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Abstract— Current genomics interventions have limitations
in accounting for cell stimuli and the dynamic response to in-
tervention. Although genomic sequencing and analysis have led
to significant advances in personalized medicine, the complexity
of cellular interactions and the dynamic nature of the cellular
response to stimuli pose significant challenges. These limitations
can lead to chronic disease recurrence and inefficient genomic
interventions. Therefore, it is necessary to capture the full range
of cellular responses to develop effective interventions. This
paper presents a game-theoretic model of the fight between
the cell and intervention, demonstrating analytically and nu-
merically why current interventions become ineffective over
time. The performance is analyzed using melanoma regulatory
networks, and the role of artificial intelligence in deriving
effective solutions is described.

[. INTRODUCTION

Advancements in genomics have enabled significant
breakthroughs in the field of personalized medicine [1]—
[3]. However, there are limitations in the current genomic
interventions that fail to account for the dynamic cellular
responses to intervention and stimuli [4]-[11]. The complex-
ities of cellular interactions and responses often lead to a
recurrence of chronic diseases upon genomic interventions.
These limitations require effective therapeutic policies that
can learn, understand, and effectively react to the full range
of cellular responses.

Unhealthy or cancerous cells constantly fight against in-
terventions/therapies. The cell aims to keep the system in a
cancerous condition and perceives its actions as essential in
keeping the cell alive. Modeling the cell’s response is key
to deriving effective interventions or designing drugs to fight
against diseases. Most existing interventions assume that the
cell is non-responsive and design the intervention under this
naive assumption. This often leads to the short-term success
of these therapies before cells find new ways to fight against
them and partially or fully return the system to undesirable
conditions.

This paper models the fight between the intervention and
the cell as a two-player zero-sum game and highlights the po-
tential of this model, combined with artificial intelligence, in
deriving effective and adaptable genomics interventions. We
demonstrate the reasons for the success of existing interven-
tions by representing the cell as an adaptable reinforcement
learning (RL) player in the cell-intervention fight. Our model
and results provide insights and mathematical justifications
for the early-stage success and long-term failure of existing
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interventions and provide the valuable potential for learning-
based and game-theoretic approaches for treating chronic
diseases and designing new drugs.

II. PROPOSED GAME-THEORETIC MODEL

This paper employs a general form of Boolean network
with perturbation (BNp) model [12]-[17] for capturing the
dynamics of gene regulatory networks. This model properly
captures the stochasticity in GRNs, coming from intrinsic
uncertainty or unmodeled parts of systems. The battle be-
tween the cell and interventionist is modeled in this paper
as a two-player zero-sum game [18]-[21]. This can be
characterized by a tuple (X, A, U, R*, T, where X = {0,1}¢
is the state space, d is the number of genes, A is the action
(e.g., intervention) space, U is the internal cell control (i.e.,
internal stimuli) space, T : X x AxUx X is the state transition
probability function such that p(x’ | x,a,u) represents the
probability of moving to state x" according to the external
and internal inputs a and u in state x. R* : X x A x
U x X denotes the reward functions for an interventionist,
where R*(x,a,u,x’) denotes the immediate shift from the
cancerous states (i.e., reduction in cell proliferation) if the
system moves from state x to state x’ after the intervention
a and the internal cell response u. The cell aims to increase
cell proliferation in cancerous cells, while the interventionist
aims to reduce cell proliferation. Thus, the the reward for the
cell R" takes negative of the interventionist reward function,
ie., R*(x,a,u,x’) = -R*(x,a,u,x").

Let 7 : X — A denote the intervention strategy, pre-
scribing an intervention to any given state x € X. Let
also ™ : X — U be the cell policy, representing cell
actions/simuli at all system states. For the system with no
intervention (i.e., A = {0}), the cell can aggressively push
the system to the undesirable states. The cell policy in this
case can be expressed as:

TNo(X) =argmin E ZWtRa(Xtvat =0,u,X¢41) | 80:00 = 0,
mell t>0

Ugioo ~ T, X0 =x |, for x € X,

1)
where 0 < 7 < 1 is a discount factor that indicates the
importance of early-stage rewards compared to future ones.
This models the behavior of cell in chronic diseases such as
cancer, leading to uncontrolled proliferation of cancer cells
and often death.

Most existing intervention strategies are deterministic,
meaning they assume the cell has no defense mechanism
against the interventions [5], [22]. Under this simplistic
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assumption, the Markov game is equivalent of the Markov
decision process with a single agent/player, where the in-
terventionist deals with an unresponsive cell, i.e., U = {0}.
The conventional intervention policy can be obtained as a
solution of the following optimization process:

Wgaivc(x):ar%ml_?XE Z ’YtRa(Xt»anut =0,X¢41) |
e 0

A0ioo ~ T, Ugioo = 0, %9 = x|, for x e X.

(©))
The naive intervention policy often has a positive short-
term impact on the cell, but these impacts fade out as the cell
understands the impact of therapies and finds new ways to
fight back against intervention. Given our model of the fight
between the cell and intervention, the best defense policy for
the cell against the naive intervention policy 7y),;.. in (2) can
be formulated as:

ﬂ-u(x) =argminE Z ftha (Xt7 a = ﬂ’gaive(xt)7 Ui, Xt+1) |
muwell >0

a
~ T
naive?’

Ugioo ~ T, Xg =X |, for x e X.

3

The cell figures out the intervention policy over time and
through dynamic stimuli, it recurs the disease. The solutions
to (1)-(3) can be obtained using dynamic programming
or reinforcement learning, depending on the size of the
regulatory network and action spaces [21], [23].

The analytical performance analysis can be achieved in
terms of the state value function and the steady state proba-
bility. In particular, the difference in the expected discounted
rewards under the naive intervention and no intervention can
be expressed for any x € X’ as:

e(x) =Vze  7u(x) = Vazo,rg_(X)- 4)

In this case, e(x) ~ 0 for all x € X means that the cell
response ultimately has returned the system close to the
original space through new internal stimuli (e.g., increase
cancer cell proliferation).

aO:oo

III. NUMERICAL EXPERIMENTS

The performance of the proposed model is investigated us-
ing the melanoma regulatory network [5], [24]. This network
is essential for studying and understanding the molecular
mechanisms that drive the development and progression of
melanoma, a deadly form of skin cancer. The regulatory
relationships for this network are presented in Fig. 1, where
the system consists of 10 genes. This regulatory network
contains 10 genes, which lead to 21° = 1,024 possible states.
The activation of WNT5A has been directly connected to
the metastatic condition and reducing the activation of this
gene using antibodies has been shown to be highly effective
in preventing melanoma from metastasizing and achieving a
desirable outcome [5]. Thus, we consider R%(x,a,u,x’) =
-5x’(1) as an intervention reward function, where the reward
of -5 is assigned for each activation of WNTS5A. The internal
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Fig. 1: The pathway diagram for the melanoma regulatory network.

cell stimuli space is U = {u',u?,u?}, where u' corresponds

to no stimuli, and u? and u?® represent stimuli over the S100P
and MMP3 genes, respectively. For the intervention space,
we consider A = {a',a®}, where a' represents no control
and a? represents intervention over the PHOC gene.
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Fig. 2: The short-term and long-term desirable and undesirable
state visitations under intervention and under no intervention.

Fig. 2 represents the early-stage and long-term state
visitations of desirable and undesirable states, along with
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the state visitation under the no-intervention case. One can
see a significant increase in the short-term visitation of
desirable states under the intervention policy compared to no
intervention. However, the shift toward desirable states has
faded out in the long term, and the condition has recurred to
the case with no intervention. Our future work will study the
use of reinforcement learning to understand the cell stimuli
and policy and adaptively fight against cells as more gene-
expression data becomes available.

IV. CONCLUSION

This paper introduces a game-theoretic model for deriving
genomic interventions that can capture the full range of cellu-
lar responses. Current genomic interventions have limitations
in accounting for the dynamic responses of cells, which pose
challenges that can lead to chronic disease recurrence and
inefficient interventions. This paper models the fight between
the intervention and the cell as a two-player zero-sum game
and highlights the potential of this model, combined with
artificial intelligence, in deriving genomic interventions with
long-term effectiveness.

ACKNOWLEDGMENT

The authors acknowledge the support of the National In-
stitute of Health award 1R21EB032480-01, National Science
Foundation award I1S-2202395, ARMY Research Office
award WI911NF2110299, and Oracle for Research program.

REFERENCES

[1] Q. Liu, Y. He, and J. Wang, “Optimal control for probabilistic Boolean
networks using discrete-time markov decision processes,” Physica A:
Statistical Mechanics and its Applications, vol. 503, pp. 1297-1307,
2018.

N. S. Taou, D. W. Corne, and M. A. Lones, “Investigating the use
of Boolean networks for the control of gene regulatory networks,”
Journal of computational science, vol. 26, pp. 147-156, 2018.

G. Papagiannis and S. Moschoyiannis, “Deep reinforcement learn-
ing for control of probabilistic Boolean networks,” arXiv preprint
arXiv:1909.03331, 2019.

I. Shmulevich and E. R. Dougherty, Probabilistic Boolean networks:
the modeling and control of gene regulatory networks. SIAM, 2010.
X. Qian and E. R. Dougherty, “Intervention in gene regulatory net-
works via phenotypically constrained control policies based on long-
run behavior,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, vol. 9, no. 1, pp. 123-136, 2011.

M. Imani and U. M. Braga-Neto, “Finite-horizon LQR controller for
partially-observed Boolean dynamical systems,” Automatica, vol. 95,
pp. 172-179, 2018.

M. Imani and U. M. Braga-Neto, “Point-based methodology to monitor
and control gene regulatory networks via noisy measurements,” IEEE
Transactions on Control Systems Technology, 2018.

M. Imani and U. M. Braga-Neto, “Control of gene regulatory networks
with noisy measurements and uncertain inputs,” IEEE Transactions on
Control of Network Systems, vol. 5, no. 2, pp. 760-769, 2018.

M. Imani and U. Braga-Neto, “Optimal control of gene regulatory
networks with unknown cost function,” in Proceedings of the 2018
American Control Conference (ACC), IEEE, 2018.

M. Imani and U. Braga-Neto, “Control of gene regulatory networks
using Bayesian inverse reinforcement learning,” IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, vol. 16, no. 4,
pp. 1250-1261, 2019.

M. Imani, R. Dehghannasiri, U. M. Braga-Neto, and E. R. Dougherty,
“Sequential experimental design for optimal structural intervention in
gene regulatory networks based on the mean objective cost of uncer-
tainty,” Cancer informatics, vol. 17, p. 1176935118790247, 2018.

287

[12] L. E. Chai, S. K. Loh, S. T. Low, M. S. Mohamad, S. Deris, and
Z. Zakaria, “A review on the computational approaches for gene
regulatory network construction,” Computers in biology and medicine,
vol. 48, pp. 55-65, 2014.

M. Alali and M. Imani, “Reinforcement learning data-acquiring for
causal inference of regulatory networks,” in American Control Con-
ference (ACC), 1IEEE, 2023.

M. Alali and M. Imani, “Inference of regulatory networks through
temporally sparse data,” Frontiers in control engineering, vol. 3, 2022.
A. Ravari, S. F. Ghoreishi, and M. Imani, “Optimal recursive expert-
enabled inference in regulatory networks,” IEEE Control Systems
Letters, vol. 7, pp. 1027-1032, 2022.

M. Imani and U. Braga-Neto, “Gene regulatory network state estima-
tion from arbitrary correlated measurements,” EURASIP Journal on
Advances in Signal Processing, vol. 2018, no. 1, pp. 1-10, 2018.

L. D. McClenny, M. Imani, and U. Braga-Neto, BoolFilter package
vignette, 2017.

L. S. Shapley, “Stochastic games,” Proceedings of the national
academy of sciences, vol. 39, no. 10, pp. 1095-1100, 1953.

K. Zhang, Z. Yang, and T. Bacsar, “Multi-agent reinforcement learn-
ing: A selective overview of theories and algorithms,” Handbook of
reinforcement learning and control, pp. 321-384, 2021.

K. Zhang, S. Kakade, T. Basar, and L. Yang, “Model-based multi-
agent RL in zero-sum Markov games with near-optimal sample com-
plexity,” Advances in Neural Information Processing Systems, vol. 33,
pp. 1166-1178, 2020.

K. Zhang, Z. Yang, and T. Basar, “Policy optimization provably
converges to nash equilibria in zero-sum linear quadratic games,”
Advances in Neural Information Processing Systems, vol. 32, 2019.
R. Pal, A. Datta, and E. R. Dougherty, “Optimal infinite-horizon
control for probabilistic Boolean networks,” IEEE Transactions on
Signal Processing, vol. 54, no. 6, pp. 2375-2387, 2006.

S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learn-
ing: a survey,” Artificial Intelligence Review, pp. 1-49, 2022.

M. Imani and S. F. Ghoreishi, “Optimal finite-horizon perturbation
policy for inference of gene regulatory networks,” IEEE Intelligent
Systems, vol. 36, no. 1, pp. 54-63, 2020.

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

Authorized licensed use limited to: Northeastern University. Downloaded on September 01,2023 at 13:31:47 UTC from IEEE Xplore. Restrictions apply.



