the unstable

part of its miscibility gap, where the spinodal decomposition hap-

pens, then manifests in the spontaneous growth of the concen-

tration fluctuations that leads the system from the homogeneous

to the two-phase state. The domains of the binary components

are formed and there appears the interface between them shortly

after the phase separation starts. In this section, we represent the

phase separation (spinodal decomposition) simulation on three

different surface models under three different initial conditions

(cf. [4,6,58–61]).

The initial condition read as

φ0 = φ̄0 + 0.001rand(x, y, z), (5.4)

and the rand(x, y, z) is the random number in [−1, 1] with the

zero mean.

The first surface domain is set as a closed sphere with the unit

radius

S1 = {(x, y, z) : x2 + y2 + z2 = 1}, (5.5)

8
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Fig. 5.3. Snapshots of the spinodal decomposition on the sphere (5.5) are taken at t = 1.5, 2.5, 5, 10, 15, 25, 30, 40, where the phase variable φ is chosen with the

initial value φ̄0 = 0.5, and the time step δt = 1e−3.

Fig. 5.4. Snapshots of the spinodal decomposition on the sphere (5.5) are taken at t = 1.5, 3, 5, 10, 15, 20, 25, 45, where the phase variable φ is chosen with the

initial value φ̄0 = 0.4, and the time step δt = 1e−3.

Fig. 5.5. Snapshots of the spinodal decomposition on the sphere (5.5) are taken at t = 3, 7, 10, 15, 20, 25, 30, 50, where the phase variable φ is chosen with the

initial value φ̄0 = 0.3, and the time step δt = 1e−3.

9
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Fig. 5.6. Free energy curves on the sphere with unit radius defined as (5.5) under different initial values. (a) is φ̄0 = 0.5, (b) is φ̄0 = 0.4 and (c) is φ̄0 = 0.3.

Fig. 5.7. Snapshots of the spinodal decomposition on the torus (5.7) are taken at t = 3, 5, 10, 20, 30, 40, 50, 80, where the phase variable φ is chosen with the initial

value φ̄0 = 0.5, and the time step δt = 6e−4.

Fig. 5.8. Snapshots of the spinodal decomposition on the torus (5.7) are taken at t = 3, 5, 10, 20, 30, 45, 60, 100, where the phase variable φ is chosen with the

initial value φ̄0 = 0.4, and the time step δt = 6e−4.

which is discretized with 131072 Loop limit subdivision patches

by use of 65538 control vertices, and the span of the vertex

valence is 4 to 6. The parameters are given as follows:

M = 1, β = 2.5, ε = 1e−2, σ = 1e−4,

C = 4e−1, η = 4, B = 9e3.
(5.6)

We choose three different time step sizes δt = 2e−3, 1e−3

and 5e−4 to perform the simulation until t = 5 with the initial

condition φ̄0 = 0.3 in (5.4). All of the energy curves in Fig. 5.2

show the decay about all time step sizes, which confirm the

coupling scheme is unconditionally stable for any time step size.

10
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Fig. 5.9. Snapshots of the spinodal decomposition on the torus (5.7) are taken at t = 7, 14, 20, 30, 40, 50, 70, 120, where the phase variable φ is chosen with the

initial value φ̄0 = 0.3, and the time step δt = 6e−4.

Fig. 5.10. Snapshots of the spinodal decomposition on the head (5.9) are taken at t = 2, 6, 8, 20, 40, 60, 100, 120, where the phase variable φ is chosen with the

initial value φ̄0 = 0.5, and the time step size δt = 4e−4.

Considering the surface model (5.5), we use δt = 1e−3 as
the time step size to perform the simulations with the values
of the initial condition φ̄0 = 0.5, φ̄0 = 0.4 and φ̄0 = 0.3
respectively, and the parameters are also chosen as (5.6). We
show the snapshots of the coarsening dynamics with φ̄0 = 0.5
in Fig. 5.3, where the concentrated polymer segments mean the
larger values of φ represented by red, and the macromolecular
microspheres (MMs) mean the smaller values of φ represented
by blue. When the initial value φ̄0 = 0.5 meaning that both the
polymer segment and the MMs have the same volume fraction,
we can observe the phenomenon of partial entanglement and
isolation of the chain. After the time t = 60, a final equilibrium
solution was obtained in which the polymer segments formed
bands. When the initial value φ̄0 is changed to 0.4 that means the
volume fraction of the MMs is larger than the polymer segment in

Fig. 5.4. The polymer chains cannot be intertwined because they
are too short, then they are grafted on the surface of MMS. The
final steady-state solution shows that the polymer segments are
clustered in some circular shapes located in the domain. When
the volume fraction φ̄0 = 0.3 in Fig. 5.5, its dynamical behaviors
are very similar to the case of φ̄0 = 0.4. The evolution curves of
the free energy functional for the three initial values φ̄0 = 0.5,
φ̄0 = 0.4 and φ̄0 = 0.3 are shown in Fig. 5.6 respectively. The
energy curves show the energy decays with the time that confirm
our algorithm is unconditionally stable.

We perform the second simulation for a torus surface model
within the domain

S2 = {(x, y, z) : x ∈ [−4.98, 4.98], y ∈ [−4.98, 4.98],
z ∈ [−1.29, 1.29]}, (5.7)

11
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Fig. 5.11. Snapshots of the spinodal decomposition on the head (5.9) are taken at t = 2, 6, 10, 20, 60, 80, 110, 140, where the phase variable φ is chosen with the

initial value φ̄0 = 0.4, and the time step size δt = 4e−4.

Fig. 5.12. Snapshots of the spinodal decomposition on the head (5.9) are taken at t = 7, 14, 20, 40, 60, 80, 100, 160, where the phase variable φ is chosen with the

initial value φ̄0 = 0.3, and the time step size δt = 4e−4.

which is discretized with 51200 Loop limit subdivision patches by

use of 25600 control vertices, and the span of the vertex valence

is [4, 8]. We choose the time step size δt = 6e−4, and the

parameters are set as

M = 1, β = 2.5, ε = 6e−2, σ = 1e−4,

C = 4.5e−1, η = 4, B = 9e3.
(5.8)

Snapshots of the profile for the phase-field variable φ under the

three values of the initial conditions φ̄0 = 0.5, φ̄0 = 0.4 and

φ̄0 = 0.3 are shown in Fig. 5.7, Fig. 5.8 and Fig. 5.9 respectively.

We perform the third simulation for a complex head surface

model within the domain

S3 = {(x, y, z) : x ∈ [−3.46, 3.46], y ∈ [−4.97, 4.97],
z ∈ [−4.96, 4.96]}, (5.9)

which is discretized with 268686 Loop limit subdivision patches

by use of 134345 control vertices, and the span of the vertex

valence is [4, 12]. We choose the time step size δt = 4e−4 and

12
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the parameters are set as

M = 1, β = 2.5, ε = 2e−2, σ = 1e−4,

C = 5.6e−1, η = 4, B = 1e4.
(5.10)

Snapshots of the profile for the phase-field variable φ under the

three values of the initial conditions φ̄0 = 0.5, φ̄0 = 0.4 and φ̄0 =
0.3 are shown in Fig. 5.10, Fig. 5.11 and Fig. 5.12 respectively.

6. Conclusions

In this work, we construct an IGA and EIEQ coupling scheme to

numerically solve the phase-field model of homopolymer blends

on complicated surfaces with arbitrary topology. The geometry

of models is described with the subdivision surface approach,

which has the superior capability of the refineability of B-spline

techniques and the flexibility of arbitrary topology. We exploit

the hierarchical structure of the subdivision-based IGA algorithm

to represent the geometry of surfaces and simulate the dynami-

cal mechanics of the particular highly nonlinear phase-field ho-

mopolymer model on the complex surface. We further present

the EIEQ method in time discretization. The novel stability tech-

nique possesses high efficiency by transforming the original non-

linear system into a simple system of some elliptic equations

with constant coefficients which are easy to be solved. In theory,

we prove the unconditional energy stability of the second-order

scheme based on the EIEQ method. Finally, by simulating several

examples, we show the energy stability and the accuracy of this

coupled numerical scheme. This framework of the EIEQ method

coupled with the subdivision-based IGA method provides us to

challenge the practical dynamical simulations on a broad range

of the phase-field models on the surface.
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