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Abstract— Current genomics interventions have limitations
in accounting for cell stimuli and the dynamic response to in-
tervention. Although genomic sequencing and analysis have led
to significant advances in personalized medicine, the complexity
of cellular interactions and the dynamic nature of the cellular
response to stimuli pose significant challenges. These limitations
can lead to chronic disease recurrence and inefficient genomic
interventions. Therefore, it is necessary to capture the full range
of cellular responses to develop effective interventions. This
paper presents a game-theoretic model of the fight between
the cell and intervention, demonstrating analytically and nu-
merically why current interventions become ineffective over
time. The performance is analyzed using melanoma regulatory
networks, and the role of artificial intelligence in deriving
effective solutions is described.

I. INTRODUCTION

Advancements in genomics have enabled significant

breakthroughs in the field of personalized medicine [1]–

[3]. However, there are limitations in the current genomic

interventions that fail to account for the dynamic cellular

responses to intervention and stimuli [4]–[11]. The complex-

ities of cellular interactions and responses often lead to a

recurrence of chronic diseases upon genomic interventions.

These limitations require effective therapeutic policies that

can learn, understand, and effectively react to the full range

of cellular responses.

Unhealthy or cancerous cells constantly fight against in-

terventions/therapies. The cell aims to keep the system in a

cancerous condition and perceives its actions as essential in

keeping the cell alive. Modeling the cell’s response is key

to deriving effective interventions or designing drugs to fight

against diseases. Most existing interventions assume that the

cell is non-responsive and design the intervention under this

naive assumption. This often leads to the short-term success

of these therapies before cells find new ways to fight against

them and partially or fully return the system to undesirable

conditions.

This paper models the fight between the intervention and

the cell as a two-player zero-sum game and highlights the po-

tential of this model, combined with artificial intelligence, in

deriving effective and adaptable genomics interventions. We

demonstrate the reasons for the success of existing interven-

tions by representing the cell as an adaptable reinforcement

learning (RL) player in the cell-intervention fight. Our model

and results provide insights and mathematical justifications

for the early-stage success and long-term failure of existing
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interventions and provide the valuable potential for learning-

based and game-theoretic approaches for treating chronic

diseases and designing new drugs.

II. PROPOSED GAME-THEORETIC MODEL

This paper employs a general form of Boolean network

with perturbation (BNp) model [12]–[17] for capturing the

dynamics of gene regulatory networks. This model properly

captures the stochasticity in GRNs, coming from intrinsic

uncertainty or unmodeled parts of systems. The battle be-

tween the cell and interventionist is modeled in this paper

as a two-player zero-sum game [18]–[21]. This can be

characterized by a tuple ⟨X ,A,U ,Ra, T ⟩, where X = {0,1}d
is the state space, d is the number of genes, A is the action
(e.g., intervention) space, U is the internal cell control (i.e.,
internal stimuli) space, T ∶ X×A×U×X is the state transition
probability function such that p(x′ ∣ x,a,u) represents the

probability of moving to state x′ according to the external

and internal inputs a and u in state x. Ra ∶ X × A ×U × X denotes the reward functions for an interventionist,

where Ra(x,a,u,x′) denotes the immediate shift from the

cancerous states (i.e., reduction in cell proliferation) if the

system moves from state x to state x′ after the intervention

a and the internal cell response u. The cell aims to increase

cell proliferation in cancerous cells, while the interventionist

aims to reduce cell proliferation. Thus, the the reward for the

cell Ru takes negative of the interventionist reward function,

i.e., Ru(x,a,u,x′) = −Ra(x,a,u,x′).
Let πa ∶ X → A denote the intervention strategy, pre-

scribing an intervention to any given state x ∈ X . Let

also πu ∶ X → U be the cell policy, representing cell

actions/simuli at all system states. For the system with no

intervention (i.e., A = {0}), the cell can aggressively push

the system to the undesirable states. The cell policy in this

case can be expressed as:

πu
No(x)=argmin

πu∈Π
E[∑

t≥0

γtRa(xt,at = 0,ut,xt+1) ∣ a0∶∞ = 0,
u0∶∞ ∼ πu,x0 = x], for x ∈ X ,

(1)

where 0 < γ < 1 is a discount factor that indicates the

importance of early-stage rewards compared to future ones.

This models the behavior of cell in chronic diseases such as

cancer, leading to uncontrolled proliferation of cancer cells

and often death.

Most existing intervention strategies are deterministic,

meaning they assume the cell has no defense mechanism

against the interventions [5], [22]. Under this simplistic
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assumption, the Markov game is equivalent of the Markov

decision process with a single agent/player, where the in-

terventionist deals with an unresponsive cell, i.e., U = {0}.
The conventional intervention policy can be obtained as a

solution of the following optimization process:

πa
naive(x)=argmax

πa∈Π
E[∑

t≥0

γtRa(xt,at,ut = 0,xt+1) ∣
a0∶∞ ∼ πa,u0∶∞ = 0,x0 = x], for x ∈ X .

(2)

The naive intervention policy often has a positive short-

term impact on the cell, but these impacts fade out as the cell

understands the impact of therapies and finds new ways to

fight back against intervention. Given our model of the fight

between the cell and intervention, the best defense policy for

the cell against the naive intervention policy πa
naive in (2) can

be formulated as:

πu(x)=argmin
πu∈Π

E[∑
t≥0

γtRa(xt,at = πa
naive(xt),ut,xt+1) ∣

a0∶∞ ∼ πa
naive,u0∶∞ ∼ πu,x0 = x], for x ∈ X .

(3)

The cell figures out the intervention policy over time and

through dynamic stimuli, it recurs the disease. The solutions

to (1)-(3) can be obtained using dynamic programming

or reinforcement learning, depending on the size of the

regulatory network and action spaces [21], [23].

The analytical performance analysis can be achieved in

terms of the state value function and the steady state proba-

bility. In particular, the difference in the expected discounted

rewards under the naive intervention and no intervention can

be expressed for any x ∈ X as:

e(x) = Vπa
naive

,πu(x) − Va=0,πu
No
(x). (4)

In this case, e(x) ≈ 0 for all x ∈ X means that the cell

response ultimately has returned the system close to the

original space through new internal stimuli (e.g., increase

cancer cell proliferation).

III. NUMERICAL EXPERIMENTS

The performance of the proposed model is investigated us-

ing the melanoma regulatory network [5], [24]. This network

is essential for studying and understanding the molecular

mechanisms that drive the development and progression of

melanoma, a deadly form of skin cancer. The regulatory

relationships for this network are presented in Fig. 1, where

the system consists of 10 genes. This regulatory network

contains 10 genes, which lead to 210 = 1,024 possible states.

The activation of WNT5A has been directly connected to

the metastatic condition and reducing the activation of this

gene using antibodies has been shown to be highly effective

in preventing melanoma from metastasizing and achieving a

desirable outcome [5]. Thus, we consider Ra(x,a,u,x′) =−5x′(1) as an intervention reward function, where the reward

of -5 is assigned for each activation of WNT5A. The internal

Fig. 1: The pathway diagram for the melanoma regulatory network.

cell stimuli space is U = {u1,u2,u3}, where u1 corresponds

to no stimuli, and u2 and u3 represent stimuli over the S100P

and MMP3 genes, respectively. For the intervention space,

we consider A = {a1,a2}, where a1 represents no control

and a2 represents intervention over the PHOC gene.

Fig. 2: The short-term and long-term desirable and undesirable
state visitations under intervention and under no intervention.

Fig. 2 represents the early-stage and long-term state

visitations of desirable and undesirable states, along with
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the state visitation under the no-intervention case. One can

see a significant increase in the short-term visitation of

desirable states under the intervention policy compared to no

intervention. However, the shift toward desirable states has

faded out in the long term, and the condition has recurred to

the case with no intervention. Our future work will study the

use of reinforcement learning to understand the cell stimuli

and policy and adaptively fight against cells as more gene-

expression data becomes available.

IV. CONCLUSION

This paper introduces a game-theoretic model for deriving

genomic interventions that can capture the full range of cellu-

lar responses. Current genomic interventions have limitations

in accounting for the dynamic responses of cells, which pose

challenges that can lead to chronic disease recurrence and

inefficient interventions. This paper models the fight between

the intervention and the cell as a two-player zero-sum game

and highlights the potential of this model, combined with

artificial intelligence, in deriving genomic interventions with

long-term effectiveness.
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